WO2021068705A1 - 制造二次电池的电极组件的方法以及设备 - Google Patents

制造二次电池的电极组件的方法以及设备 Download PDF

Info

Publication number
WO2021068705A1
WO2021068705A1 PCT/CN2020/114503 CN2020114503W WO2021068705A1 WO 2021068705 A1 WO2021068705 A1 WO 2021068705A1 CN 2020114503 W CN2020114503 W CN 2020114503W WO 2021068705 A1 WO2021068705 A1 WO 2021068705A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
positive electrode
negative electrode
sheet
electrode sheet
Prior art date
Application number
PCT/CN2020/114503
Other languages
English (en)
French (fr)
Inventor
王艺若
吴志阳
王晓
江承成
谢超
代亮珍
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227012141A priority Critical patent/KR102646568B1/ko
Priority to JP2022521575A priority patent/JP7379690B2/ja
Priority to EP20874982.0A priority patent/EP3930062B1/en
Publication of WO2021068705A1 publication Critical patent/WO2021068705A1/zh
Priority to US17/712,087 priority patent/US11961955B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of battery technology, in particular to a method and equipment for manufacturing an electrode assembly of a secondary battery.
  • the main source of power for new energy vehicles is power batteries.
  • the electrode assembly forming the power battery is wound by a winder, making the winder an important equipment for the production of power batteries.
  • the currently equipped winding machine basically adopts a process in which the positive electrode sheet, the separator, the negative electrode sheet, and the separator are simultaneously wound on the winding needle and then cut. This type of winding machine is prone to problems such as pole piece discounts and winding dust during the production process, which in turn affects the yield and production efficiency of the electrode assembly.
  • the current winding method requires a winding auxiliary mechanism, such as a film roll group or a rolling feeding part, to be arranged upstream of the winding needle to assist the positive electrode sheet, the separator and the negative electrode sheet to smoothly enter the winding needle separately.
  • a winding auxiliary mechanism such as a film roll group or a rolling feeding part
  • the embodiments of the present application provide a method and equipment for manufacturing an electrode assembly of a secondary battery.
  • the method of manufacturing the electrode assembly of the secondary battery can improve the yield of the electrode assembly, simplify the structure of the winding device, and improve the efficiency of the winding work.
  • the embodiment of the present application proposes a method for manufacturing an electrode assembly of a secondary battery, which includes:
  • the positive electrode sheet and the first diaphragm are compositely connected to form a positive electrode composite sheet body;
  • the negative electrode sheet and the second diaphragm are compositely connected to form a negative electrode composite sheet body;
  • the positive electrode composite sheet body and the negative electrode composite sheet body are wound together to form an electrode assembly, and the positive electrode sheet and the negative electrode sheet are separated by a first separator and a second separator.
  • the positive electrode sheet before the composite connection of the positive electrode sheet and the first separator is completed, the positive electrode sheet is subjected to a cutting process upstream of the composite connection position of the positive electrode sheet and the first separator; and/or,
  • the negative electrode sheet is subjected to a cutting process upstream of the composite connection position of the negative electrode sheet and the second separator.
  • a dust removal process is performed on the positive electrode plate and/or the first separator before the composite connection is performed upstream of the composite connection position of the positive electrode plate and the first separator;
  • a dust removal process is performed on the negative electrode sheet and/or the second separator before the composite connection.
  • the step of compounding the positive electrode sheet and the first separator into a positive electrode composite sheet body bonding and connecting the composite starting end and/or the composite ending end of the positive electrode sheet with the first separator; and/ or,
  • step of compounding the negative electrode sheet and the second diaphragm to form a negative electrode composite sheet body bonding and connecting the composite starting end and/or the composite ending end of the negative electrode sheet with the second separator.
  • the positive electrode composite sheet body and/or the negative electrode composite sheet body are transported from bottom to top to the winding process Position and perform the winding process.
  • the positive electrode sheet and the first separator can be compositely connected by electrostatic adsorption, hot-pressing compounding, or adhesive compounding; and/or, the negative electrode sheet and the second separator can be connected by electrostatic adsorption or plasma adsorption. , Hot-pressing compounding or pasting compounding methods to complete the compound connection.
  • the positive electrode sheet and the first separator are compositely connected in advance, and the negative electrode sheet and the second separator are compositely connected, so that the positive electrode sheet and the first separator are connected to each other to form a whole, and The negative electrode sheet and the second separator are connected to each other to form a whole.
  • the positive electrode composite sheet body and the negative electrode composite sheet body are respectively transported to the winding station.
  • the positive electrode sheet and the negative electrode sheet are respectively driven by the first separator and the second separator to enter the winding process.
  • the method of manufacturing the electrode assembly of the secondary battery in the embodiments of the present application can effectively reduce the total sheet body entering the winding process. Therefore, it is beneficial to reduce the difficulty of aligning the positive electrode sheet, the negative electrode sheet and the separator, reduce the possibility of the positive electrode sheet and the negative electrode sheet being misaligned with each other, and improve the winding alignment accuracy.
  • alignment means that the positive electrode sheet, the negative electrode sheet and the separator are aligned with each other in their respective width directions; on the other hand, the possibility of folding or wrinkling of the positive electrode sheet and the negative electrode sheet during the winding process can be reduced, and the efficiency of the electrode assembly can be effectively improved. Yield rate; on the other hand, the positive electrode sheet, the negative electrode sheet and the separator may not be provided with a winding auxiliary mechanism for guiding the positive electrode sheet and the negative electrode sheet into the winding, such as a film roll group or rolling feed, upstream of the winding station. Parts, thereby helping to reduce the number of parts used, simplify the overall structure of the corresponding winding equipment, and at the same time help to improve the efficiency of the winding work.
  • the embodiment of the present application also provides a device for manufacturing an electrode assembly of a secondary battery, which includes:
  • the positive electrode feeding device is used to output the positive electrode sheet
  • the first diaphragm feeding device is used to output the first diaphragm
  • the first composite device is arranged downstream of the positive electrode feeding device and the first diaphragm feeding device, and the first composite device can compositely connect the positive electrode sheet and the first diaphragm to produce a positive electrode composite sheet body;
  • Negative electrode feeding device used to output the negative electrode sheet
  • the second diaphragm feeding device is used to output the second diaphragm
  • the second composite device is arranged downstream of the negative electrode feeding device and the second diaphragm feeding device, and the second composite device can compositely connect the negative electrode sheet and the second diaphragm to form a negative electrode composite sheet body;
  • the winding device is arranged downstream of the first composite device and the second composite device, and the winding device can wind the positive electrode composite sheet body and the negative electrode composite sheet body to make an electrode assembly.
  • the device further includes a positive electrode slice cutter, the positive electrode slice cutter is arranged upstream of the first composite device, and the positive electrode slice cutter is used to cut the positive electrode upstream of the composite connection position of the positive electrode slice and the first separator. Slices; and/or,
  • the equipment also includes a negative electrode sheet cutter, the negative electrode sheet cutter is arranged upstream of the second composite device, and the negative electrode sheet cutter is used to cut the negative electrode sheet upstream of the composite connection position of the negative electrode sheet and the second separator.
  • the equipment further includes a first dust removal device, the first dust removal device is arranged upstream of the first composite device, and the first dust removal device is used to perform dust removal on the positive electrode sheet and/or the first diaphragm before the composite connection Process; and/or,
  • the equipment also includes a second dust removal device, the second dust removal device is arranged upstream of the second composite device, and the second dust removal device is used to perform a dust removal process on the negative electrode sheet and/or the second diaphragm before the composite connection.
  • the winding device includes a winding needle, a positive electrode winding guide roller group and a negative electrode winding guide roller group, and the positive electrode winding guide roller group and the negative electrode winding guide roller group are both arranged upstream of the winding needle, Both the positive electrode lead-in guide roller set and the negative lead lead roller set are arranged under the winding needle.
  • the positive electrode lead-in guide roller group transports the positive electrode composite sheet directly to the winding needle from bottom to top, and the negative electrode lead-in guide roller group transfers the negative electrode to the winding needle.
  • the composite sheet is directly conveyed to the winding needle from bottom to top.
  • the winding device further includes a rotating base and two or more winding needles, and the two or more winding needles are arranged on the rotating base at intervals around the rotation axis of the rotating base.
  • the device further includes a first glue applicator, the first glue applicator is arranged downstream of the first composite device, and the first glue applicator is used for the composite start and/or composite finish of the positive electrode sheet.
  • the end is bonded to the first diaphragm; and/or,
  • the equipment also includes a second glue-applying device, which is arranged downstream of the second composite device, and the second glue-applying device is used for adhesively connecting the composite start end and/or composite end end of the negative electrode sheet with the second diaphragm .
  • the device further includes a first detection device, the first detection device is arranged downstream of the first composite device, and the first detection device is used to detect the composite alignment of the positive electrode sheet and the first separator; and/or ,
  • the equipment also includes a second detection device, the second detection device is arranged downstream of the second composite device, and the second detection device is used to detect the composite alignment of the negative electrode sheet and the second diaphragm.
  • the device further includes a first correcting device, the first correcting device is arranged upstream of the first composite device, and the first correcting device is used to adjust the relative position of the positive electrode sheet and the first diaphragm; and/or,
  • the equipment also includes a second correcting device, which is arranged upstream of the second composite device, and the second correcting device is used to adjust the relative position of the negative electrode sheet and the second diaphragm.
  • the device further includes a tension adjusting device, which is arranged upstream of the winding device, and is used to adjust the tension of the positive electrode composite sheet body or the negative electrode composite sheet body.
  • the positive electrode sheet and the first separator are compositely connected in advance through the first composite device, and the negative electrode sheet and the second separator are compositely connected in advance through the second composite device, so that the positive electrode The sheet and the first diaphragm are connected to each other to form a whole, and the negative electrode sheet and the second diaphragm are connected to each other to form a whole.
  • the positive electrode composite sheet body and the negative electrode composite sheet body are respectively transported to the winding station of the winding device to complete the winding work.
  • the positive electrode sheet and the negative electrode sheet are respectively driven by the first separator and the second separator to enter the winding process.
  • the device for manufacturing the electrode assembly of the secondary battery in the embodiment of the present application can effectively reduce the total number of sheets entering the winding process.
  • the winding auxiliary mechanism is helpful to reduce the number of parts used, simplify the overall structure of the equipment, and at the same time help to improve the efficiency of winding work.
  • FIG. 1 is a schematic diagram of an exploded structure of a secondary battery according to an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of an electrode assembly according to an embodiment of the present application.
  • FIG. 3 is a flowchart of manufacturing an electrode assembly of a secondary battery according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of the structure of an apparatus for manufacturing an electrode assembly of a secondary battery according to an embodiment of the present application.
  • Electrode assembly 121, positive electrode sheet; 122, first separator; 123, negative electrode sheet; 124, second separator; 20, positive electrode composite sheet body; 30, negative electrode composite sheet Body; 99, composite connection position; 100, equipment; 101, positive electrode feeding device; 102, first diaphragm feeding device; 103, first composite device; 104, negative electrode feeding device; 105, second diaphragm feeding device; 106, first 2.
  • Composite device 107.
  • Winding device; 107a winding needle; 107b, rotating base; 107c, positive electrode lead-in guide roller group; 107d, negative electrode lead-in guide roller group; 108, tension adjustment device; 109, positive electrode sheet cutter 110, negative plate cutter; 111, first dust removal device; 112, second dust removal device; 113, diaphragm cutter; 114, first glue application device; 115, second glue application device; 116, first detection device 117, the second detection device; 118, the first correction device; 119, the second correction device.
  • an embodiment of the present application provides a secondary battery 10.
  • the secondary battery 10 includes a case 11, an electrode assembly 12 provided in the case 11, and a top cover assembly that is hermetically connected to the case 11.
  • the housing 11 in the embodiment of the present application has a square structure or other shapes.
  • the case 11 has an internal space for accommodating the electrode assembly 12 and the electrolyte, and an opening communicating with the internal space.
  • the housing 11 may be made of materials such as aluminum, aluminum alloy, or plastic.
  • the electrode assembly 12 of the embodiment of the present application includes a positive electrode sheet 121, a negative electrode sheet 123 and a separator, wherein the separator is an insulator between the positive electrode sheet 121 and the negative electrode sheet 123.
  • the electrode assembly 12 has a main body and tabs.
  • the main body of this embodiment has a flat structure as a whole, which has a predetermined thickness, height, and width.
  • the active material of the positive electrode sheet 121 is coated on the coating area of the positive electrode sheet 121, and the active material of the negative electrode sheet 123 is coated on the coating area of the negative electrode sheet 123.
  • the uncoated area extending from the coated area of the main body is used as a tab.
  • the electrode assembly 12 includes two tabs, namely a positive tab and a negative tab.
  • the positive tab extends from the coating region of the positive tab 121, and the negative tab. Extend from the coating area of the negative electrode sheet 123.
  • an embodiment of the present application provides a method for manufacturing an electrode assembly 12 of a secondary battery 10, which includes the following steps:
  • the positive electrode sheet 121 and the first separator 122 are compositely connected to form a positive electrode composite sheet body 20;
  • the negative electrode sheet 123 and the second separator 124 are compositely connected to form a negative electrode composite sheet body 30;
  • the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are wound together to form the electrode assembly 12.
  • the positive electrode sheet 121 and the negative electrode sheet 123 included in the wound electrode assembly 12 are separated by a first separator 122 and a second separator 124.
  • the positive electrode sheet 121 and the first separator 122 may be compositely connected by a composite method such as electrostatic adsorption, hot-pressing compounding, or pasting compounding.
  • the positive electrode sheet 121 and the first separator 122 are stacked on each other in the thickness direction of the positive electrode sheet 121.
  • the negative electrode sheet 123 and the second separator 124 can be compositely connected by a composite method such as electrostatic adsorption, plasma adsorption, hot-pressing compounding, or pasting compounding.
  • the negative electrode sheet 123 and the second separator 124 are stacked on each other in the thickness direction of the negative electrode sheet 123.
  • the positive electrode sheet 121 and the first separator 122 are compositely connected in advance, and the negative electrode sheet 123 and the second separator 124 are compositely connected, so that the positive electrode sheet 121 and the first separator 122 are connected to each other.
  • a whole body, and the negative electrode sheet 123 and the second separator 124 are connected to each other to form a whole body.
  • the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are respectively transported to the winding station.
  • the positive electrode sheet 121 and the negative electrode sheet 123 are respectively driven by the first separator 122 and the second separator 124 to enter the winding process.
  • the method of manufacturing the electrode assembly 12 of the secondary battery 10 according to the embodiment of the present application can effectively reduce the entry into the winding process.
  • the total number of sheets is beneficial to reduce the difficulty of alignment of the positive electrode sheet 121, the negative electrode sheet 123 and the separator, reduce the possibility of the positive electrode sheet 121 and the negative electrode sheet 123 being misaligned with each other, and improve the winding alignment accuracy.
  • alignment means that the positive electrode sheet 121, the negative electrode sheet 123, and the separator are aligned with each other in their respective width directions; on the other hand, the possibility of folding or wrinkling of the positive electrode sheet 121 and the negative electrode sheet 123 during the winding process can be reduced, which is effective Improve the yield rate of the electrode assembly 12; on the other hand, the positive electrode sheet 121, the negative electrode sheet 123 and the separator may not be provided with a winding auxiliary mechanism for guiding the positive electrode sheet 121 and the negative electrode sheet 123 in the upstream of the winding station.
  • a combination of film rolls or rolling feeding parts is beneficial to reduce the number of parts used, simplify the overall structure of the corresponding winding equipment, and at the same time help to improve the efficiency of winding work.
  • the positive electrode sheet 121 is subjected to a cutting process upstream of the composite connection position of the positive electrode sheet 121 and the first separator 122.
  • the composite connection position 99 between the positive electrode sheet 121 and the first separator 122 is far away from the winding station. Therefore, the cutting process is performed on the positive electrode sheet 121 upstream of the composite connection position 99, which can further effectively reduce the dust generated during the cutting process. Piercing the separator may cause the possibility of short circuit between the positive electrode tab 121 and the negative electrode tab 123.
  • the positive electrode sheet 121 After the positive electrode sheet 121 is cut off, the positive electrode sheet 121 forms a composite end close to the composite connection site 99 and a composite start end far away from the composite connection site 99 for winding the next electrode assembly 12 on both sides of the cut site.
  • the cutting process may be performed by a mechanical cutter or a laser cutter.
  • the negative electrode sheet 123 is subjected to a cutting process upstream of the composite connection site 99 of the negative electrode sheet 123 and the second separator 124.
  • the composite connection position 99 of the negative electrode sheet 123 and the second separator 124 is far away from the winding station. Therefore, the cutting process of the negative electrode sheet 123 is performed upstream of the composite connection position 99, which can further effectively reduce the dust generated during the cutting process and the existence of dust. Piercing the separator may cause the possibility of short circuit between the positive electrode tab 121 and the negative electrode tab 123.
  • the negative electrode sheet 123 After performing the cutting process on the negative electrode sheet 123, the negative electrode sheet 123 respectively forms a composite end close to the composite connection site 99 and a composite start end away from the composite connection site 99 for winding the next electrode assembly 12 on both sides of the cut site.
  • the cutting process may be performed by a mechanical cutter or a laser cutter.
  • the positive electrode sheet 121 before the composite connection of the positive electrode sheet 121 and the first separator 122 is completed, the positive electrode sheet 121 is subjected to a cutting process upstream of the composite connection site 99 of the positive electrode sheet 121 and the first separator 122, and at the same time, the negative electrode sheet 121 is cut off.
  • the negative electrode sheet 123 Before the composite connection between 123 and the second separator 124 is completed, the negative electrode sheet 123 is subjected to a cutting process upstream of the composite connection position 99 of the negative electrode sheet 123 and the second separator 124.
  • a dust removal process is performed on the positive electrode sheet 121 before the composite connection, so as to remove the dust generated during the cutting process of the positive electrode sheet 121 or to remove the external environment.
  • the dust entering the area near the composite connection site 99 on the positive electrode sheet 121 reduces the possibility that the dust will follow the positive electrode sheet 121 and remain in the positive electrode composite sheet body 20 formed after the composite connection is completed and follow the positive electrode composite sheet body 20 to be rolled.
  • a dust removal process is performed on the first diaphragm 122 before the composite connection to remove the external environment from entering the first diaphragm 122 and close to the composite connection.
  • the dust in the 99 area reduces the possibility that the dust will follow the first separator 122 and remain in the positive electrode composite sheet 20 formed after the composite connection is completed and follow the positive electrode composite sheet 20 to be rolled.
  • the dust removal process is simultaneously performed on the positive electrode sheet 121 and the first separator 122 before the composite connection.
  • a dust removal process is performed on the negative electrode sheet 123 before the composite connection, so as to remove the dust generated during the cutting process of the negative electrode sheet 123 or to remove the external environment.
  • the dust entering the area near the composite connection site 99 on the negative electrode sheet 123 reduces the possibility that the dust will follow the negative electrode sheet 123 and remain in the negative electrode composite sheet body 30 formed after the composite connection is completed and follow the negative electrode composite sheet body 30 to be rolled.
  • a dust removal process is performed on the second diaphragm 124 before the composite connection to remove the external environment and enter the second diaphragm 124 close to the composite connection.
  • the dust in the 99 area reduces the possibility that the dust will follow the second separator 124 and remain in the negative composite sheet 30 formed after the composite connection is completed and follow the negative composite sheet 30 to be rolled.
  • a dust removal process is simultaneously performed on the negative electrode sheet 123 and the second separator 124 before the composite connection.
  • the positive electrode sheet 121 to be recombined and connected has a recombination start end. After the positive electrode sheet 121 is cut after one winding process is completed, a composite end and a composite start end for the next winding process are formed.
  • the composite starting end or the composite ending end of the positive electrode sheet 121 is bonded and connected to the first separator 122, thereby effectively reducing the composite connection to the first separator.
  • the composite start end or composite end end of the positive electrode sheet 121 of a separator 122 may be folded or wrinkled during the recombination process, the conveying process, or the winding process.
  • the composite starting end or composite ending end of the positive electrode sheet 121 is adhesively connected to the first separator 122 by an adhesive tape.
  • the composite starting end and the composite ending end of the positive electrode sheet 121 are bonded to the first separator 122.
  • the negative electrode sheet 123 to be recombined and connected has a recombination start end. After the negative electrode sheet 123 is cut after one winding process is completed, a composite end and a composite start end for the next winding process are formed.
  • the composite starting end or the composite ending end of the negative electrode sheet 123 is bonded and connected to the second separator 124, thereby effectively reducing the composite connection to the second separator.
  • the composite starting end or composite ending end of the negative electrode sheet 123 of the second separator 124 may be folded or wrinkled during the composite process, the conveying process, or the winding process.
  • the composite start end or composite end end of the negative electrode sheet 123 is adhesively connected to the second separator 124 by an adhesive tape.
  • the composite start end and composite end end of the negative electrode sheet 123 are bonded to the second separator 124.
  • the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 is transported from bottom to top to the winding station and the winding is performed Process.
  • bottom-up refers to the vertical direction as the reference direction. Since the positive electrode sheet 121 and the negative electrode sheet 123 of the embodiment of the present application are respectively compositely connected with the first separator 122 and the second separator 124, the positive electrode sheet 121 and the negative electrode sheet 123 are directly wound following the first separator 122 and the second separator 124, respectively.
  • the positive electrode composite sheet body 20 or the negative electrode composite sheet body 30 of the embodiment of the present application can be conveyed from the bottom up, and the composite starting end and the composite ending end of the positive electrode sheet 121 or the negative electrode sheet 123 will not be under its own gravity. Under the action of sagging, resulting in folds or wrinkles, it can also make the positive composite sheet 20 or negative composite sheet 30 during the transportation process, the dust carried by each will be separated and fall under the action of its own gravity, thereby reducing dust following
  • the positive electrode composite sheet body 20 or the negative electrode composite sheet body 30 enters into the electrode assembly 12 formed by winding, which affects the possibility of the electrode assembly 12 being used safely.
  • the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are transported from bottom to top to the winding station and the winding process is performed.
  • the method for manufacturing the electrode assembly 12 of the secondary battery 10 in the embodiment of the present application adopts the composite connection of the positive electrode sheet 121 and the first separator 122 and the negative electrode sheet 123 and the second separator 124 in advance, and then the positive electrode composite sheet body 20 and the negative composite sheet 30 are wound in two sheets. Therefore, compared to the manner in which the positive electrode sheet 121, the negative electrode sheet 123, and the two separators are wound independently, the method of the embodiment of the present application can no longer be used.
  • an embodiment of the present application provides an apparatus 100 for manufacturing the electrode assembly 12 of the secondary battery 10, which can be used to implement the method for manufacturing the electrode assembly 12 of the secondary battery 10 in the foregoing embodiment.
  • the equipment 100 of this embodiment includes a positive electrode feeding device 101, a first separator feeding device 102, a first composite device 103, a negative electrode feeding device 104, a second separator feeding device 105, a second composite device 106, and a winding device 107.
  • the positive electrode feeding device 101 is used to install and fix the positive electrode sheet 121 material roll, and then output the positive electrode sheet 121 through the unwinding mechanism.
  • the positive electrode sheet 121 is driven by the transfer roller set to move toward the composite connection position 99.
  • the first diaphragm feeding device 102 is used to install and fix the diaphragm material roll, and then output the first diaphragm 122 through the unwinding mechanism.
  • the first diaphragm 122 moves toward the composite connection position 99 under the driving of the conveying roller group.
  • the first composite device 103 is arranged downstream of the positive electrode feeding device 101 and the first separator feeding device 102.
  • Both the positive electrode sheet 121 and the first separator 122 are transported to the first composite device 103, and then the first composite device 103 compositely connects the positive electrode sheet 121 and the first separator 122 to form the positive electrode composite sheet body 20.
  • the first composite device 103 includes a hot pressing mechanism. The positive electrode sheet 121 and the first separator 122 are combined with each other by a hot pressing mechanism.
  • the first composite device 103 includes an electrostatic generator. The positive electrode sheet 121 and the first separator 122 realize a composite connection through electrostatic adsorption.
  • the first composite device 103 includes a glue application mechanism. The positive electrode sheet 121 and the first separator 122 are connected in a composite manner by pasting glue. The positive electrode sheet 121 and the first separator 122 are superimposed on each other in the thickness direction.
  • the negative electrode feeding device 104 is used to install and fix the negative electrode sheet 123 material roll, and then output the negative electrode sheet 123 through the unwinding mechanism.
  • the negative electrode sheet 123 moves toward the composite connection position 99 under the driving of the transfer roller set.
  • the second diaphragm feeding device 105 is used to install and fix the diaphragm material roll, and then output the second diaphragm 124 through the unwinding mechanism.
  • the second diaphragm 124 moves toward the composite connection position 99 under the driving of the conveying roller group.
  • the second composite device 106 is arranged downstream of the negative electrode feeding device 104 and the second separator feeding device 105.
  • Both the negative electrode sheet 123 and the second separator 124 are transported to the second composite device 106, and then the second composite device 106 combines the negative electrode sheet 123 and the second separator 124 to form a negative composite sheet body 30.
  • the second composite device 106 includes a hot pressing mechanism.
  • the negative electrode sheet 123 and the second separator 124 are hot-pressed and combined by a hot-pressing mechanism.
  • the second composite device 106 includes an electrostatic generator.
  • the negative electrode sheet 123 and the second separator 124 realize a composite connection through electrostatic adsorption.
  • the second composite device 106 includes a glue application mechanism.
  • the negative electrode sheet 123 and the second separator 124 are connected in a composite manner by pasting.
  • the negative electrode sheet 123 and the second separator 124 are superimposed on each other in the thickness direction.
  • the winding device 107 is provided downstream of the first composite device 103 and the second composite device 106.
  • the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are conveyed to the winding device 107.
  • the winding device 107 winds the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 to produce the electrode assembly 12.
  • the first composite device 103 and the second composite device 106 are symmetrically arranged on both sides of the winding device 107, so as to ensure the position consistency of the composite connection site 99 corresponding to each of the positive electrode sheet 121 and the negative electrode sheet 123 and The uniformity of the wound positions of the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 formed after the composite connection is beneficial to improve the alignment accuracy of the wound positive electrode sheet 121 and the negative electrode sheet 123.
  • the device 100 further includes a tension adjustment device 108.
  • the tension adjusting device 108 is arranged upstream of the winding device 107 and is used to adjust the tension of the positive electrode composite sheet body 20 or the negative electrode composite sheet body 30.
  • the positive electrode sheet 121 and the first separator 122 are combined and connected in advance through the first recombination device 103, and the negative electrode sheet 123 and the first separator are preliminarily connected through the second recombination device 106.
  • the two diaphragms 124 are combinedly connected, so that the positive electrode sheet 121 and the first diaphragm 122 are connected to each other to form a whole, and the negative electrode sheet 123 and the second diaphragm 124 are connected to each other to form a whole.
  • the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are respectively transported to the winding station of the winding device 107 to complete the winding work.
  • the positive electrode sheet 121 and the negative electrode sheet 123 are respectively driven by the first separator 122 and the second separator 124 to enter the winding process.
  • the apparatus 100 for manufacturing the electrode assembly 12 of the secondary battery 10 of the embodiment of the present application can effectively reduce the entry into the winding process.
  • the total number of sheets is helpful to reduce the difficulty of alignment of the positive electrode sheet 121, the negative electrode sheet 123 and the separator, reduce the possibility that the positive electrode sheet 121 and the negative electrode sheet 123 are not aligned with each other, and improve the winding alignment accuracy; on the other hand, it can reduce the positive electrode sheet.
  • the sheet 121 and the negative sheet 123 may be folded or wrinkled when entering the winding process, which is beneficial to improve the yield of the electrode assembly 12.
  • the positive sheet 121, the negative sheet 123 and the separator are close to the upstream of the winding device 107.
  • the winding auxiliary mechanism for guiding the positive electrode sheet 121 and the negative electrode sheet 123 to be wound may not be provided, thereby helping to reduce the number of parts used, simplifying the overall structure of the device 100, and improving the efficiency of winding work at the same time.
  • the device 100 further includes a positive electrode plate cutter 109 for cutting the positive electrode plate 121.
  • the positive plate cutter 109 is arranged upstream of the first composite device 103.
  • the positive electrode sheet cutter 109 is used to cut the positive electrode sheet 121 upstream of the composite connection site 99 of the positive electrode sheet 121 and the first separator 122.
  • the positive electrode blade cutter 109 includes a cutter and a cutter seat.
  • the positive electrode sheet 121 passes between the cutter and the cutter holder. When the positive electrode sheet 121 needs to be cut, the cutter and the knife holder are close to each other to cut the positive electrode sheet 121.
  • the positive electrode plate cutter 109 may be a laser cutter, which cuts the positive electrode plate 121 by laser.
  • the positive electrode sheet 121 is subjected to a cutting process upstream of the composite connection site 99 of the positive electrode sheet 121 and the first separator 122.
  • the composite connection position 99 between the positive electrode sheet 121 and the first separator 122 is far away from the winding station. Therefore, the cutting process is performed on the positive electrode sheet 121 upstream of the composite connection position 99, which can further effectively reduce the dust generated during the cutting process. Piercing the separator may cause the possibility of short circuit between the positive electrode tab 121 and the negative electrode tab 123.
  • the device 100 further includes a negative electrode sheet cutter 110 for cutting the negative electrode sheet 123.
  • the negative electrode plate cutter 110 is arranged upstream of the second composite device 106.
  • the negative electrode sheet cutter 110 is used to cut the negative electrode sheet 123 upstream of the composite connection site 99 of the negative electrode sheet 123 and the second separator 124.
  • the negative plate cutter 110 includes a cutter and a cutter seat.
  • the negative electrode piece 123 passes between the tool and the tool holder. When it is necessary to cut the negative electrode sheet 123, the cutter and the knife holder are close to each other to cut the negative electrode sheet 123.
  • the negative electrode plate cutter 110 may be a laser cutter, and the negative electrode plate 123 is cut by laser.
  • the negative electrode sheet 123 is subjected to a cutting process upstream of the composite connection site 99 of the negative electrode sheet 123 and the second separator 124.
  • the composite connection position 99 of the negative electrode sheet 123 and the second separator 124 is far away from the winding station. Therefore, the cutting process of the negative electrode sheet 123 is performed upstream of the composite connection position 99, which can further effectively reduce the dust generated during the cutting process and the existence of dust. Piercing the separator may cause the possibility of short circuit between the positive electrode tab 121 and the negative electrode tab 123.
  • the device 100 includes a positive electrode sheet cutter 109 for cutting the positive electrode sheet 121 and a negative electrode sheet cutter 110 for cutting the negative electrode sheet 123.
  • the equipment 100 further includes a first dust removal device 111.
  • the first dust removal device 111 is arranged upstream of the first composite device 103 and is used to perform a dust removal process on the positive electrode sheet 121 and/or the first separator 122 before the composite connection.
  • the first dust removal device 111 is close to the positive electrode plate cutter 109.
  • the first dust removal device 111 performs a dust removal process on the positive electrode sheet 121 and/or the first separator 122 before the composite connection, so that the cutting process of the positive electrode sheet 121 can be removed.
  • the first dust removal device 111 includes a dust suction pipe and a negative pressure generator connected to the dust suction pipe.
  • the equipment 100 further includes a second dust removal device 112.
  • the second dust removal device 112 is arranged upstream of the second composite device 106 and is used to perform a dust removal process on the negative electrode sheet 123 and/or the second separator 124 before the composite connection.
  • the second dust removal device 112 is close to the negative plate cutter 110.
  • the second dust removal device 112 performs a dust removal process on the negative electrode sheet 123 and/or the second separator 124 before the composite connection, so that the cutting process of the negative electrode sheet 123 can be removed.
  • the second dust removal device 112 includes a dust suction pipe and a negative pressure generator connected to the dust suction pipe.
  • the winding device 107 includes a winding needle 107a, a positive electrode winding guide roller group 107c, and a negative electrode winding guide roller group 107d. Both the positive electrode lead-in guide roller group 107c and the negative electrode lead-in guide roller group 107d are arranged upstream of the winding needle 107a. In an example, both the positive electrode winding guide roller group 107c and the negative electrode winding guide roller group 107d are arranged below the winding needle 107a.
  • the positive electrode winding guide roller group 107c conveys the positive electrode composite sheet 20 directly to the winding needle 107a from bottom to top.
  • the negative electrode winding guide roller group 107d directly conveys the negative electrode composite sheet 30 from bottom to top to the winding needle 107a.
  • the winding needle 107a includes two half shafts that can be close to or away from each other. The starting ends of the first diaphragm 122 and the second diaphragm 124 are pre-clamped between the two half shafts, and then the winding needle 107a is rotated a predetermined number of turns to wind the first diaphragm 122 and the second diaphragm 124 with a predetermined length. Then, the positive electrode sheet 121 and the negative electrode sheet 123 are respectively driven by the first separator 122 and the second separator 124 into the winding needle 107a for winding.
  • the positive electrode tab 121 and the negative electrode tab 123 are cut.
  • the winding needle 107a continues to rotate a predetermined number of turns to continue winding the first separator 122 and the second separator 124.
  • the first separator 122 and the second separator 124 are cut, and the winding work is finally completed.
  • the two half shafts are opened, and the electrode assembly 12 is removed from the winding needle 107a to complete the blanking.
  • the winding device 107 includes a rotating base 107b and two winding needles 107a arranged on the rotating base 107b at intervals. After the first winding needle 107a completes the winding work, the rotating base 107b rotates so that the first winding needle 107a rotates to the unloading station, and the second winding needle 107a rotates to the winding station. The second coiling needle 107a clamps the first septum 122 and the second septum 124, and then the first septum 122 and the second septum 124 can be cut between the two coiling needles 107a by the septum cutter 113.
  • the two winding needles 107a are used in turn to perform winding work, so that in the process of winding a plurality of electrode assemblies 12 using the apparatus 100 for manufacturing the electrode assembly 12 of the secondary battery 10, only the first separator 122 and the second separator 124 are needed In the initial stage, the winding operation is performed once, and then the two winding needles 107a alternately clamp the first diaphragm 122 and the second diaphragm 124 to continuously perform the winding work, and the first diaphragm 122 and the second diaphragm 124 are no longer required to perform the winding operation , Effectively provide winding efficiency.
  • the number of winding needles 107a is not limited to the above-mentioned two, and may be three or more.
  • Each winding needle 107a can be switched between the unloading station and the winding station under the driving of the rotating base 107b.
  • the positive electrode lead-in guide roller group 107c and the negative electrode lead-in guide roller group 107d are symmetrically arranged on both sides of the winding needle 107a at the winding station, so as to ensure that the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are inserted.
  • the consistency of the winding position is beneficial to improve the alignment accuracy of the positive electrode sheet 121 and the negative electrode sheet 123 after the winding.
  • the device 100 includes a first glue applicator 114.
  • the first glue applicator 114 is arranged downstream of the first composite device 103.
  • the composite start end or composite end end of the positive electrode sheet 121 is bonded and connected to the first separator 122 through the first glue application device 114, thereby further effectively reducing the composite start end or composite end of the positive electrode sheet 121 that is compositely connected to the first separator 122.
  • the composite starting end and the composite ending end of the positive electrode sheet 121 are adhesively connected to the first separator 122.
  • the first glue applicator 114 includes a tape output mechanism, a tape sticking mechanism, and a tape cutting mechanism. At least one of the composite starting end and the composite ending end of the positive electrode sheet 121 is adhesively connected to the first separator 122 by an adhesive tape.
  • the device 100 includes a second glue applicator 115.
  • the second glue applicator 115 is arranged downstream of the second composite device 106.
  • the composite start end or composite end end of the negative electrode sheet 123 and the second separator 124 are bonded and connected by the second glue application device 115, thereby further effectively reducing the composite start end or composite end of the negative electrode sheet 123 connected to the second separator 124.
  • the composite start end and composite end end of the negative electrode sheet 123 are bonded to the second separator 124.
  • the second glue applicator 115 includes a tape output mechanism, a tape sticking mechanism, and a tape cutting mechanism.
  • the composite starting end or composite ending end of the negative electrode sheet 123 is adhesively connected to the second separator 124 by adhesive tape.
  • the apparatus 100 includes a first glue applicator 114 and a second glue applicator 115.
  • the device 100 further includes a first detection device 116 for detecting the composite alignment of the positive electrode sheet 121 and the first separator 122.
  • the first detection device 116 is arranged downstream of the first composite device 103 and can detect the alignment degree of the positive electrode sheet 121 and the first separator 122 after being composited in real time.
  • the positive electrode composite sheet body 20 can be transported to the winding device 107 for winding, thereby helping to ensure the yield and quality of the wound electrode assembly 12 .
  • the first detection device 116 includes an industrial camera or a photoelectric sensor for detecting alignment.
  • the device 100 further includes a second detection device 117 for detecting the composite alignment of the negative electrode sheet 123 and the second diaphragm 124.
  • the second detection device 117 is arranged downstream of the second composite device 106, and can detect the alignment degree of the negative electrode sheet 123 and the second diaphragm 124 after being composited in real time.
  • the negative electrode composite sheet body 30 can be transported to the winding device 107 for winding, thereby helping to ensure the yield and quality of the wound electrode assembly 12 .
  • the second detection device 117 includes an industrial camera or a photoelectric sensor for detecting the degree of alignment.
  • the device 100 further includes a first detection device 116 and a second detection device 117.
  • the device 100 further includes a first correction device 118 for adjusting the alignment of the positive electrode sheet 121 and the first diaphragm 122.
  • the first correcting device 118 adjusts the relative position of the positive electrode sheet 121 and the first separator 122 along the width direction of the positive electrode sheet 121, so that the positive electrode sheet 121 and the first separator 122 are aligned with each other. Satisfying product requirements is beneficial to improve the yield of the wound electrode assembly 12.
  • the device 100 includes a first detection device 116.
  • the first correction device 118 is in communication connection with the first detection device 116.
  • the first detection device 116 detects that the alignment between the positive electrode sheet 121 and the first diaphragm 122 does not meet the requirements, it sends a signal to the first correction device 118, and then the first correction device 118 performs a correction action to adjust the positive electrode sheet. 121 and the degree of alignment of the first diaphragm 122.
  • the device 100 further includes a second correction device 119 for adjusting the alignment of the negative electrode sheet 123 and the second diaphragm 124.
  • the second correcting device 119 adjusts the relative position of the negative electrode sheet 123 and the second separator 124 along the width direction of the negative electrode sheet 123, so that the negative electrode sheet 123 and the second separator 124 are aligned with each other. Satisfying product requirements is beneficial to improve the yield of the wound electrode assembly 12.
  • the device 100 includes a second detection device 117.
  • the second correction device 119 is in communication connection with the second detection device 117.
  • the device 100 further includes a first correction device 118 and a second correction device 119.
  • the device 100 for manufacturing the electrode assembly 12 of the secondary battery 10 of the embodiment of the present application is prepared by pre-combining the positive electrode sheet 121 and the first separator 122 and the negative electrode sheet 123 and the second separator 124 to form a positive electrode composite sheet body 20 and a negative electrode composite
  • the sheet body 30 so that the positive electrode sheet 121 and the first separator 122 are connected as a whole, the negative electrode sheet 123 and the second separator 124 are connected as a whole, and then the positive electrode composite sheet body 20 and the negative electrode composite sheet body 30 are wound to form an electrode assembly 12.
  • the device 100 of the embodiment of the present application does not require the positive electrode sheet 121, the negative electrode sheet 123 and the separator to be wound separately, which can reduce the folding or wrinkling of the positive electrode sheet 121 and the negative electrode sheet 123 when they enter the winding process separately.
  • the yield rate of the electrode assembly 12 is effectively improved; on the other hand, the positive electrode sheet 121, the negative electrode sheet 123 and the separator may not be provided upstream of the winding device 107.
  • the winding auxiliary mechanism that guides the positive electrode sheet 121 and the negative electrode sheet 123 into the winding, thereby helping to reduce the number of parts used, simplify the overall structure of the device 100, and at the same time help to improve the efficiency of winding work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本申请涉及一种制造二次电池的电极组件的方法以及设备。本申请实施例提出了一种制造二次电池的电极组件的方法,其包括:将正极片与第一隔膜复合连接制作成正极复合片体;将负极片与第二隔膜复合连接制作成负极复合片体;将正极复合片体与负极复合片体一同卷绕成电极组件,正极片和负极片通过第一隔膜和第二隔膜隔离设置。本申请实施例的制造二次电池的电极组件的方法能够提高电极组件的良品率,简化卷绕设备结构,提高卷绕工作效率。

Description

制造二次电池的电极组件的方法以及设备
相关申请的交叉引用
本申请要求享有于2019年10月10日提交的名称为“制造二次电池的电极组件的方法以及设备”的中国专利申请201910957293.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种制造二次电池的电极组件的方法以及设备。
背景技术
随着社会的发展,人类越来越重视保护环境的重要性。因此,新能源汽车作为具有良好的环境友好性的交通工具而被广泛使用。新能源汽车的动力来源主要是动力电池。在动力电池加工设备中,通过卷绕机卷绕形成动力电池的电极组件,使得卷绕机成为用于生产动力电池的一个重要设备。然而,目前配备的卷绕机基本采用正极片、隔膜、负极片、隔膜同时卷绕于卷针,然后进行切割的工艺方式。这种类型的卷绕机在生产过程较易出现极片打折和卷绕粉尘等问题,进而影响电极组件良品率和生产效率。另外,目前的卷绕方式需要在靠近卷针的上游设置入卷辅助机构,例如并膜辊组或滚动入料部件,以用于辅助正极片、隔膜和负极片各自单独顺利进入卷针,从而导致卷绕机设备结构复杂,入料卷绕工作效率低。
发明内容
本申请实施例提供一种制造二次电池的电极组件的方法以及设备。制造二次电池的电极组件的方法能够提高电极组件的良品率,简化卷绕设备结构,提高卷绕工作效率。
本申请实施例提出了一种制造二次电池的电极组件的方法,其包括:
将正极片与第一隔膜复合连接制作成正极复合片体;
将负极片与第二隔膜复合连接制作成负极复合片体;
将正极复合片体与负极复合片体一同卷绕成电极组件,正极片和负极片通过第一隔膜和第二隔膜隔离设置。
根据本申请的一个实施例,在正极片与第一隔膜完成复合连接之前,在正极片与第一隔膜的复合连接位的上游将正极片执行切断工序;和/或,
在负极片与第二隔膜完成复合连接之前,在负极片与第二隔膜的复合连接位的上游将负极片执行切断工序。
根据本申请的一个实施例,在正极片与第一隔膜的复合连接位的上游,对复合连接之前的正极片和/或第一隔膜执行除尘工序;和/或,
在负极片与第二隔膜的复合连接位的上游,对复合连接之前的负极片和/或第二隔膜执行除尘工序。
根据本申请的一个实施例,在将正极片与第一隔膜复合制作成正极复合片体的步骤中:将正极片的复合起始端和/或复合收尾端与第一隔膜粘接连接;和/或,
在将负极片与第二隔膜复合制作成负极复合片体的步骤中:将负极片的复合起始端和/或复合收尾端与第二隔膜粘接连接。
根据本申请的一个实施例,在将正极复合片体与负极复合片体一同卷绕成电极组件的步骤中:将正极复合片体和/或负极复合片体自下而上输 送至卷绕工位并执行卷绕工序。
根据本申请的一个实施例,正极片和第一隔膜可以通过静电吸附、热压复合或贴胶复合等复合方式完成复合连接;和/或,负极片和第二隔膜可以通过静电吸附、等离子吸附、热压复合或贴胶复合等复合方式完成复合连接。
根据本申请的一个实施例,在执行卷绕工序之前,预先将正极片和第一隔膜复合连接,而负极片和第二隔膜复合连接,使得正极片和第一隔膜相互连接形成一个整体,而负极片和第二隔膜相互连接形成一个整体。然后将正极复合片体和负极复合片体分别输送至待卷绕工位。正极片和负极片分别在第一隔膜和第二隔膜带动下进入卷绕工序。这样,相对于正极片、负极片以及隔膜各自独立进入卷绕工序的加工方式,本申请实施例的制造二次电池的电极组件的方法,一方面,可以有效减少进入卷绕工序的片体总数量,从而有利于降低正极片、负极片以及隔膜对齐难度,降低正极片和负极片彼此不对齐的可能性,提高卷绕对齐精度。这里,对齐指的是正极片、负极片以及隔膜沿各自的宽度方向彼此对齐;另一方面,可以降低正极片和负极片进入卷绕工序时出现打折或褶皱的可能性,有效提高电极组件的良品率;又一方面,正极片、负极片以及隔膜在接近卷绕工位的上游可以不设置用于引导正极片和负极片入卷的入卷辅助机构,例如并膜辊组或滚动入料部件,从而有利于减少零部件的使用数量,简化相应的卷绕设备的整体结构,同时有利于提高卷绕工作效率。
本申请实施例还提供一种制造二次电池的电极组件的设备,其包括:
正极送料装置,用于输出正极片;
第一隔膜送料装置,用于输出第一隔膜;
第一复合装置,设置于正极送料装置和第一隔膜送料装置的下游, 第一复合装置能够将正极片和第一隔膜复合连接制作成正极复合片体;
负极送料装置,用于输出负极片;
第二隔膜送料装置,用于输出第二隔膜;
第二复合装置,设置于负极送料装置和第二隔膜送料装置的下游,第二复合装置能够将负极片和第二隔膜复合连接制作成负极复合片体;
卷绕装置,设置于第一复合装置和第二复合装置的下游,卷绕装置能够卷绕正极复合片体和负极复合片体以制作成电极组件。
根据本申请的一个实施例,设备还包括正极片切刀,正极片切刀设置于第一复合装置的上游,正极片切刀用于在正极片与第一隔膜的复合连接位的上游切断正极片;和/或,
设备还包括负极片切刀,负极片切刀设置于第二复合装置的上游,负极片切刀用于在负极片与第二隔膜的复合连接位的上游切断负极片。
根据本申请的一个实施例,设备还包括第一除尘装置,第一除尘装置设置于第一复合装置的上游,第一除尘装置用于对复合连接之前的正极片和/或第一隔膜执行除尘工序;和/或,
设备还包括第二除尘装置,第二除尘装置设置于第二复合装置的上游,第二除尘装置用于对复合连接之前的负极片和/或第二隔膜执行除尘工序。
根据本申请的一个实施例,卷绕装置包括卷针、正极入卷导辊组和负极入卷导辊组,正极入卷导辊组和负极入卷导辊组均设置于卷针的上游,正极入卷导辊组和负极入卷导辊组均设置于卷针的下方,正极入卷导辊组将正极复合片体自下而上直接输送至卷针,负极入卷导辊组将负极复合片体自下而上直接输送至卷针。
根据本申请的一个实施例,卷绕装置还包括旋转底座以及两个以上的卷针,两个以上的卷针绕旋转底座的转动轴线间隔设置于旋转底座。
根据本申请的一个实施例,设备还包括第一贴胶装置,第一贴胶装置设置于第一复合装置的下游,第一贴胶装置用于将正极片的复合起始端和/或复合收尾端与第一隔膜粘接连接;和/或,
设备还包括第二贴胶装置,第二贴胶装置设置于第二复合装置的下游,第二贴胶装置用于将负极片的复合起始端和/或复合收尾端与第二隔膜粘接连接。
根据本申请的一个实施例,设备还包括第一检测装置,第一检测装置设置于第一复合装置的下游,第一检测装置用于检测正极片和第一隔膜的复合对齐度;和/或,
设备还包括第二检测装置,第二检测装置设置于第二复合装置的下游,第二检测装置用于检测负极片和第二隔膜的复合对齐度。
根据本申请的一个实施例,设备还包括第一纠偏装置,第一纠偏装置设置于第一复合装置的上游,第一纠偏装置用于调整正极片和第一隔膜的相对位置;和/或,
设备还包括第二纠偏装置,第二纠偏装置设置于第二复合装置的上游,第二纠偏装置用于调整负极片和第二隔膜的相对位置。
根据本申请的一个实施例,设备进一步还包括张力调节装置,张力调节装置设置于卷绕装置的上游,用于调整正极复合片体或负极复合片体的张紧程度。
根据本申请实施例制造二次电池的电极组件的设备,通过第一复合装置预先将正极片和第一隔膜复合连接,而通过第二复合装置预先将负极片和第二隔膜复合连接,使得正极片和第一隔膜相互连接形成一个整体,而负极片和第二隔膜相互连接形成一个整体。然后将正极复合片体和负极复合片体分别输送至卷绕装置的卷绕工位完成卷绕工作。正极片和负极片分别在第一隔膜和第二隔膜带动下进入卷绕工序。这样,相对于正极片、 负极片以及隔膜各自独立进入卷绕工序的加工方式,本申请实施例的制造二次电池的电极组件的设备,一方面,可以有效减少进入卷绕工序的片体总数量,从而有利于降低正极片、负极片以及隔膜对齐难度,降低正极片和负极片彼此不对齐的可能性,提高卷绕对齐精度;另一方面,可以降低正极片和负极片进入卷绕工序时出现打折或褶皱的可能性,有利于提高电极组件的良品率;又一方面,正极片、负极片以及隔膜在接近卷绕装置的上游可以不设置用于引导正极片和负极片入卷的入卷辅助机构,从而有利于减少零部件的使用数量,简化设备的整体结构,同时有利于提高卷绕工作效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的二次电池的分解结构示意图;
图2是本申请一实施例的电极组件的剖视结构示意图;
图3是本申请一实施例的制造二次电池的电极组件的流程图;
图4是本申请一实施例的制造二次电池的电极组件的设备结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
10、二次电池;11、壳体;12、电极组件;121、正极片;122、第一隔膜;123、负极片;124、第二隔膜;20、正极复合片体;30、负极复合片体;99、复合连接位;100、设备;101、正极送料装置;102、第一 隔膜送料装置;103、第一复合装置;104、负极送料装置;105、第二隔膜送料装置;106、第二复合装置;107、卷绕装置;107a、卷针;107b、旋转底座;107c、正极入卷导辊组;107d、负极入卷导辊组;108、张力调节装置;109、正极片切刀;110、负极片切刀;111、第一除尘装置;112、第二除尘装置;113、隔膜切刀;114、第一贴胶装置;115、第二贴胶装置;116、第一检测装置;117、第二检测装置;118、第一纠偏装置;119、第二纠偏装置。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言, 可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图4对本申请实施例进行描述。
参见图1所示,本申请实施例提供一种二次电池10。二次电池10包括壳体11、设置于壳体11内的电极组件12以及与壳体11密封连接的顶盖组件。本申请实施例的壳体11为方形结构或其他形状。壳体11具有容纳电极组件12和电解液的内部空间以及与内部空间相连通的开口。壳体11可以由例如铝、铝合金或塑料等材料制造。
参见图2所示,本申请实施例的电极组件12包括正极片121、负极片123以及隔膜,其中,隔膜是介于正极片121和负极片123之间的绝缘体。电极组件12具有主体部和极耳。本实施例的主体部整体为扁平状结构,其具有预定的厚度、高度和宽度。正极片121活性物质被涂覆在正极片121的涂覆区上,而负极片123活性物质被涂覆到负极片123的涂覆区上。由主体部的涂覆区延伸出的未涂覆区则作为极耳,电极组件12包括两个极耳,即正极耳和负极耳,正极耳从正极片121的涂覆区延伸出,负极耳从负极片123的涂覆区延伸出。
参见图3所示,本申请实施例提供一种制造二次电池10的电极组件12的方法,包括如下步骤:
将正极片121与第一隔膜122复合连接制作成正极复合片体20;
将负极片123与第二隔膜124复合连接制作成负极复合片体30;
将正极复合片体20与负极复合片体30一同卷绕成电极组件12,卷绕形成的电极组件12所包括的正极片121和负极片123通过第一隔膜122和第二隔膜124隔离设置。
在一个实施例中,正极片121和第一隔膜122可以通过静电吸附、热压复合或贴胶复合等复合方式完成复合连接。正极片121和第一隔膜 122沿正极片121的厚度方向相互层叠。负极片123和第二隔膜124可以通过静电吸附、等离子吸附、热压复合或贴胶复合等复合方式完成复合连接。负极片123和第二隔膜124沿负极片123的厚度方向相互层叠。
本申请实施例中,在执行卷绕工序之前,预先将正极片121和第一隔膜122复合连接,而负极片123和第二隔膜124复合连接,使得正极片121和第一隔膜122相互连接形成一个整体,而负极片123和第二隔膜124相互连接形成一个整体。然后将正极复合片体20和负极复合片体30分别输送至待卷绕工位。正极片121和负极片123分别在第一隔膜122和第二隔膜124带动下进入卷绕工序。这样,相对于正极片121、负极片123以及隔膜各自独立进入卷绕工序的加工方式,本申请实施例的制造二次电池10的电极组件12的方法,一方面,可以有效减少进入卷绕工序的片体总数量,从而有利于降低正极片121、负极片123以及隔膜对齐难度,降低正极片121和负极片123彼此不对齐的可能性,提高卷绕对齐精度。这里,对齐指的是正极片121、负极片123以及隔膜沿各自的宽度方向彼此对齐;另一方面,可以降低正极片121和负极片123进入卷绕工序时出现打折或褶皱的可能性,有效提高电极组件12的良品率;又一方面,正极片121、负极片123以及隔膜在接近卷绕工位的上游可以不设置用于引导正极片121和负极片123入卷的入卷辅助机构,例如并膜辊组或滚动入料部件,从而有利于减少零部件的使用数量,简化相应的卷绕设备的整体结构,同时有利于提高卷绕工作效率。
在一个实施例中,在正极片121与第一隔膜122完成复合连接之前,在正极片121与第一隔膜122的复合连接位的上游将正极片121执行切断工序。正极片121与第一隔膜122的复合连接位99远离卷绕工位,因此在复合连接位99的上游对正极片121执行切断工序,可以进一步有效降低切断过程所产生的粉尘入卷而存在粉尘刺破隔膜导致正极片121和 负极片123发生短路的可能性。在对正极片121执行切断工序后,正极片121在切断处的两侧分别形成靠近复合连接位99的复合收尾端以及远离复合连接位99并用于卷绕下一个电极组件12的复合起始端。在一示例性实施例中,可以通过机械切刀或激光切割器执行切断工序。
在一个实施例中,在负极片123与第二隔膜124完成复合连接之前,在负极片123与第二隔膜124的复合连接位99的上游将负极片123执行切断工序。负极片123与第二隔膜124的复合连接位99远离卷绕工位,因此在复合连接位99的上游对负极片123执行切断工序,可以进一步有效降低切断过程所产生的粉尘入卷而存在粉尘刺破隔膜导致正极片121和负极片123发生短路的可能性。在对负极片123执行切断工序后,负极片123在切断处的两侧分别形成靠近复合连接位99的复合收尾端以及远离复合连接位99并用于卷绕下一个电极组件12的复合起始端。在一示例性实施例中,可以通过机械切刀或激光切割器执行切断工序。
在一示例性实施例中,在正极片121与第一隔膜122完成复合连接之前,在正极片121与第一隔膜122的复合连接位99的上游将正极片121执行切断工序,同时在负极片123与第二隔膜124完成复合连接之前,在负极片123与第二隔膜124的复合连接位99的上游将负极片123执行切断工序。
在一个实施例中,在正极片121与第一隔膜122的复合连接位99的上游,对复合连接之前的正极片121执行除尘工序,从而去除正极片121切断过程所产生的粉尘或者去除外界环境进入到正极片121上靠近复合连接位99区域的粉尘,降低粉尘跟随正极片121而残留于完成复合连接后形成的正极复合片体20并跟随正极复合片体20入卷的可能性。在另一个实施例中,在正极片121与第一隔膜122的复合连接位99的上游,对复合连接之前的第一隔膜122执行除尘工序,去除外界环境进入到第一 隔膜122上靠近复合连接位99区域的粉尘,降低粉尘跟随第一隔膜122而残留于完成复合连接后形成的正极复合片体20并跟随正极复合片体20入卷的可能性。在一示例性实施例中,在正极片121与第一隔膜122的复合连接位99的上游,对复合连接之前的正极片121和第一隔膜122同时执行除尘工序。
在一个实施例中,在负极片123与第二隔膜124的复合连接位99的上游,对复合连接之前的负极片123执行除尘工序,从而去除负极片123切断过程所产生的粉尘或者去除外界环境进入到负极片123上靠近复合连接位99区域的粉尘,降低粉尘跟随负极片123而残留于完成复合连接后形成的负极复合片体30并跟随负极复合片体30入卷的可能性。在另一个实施例中,在负极片123与第二隔膜124的复合连接位99的上游,对复合连接之前的第二隔膜124执行除尘工序,去除外界环境进入到第二隔膜124上靠近复合连接位99区域的粉尘,降低粉尘跟随第二隔膜124而残留于完成复合连接后形成的负极复合片体30并跟随负极复合片体30入卷的可能性。在一示例性实施例中,在负极片123与第二隔膜124的复合连接位99的上游,对复合连接之前的负极片123和第二隔膜124同时执行除尘工序。
待复合连接的正极片121具有复合起始端。在正极片121完成一次卷绕工序被切断后,形成复合收尾端以及用于下一次卷绕工序的复合起始端。在将正极片121与第一隔膜122复合制作成正极复合片体20的步骤中:将正极片121的复合起始端或复合收尾端与第一隔膜122粘接连接,从而有效降低复合连接至第一隔膜122的正极片121的复合起始端或复合收尾端在复合过程、输送过程或卷绕过程中出现打折或褶皱的可能性。在一个示例中,正极片121的复合起始端或复合收尾端通过胶带与第一隔膜122粘接连接。在一示例性实施例中,将正极片121的复合起始端和复合 收尾端与第一隔膜122粘接连接。
待复合连接的负极片123具有复合起始端。在负极片123完成一次卷绕工序被切断后,形成复合收尾端以及用于下一次卷绕工序的复合起始端。在将负极片123与第二隔膜124复合制作成负极复合片体30的步骤中:将负极片123的复合起始端或复合收尾端与第二隔膜124粘接连接,从而有效降低复合连接至第二隔膜124的负极片123的复合起始端或复合收尾端在复合过程、输送过程或卷绕过程中出现打折或褶皱的可能性。在一个示例中,负极片123的复合起始端或复合收尾端通过胶带与第二隔膜124粘接连接。在一示例性实施例中,将负极片123的复合起始端和复合收尾端与第二隔膜124粘接连接。
在将正极复合片体20与负极复合片体30一同卷绕成电极组件12的步骤中:将正极复合片体20或负极复合片体30自下而上输送至卷绕工位并执行卷绕工序。这里,自下而上指的是以竖直方向作为参考方向。由于本申请实施例的正极片121和负极片123分别与第一隔膜122和第二隔膜124复合连接后,正极片121和负极片123分别跟随第一隔膜122和第二隔膜124直接进行卷绕工序,因此本申请实施例的正极复合片体20或负极复合片体30可以采用自下而上输送的方式,同时正极片121或负极片123的复合起始端和复合收尾端不会在自身重力作用下发生下垂而导致出现打折或褶皱的情况,另外也可以使得正极复合片体20或负极复合片体30输送过程中,各自携带的粉尘会在自身重力作用下脱离并下落,从而降低粉尘跟随正极复合片体20或负极复合片体30进入卷绕形成的电极组件12内而影响电极组件12使用安全的可能性。在一示例性实施例中,将正极复合片体20和负极复合片体30自下而上输送至卷绕工位并执行卷绕工序。
本申请实施例的制造二次电池10的电极组件12的方法,由于采用 了预先将正极片121和第一隔膜122以及负极片123和第二隔膜124进行复合连接,然后再将正极复合片体20和负极复合片体30两个片体进行卷绕的方式,因此相对于将正极片121、负极片123以及两个隔膜各自独立地进行卷绕的方式,本申请实施例的方法可以不再需要设置用于引导正极片121、负极片123以及两个隔膜入卷的入卷辅助机构,减少零部件使用数量,同时正极片121、负极片123、第一隔膜122和第二隔膜124更加容易保证对齐精度,降低正极片121、负极片123和隔膜发生错位而影响电极组件12电学性能的可能性。
参见图4所示,本申请实施例提供一种制造二次电池10的电极组件12的设备100,可以用于执行上述实施例的制造二次电池10的电极组件12的方法。本实施例的设备100包括正极送料装置101、第一隔膜送料装置102、第一复合装置103、负极送料装置104、第二隔膜送料装置105、第二复合装置106以及卷绕装置107。
正极送料装置101用于安装固定正极片121料卷,然后通过放卷机构输出正极片121。正极片121在传输辊组的带动下朝复合连接位99移动。第一隔膜送料装置102用于安装固定隔膜料卷,然后通过放卷机构输出第一隔膜122。第一隔膜122在输送辊组的带动下朝复合连接位99移动。第一复合装置103设置于正极送料装置101和第一隔膜送料装置102的下游。正极片121和第一隔膜122均被输送至第一复合装置103,然后第一复合装置103将正极片121和第一隔膜122复合连接制作成正极复合片体20。在一个示例中,第一复合装置103包括热压机构。正极片121和第一隔膜122通过热压机构实现热压复合。在另一个示例中,第一复合装置103包括静电发生器。正极片121和第一隔膜122通过静电吸附实现复合连接。在又一个示例中,第一复合装置103包括贴胶机构。正极片121和第一隔膜122通过贴胶方式实现复合连接。正极片121和第一隔膜122 沿厚度方向相互叠加复合。
负极送料装置104用于安装固定负极片123料卷,然后通过放卷机构输出负极片123。负极片123在传输辊组的带动下朝复合连接位99移动。第二隔膜送料装置105用于安装固定隔膜料卷,然后通过放卷机构输出第二隔膜124。第二隔膜124在输送辊组的带动下朝复合连接位99移动。第二复合装置106设置于负极送料装置104和第二隔膜送料装置105的下游。负极片123和第二隔膜124均被输送至第二复合装置106,然后第二复合装置106将负极片123和第二隔膜124复合连接制作成负极复合片体30。在一个示例中,第二复合装置106包括热压机构。负极片123和第二隔膜124通过热压机构实现热压复合。在另一个示例中,第二复合装置106包括静电发生器。负极片123和第二隔膜124通过静电吸附实现复合连接。在又一个示例中,第二复合装置106包括贴胶机构。负极片123和第二隔膜124通过贴胶方式实现复合连接。负极片123和第二隔膜124沿厚度方向相互叠加复合。
卷绕装置107设置于第一复合装置103和第二复合装置106的下游。正极复合片体20和负极复合片体30被输送至卷绕装置107。卷绕装置107卷绕正极复合片体20和负极复合片体30以制作成电极组件12。
在一个实施例中,第一复合装置103和第二复合装置106对称设置于卷绕装置107的两侧,从而保证正极片121和负极片123各自所对应的复合连接位99的位置一致性以及复合连接后形成的正极复合片体20和负极复合片体30入卷位置的一致性,有利于提高卷绕后的正极片121和负极片123的对齐精度。
在一个实施例中,设备100还包括张力调节装置108。张力调节装置108设置于卷绕装置107的上游,用于调整正极复合片体20或负极复合片体30的张紧程度。
本申请实施例制造二次电池10的电极组件12的设备100,通过第一复合装置103预先将正极片121和第一隔膜122复合连接,而通过第二复合装置106预先将负极片123和第二隔膜124复合连接,使得正极片121和第一隔膜122相互连接形成一个整体,而负极片123和第二隔膜124相互连接形成一个整体。然后将正极复合片体20和负极复合片体30分别输送至卷绕装置107的卷绕工位完成卷绕工作。正极片121和负极片123分别在第一隔膜122和第二隔膜124带动下进入卷绕工序。这样,相对于正极片121、负极片123以及隔膜各自独立进入卷绕工序的加工方式,本申请实施例的制造二次电池10的电极组件12的设备100一方面,可以有效减少进入卷绕工序的片体总数量,从而有利于降低正极片121、负极片123以及隔膜对齐难度,降低正极片121和负极片123彼此不对齐的可能性,提高卷绕对齐精度;另一方面,可以降低正极片121和负极片123进入卷绕工序时出现打折或褶皱的可能性,有利于提高电极组件12的良品率;又一方面,正极片121、负极片123以及隔膜在接近卷绕装置107的上游可以不设置用于引导正极片121和负极片123入卷的入卷辅助机构,从而有利于减少零部件的使用数量,简化设备100的整体结构,同时有利于提高卷绕工作效率。
在一个实施例中,设备100还包括用于切断正极片121的正极片切刀109。正极片切刀109设置于第一复合装置103的上游。正极片切刀109用于在正极片121与第一隔膜122的复合连接位99的上游切断正极片121。在一个示例中,正极片切刀109包括刀具和刀座。正极片121从刀具和刀座之间通过。在需要切断正极片121时,刀具和刀座相互靠近以切断正极片121。在一个示例中,正极片切刀109可以是激光切割器,通过激光切断正极片121。在正极片121与第一隔膜122完成复合连接之前,在正极片121与第一隔膜122的复合连接位99的上游将正极片121执行 切断工序。正极片121与第一隔膜122的复合连接位99远离卷绕工位,因此在复合连接位99的上游对正极片121执行切断工序,可以进一步有效降低切断过程所产生的粉尘入卷而存在粉尘刺破隔膜导致正极片121和负极片123发生短路的可能性。在一个实施例中,设备100还包括用于切断负极片123的负极片切刀110。负极片切刀110设置于第二复合装置106的上游。负极片切刀110用于在负极片123与第二隔膜124的复合连接位99的上游切断负极片123。在一个示例中,负极片切刀110包括刀具和刀座。负极片123从刀具和刀座之间通过。在需要切断负极片123时,刀具和刀座相互靠近以切断负极片123。在一个示例中,负极片切刀110可以是激光切割器,通过激光切断负极片123。在负极片123与第二隔膜124完成复合连接之前,在负极片123与第二隔膜124的复合连接位99的上游将负极片123执行切断工序。负极片123与第二隔膜124的复合连接位99远离卷绕工位,因此在复合连接位99的上游对负极片123执行切断工序,可以进一步有效降低切断过程所产生的粉尘入卷而存在粉尘刺破隔膜导致正极片121和负极片123发生短路的可能性。在一示例性实施例中,设备100包括用于切断正极片121的正极片切刀109以及用于切断负极片123的负极片切刀110。
在一个实施例中,设备100还包括第一除尘装置111。第一除尘装置111设置于第一复合装置103的上游,用于对复合连接之前的正极片121和/或第一隔膜122执行除尘工序。第一除尘装置111靠近正极片切刀109。在正极片121与第一隔膜122的复合连接位99的上游,通过第一除尘装置111对复合连接之前的正极片121和/或第一隔膜122执行除尘工序,从而可以去除正极片121切断过程所产生的粉尘,或者去除外界环境进入到复合连接位99附近区域的粉尘,降低粉尘残留于完成复合连接后形成的正极复合片体20并跟随正极复合片体20入卷的可能性。在一个示 例中,第一除尘装置111包括吸尘管道和与吸尘管道相连接的负压发生器。在一个实施例中,设备100还包括第二除尘装置112。第二除尘装置112设置于第二复合装置106的上游,用于对复合连接之前的负极片123和/或第二隔膜124执行除尘工序。第二除尘装置112靠近负极片切刀110。在负极片123与第二隔膜124的复合连接位99的上游,通过第二除尘装置112对复合连接之前的负极片123和/或第二隔膜124执行除尘工序,从而可以去除负极片123切断过程所产生的粉尘,或者去除外界环境进入到复合连接位99附近区域的粉尘,降低粉尘残留于完成复合连接后形成的负极复合片体30并跟随负极复合片体30入卷的可能性。在一个示例中,第二除尘装置112包括吸尘管道和与吸尘管道相连接的负压发生器。
在一个实施例中,卷绕装置107包括卷针107a、正极入卷导辊组107c和负极入卷导辊组107d。正极入卷导辊组107c和负极入卷导辊组107d均设置于卷针107a的上游。在一个示例中,正极入卷导辊组107c和负极入卷导辊组107d均设置于卷针107a的下方。正极入卷导辊组107c将正极复合片体20自下而上直接输送至卷针107a。负极入卷导辊组107d将负极复合片体30自下而上直接输送至卷针107a。在一个示例中,卷针107a包括两个可以相互靠近或远离的半轴。在两个半轴之间预先夹住第一隔膜122和第二隔膜124的起始端,然后卷针107a转动预定圈数卷绕预定长度的第一隔膜122和第二隔膜124。然后,正极片121和负极片123分别被第一隔膜122和第二隔膜124带动进入卷针107a进行卷绕。在卷绕预定长度的正极片121和负极片123之后,切断正极片121和负极片123。在正极片121和负极片123结束卷绕后,卷针107a继续转动预定圈数,以继续卷绕第一隔膜122和第二隔膜124。在卷绕预定长度的第一隔膜122和第二隔膜124之后,切断第一隔膜122和第二隔膜124,并最终 完成卷绕工作。两个半轴张开,将电极组件12从卷针107a上移走,完成下料。在一个示例中,卷绕装置107包括旋转底座107b以及间隔设置于旋转底座107b上的两个卷针107a。在第一个卷针107a完成卷绕工作后,旋转底座107b转动,以使第一个卷针107a旋转至下料工位,而第二个卷针107a旋转至卷绕工位。第二个卷针107a夹住第一隔膜122和第二隔膜124,然后可以通过隔膜切刀113在两个卷针107a之间切断第一隔膜122和第二隔膜124。两个卷针107a依次循环使用执行卷绕工作,从而在使用制造二次电池10的电极组件12的设备100卷绕多个电极组件12过程中,只需要第一隔膜122和第二隔膜124在起始阶段执行一次入卷动作,之后两个卷针107a交替夹持第一隔膜122和第二隔膜124以连续执行卷绕工作,不再需要第一隔膜122和第二隔膜124执行入卷动作,有效提供卷绕工作效率。卷针107a的数量并不局限于上述的两个,也可以是三个以上。每个卷针107a都可以在旋转底座107b的带动下在下料工位和卷绕工位切换。在一个示例中,正极入卷导辊组107c和负极入卷导辊组107d对称设置于处于卷绕工位的卷针107a的两侧,从而保证正极复合片体20和负极复合片体30入卷位置的一致性,有利于提高卷绕后的正极片121和负极片123的对齐精度。
在一个实施例中,设备100包括第一贴胶装置114。第一贴胶装置114设置于第一复合装置103的下游。通过第一贴胶装置114将正极片121的复合起始端或复合收尾端与第一隔膜122粘接连接,从而进一步地有效降低复合连接至第一隔膜122的正极片121的复合起始端或复合收尾端在复合过程、输送过程或卷绕过程中出现打折或褶皱的可能性。在一示例性实施例中,将正极片121的复合起始端和复合收尾端与第一隔膜122粘接连接。在一个示例中,第一贴胶装置114包括胶带输出机构、胶带粘贴机构以及胶带切断机构。正极片121的复合起始端和复合收尾端中的至 少一者通过胶带与第一隔膜122粘接连接。在一个实施例中,设备100包括第二贴胶装置115。第二贴胶装置115设置于第二复合装置106的下游。通过第二贴胶装置115将负极片123的复合起始端或复合收尾端与第二隔膜124粘接连接,从而进一步地有效降低复合连接至第二隔膜124的负极片123的复合起始端或复合收尾端在复合过程、输送过程或卷绕过程中出现打折或褶皱的可能性。在一示例性实施例中,将负极片123的复合起始端和复合收尾端与第二隔膜124粘接连接。在一个示例中,第二贴胶装置115包括胶带输出机构、胶带粘贴机构以及胶带切断机构。负极片123的复合起始端或复合收尾端通过胶带与第二隔膜124粘接连接。在一示例性实施例中,设备100包括第一贴胶装置114和第二贴胶装置115。
在一个实施例中,设备100还包括用于检测正极片121和第一隔膜122的复合对齐度的第一检测装置116。第一检测装置116设置于第一复合装置103的下游,能够实时检测正极片121和第一隔膜122复合后的对齐度。在正极片121和第一隔膜122的对齐度达到精度要求时,正极复合片体20才可以输送至卷绕装置107进行卷绕,从而有利于保证卷绕后的电极组件12的良品率和品质。在一个示例中,第一检测装置116包括用于检测对齐度的工业摄像机或光电传感器。在一个实施例中,设备100还包括用于检测负极片123和第二隔膜124的复合对齐度第二检测装置117。第二检测装置117设置于第二复合装置106的下游,能够实时检测负极片123和第二隔膜124复合后的对齐度。在负极片123和第二隔膜124的对齐度达到精度要求时,负极复合片体30才可以输送至卷绕装置107进行卷绕,从而有利于保证卷绕后的电极组件12的良品率和品质。在一个示例中,第二检测装置117包括用于检测对齐度的工业摄像机或光电传感器。在一示例性实施例中,设备100还包括第一检测装置116和第二检测装置117。
在一个实施例中,设备100还包括用于调整正极片121和第一隔膜122对齐度的第一纠偏装置118。在正极片121和第一隔膜122复合之前,第一纠偏装置118沿正极片121的宽度方向调整正极片121和第一隔膜122的相对位置,以使正极片121和第一隔膜122彼此对齐度满足产品要求,有利于提高卷绕电极组件12的良品率。在一个示例中,设备100包括第一检测装置116。第一纠偏装置118与第一检测装置116通信连接。在第一检测装置116检测到正极片121和第一隔膜122之间的对齐度不满足要求时,将信号发送至第一纠偏装置118,然后第一纠偏装置118执行纠偏动作,以调整正极片121和第一隔膜122的对齐度。在一个实施例中,设备100还包括用于调整负极片123和第二隔膜124对齐度的第二纠偏装置119。在负极片123和第二隔膜124复合之前,第二纠偏装置119沿负极片123的宽度方向调整负极片123和第二隔膜124的相对位置,以使负极片123和第二隔膜124彼此对齐度满足产品要求,有利于提高卷绕电极组件12的良品率。在一个示例中,设备100包括第二检测装置117。第二纠偏装置119与第二检测装置117通信连接。在第二检测装置117检测到负极片123和第二隔膜124之间的对齐度不满足要求时,将信号发送至第二纠偏装置119,然后第二纠偏装置119执行纠偏动作,以调整负极片123和第二隔膜124的对齐度。在一示例性实施例中,设备100还包括第一纠偏装置118和第二纠偏装置119。
本申请实施例的制造二次电池10的电极组件12的设备100,通过预先将正极片121和第一隔膜122以及负极片123和第二隔膜124复合连接制成正极复合片体20以及负极复合片体30,从而正极片121和第一隔膜122连接成一个整体,负极片123和第二隔膜124连接成一个整体,然后再将正极复合片体20和负极复合片体30卷绕形成电极组件12。这样,一方面,本申请实施例的设备100不需要正极片121、负极片123和隔膜 各自单独入卷进行卷绕,可以降低正极片121和负极片123单独进入卷绕工序时出现打折或褶皱以及正极片121和负极片123彼此不对齐的可能性,有效提高电极组件12的良品率;另一方面,正极片121、负极片123以及隔膜在接近卷绕装置107的上游可以不设置用于引导正极片121和负极片123入卷的入卷辅助机构,从而有利于减少零部件的使用数量,简化设备100的整体结构,同时有利于提高卷绕工作效率。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种制造二次电池的电极组件的方法,包括:
    将正极片与第一隔膜复合连接制作成正极复合片体;
    将负极片与第二隔膜复合连接制作成负极复合片体;
    将所述正极复合片体与所述负极复合片体一同卷绕成电极组件,所述正极片和所述负极片通过所述第一隔膜和所述第二隔膜隔离设置。
  2. 根据权利要求1所述的制造二次电池的电极组件的方法,其中:
    在所述正极片与所述第一隔膜完成复合连接之前,在所述正极片与所述第一隔膜的复合连接位的上游将所述正极片执行切断工序;和/或,
    在所述负极片与所述第二隔膜完成复合连接之前,在所述负极片与所述第二隔膜的复合连接位的上游将所述负极片执行切断工序。
  3. 根据权利要求1或2所述的制造二次电池的电极组件的方法,其中:
    在所述正极片与所述第一隔膜的复合连接位的上游,对复合连接之前的所述正极片和/或所述第一隔膜执行除尘工序;和/或,
    在所述负极片与所述第二隔膜的复合连接位的上游,对复合连接之前的所述负极片和/或所述第二隔膜执行除尘工序。
  4. 根据权利要求1至3任一项所述的制造二次电池的电极组件的方法,其中:
    在所述将正极片与第一隔膜复合制作成正极复合片体的步骤中:将所述正极片的复合起始端和/或复合收尾端与所述第一隔膜粘接连接;和/或,
    在所述将负极片与第二隔膜复合制作成负极复合片体的步骤中:将所述负极片的复合起始端和/或复合收尾端与所述第二隔膜粘接连接。
  5. 根据权利要求1至4任一项所述的制造二次电池的电极组件的方法,其中:
    在所述将所述正极复合片体与所述负极复合片体一同卷绕成电极组件的步骤中:将所述正极复合片体和/或所述负极复合片体自下而上输送至卷绕工位并执行卷绕工序。
  6. 根据权利要求1至5任一项所述的制造二次电池的电极组件的方法,其中,所述正极片和所述第一隔膜可以通过静电吸附、热压复合或贴胶复合等复合方式完成复合连接;和/或,所述负极片和所述第二隔膜可以通过静电吸附、等离子吸附、热压复合或贴胶复合等复合方式完成复合连接。
  7. 一种制造二次电池的电极组件的设备,包括:
    正极送料装置,用于输出正极片;
    第一隔膜送料装置,用于输出第一隔膜;
    第一复合装置,设置于所述正极送料装置和所述第一隔膜送料装置的下游,所述第一复合装置能够将所述正极片和所述第一隔膜复合连接制作成正极复合片体;
    负极送料装置,用于输出负极片;
    第二隔膜送料装置,用于输出第二隔膜;
    第二复合装置,设置于所述负极送料装置和所述第二隔膜送料装置的下游,所述第二复合装置能够将所述负极片和所述第二隔膜复合连接制作成负极复合片体;
    卷绕装置,设置于所述第一复合装置和所述第二复合装置的下游,所述卷绕装置能够卷绕所述正极复合片体和所述负极复合片体以制作成电极组件。
  8. 根据权利要求7所述的制造二次电池的电极组件的设备,其中:
    所述设备还包括正极片切刀,所述正极片切刀设置于所述第一复合装置的上游,所述正极片切刀用于在所述正极片与所述第一隔膜的复合连接位的上游切断所述正极片;和/或,
    所述设备还包括负极片切刀,所述负极片切刀设置于所述第二复合装置的上游,所述负极片切刀用于在所述负极片与所述第二隔膜的复合连接位的上游切断所述负极片。
  9. 根据权利要求7或8所述的制造二次电池的电极组件的设备,其中:
    所述设备还包括第一除尘装置,所述第一除尘装置设置于所述第一复合装置的上游,所述第一除尘装置用于对复合连接之前的所述正极片和/或所述第一隔膜执行除尘工序;和/或,
    所述设备还包括第二除尘装置,所述第二除尘装置设置于所述第二复合装置的上游,所述第二除尘装置用于对复合连接之前的所述负极片和/或所述第二隔膜执行除尘工序。
  10. 根据权利要求6至9任一项所述的制造二次电池的电极组件的设备,其中:
    所述卷绕装置包括卷针、正极入卷导辊组和负极入卷导辊组,所述正极入卷导辊组和所述负极入卷导辊组均设置于所述卷针的上游,所述正极入卷导辊组和所述负极入卷导辊组均设置于所述卷针的下方,所述正极入卷导辊组将所述正极复合片体自下而上直接输送至所述卷针,所述负极入卷导辊组将所述负极复合片体自下而上直接输送至所述卷针。
  11. 根据权利要求10所述的制造二次电池的电极组件的设备,其中,所述卷绕装置还包括旋转底座以及两个以上的所述卷针,两个以上的所述卷针绕所述旋转底座的转动轴线间隔设置于所述旋转底座。
  12. 根据权利要求6至11任一项所述的制造二次电池的电极组件的 设备,其中:
    所述设备还包括第一贴胶装置,所述第一贴胶装置设置于所述第一复合装置的下游,所述第一贴胶装置用于将所述正极片的复合起始端和/或所述复合收尾端与所述第一隔膜粘接连接;和/或,
    所述设备还包括第二贴胶装置,所述第二贴胶装置设置于所述第二复合装置的下游,所述第二贴胶装置用于将所述负极片的复合起始端和/或所述复合收尾端与所述第二隔膜粘接连接。
  13. 根据权利要求6至12任一项所述的制造二次电池的电极组件的设备,其中:
    所述设备还包括第一检测装置,所述第一检测装置设置于所述第一复合装置的下游,所述第一检测装置用于检测所述正极片和所述第一隔膜的复合对齐度;和/或,
    所述设备还包括第二检测装置,所述第二检测装置设置于所述第二复合装置的下游,所述第二检测装置用于检测所述负极片和所述第二隔膜的复合对齐度。
  14. 根据权利要求13所述的制造二次电池的电极组件的设备,其中:
    所述设备还包括第一纠偏装置,所述第一纠偏装置设置于所述第一复合装置的上游,所述第一纠偏装置用于调整所述正极片和所述第一隔膜的相对位置;和/或,
    所述设备还包括第二纠偏装置,所述第二纠偏装置设置于所述第二复合装置的上游,所述第二纠偏装置用于调整所述负极片和所述第二隔膜的相对位置。
  15. 根据权利要求6至14任一项所述的制造二次电池的电极组件的设备,其中,进一步还包括张力调节装置,所述张力调节装置设置于所述 卷绕装置的上游,用于调整所述正极复合片体或所述负极复合片体的张紧程度。
PCT/CN2020/114503 2019-10-10 2020-09-10 制造二次电池的电极组件的方法以及设备 WO2021068705A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227012141A KR102646568B1 (ko) 2019-10-10 2020-09-10 이차 전지의 전극 조립체의 제조 방법 및 기기
JP2022521575A JP7379690B2 (ja) 2019-10-10 2020-09-10 二次電池の電極組立体の製造デバイス
EP20874982.0A EP3930062B1 (en) 2019-10-10 2020-09-10 Method and apparatus for manufacturing electrode assembly of secondary battery
US17/712,087 US11961955B2 (en) 2019-10-10 2022-04-02 Method and apparatus for manufacturing electrode assembly of secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910957293.5A CN112310461B (zh) 2019-10-10 2019-10-10 制造二次电池的电极组件的方法以及设备
CN201910957293.5 2019-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/712,087 Continuation US11961955B2 (en) 2019-10-10 2022-04-02 Method and apparatus for manufacturing electrode assembly of secondary battery

Publications (1)

Publication Number Publication Date
WO2021068705A1 true WO2021068705A1 (zh) 2021-04-15

Family

ID=74485612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114503 WO2021068705A1 (zh) 2019-10-10 2020-09-10 制造二次电池的电极组件的方法以及设备

Country Status (6)

Country Link
US (1) US11961955B2 (zh)
EP (1) EP3930062B1 (zh)
JP (1) JP7379690B2 (zh)
KR (1) KR102646568B1 (zh)
CN (1) CN112310461B (zh)
WO (1) WO2021068705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422113A (zh) * 2021-06-04 2021-09-21 深圳赛骄阳能源科技股份有限公司 一种异形锂离子电池的制作方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210058170A (ko) * 2019-11-13 2021-05-24 주식회사 엘지화학 전극 조립체 제조방법과 전극 조립체 제조장치
CN115810713A (zh) * 2021-10-18 2023-03-17 宁德时代新能源科技股份有限公司 极片、组件、单体、电池、设备、极片制作方法及系统
CN116014362A (zh) * 2021-10-21 2023-04-25 宁德时代新能源科技股份有限公司 电极组件及与其相关的制备装置、电池单体和电池
CN116314999A (zh) * 2021-12-21 2023-06-23 宁德时代新能源科技股份有限公司 电极组件的制造设备以及制造方法
CN117480648A (zh) * 2022-04-12 2024-01-30 宁德时代新能源科技股份有限公司 一种控制方法及叠片系统
CN114937819A (zh) * 2022-04-26 2022-08-23 上海兰钧新能源科技有限公司 锂离子电池极片制备装置及方法
CN114883625A (zh) * 2022-05-10 2022-08-09 东莞市雅康精密机械有限公司 一种复合电池卷绕设备
WO2024039221A1 (ko) * 2022-08-18 2024-02-22 주식회사 엘지에너지솔루션 젤리-롤형 전극조립체 및 이의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107847A (ja) * 2004-10-01 2006-04-20 Sony Corp 非水電解質二次電池
CN104253286A (zh) * 2013-06-26 2014-12-31 东莞市振华新能源科技有限公司 一种高能量密度纽扣锂离子电池制作方法
CN105355962A (zh) * 2015-11-25 2016-02-24 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池的制备方法
CN108110308A (zh) * 2018-02-01 2018-06-01 力信(江苏)能源科技有限责任公司 一种电芯卷绕设备及电芯卷绕方法
CN110034337A (zh) * 2019-03-25 2019-07-19 合肥国轩高科动力能源有限公司 一种锂离子电池极片与隔膜的复合方法及其在电池制备中的应用
CN209843844U (zh) * 2019-06-28 2019-12-24 蜂巢能源科技有限公司 一种复合式电池极组制备装置和动力电池
CN210468000U (zh) * 2019-10-10 2020-05-05 宁德时代新能源科技股份有限公司 制造二次电池的电极组件的设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2081943A (en) * 1934-05-21 1937-06-01 Arthur D Lund Grid pasting machine
JPH0613129U (ja) * 1992-07-24 1994-02-18 日本ケミコン株式会社 コンデンサ素子の巻回装置
JP2002298924A (ja) * 2001-03-30 2002-10-11 Toray Eng Co Ltd 二次電池および二次電池製造方法ならびに二次電池製造装置
KR100614390B1 (ko) * 2004-09-06 2006-08-21 삼성에스디아이 주식회사 권취형 전극 조립체와 이를 구비하는 리튬 이온 이차 전지및 이의 제조 방법
JP2008152946A (ja) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd 非水系二次電池用電極群の製造方法およびその製造装置
JP4775668B2 (ja) * 2008-08-28 2011-09-21 トヨタ自動車株式会社 捲回電極体の製造方法およびその装置、および、電池の製造方法
KR101212017B1 (ko) * 2010-02-09 2012-12-13 주식회사 토바 롤투롤에 의한 2차 전지소재 생산 장치 및 그 방법
WO2011130433A1 (en) * 2010-04-13 2011-10-20 Microvast, Inc. Continuous prismatic cell stacking system and method
CN201638903U (zh) * 2010-04-13 2010-11-17 深圳市赢合科技有限公司 电池极片制片与电芯卷绕的一体化设备
CN102270771A (zh) * 2010-06-03 2011-12-07 新科实业有限公司 用于电池电芯的自动卷绕装置
KR101392622B1 (ko) * 2010-08-19 2014-05-07 코마츠 엔티씨 가부시끼가이샤 전극 와인딩 방법 및 전극 와인딩 장치
JP2013179035A (ja) * 2012-01-31 2013-09-09 Nissan Motor Co Ltd 非双極型電池の製造方法、および非双極型電池の製造装置
CN102969479B (zh) * 2012-09-29 2016-04-06 珠海华冠电子科技有限公司 电池极片制片和电芯卷制一体设备
CN104124414B (zh) 2013-04-28 2017-06-20 华为技术有限公司 一种锂离子电池复合电极片及其制备方法和锂离子电池
KR102177507B1 (ko) * 2015-06-19 2020-11-11 삼성에스디아이 주식회사 극판 권취 시스템
KR102104472B1 (ko) * 2016-02-22 2020-04-24 주식회사 엘지화학 제조 공정 시, 전극 성능 저하를 유발하는 이물의 실시간 제거가 가능한 전극조립체의 제조 장치
JP6369643B2 (ja) * 2016-02-26 2018-08-08 Jsr株式会社 ドーピングシステム、並びに、電極、電池及びキャパシタの製造方法
CN105789675B (zh) 2016-03-17 2018-10-02 深圳吉阳智云科技有限公司 一种电芯卷绕机构
CN105870488A (zh) * 2016-04-01 2016-08-17 深圳吉阳智云科技有限公司 一种电芯及含有该电芯的电池
CN106025376A (zh) * 2016-06-13 2016-10-12 合肥国轩高科动力能源有限公司 一种连续性制作卷绕型叠片电池结构单元的方法
CN207282646U (zh) * 2017-07-05 2018-04-27 深圳吉阳智能科技有限公司 激光制片的锂离子电池芯包卷绕机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107847A (ja) * 2004-10-01 2006-04-20 Sony Corp 非水電解質二次電池
CN104253286A (zh) * 2013-06-26 2014-12-31 东莞市振华新能源科技有限公司 一种高能量密度纽扣锂离子电池制作方法
CN105355962A (zh) * 2015-11-25 2016-02-24 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池的制备方法
CN108110308A (zh) * 2018-02-01 2018-06-01 力信(江苏)能源科技有限责任公司 一种电芯卷绕设备及电芯卷绕方法
CN110034337A (zh) * 2019-03-25 2019-07-19 合肥国轩高科动力能源有限公司 一种锂离子电池极片与隔膜的复合方法及其在电池制备中的应用
CN209843844U (zh) * 2019-06-28 2019-12-24 蜂巢能源科技有限公司 一种复合式电池极组制备装置和动力电池
CN210468000U (zh) * 2019-10-10 2020-05-05 宁德时代新能源科技股份有限公司 制造二次电池的电极组件的设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422113A (zh) * 2021-06-04 2021-09-21 深圳赛骄阳能源科技股份有限公司 一种异形锂离子电池的制作方法

Also Published As

Publication number Publication date
US11961955B2 (en) 2024-04-16
KR102646568B1 (ko) 2024-03-12
EP3930062A4 (en) 2022-06-15
EP3930062B1 (en) 2023-08-02
JP2022551896A (ja) 2022-12-14
CN112310461A (zh) 2021-02-02
KR20220061218A (ko) 2022-05-12
CN112310461B (zh) 2024-09-27
US20220223897A1 (en) 2022-07-14
EP3930062C0 (en) 2023-08-02
EP3930062A1 (en) 2021-12-29
JP7379690B2 (ja) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2021068705A1 (zh) 制造二次电池的电极组件的方法以及设备
CN210468000U (zh) 制造二次电池的电极组件的设备
CN110277590B (zh) 用于电芯制造的叠片方法和电芯极组制造装备
US12100796B2 (en) Apparatus and method for manufacturing electrode assembly
RU2557088C2 (ru) Укладывающее стопкой устройство и способ укладывания стопкой
WO2023165278A1 (zh) 电芯成型设备、电芯成型工艺及电芯
CN218039357U (zh) 电芯制造设备
WO2023078217A1 (zh) 一种追切卷绕方法及多工位卷绕装置
WO2013122091A1 (ja) 搬送装置および搬送方法
WO2023169219A1 (zh) 电芯制造设备及制备方法
CN210489752U (zh) 电芯卷绕设备
CN115810781A (zh) 叠片设备及叠片式电极组件的制造方法
CN115911629A (zh) 极片回收装置
KR20210058130A (ko) 이차 전지 제조용 전극 자동공급 장치 및 이를 이용한 전극 자동공급 방법
WO2023116405A1 (zh) 电极组件的制造设备以及制造方法
WO2024119948A1 (zh) 极片成型设备
CN216698432U (zh) 极片入料装置
CN217740729U (zh) 电芯成型设备及电芯
CN112768787A (zh) 一种电芯卷绕设备及电芯的制备方法
CN218160538U (zh) 一种电池极片复合装置及绕卷设备
WO2023165279A1 (zh) 电芯、电池及电芯制造设备
CN205211856U (zh) 电池叠片装置
CN214099683U (zh) 一种电芯卷绕设备
CN214848748U (zh) 电芯卷绕设备
CN214099684U (zh) 一种电芯卷绕设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020874982

Country of ref document: EP

Effective date: 20210920

ENP Entry into the national phase

Ref document number: 2022521575

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227012141

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE