WO2021065243A1 - 導電性樹脂組成物 - Google Patents

導電性樹脂組成物 Download PDF

Info

Publication number
WO2021065243A1
WO2021065243A1 PCT/JP2020/031631 JP2020031631W WO2021065243A1 WO 2021065243 A1 WO2021065243 A1 WO 2021065243A1 JP 2020031631 W JP2020031631 W JP 2020031631W WO 2021065243 A1 WO2021065243 A1 WO 2021065243A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
group
conductive resin
mass
Prior art date
Application number
PCT/JP2020/031631
Other languages
English (en)
French (fr)
Inventor
遠藤 悟
美麗 本松
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Priority to JP2021550419A priority Critical patent/JPWO2021065243A1/ja
Priority to CN202080067368.3A priority patent/CN114450352B/zh
Priority to KR1020227009703A priority patent/KR20220079531A/ko
Priority to US17/754,414 priority patent/US20220372292A1/en
Publication of WO2021065243A1 publication Critical patent/WO2021065243A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/08Polymer mixtures characterised by way of preparation prepared by late transition metal, i.e. Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru or Os, single site catalyst

Definitions

  • the present invention relates to a conductive resin composition that is flexible and has excellent resistance stability in a stretched state.
  • the present inventors can cure the cured product at a low temperature (80 ° C.) that does not damage the member, and can suppress an increase in resistance even when the cured product is stretched.
  • a sex resin composition was found.
  • the gist of the present invention will be described below.
  • a conductive resin composition containing the following (A) to (E) and having a content of the component (B) of 6 to 50 parts by mass with respect to 100 parts by mass of the component (A): (A) Polyorganosiloxane having an alkenyl group (B) Polyorganosiloxane having the following structure
  • the conductive resin composition according to any one of.
  • the conductive resin composition of the present invention contains the following (A) to (E), and the content of the component (B) is 6 to 50 parts by mass with respect to 100 parts by mass of the component (A):
  • the present invention provides a conductive resin composition that cures at a low temperature, has excellent conductivity (volume resistivity), and can obtain a cured product in which a change in resistivity due to stretching is suppressed.
  • the polyorganosiloxane having an alkenyl group of the component (A) used in the present invention is not particularly limited, and various types can be used.
  • the molecular structure of the polyorganosiloxane having an alkenyl group is substantially linear, but there may be a partially branched structure.
  • molecular chain double-ended vinyl group-blocking polydimethylsiloxane for example, molecular chain double-ended vinyl group-blocking polydimethylsiloxane; molecular chain-terminal vinyl group-blocking dimethylsiloxane / diphenylsiloxane copolymer; molecular chain double-ended vinyl group-blocking dimethylsiloxane / methylvinylsiloxane / diphenylsiloxane copolymer; molecular chain Polydimethylsiloxane with one end sealed with a vinyl group and the other end with a trimethoxy group; one end of the molecular chain closed with a vinyl group and the other end with a trimethylsiloxy group Blocked polydimethylsiloxane; trimethylsiloxy group-blocked dimethylsiloxane, methylvinylsiloxane, and diphenylsiloxane copolymers at both ends of the molecular chain can
  • the viscosity of the component (A) is preferably 100 to 15,000 cPs, more preferably 1,000 to 10,000 cPs, and most preferably 3,000 to 8,000 cPs at 25 ° C.
  • the viscosity of the component (A) at 25 ° C. can be measured using a cone plate type viscometer.
  • the vinyl equivalent of the component (A) is preferably 0.0001 to 20 Eq / kg, more preferably 0.001 to 10 Eq / kg, and most preferably 0.01 to 1 Eq / kg.
  • the vinyl equivalent of the component (A) can be determined by the Wijs method. Specifically, the carbon double bond is reacted with iodine monochloride (excess amount), then the excess iodine monochloride is reacted with potassium iodide, and the liberated iodine is titrated to the end point with an aqueous sodium thiosulfate solution.
  • the vinyl equivalent can be calculated from the amount of iodine consumed.
  • the weight average molecular weight of the component (A) is preferably 700 or more and less than 150,000, more preferably 2000 or more and less than 130,000, and most preferably 8000 or more and less than 100,000.
  • Mw weight average molecular weight
  • a value measured by gel permeation chromatography (GPC) using polystyrene as a standard substance shall be adopted.
  • component (A) Commercially available products of the component (A) include polydimethylsiloxane (viscosity (25 ° C.): 5000 cPs, vinyl equivalent: 0.04 Eq / kg, weight average molecular weight: 49,500) manufactured by Gelest.
  • polydimethylsiloxane viscosity (25 ° C.): 5000 cPs, vinyl equivalent: 0.04 Eq / kg, weight average molecular weight: 49,500
  • polyorganosiloxane having vinyl groups at both ends of the molecular chain for example, a trade name manufactured by Gelest, DMS-V series (for example, DMS-V31, DMS-V31S15, DMS-V33, DMS-V35, DMS-V35R, DMS-V41, DMS-V42, DMS-V46, DMS-V51, DMS-V52), product name manufactured by Gelest, PDV series (for example, PDV-0341, PDV-0346, PDV-0535, PDV -0541, PDV-01631, PDV-01635, PDV-01641, PDV-2335), product names manufactured by Gelest, PMV-9925, PVV-3522, FMV-4031, EDV-2022 and the like.
  • DMS-V series for example, DMS-V31, DMS-V31S15, DMS-V33, DMS-V35, DMS-V35R, DMS-V41, DMS-V42, DMS-V
  • Component (B) Polyorganosiloxane having the following structure
  • the component (B) of the present invention is a polyorganosiloxane having the following structure.
  • R is an alkyl group and / or an aryl group, respectively, and n is an integer of 1 or more).
  • the component (B) has excellent compatibility with the component (A) and is a main component that suppresses an increase in resistance during stretching.
  • the carbon number of R is preferably 1 to 10, and more preferably 1 to 8.
  • Specific examples of R include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group, hexyl group, isohexyl group, cyclohexyl group, phenyl group, methylphenyl group and heptyl group.
  • Examples thereof include an isoheptyl group, an octyl group, an isooctyl group, a nonyl group, an isononyl group, a decyl group and an isodecyl group.
  • the group consists of a methyl group, an ethyl group, a propyl group, an isopropyl group and a phenyl group. Those having 1 or more are preferable, and those having 1 or more methyl group and / or phenyl group are most preferable.
  • R is independently a methyl group (component (B); dimethylsilicone oil) and / or a phenyl group (component (B); diphenylsilicone oil). From the viewpoint of versatility, it is preferable that R at the end of the molecular chain is a methyl group. These may be used alone or in combination of two or more.
  • the kinematic viscosity of the component (B) is preferably 5 to 5000 mm 2 / s, more preferably 10 to 3000 mm 2 / s, and most preferably 50 to 1000 mm 2 / s.
  • the kinematic viscosity of the component (B) is 5 mm 2 / s or more, it does not separate with time when mixed with the component (A), so that the storage stability can be maintained and the storage stability can be maintained at 5000 mm 2 / s.
  • it is s or less it is easy to mix with the component (C), and the component (C) can be uniformly dispersed in the conductive resin composition.
  • the kinematic viscosity of the component (B) can be measured by a method according to JIS Z 8803: 2011.
  • the amount of the component (B) added is 6 to 50 parts by mass with respect to 100 parts by mass of the component (A). It is more preferably 6 to 30 parts by mass, and most preferably 6 to 20 parts by mass. If the amount of the component (B) added is 6 parts by mass or more, the volume resistivity can be stabilized at the time of stretching, and if it is 50 parts by mass or less, the volume resistivity before stretching is lowered or the conductivity is reduced. As a sex resin composition, sedimentation of the component (C) over time can be suppressed.
  • Component (C) Conductive particles
  • the component (C) of the present invention is conductive particles, such as metal powders such as gold, silver, copper, nickel, and palladium, and alloys such as solder formed by combining a plurality of types thereof. , Organic polymer particles and plated particles obtained by coating metal particles with another metal thin film.
  • gold, silver, copper, and particles whose surface is coated with these metals are preferable from the viewpoint of achieving low resistance.
  • silver, copper, and particles coated with these metals are more preferable, and since silver is less likely to be oxidized and easier to handle than copper, silver and silver-coated particles are most preferable. These may be used alone or in combination of two or more.
  • Examples of the shape of the component (C) include spherical shape, indefinite shape, scaly shape, needle shape, and dendritic shape.
  • the component (C) may be used alone or in combination of two or more, but it is preferable to use two or more in combination because lower resistance and high thermal conductivity can be realized. From the viewpoint of exhibiting low resistance without increasing the viscosity of the conductive resin composition too much, it is more preferable to combine spherical and scaly shapes. Further, if the specific gravity of the conductive particles is too heavy, the conductive particles may settle during storage of the conductive resin composition. Therefore, when using spherical particles, use particles in which organic polymer particles are coated with metal. Is preferable.
  • the organic polymer particles acrylic particles, styrene particles, butadiene particles, silicone particles and the like are preferable, and among them, acrylic particles and styrene particles are preferable from the viewpoint of versatility.
  • the spherical shape means that the sphericity (minor axis / major axis) represented by the minor axis with respect to the major axis is 0.6 to 1.0.
  • the scaly shape is non-spherical and flake-shaped.
  • the average particle size of the component (C) is preferably 0.05 to 70 ⁇ m, preferably 0.1 to 50 ⁇ m, and most preferably 0.5 to 20 ⁇ m.
  • the average particle size of the component (C) is 0.05 ⁇ m or more, the resistance can be stabilized, and when it is 70 ⁇ m or less, the conductive resin composition is applied by dispense coating, screen printing, or the like. It is possible to suppress the occurrence of nozzle and mesh clogging at the time.
  • Examples of the method for confirming the average particle size include image analysis of a laser diffraction / scattering type, a microsorting control type particle size / shape distribution measuring instrument, an optical microscope, an electron microscope, and the like. In the present invention, conductive particles measured by the laser diffraction / scattering method are used.
  • the specific surface area of the component (C) is preferably 0.01 to 10 m 2 / g, more preferably 0.1 to 7 m 2 / g, and most preferably 1 to 5 m 2 / g. preferable.
  • the specific surface area of the component (C) is 0.01 to 10 m 2 / g, it can be highly filled in the conductive resin composition, so that high conductivity and high heat dissipation can be realized. ..
  • the specific surface area can be calculated from the BET specific surface area.
  • tap density is preferably 0.5 ⁇ 10g / cm 3, more preferably 1 ⁇ 8g / cm 3, most preferably 2 ⁇ 5g / cm 3.
  • tap density can be measured according to JIS Z 2512: 2012.
  • saturated fatty acids and unsaturated fatty acids can be used as lubricants.
  • Specific examples include capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, linolenic acid, linoleic acid, palmitoleic acid, oleic acid and their ester compounds.
  • Lubricants are used in manufacturing for the purpose of preventing aggregation, improving dispersibility, etc. when processing solid or powdered metals, but even in conductive resin compositions, lubricants are composed of conductive particles and resins. Since the wettability and dispersibility are improved and the oxidation of the metal surface is suppressed, higher conductivity can be realized.
  • the component (C) preferably contains 10 to 2000 parts by mass, and more preferably 50 to 1000 parts by mass with respect to 100 parts by mass of the component (A). Most preferably, it contains 100 to 600 parts by mass.
  • the component (C) is contained in an amount of 10 to 2000 parts by mass with respect to 100 parts by mass of the component (A), the volume resistivity at the initial stage and during stretching of the cured product can be stabilized.
  • Component (D) Compound having a hydrosilyl group
  • the component (D) of the present invention is a compound having a hydrosilyl group.
  • the compound having a hydrosilyl group is not particularly limited as long as it is a compound containing a hydrosilyl group that can be cured by cross-linking with the component (A), and various compounds can be used, but an organohydrogenpolysiloxane is preferable and is in the molecule.
  • a silicone composed of linear, branched, cyclic or reticulated molecules containing a silicon atom to which a hydrogen atom is directly bonded. From the viewpoint of low-temperature curability, it is preferable that the molecule has two or more silicon atoms to which hydrogen atoms are directly bonded.
  • the hydrogen atom may be bonded to either the terminal silicon atom or the side chain silicon atom, but it is preferably bonded to the side chain from the viewpoint of enabling low temperature curability and improving the toughness of the cured product.
  • the substituent other than the hydrogen atom bonded to the silicon atom of the component (D) is preferably an alkyl group or a phenyl group having 1 to 6 carbon atoms from the viewpoint of low temperature curability, but other groups may be used.
  • the amount of the component (D) added is preferably 0.5 to 1.5 equivalents with respect to one alkenyl group of the component (A). More preferably, it is 0.8 to 1.2 equivalents.
  • the amount of the component (D) added is 0.5 equivalent or more, the crosslink density is appropriately formed, so that the toughness of the cured product can be maintained, and when it is 1.5 equivalent or less, dehydrogenation is performed. Foaming due to the reaction can be prevented, and there is no risk of impairing the characteristics (resin strength, resistance stability) of the cured product of the conductive resin composition.
  • the amount of the component (D) added is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is 0.5 to 30 parts by mass.
  • the amount of the component (D) added is 0.1 parts by mass or more, the crosslink density is appropriately formed, so that the toughness of the cured product can be maintained, and when it is 50 parts by mass or less, dehydrogenation is performed. Foaming due to the reaction can be prevented, and there is no risk of impairing the characteristics (resin strength, resistance stability) of the cured product of the conductive resin composition.
  • D Commercially available products of the component (D) include trade names manufactured by Gelest, DMS-H013, DMS-H11, DMS-H21, DMS-H025, DMS-H31, DMS-H42, PMS-H03, HMS-013, HMS-031, HMS-064, HMS-071, HMS-991, HMS-992, HMS-993, HDP-111, HPM-502, HMS-151, HMS-301, HQM-105, HQM-107 and Toray. Examples thereof include a trade name manufactured by Dow Corning Co., Ltd., DAWSIL SH1107 Fluid (trimethylsiloxy-terminated methyl hydrogen siloxane).
  • the component (E) of the present invention is a catalyst capable of promoting a hydrosilylation reaction, and any catalyst can be used.
  • examples thereof include radical initiators such as organic peroxides and azo compounds, and transition metal catalysts. From the viewpoint of low temperature curability, transition metal catalysts are preferable, and rhodium catalysts, ruthenium catalysts, and platinum catalysts are more preferable. Most preferably, it is a platinum catalyst.
  • Specific examples of the platinum catalyst include platinum chloride, an alcohol solution of platinum chloride, a reaction product of platinum chloride acid and alcohol, a reaction product of platinum chloride acid and an olefin compound, and platinum chloride acid and a vinyl group-containing siloxane.
  • platinum-based catalysts such as reactants, platinum-olefin complexes, and platinum-vinyl group-containing siloxane complexes. Further, those in which these catalysts are dissolved and dispersed in a solvent such as isopropanol or toluene or siloxane oil may be used.
  • RhCl (PPh 3 ) 3 RhCl 3 , Rh / Al 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 ⁇ xH 2 O, NiCl 2 , TiCl 4. , Etc. can be mentioned.
  • RhCl (PPh 3 ) 3 RhCl 3 , Rh / Al 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 ⁇ xH 2 O, NiCl 2 , TiCl 4. , Etc. can be mentioned.
  • These catalysts may be used alone or in combination of two or more.
  • the content of the component (E) is preferably in the range of 1 ⁇ 10 -10 to 1 mol with respect to 1 mol of the alkenyl group of the component (A), and more preferably 1 ⁇ 10 -8 to 1 ⁇ 10 ⁇ . It is 3 mol. If the content of the component (E) is 1 ⁇ 10 -10 mol or more with respect to 1 mol of the alkenyl group of the component (A), low temperature curability can be maintained, and if it is 1 mol or less, foaming due to hydrogen gas is prevented. can do.
  • Examples of the commercially available product of the component (E) include a platinum catalyst manufactured by Yumicore Precious Metals Japan Co., Ltd., and a trade name: PT-VTSC-3.0X.
  • reaction inhibitor The conductive resin composition of the present invention may contain a reaction inhibitor as long as the characteristics of the present invention are not impaired. It is preferable to use a reaction inhibitor because both low-temperature curability and storage stability can be achieved at the same time.
  • the reaction inhibitor it is preferable to add a compound containing an aliphatic unsaturated bond that does not react during storage at room temperature and starts the reaction when heated. Specific examples of the compound containing an aliphatic unsaturated bond include 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne, and 3,5-dimethyl-1-hexin-.
  • Examples thereof include propagyl alcohols such as 3-ol and 1-ethynyl-1-cyclohexanol, ene-in compounds, maleic anhydride, and maleic esters such as dimethyl maleate. Of these, maleic acid ester is preferable from the viewpoint of compatibility with the conductive resin composition.
  • an organic phosphorus compound can be used as another reaction inhibitor. Specific examples thereof include triorganophosphins, diorganophosphins, organophosphons, and triorganophosphites.
  • an organic sulfur compound can be used as another reaction inhibitor.
  • organic sulfur compound examples include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, and benzothiazole disulfide.
  • a nitrogen-containing compound can be used as another reaction inhibitor.
  • Specific examples of the nitrogen-containing compound include N, N, N', N'-tetramethylethylenediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dibutylethylenediamine, N, N-dibutyl.
  • reaction inhibitors may be used alone or in combination of two or more.
  • the amount of the reaction inhibitor is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 7 parts by mass, and most preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of (A). Is.
  • the amount of the reaction inhibitor is 0.01 parts by mass or more with respect to 100 parts by mass of (A)
  • the storage stability can be maintained as a conductive resin composition, and when it is 10 parts by mass or less. Low temperature curability can be maintained.
  • a filler that does not impair the characteristics may be added for the purpose of improving the elastic modulus, fluidity, etc. of the cured product.
  • the shape of the filler is not particularly limited, but a spherical shape is preferable because it can improve the mechanical strength of the cured product of the conductive resin composition and suppress an increase in viscosity.
  • the average particle size of the filler is not particularly limited, but is preferably in the range of 0.1 to 1000 ⁇ m, and more preferably in the range of 0.5 to 300 ⁇ m.
  • the filler include organic powder, inorganic powder, metallic powder and the like.
  • the filler for the inorganic powder examples include glass, silica, alumina, mica, ceramics, silicone rubber powder, calcium carbonate, aluminum nitride, carbon powder, kaolin clay, dried clay minerals, and dried diatomaceous earth.
  • the blending amount of the inorganic powder is preferably about 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount of the inorganic powder is larger than 0.1 parts by mass, the effect will not be reduced, and if it is 100 parts by mass or less, sufficient fluidity of the conductive resin composition can be obtained, and good workability can be obtained. Be done.
  • silica can be blended for the purpose of adjusting the viscosity of the conductive resin composition or improving the mechanical strength of the cured product.
  • those hydrophobized with organochlorosilanes, polyorganosiloxane, hexamethyldisilazane and the like can be used.
  • Specific examples of silica (fumed silica) include, for example, trade names Aerosil (registered trademark) R974, R972, R972V, R972CF, R805, R812, R812S, R816, R8200, RY200, RX200, RY200S manufactured by Nippon Aerosil Co., Ltd. , R202 and other commercially available products.
  • Examples of the filler of the organic powder include polyethylene, polypropylene, nylon, crosslinked acrylic, crosslinked polystyrene, polyester, polyvinyl alcohol, polyvinyl butyral, and polycarbonate.
  • the blending amount of the organic powder is preferably about 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount of the organic powder is larger than 0.1 parts by mass, the effect will not be reduced, and if it is 100 parts by mass or less, sufficient fluidity of the conductive resin composition can be obtained, and good workability can be obtained. Be done.
  • a solvent may be added to the conductive resin composition of the present invention as long as the characteristics are not impaired for the purpose of improving fluidity and coatability.
  • a solvent having a low polarity is preferable, and a hydrocarbon type is more preferable, because of compatibility with the component (A).
  • Specific examples thereof include benzene, toluene, xylene, n-hexane, isohexane, cyclohexane, methylcyclohexane, normal heptane, mineral spirit, naphthenic acid, and isoparaffinic acid, but naphthenic acid and isoparaffinic acid are preferable.
  • the amount of the solvent added is preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass, and most preferably 5 to 30 parts by mass with respect to 100 parts by mass of the component (A). is there.
  • Examples of commercially available products of the solvent include naphthenic solvents manufactured by Standard Petroleum Co., Ltd., trade name: Exor D80, and the like.
  • the conductive resin composition of the present invention is produced by mixing each component.
  • the mixing order of each component is not particularly limited, and may be added and mixed all at once, or may be added and mixed sequentially.
  • the conductive resin composition of the present invention forms a cured product by being heat-cured.
  • the heating temperature is preferably 50 ° C. to 100 ° C., more preferably 50 to 90 ° C., and most preferably 50 to 80 ° C. Since the temperature is 50 ° C to 100 ° C, it can be applied to parts and members that are sensitive to heat, so that it can be applied to a wide range of fields.
  • the curing time is preferably 10 minutes to 3 hours.
  • the resistivity change multiple of the volume resistivity of the cured product obtained by curing the conductive resin composition of the present invention at 80 ° C. ⁇ 1 hour is the volume resistivity when stretched by 20% / the volume resistivity before (initial) stretching ⁇ It is preferably 100.
  • the resistance change multiple volume resistivity when stretched by 20% / volume resistivity before (initial) stretching
  • the resistance stability during stretching is good, so that the liquid crystal panel or flexible It can be suitably used for applications such as printed circuit boards and wearable terminals that require flexibility during stretching such as grounding and conduction bonding.
  • ⁇ Applying method> As a method for applying the conductive resin composition of the present invention to an adherend, a known method is used. For example, methods such as dispensing with an automatic coating machine, spraying, inkjet printing, screen printing, gravure printing, dipping, and spin coating can be mentioned.
  • the conductive resin composition of the present invention is liquid at 25 ° C.
  • the conductive resin composition of the present invention exhibits low-temperature curability and excellent conductivity, it can be used for various electronic components. Among them, since the resistance stability at the time of stretching is good, it is preferable to develop it in applications requiring flexibility such as grounding and conductive adhesion such as liquid crystal panels, flexible printed circuit boards, and wearable terminals.
  • the component (A) was weighed in a stirring container, the component (B) was weighed in a stirring container and stirred for 10 minutes, and the component (C) was weighed in a stirring container and stirred for 30 minutes. Further, 10 parts by mass of Exor D80 (naphthenic solvent; manufactured by Standard Petroleum Co., Ltd.) was added to 100 parts by mass of the component (A), and after stirring for 30 minutes, the component (D) was weighed in a stirring container to 30 parts. Stir for minutes. Further, dimethyl maleate (reaction inhibitor) was weighed at 0.75 parts by mass and the component (E) with respect to 100 parts by mass of the component (A), and the mixture was stirred for 15 minutes.
  • the conductive resin compositions of Examples 1 to 3 and Comparative Examples 1 to 11 were prepared by such an operation procedure, respectively. Detailed preparation amounts are shown in Tables 1 and 2, and all numerical values are expressed in parts by mass. Both tests were performed at 25 ° C.
  • a polytetrafluoroethylene tape cut to the same size as the glass plate is attached on a test piece of a glass plate of 100 mm ⁇ 100 mm ⁇ 2 mm in thickness, and the length is 100 mm ⁇ width 10 mm ⁇ thickness 80 ⁇ m on the polytetrafluoroethylene tape.
  • a conductive resin composition was applied. The test piece was cured at 80 ° C. for 1 hour using a constant temperature bath, then returned to room temperature, and the surface of the cured product was touched with a polytetrafluoroethylene rod to confirm the presence or absence of curing.
  • The conductive resin composition does not adhere to the polytetrafluoroethylene rod (hardened).
  • X The conductive resin composition adheres to the polytetrafluoroethylene rod (uncured).
  • Passing criteria 100 x 10-6 ⁇ ⁇ m or less.
  • the conductive resin compositions of Examples 1 to 3 were good in all of curability at 80 ° C., initial volume resistivity, and resistance change in the stretched state. Comparative Examples 1 and 2 had poor compatibility and curability, and a cured product could not be produced. Although Comparative Examples 3 to 7 used polyorganosiloxane having a reactive functional group and other plasticizers, satisfactory results could not be obtained in terms of low temperature curability and resistance change during stretching. In Comparative Example 8, the change in resistance in the stretched state was large, and the effect of the present invention could not be obtained. Comparative Example 9 was not satisfactory as a conductive resin composition because of its high initial volume resistivity. In Comparative Example 10 which does not contain the component (B), the resistance change in the stretched state is significantly increased, and it can be seen that the component (B) affects the resistance change in the stretched state.
  • the conductive resin composition of the present invention is industrially useful because it can be cured at a low temperature to form a flexible cured product and the resistance change in the stretched state is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】低温硬化性を有し、延伸時の抵抗安定性に優れた導電性樹脂組成物に関する。 【解決手段】下記(A)~(E)を含有し、(B)成分の含有量が(A)成分100質量部に対して6~50質量部である導電性樹脂組成物。 (A)アルケニル基を有するポリオルガノシロキサン (B)特定の構造を有するポリオルガノシロキサン (C)導電性粒子 (D)ヒドロシリル基を有する化合物 (E)ヒドロシリル化触媒

Description

導電性樹脂組成物
 本発明は、柔軟であり、延伸した状態での抵抗安定性に優れた導電性樹脂組成物に関するものである。
 従来、導電性接着剤はアース取りや導通接着などの目的で様々な電子部品に用いられている。近年ではスマートフォンやウェアラブル端末など、多彩な形状を有する電子機器の普及により、導電性接着剤にも柔軟性が求められ、伸縮性に優れた導電性接着剤の開発が進められている(特開2002-212426号公報)。
 しかしながら、従来の柔軟な導電性接着剤は硬化物を伸長させると徐々に電気抵抗が上昇し絶縁になるなど、延伸した状態での抵抗を維持することが困難であった。また、従来の導電性接着剤は硬化温度が高いため、耐熱性の低い部品や部材に対して使用することができないという難点があった。
 本発明者らは、上記目的を達成するべく鋭意検討した結果、部材にダメージを与えない低温(80℃)で硬化させることができ、硬化物を延伸した状態においても抵抗の上昇を抑制できる導電性樹脂組成物を見出した。
 本発明の要旨を次に説明する。
 [1]下記(A)~(E)を含有し、(B)成分の含有量が(A)成分100質量部に対して6~50質量部である導電性樹脂組成物:
 (A)アルケニル基を有するポリオルガノシロキサン
 (B)以下の構造を有するポリオルガノシロキサン
Figure JPOXMLDOC01-appb-C000002
(Rはそれぞれ独立してアルキル基および/またはアリール基であり、nは1以上の整数である)
 (C)導電性粒子
 (D)ヒドロシリル基を有する化合物
 (E)ヒドロシリル化触媒。
 [2]前記(B)成分のRの炭素数がそれぞれ1~10である[1]に記載の導電性樹脂組成物。
 [3]前記(B)成分のRがそれぞれ独立してメチル基および/またはフェニル基である[1]または[2]に記載の導電性樹脂組成物。
 [4]前記(C)成分の形状が鱗片状および/または球状である[1]~[3]のいずれかに記載の導電性樹脂組成物。
 [5]前記(C)成分が銀粉および/または銀被覆粒子である[1]~[4]のいずれかに記載の導電性樹脂組成物。
 [6]80℃×1時間で硬化させた硬化物の体積抵抗率が、(20%延伸した時の体積抵抗率/延伸前の体積抵抗率)=100以下である[1]~[5]のいずれかに記載の導電性樹脂組成物。
 [7][1]~[6]のいずれかに記載の導電性樹脂組成物から形成された硬化物。
 本発明の詳細を次に説明する。
 本発明の導電性樹脂組成物は、下記(A)~(E)を含有し、(B)成分の含有量が(A)成分100質量部に対して6~50質量部である:
 (A)アルケニル基を有するポリオルガノシロキサン
 (B)以下の構造を有するポリオルガノシロキサン
Figure JPOXMLDOC01-appb-C000003
(Rはそれぞれ独立してアルキル基および/またはアリール基であり、nは1以上の整数である)
 (C)導電性粒子
 (D)ヒドロシリル基を有する化合物
 (E)ヒドロシリル化触媒。
 本発明は、低温で硬化するとともに優れた導電性(体積抵抗率)を有し、延伸することによる抵抗率変化が抑制された硬化物が得られる導電性樹脂組成物を提供するものである。
 (A)成分:アルケニル基を有するポリオルガノシロキサン
 本発明で使用される(A)成分のアルケニル基を有するポリオルガノシロキサンとしては特に限定されず、各種のものを用いることができる。アルケニル基を有するポリオルガノシロキサンの分子構造は実質的に直線状であるが、一部に分岐構造があってもよい。例えば、分子鎖両末端ビニル基封鎖ポリジメチルシロキサン;分子鎖末端ビニル基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体;分子鎖両末端ビニル基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体;分子鎖片末端がビニル基で封鎖され、もう一方の分子鎖片末端がトリメトキシ基で封鎖されたポリジメチルシロキサン;分子鎖片末端がビニル基で封鎖され、もう一方の分子鎖片末端がトリメチルシロキシ基で封鎖されたポリジメチルシロキサン;分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体が挙げられる。これらの中でも汎用性があり、低温硬化性に優れることから、分子鎖両末端ビニル基封鎖ポリジメチルシロキサンが好ましい。これらは単独で1種のみで用いられてもよく、または2種以上併用されてもよい。
 本発明の(A)成分が有するアルケニル基は、ヒドロシリル化反応するものであれば限定はされないが、HC=CH-Si-であることが好ましい。
 前記(A)成分の粘度は、25℃で100~15,000cPsが好ましく、より好ましくは1,000~10,000cPsであり、最も好ましくは3,000~8,000cPsである。前記(A)成分の粘度が100cPs以上であることで柔軟な硬化物を得ることができ、15,000cPs以下であれば(B)成分との相溶性がよく、保存時に液の分離などを引き起こす恐れがない。(A)成分の25℃における粘度は、コーンプレート型粘度計を用いて測定することができる。
 前記(A)成分のビニル当量としては、0.0001~20Eq/kgが好ましく、より好ましくは0.001~10Eq/kgであり、最も好ましくは0.01~1Eq/kgである。前記(A)成分のビニル当量が0.0001~20Eq/kgであれば低温硬化性を維持することができる。(A)成分のビニル当量は、Wijs法によって決定することができる。具体的には、炭素二重結合を一塩化ヨウ素(過剰量)と反応させ、その後、過剰な一塩化ヨウ素をヨウ化カリウムと反応させ、遊離するヨウ素をチオ硫酸ナトリウム水溶液にて終点まで滴定し消費されたヨウ素量からビニル当量を算出することができる。
 前記(A)成分の重量平均分子量は、700以上15万未満が好ましく、より好ましくは2000以上13万未満、最も好ましくは8000以上10万未満である。前記(A)成分の重量平均分子量が700以上であることで、柔軟な硬化物を得ることができ、15万未満であれば、(C)成分と混合した際の粘度が高くなりすぎることがないため、塗布性に優れた導電性樹脂組成物を得ることができる。なお、重量平均分子量(Mw)は、標準物質としてポリスチレンを用いたゲルろ過クロマトグラフィー(Gel Permeation Chromatography;GPC)で測定された値を採用するものとする。
 前記(A)成分の市販品としては、Gelest社製の分子鎖両末端ビニル基封鎖ポリジメチルシロキサン(粘度(25℃):5000cPs、ビニル当量:0.04Eq/kg、重量平均分子量:49,500)のほか、分子鎖両末端にビニル基を有するポリオルガノシロキサンとして、例えば、Gelest社製の商品名、DMS-Vシリーズ(例えば、DMS-V31、DMS-V31S15、DMS-V33、DMS-V35、DMS-V35R、DMS-V41、DMS-V42、DMS-V46、DMS-V51、DMS-V52)、Gelest社製の商品名、PDVシリーズ(例えば、PDV-0341、PDV-0346、PDV-0535、PDV-0541、PDV-01631、PDV-01635、PDV-01641、PDV-2335)、Gelest社製の商品名、PMV-9925、PVV-3522、FMV-4031、EDV-2022などが挙げられる。
 (B)成分:以下の構造を有するポリオルガノシロキサン
 本発明の(B)成分は以下の構造を有するポリオルガノシロキサンである。
Figure JPOXMLDOC01-appb-C000004
(Rはそれぞれ独立してアルキル基および/またはアリール基であり、nは1以上の整数である)。
 (B)成分は(A)成分との相溶性に優れ、延伸時の抵抗上昇を抑制する主要な成分である。(A)成分との相溶性の観点から、Rの炭素数は1~10が好ましく、1~8がより好ましい。Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基、フェニル基、メチルフェニル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基などが挙げられるが、保存安定性の観点からメチル基、エチル基、プロピル基、イソプロピル基、フェニル基からなる群より1以上有するものが好ましく、メチル基および/またはフェニル基を1以上有するものが最も好ましい。なかでも、Rがそれぞれ独立してメチル基((B)成分;ジメチルシリコーンオイル)および/またはフェニル基((B)成分;ジフェニルシリコーンオイル)であるのが特に好ましい。汎用性の観点から分子鎖末端のRがメチル基であることが好ましい。これらは単独で1種のみで用いられてもよく、2種以上併用されてもよい。
 前記(B)成分の動粘度は5~5000mm/sが好ましく、より好ましくは10~3000mm/sであり、最も好ましくは50~1000mm/sである。前記(B)成分の動粘度が5mm/s以上であることで、(A)成分と混合した際に経時で分離することがないため、保存安定性を維持することができ、5000mm/s以下であれば(C)成分と混合しやすく、(C)成分を導電性樹脂組成物中に均一に分散することができる。(B)成分の動粘度は、JIS Z 8803:2011に準じた方法で測定することができる。
 前記(B)成分の添加量は(A)成分100質量部に対して6~50質量部である。更に好ましくは6~30質量部であり、最も好ましくは6~20質量部である。前記(B)成分の添加量が、6質量部以上であれば、延伸時に体積抵抗率を安定化させることができ、50質量部以下であれば、延伸前の体積抵抗率の低下や、導電性樹脂組成物として経時での(C)成分の沈降を抑制することができる。
 前記(B)成分の市販品としては、信越化学工業株式会社製のKF-96、KF-96H、KF-96-100CS、KF-50、KF-50-100CS、KF-54、KF-965、KF-968などが挙げられるが、これに限定されるものではない。
 (C)成分:導電性粒子
 本発明の(C)成分は、導電性粒子であり、金、銀、銅、ニッケル、パラジウムなどの金属粉や、これらを複数種組み合わせてなる半田などの合金や、有機ポリマー粒子および金属粒子に他の金属薄膜を被覆したメッキ粒子などが挙げられる。なかでも低抵抗を実現できる点から、金、銀、銅、およびこれらの金属を表面に被覆した粒子が好ましい。汎用性とコストの観点から、銀、銅、およびこれらの金属を被覆した粒子がより好ましく、銀は銅に比べ、酸化されにくく扱いやすいため、銀および銀を被覆した粒子が最も好ましい。これらは単独で1種のみで用いられてもよく、2種以上併用されても良い。
 前記(C)成分の形状は球状、不定形状、鱗片状、針状、樹枝状などが挙げられる。なお、(C)成分は単独で用いてもよく、2種以上併用されてもよいが、2種以上併用することでより低抵抗性、高熱伝導性を実現することができるため好ましい。導電性樹脂組成物の粘度を上げすぎず、低抵抗を発現する観点から、球状と鱗片状を組み合わせることがより好ましい。また導電性粒子の比重が重すぎると、導電性樹脂組成物の保存時に導電性粒子が沈降する恐れがあるため、球状粒子を使用する場合、有機ポリマー粒子に金属を被覆した粒子を使用することが好ましい。有機ポリマー粒子としては、アクリル粒子、スチレン粒子、ブタジエン粒子、シリコーン粒子などが好ましく、中でも汎用性の観点からアクリル粒子、スチレン粒子からなることが好ましい。ここで、球状とは、長径に対する短径で表される真球度(短径/長径)が、0.6~1.0であるものをいう。鱗片状とは、非球状でありフレーク状であるものをいう。
 前記(C)成分の平均粒径は、0.05~70μmであることが好ましく、0.1~50μmであることが好ましく、0.5~20μmであることが最も好ましい。前記(C)成分の平均粒径が0.05μm以上であることで、抵抗を安定化させることができ、70μm以下であることで、導電性樹脂組成物をディスペンス塗布、スクリーン印刷などで塗布する際のノズルやメッシュ詰まりの発生を抑制することができる。平均粒径の確認方法としては、レーザー回折散乱式やマイクロソーティング制御方式の粒度・形状分布測定器、光学顕微鏡、電子顕微鏡等の画像解析が挙げられる。本発明では、レーザー回折散乱法で測定した導電性粒子を用いた。
 前記(C)成分の比表面積は、0.01~10m/gであることが好ましく、0.1~7m/gであることがより好ましく、1~5m/gであることが最も好ましい。前記(C)成分の比表面積が0.01~10m/gであることで、導電性樹脂組成物中に高充填することができるため、高導電性と高放熱性を実現することができる。上記比表面積はBET比表面積から算出することができる。
 前記(C)成分が鱗片状の場合、タップ密度は、0.5~10g/cmが好ましく、1~8g/cmがさらに好ましく、2~5g/cmが最も好ましい。前記タップ密度が0.5~10g/cmであることで、導電性樹脂組成物中に高充填することができるため、高導電性と高放熱性を実現することができる。タップ密度はJIS Z 2512:2012に従って測定することができる。
 前記(C)成分は、滑剤として飽和脂肪酸および不飽和脂肪酸が使用できる。具体例としては、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、リノレン酸、リノール酸、パルミトレイン酸、オレイン酸等およびそれらのエステル化合物が挙げられる。滑剤は固体や粉末状の金属を加工する際に、凝集防止、分散性向上などの目的で製造上使用されているが、導電性樹脂組成物中においても滑剤が、導電性粒子と樹脂との濡れ性や分散性を向上させ、金属表面の酸化を抑制するため、より高い導電性を実現することができる。
 前記(C)成分は(A)成分100質量部に対して、10~2000質量部含むことが好ましく、50~1000質量部含むことがさらに好ましく。100~600質量部含むことが最も好ましい。前記(C)成分が(A)成分100質量部に対して10~2000質量部含むことで硬化物の初期および延伸時の体積抵抗率を安定化させることができる。
 (D)成分:ヒドロシリル基を有する化合物
 本発明の(D)成分は、ヒドロシリル基を有する化合物である。ヒドロシリル基を有する化合物としては、(A)成分と架橋により硬化できるヒドロシリル基含有化合物であれば特に制限なく、各種のものを用いることができるが、好ましくはオルガノハイドロジェンポリシロキサンであり、分子中に水素原子が直接結合しているケイ素原子を含んでいる、直鎖状、分岐状、環状または網状の分子からなるシリコーンである。低温硬化性の観点から、水素原子が直接結合しているケイ素原子を2個以上分子中に有しているものが好ましい。水素原子は末端のケイ素原子でも側鎖のケイ素原子にでも結合してよいが、低温硬化性を可能にし、硬化物の靭性を向上させる観点から、側鎖に結合しているものが好ましい。
 前記(D)成分のケイ素原子に結合した水素原子以外の置換基は、低温硬化性の観点から炭素数1~6のアルキル基、フェニル基が好ましいが、その他のものでもよい。(D)成分の添加量は(A)成分のアルケニル基1個に対して、0.5~1.5当量となる量が好ましい。より好ましくは0.8~1.2当量である。前記(D)成分の添加量が0.5当量以上であれば、架橋密度が適度に形成されるため、硬化物の靭性を保持することができ、1.5当量以下であれば、脱水素反応による発泡を防ぐことができ、導電性樹脂組成物の硬化物として特性(樹脂強度、抵抗安定性)を損なう恐れがない。
 また、前記(D)成分の添加量は(A)成分100質量部に対して、0.1~50質量部が好ましい。より好ましく0.5~30質量部である。前記(D)成分の添加量が0.1質量部以上であれば、架橋密度が適度に形成されるため、硬化物の靭性を保持することができ、50質量部以下であれば、脱水素反応による発泡を防ぐことができ、導電性樹脂組成物の硬化物として特性(樹脂強度、抵抗安定性)を損なう恐れがない。
 前記(D)成分の市販品としては、Gelest社製の商品名、DMS-H013、DMS-H11、DMS-H21、DMS-H025、DMS-H31、DMS-H42、PMS-H03、HMS-013、HMS-031、HMS-064、HMS-071、HMS-991、HMS-992、HMS-993、HDP-111、HPM-502、HMS-151、HMS-301、HQM-105、HQM-107や東レ・ダウコーニング株式会社製の商品名、DAWSIL SH1107 Fluid(トリメチルシロキシ末端メチル水素シロキサン)などが挙げられる。
 (E)成分:ヒドロシリル化触媒
 本発明の(E)成分は、ヒドロシリル化反応を促進できる触媒であり、任意のものが使用できる。例えば、有機過酸化物やアゾ化合物等のラジカル開始剤、および遷移金属触媒が挙げられるが、低温硬化性の観点から遷移金属触媒が好ましく、さらに好ましくはロジウム触媒、ルテニウム触媒、白金触媒であり、最も好ましくは白金触媒である。白金触媒の具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、塩化白金酸とアルコールとの反応物、塩化白金酸とオレフィン化合物との反応物、塩化白金酸とビニル基含有シロキサンとの反応物、白金-オレフィン錯体、白金-ビニル基含有シロキサン錯体等の白金系触媒が挙げられる。また、これらの触媒をイソプロパノールやトルエン等の溶剤やシロキサンオイルなどに溶解・分散させたものを用いてもよい。
 白金触媒以外の具体例としては、RhCl(PPh、RhCl、Rh/Al、RuCl、IrCl、FeCl、AlCl、PdCl・xHO、NiCl、TiCl、等が挙げられる。これらの触媒は単独で使用してもよく、2種以上併用してもよい。
 前記(E)成分の含有量としては、(A)成分のアルケニル基1molに対して1×10-10~1molの範囲で用いるのが好ましく、さらに好ましくは1×10-8~1×10-3molである。前記(E)成分の含有量が(A)成分のアルケニル基1molに対して1×10-10mol以上であれば低温硬化性を保つことができ、1mol以下であれば水素ガスによる発泡を防止することができる。
 前記(E)成分の市販品としては、ユミコアプレシャスメタルズジャパン株式会社製の白金触媒、商品名:PT-VTSC-3.0Xなどが挙げられる。
 (F)任意成分:反応抑制剤
 本発明の導電性樹脂組成物には、本発明の特性を損なわない範囲において、反応抑制剤を配合しても良い。反応抑制剤を用いることで、低温硬化性と保存安定性を両立することができるため好ましい。反応抑制剤としては、室温での保存中は反応せず、加熱時に反応を開始する脂肪族不飽和結合を含む化合物を添加することが好ましい。脂肪族不飽和結合を含有する化合物としては、具体的には3-ヒドロキシ-3-メチル-1-ブチン、3-ヒドロキシ-3-フェニル-1-ブチン、3,5-ジメチル-1-ヘキシン-3-オール、1-エチニル-1-シクロヘキサノール等のプロパギルアルコール類、エン-イン化合物類、無水マレイン酸、マレイン酸ジメチル等のマレイン酸エステル類等が例示できる。なかでも、導電性樹脂組成物との相溶性の観点から、マレイン酸エステルが好ましい。また、その他の反応抑制剤として有機燐化合物が使用できる。具体的にはトリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示できる。また、その他の反応抑制剤として有機硫黄化合物が使用できる。有機硫黄化合物としては、具体的にはオルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示できる。また、その他の反応抑制剤として窒素含有化合物が使用できる。窒素含有化合物としては、具体的にはN,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジブチルエチレンジアミン、N,N-ジブチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N-ジブチル-1,4-ブタンジアミン、2,2’-ビピリジン等が例示できる。これらの反応抑制剤は単独で使用してもよく、2種以上併用してもよい。
 反応抑制剤の量は前記(A)100質量部に対して、0.01~10質量部が好ましく、さらに好ましくは0.1~7質量部であり、最も好ましくは0.3~5質量部である。反応抑制剤の量が前記(A)100質量部に対して0.01質量部以上であることで導電性樹脂組成物として保存安定性を維持することができ、10質量部以下であることで低温硬化性を維持することができる。
 (G)任意成分:充填材
 本発明の導電性樹脂組成物に対し、硬化物の弾性率、流動性などの改良を目的として、特性を阻害しない程度の充填材を添加してもよい。充填材の形状は特に限定されないが、導電性樹脂組成物の硬化物の機械的な強度を向上させるとともに、粘度の上昇を抑制できることから球形状が好ましい。充填材の平均粒径は、特に限定されないが0.1~1000μmの範囲が好ましく、さらに好ましくは0.5~300μmの範囲である。充填材としては、有機質粉体、無機質粉体、金属質粉体等が挙げられる。無機質粉体の充填材としては、ガラス、シリカ、アルミナ、マイカ、セラミックス、シリコーンゴム粉体、炭酸カルシウム、窒化アルミ、カーボン粉、カオリンクレー、乾燥粘土鉱物、乾燥珪藻土等が挙げられる。無機質粉体の配合量は、(A)成分100質量部に対し、0.1~100質量部程度が好ましい。無機質粉体の配合量が0.1質量部より大きければ効果が小さくなることもなく、100質量部以下であれば導電性樹脂組成物の十分な流動性が得られ、良好な作業性が得られる。
 上記シリカは、導電性樹脂組成物の粘度調整又は硬化物の機械的強度を向上させる目的で配合できる。好ましくは、オルガノクロロシラン類、ポリオルガノシロキサン、ヘキサメチルジシラザンなどで疎水化処理したものなどを用いることができる。シリカ(フュームドシリカ)の具体例としては、例えば、日本アエロジル株式会社製の商品名アエロジル(登録商標)R974、R972、R972V、R972CF、R805、R812、R812S、R816、R8200、RY200、RX200、RY200S、R202等の市販品が挙げられる。
 有機質粉体の充填材としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、架橋アクリル、架橋ポリスチレン、ポリエステル、ポリビニルアルコール、ポリビニルブチラール、ポリカーボネートが挙げられる。有機質粉体の配合量は、(A)成分100質量部に対し、0.1~100質量部程度が好ましい。有機質粉体の配合量が0.1質量部より大きければ効果が小さくなることもなく、100質量部以下であれば導電性樹脂組成物の十分な流動性が得られ、良好な作業性が得られる。
 (H)任意成分:溶剤
 また、本発明の導電性樹脂組成物には流動性、塗布性の改良を目的として、特性を阻害しない範囲で溶剤を添加しても良い。使用できる溶剤としては、(A)成分との相溶性から、極性が低いものが好ましく、炭化水素系がさらに好ましい。具体的には、ベンゼン、トルエン、キシレン、n-ヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、ノルマルヘプタン、ミネラルスピリット、ナフテン系、イソパラフィン系などが挙げられるが、ナフテン系、イソパラフィン系が好ましい。保存安定性の観点から溶剤の添加量は、(A)成分100質量部に対して0.1~100質量部が好ましく、1~50質量部がさらに好ましく、最も好ましくは5~30質量部である。
 前記溶剤の市販品としては、株式会社スタンダード石油製のナフテン系溶剤、商品名:エクソールD80などが挙げられる。
 本発明の導電性樹脂組成物は、各成分を混合することにより製造される。各成分の混合順序は特に限定されず、一括で添加して混合しても、順次添加して混合してもよい。
 また、本発明の導電性樹脂組成物は、加熱硬化することで硬化物を形成する。加熱温度としては50℃~100℃が好ましく、さらに好ましくは50~90℃であり、最も好ましくは50~80℃である。50℃~100℃であることで、熱に弱い部品や部材に対しても適用できるため、幅広い分野への展開が可能である。硬化時間は10分~3時間が好ましい。本発明の導電性樹脂組成物を80℃×1時間で硬化させた硬化物の体積抵抗率の抵抗変化倍数が、20%延伸した時の体積抵抗率/延伸前(初期)の体積抵抗率≦100であるのが好ましい。上記抵抗変化倍数(20%延伸した時の体積抵抗率/延伸前(初期)の体積抵抗率)が100以下であれば、延伸時の抵抗安定性が良好であることから、液晶パネルや、フレキシブルプリント基板、ウェアラブル端末などのアース取りや導通接着など延伸時の柔軟性が必要とされる用途に好適に利用することができる。
 <塗布方法>
 本発明の導電性樹脂組成物を被着体へ塗布する方法としては、公知の方法が用いられる。例えば、自動塗布機によるディスペンス、スプレー、インクジェット、スクリーン印刷、グラビア印刷、ディッピング、スピンコートなどの方法を挙げられる。なお、本発明の導電性樹脂組成物は25℃で液状である。
 <用途>
 本発明の導電性樹脂組成物は低温硬化性と優れた導電性を発現することから、様々な電子部品に利用可能である。なかでも、延伸時の抵抗安定性が良好であることから、液晶パネルや、フレキシブルプリント基板、ウェアラブル端末などのアース取りや導通接着など柔軟性が必要とされる用途への展開が好ましい。
 次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 [実施例1~3、比較例1~11]
 導電性樹脂組成物を調製するために下記成分を準備した。
 (A)成分:分子鎖両末端ビニル基封鎖ポリジメチルシロキサン(Gelest社製)、粘度(25℃):5000cPs、ビニル当量:0.04Eq/kg、重量平均分子量:49,500
 (B-1)ジフェニルシリコーンオイル、商品名:KF-96-100CS(信越化学工業株式会社製)、動粘度(25℃):100mm/s
 (B-2)ジメチルシリコーンオイル、商品名:KF-50-100CS(信越化学工業株式会社製)、動粘度(25℃):100mm/s、
 (B’-1)流動パラフィン、動粘度(25℃):75mm/s
 (B’-2)ポリイソブテン、商品名:パールリーム46(日油株式会社製)
 (B’-3)ミリスチン酸イソプロピル
 (B’-4)アミノ変性シリコーンオイル、商品名:KF-865(信越化学工業株式会社製)、動粘度(25℃):110mm/s
 (B’-5)メルカプト変性シリコーンオイル、商品名:KF-2001(信越化学工業株式会社製)、動粘度(25℃):200mm/s
 (B’-6)カルボン酸無水物変性シリコーンオイル、商品名:X-22-168A(信越化学工業株式会社製)、動粘度(25℃):160mm/s、
 (B’-7)エポキシ変性シリコーンオイル、商品名:KF-101(信越化学工業株式会社製)、動粘度(25℃):1,500mm/s、
 (C-1):銀被覆アクリルポリマー粒子、形状:球状、平均粒径:6.5μm、比表面積:3.2m/g
 (C-2):銀粒子、形状:鱗片状、平均粒径:1.5μm、比表面積:2.1m/g、タップ密度:3.1g/cm、滑剤:オレイン酸
 (D):架橋剤、トリメチルシロキシ末端メチル水素シロキサン、商品名:DOWSIL SH1107 Fluid(東レ・ダウコーニング株式会社製)
 (E):白金触媒、商品名:PT-VTSC-3.0X(ユミコアプレシャスメタルズジャパン株式会社製)、(A)成分のアルケニル基1molに対して2.0×10-5mol。
 実施例1~3および比較例1~11の導電性樹脂組成物を下記の操作手順に従って調製した。
 前記(A)成分を撹拌容器に秤量し、(B)成分を撹拌容器に秤量して、10分撹拌し、(C)成分を撹拌容器に秤量して、30分間撹拌した。さらにエクソールD80(ナフテン系溶剤;株式会社スタンダード石油製)を(A)成分100質量部に対して10質量部添加し、30分間撹拌した後、(D)成分を撹拌容器に秤量して、30分間撹拌した。さらにマレイン酸ジメチル(反応抑制剤)を(A)成分100質量部に対して0.75質量部と(E)成分を秤量して、15分間撹拌した。かかる操作手順により実施例1~3および比較例1~11の導電性樹脂組成物をそれぞれ調製した。詳細な調製量は表1および表2に従い、数値は全て質量部で表記する。いずれの試験も25℃で行った。
 [相溶性]
 25℃の環境下で100mlポリカップに(A)成分と(B)成分を(A):(B)=10g:1gの割合で秤量した後、ガラス棒で混合し、相溶の有無を目視で確認した。
 (A)成分と(B)成分が相溶する場合:○
 (A)成分と(B)成分が相溶しない場合:×。
 [硬化性(80℃)]
 100mm×100mm×厚さ2mmのガラス板の試験片上にガラス板と同様の大きさに裁断したポリテトラフルオロエチレンテープを貼り、ポリテトラフルオロエチレンテープ上に長さ100mm×幅10mm×厚さ80μmの導電性樹脂組成物を塗布した。試験片を恒温槽を使用し80℃×1時間硬化させた後、常温に戻し、硬化物の表面をポリテトラフルオロエチレン棒で指触して硬化の有無を確認した。
○:ポリテトラフルオロエチレン棒に導電性樹脂組成物が付着しない(硬化している)
×:ポリテトラフルオロエチレン棒に導電性樹脂組成物が付着する(未硬化)。
 [体積抵抗率(初期)]
 硬化性試験で作製した試験片を用いて、デジタルマルチメーターの2端子法で測定した。
 合格基準:100×10-6Ω・m以下。
 [延伸時の抵抗変化倍数]
 硬化性試験にて作製した試験片から導電性樹脂組成物の硬化物を取り外し、短辺の両端をチャックで挟み、長辺が50mmから60mm(+20%)になるまで延伸、固定した状態で、上記同様デジタルマルチメーターの2端子法で測定し、下記式にて抵抗変化倍数を算出した。
Figure JPOXMLDOC01-appb-M000005
 合格基準:抵抗変化倍数≦100。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1のように、実施例1~3の導電性樹脂組成物は80℃での硬化性、初期の体積抵抗率、延伸した状態での抵抗変化の全てにおいて良好であった。比較例1、2は相溶性および硬化性が悪く硬化物を作製することができなかった。比較例3~7は反応性の官能基を有するポリオルガノシロキサンや、その他の可塑剤を用いたものだが、低温硬化性と延伸時の抵抗変化において満足のいく結果を得ることはできなかった。比較例8は、延伸した状態での抵抗変化が大きく、本発明の効果は得られなかった。比較例9は初期の体積抵抗率が高いため、導電性樹脂組成物として満足のいくものではなかった。(B)成分を含有していない比較例10は延伸した状態での抵抗変化が大幅に上昇しており、(B)成分が延伸した状態での抵抗変化に影響していることが分かる。
 本発明の導電性樹脂組成物は、低温で硬化し、柔軟な硬化物を形成することができ、延伸した状態での抵抗変化が小さいため、産業上有用である。

Claims (7)

  1.  下記(A)~(E)を含有し、(B)成分の含有量が(A)成分100質量部に対して6~50質量部である導電性樹脂組成物;
     (A)アルケニル基を有するポリオルガノシロキサン
     (B)以下の構造を有するポリオルガノシロキサン
    Figure JPOXMLDOC01-appb-C000001

    (Rはそれぞれ独立してアルキル基および/またはアリール基であり、nは1以上の整数である)
     (C)導電性粒子
     (D)ヒドロシリル基を有する化合物
     (E)ヒドロシリル化触媒。
  2.  前記(B)成分のRの炭素数がそれぞれ独立して1~10である請求項1に記載の導電性樹脂組成物。
  3.  前記(B)成分のRがそれぞれ独立してメチル基および/またはフェニル基である請求項1または2に記載の導電性樹脂組成物。
  4.  前記(C)成分の形状が鱗片状および/または球状である請求項1~3のいずれかに記載の導電性樹脂組成物。
  5.  前記(C)成分が銀粉および/または銀被覆粒子である請求項1~4のいずれかに記載の導電性樹脂組成物。
  6.  80℃×1時間で硬化させた硬化物の体積抵抗率の抵抗変化倍数が、20%延伸した時の体積抵抗率/延伸前(初期)の体積抵抗率≦100である請求項1~5のいずれかに記載の導電性樹脂組成物。
  7.  請求項1~6のいずれかに記載の導電性樹脂組成物から形成された硬化物。
PCT/JP2020/031631 2019-10-04 2020-08-21 導電性樹脂組成物 WO2021065243A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021550419A JPWO2021065243A1 (ja) 2019-10-04 2020-08-21
CN202080067368.3A CN114450352B (zh) 2019-10-04 2020-08-21 导电性树脂组合物
KR1020227009703A KR20220079531A (ko) 2019-10-04 2020-08-21 도전성 수지 조성물
US17/754,414 US20220372292A1 (en) 2019-10-04 2020-08-21 Conductive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183650 2019-10-04
JP2019-183650 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021065243A1 true WO2021065243A1 (ja) 2021-04-08

Family

ID=75338182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031631 WO2021065243A1 (ja) 2019-10-04 2020-08-21 導電性樹脂組成物

Country Status (5)

Country Link
US (1) US20220372292A1 (ja)
JP (1) JPWO2021065243A1 (ja)
KR (1) KR20220079531A (ja)
CN (1) CN114450352B (ja)
WO (1) WO2021065243A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026844A1 (ja) * 2018-08-01 2020-02-06 信越化学工業株式会社 シリコーン粘着剤組成物及びこれを用いた粘着テープ又は粘着フィルム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331742A (ja) * 2003-05-02 2004-11-25 Shin Etsu Chem Co Ltd 付加反応硬化型導電性シリコーンゴム組成物及びその硬化方法並びにその硬化物
JP2008038137A (ja) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2009108312A (ja) * 2007-10-11 2009-05-21 Dow Corning Toray Co Ltd 金属粒子分散構造体、該構造体からなる微粒子、該構造体により被覆された物品およびこれらの製造方法
JP2010150399A (ja) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060971A (ko) * 2000-12-07 2003-07-16 가네가후치 가가쿠 고교 가부시키가이샤 반도전성 수지 조성물 및 반도전성 부재
JP2007154100A (ja) * 2005-12-07 2007-06-21 Canon Inc 樹脂用導電剤、導電性樹脂組成物及び導電性樹脂組成物の製造方法
EP1878767A1 (en) * 2006-07-12 2008-01-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
CN101624471A (zh) * 2009-03-06 2010-01-13 上海锐朗光电材料有限公司 一种热固化现场成型高导电硅橡胶组合物及其应用
CN102220012B (zh) * 2011-06-08 2012-10-31 北京工业大学 电磁屏蔽用单组分挤出成型导电橡胶及其制备方法
JP5511872B2 (ja) * 2012-03-19 2014-06-04 日本バルカー工業株式会社 熱伝導性樹脂組成物及びこれを用いた熱伝導性シート
WO2016017344A1 (ja) * 2014-07-30 2016-02-04 住友精化株式会社 シリコーン樹脂組成物、シリコーン樹脂硬化物、及び、光半導体素子封止体
WO2016116959A1 (ja) * 2015-01-19 2016-07-28 京セラケミカル株式会社 導電性樹脂組成物および半導体装置
JP6791672B2 (ja) * 2016-07-22 2020-11-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331742A (ja) * 2003-05-02 2004-11-25 Shin Etsu Chem Co Ltd 付加反応硬化型導電性シリコーンゴム組成物及びその硬化方法並びにその硬化物
JP2008038137A (ja) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2009108312A (ja) * 2007-10-11 2009-05-21 Dow Corning Toray Co Ltd 金属粒子分散構造体、該構造体からなる微粒子、該構造体により被覆された物品およびこれらの製造方法
JP2010150399A (ja) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物

Also Published As

Publication number Publication date
CN114450352B (zh) 2023-12-26
KR20220079531A (ko) 2022-06-13
CN114450352A (zh) 2022-05-06
US20220372292A1 (en) 2022-11-24
JPWO2021065243A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
TWI453762B (zh) 塗銀片狀材料填充的傳導固化組合物及其在晶片附著中的應用
KR101225391B1 (ko) 부가 경화형 실리콘 고무 조성물 및 점착 고무 시트
JP4935592B2 (ja) 熱硬化型導電性ペースト
KR20050014749A (ko) 열 계면 재료
JP7050704B2 (ja) 熱伝導性粘着層を有する熱伝導性シリコーンゴムシート
WO2017070921A1 (zh) 一种双组份加成型防沉降导电硅胶及其制备方法
JP6456134B2 (ja) 導電性樹脂組成物、ディスペンス用導電性樹脂組成物、ダイアタッチ剤、および半導体装置
JP2007112949A (ja) 異方導電性接着剤
JP2008150439A (ja) 熱伝導性シリコーン組成物及びそれを用いた塗布装置
WO2021065243A1 (ja) 導電性樹脂組成物
JP2016088978A (ja) 導電性樹脂組成物およびそれを用いた電子部品装置
JP2009235279A (ja) 熱伝導性成形体およびその製造方法
JP6906223B2 (ja) 導電性樹脂組成物、導電性接着剤、および半導体装置
WO2020100439A1 (ja) 導電性シリコーン組成物、硬化物、積層体、及び、電子回路
CN112020541A (zh) 导电性硅酮组合物及其固化物
WO2019123752A1 (ja) 導電性ペースト
JP6909342B1 (ja) 樹脂組成物及びそれを用いた接着シート
JP2007277384A (ja) 導電性接着剤
KR20160150290A (ko) 방열 성능이 우수한 실리콘 중합체 조성물
JP2009065091A (ja) 電気・電子部品の金属製導電部保護方法および電気・電子部品
JP2006176716A (ja) 回路接続用接着剤
JP2011184528A (ja) 回路接続材料
TW202128882A (zh) 導電性矽氧組成物、導電性矽氧硬化物、導電性矽氧硬化物的製造方法、及導電性矽氧積層體
JPWO2019142423A1 (ja) 実装体
WO2024057911A1 (ja) 導電性シリコーンゴム組成物及び異方導電性シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871123

Country of ref document: EP

Kind code of ref document: A1