WO2024057911A1 - 導電性シリコーンゴム組成物及び異方導電性シート - Google Patents

導電性シリコーンゴム組成物及び異方導電性シート Download PDF

Info

Publication number
WO2024057911A1
WO2024057911A1 PCT/JP2023/031155 JP2023031155W WO2024057911A1 WO 2024057911 A1 WO2024057911 A1 WO 2024057911A1 JP 2023031155 W JP2023031155 W JP 2023031155W WO 2024057911 A1 WO2024057911 A1 WO 2024057911A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
conductive
total amount
rubber composition
silicone rubber
Prior art date
Application number
PCT/JP2023/031155
Other languages
English (en)
French (fr)
Inventor
裕介 富田
力亜 古正
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024057911A1 publication Critical patent/WO2024057911A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive silicone rubber composition and an anisotropic conductive sheet.
  • a silicone conductive material using a silicone compound such as dimethylpolysiloxane as a binder is used as a conductive adhesive for a crystal resonator because it provides a cured product with low elasticity.
  • conductive adhesives have also been used in components surrounding semiconductors used in vehicles, smart phones, personal computers, and the like. These conductive adhesives are required to have adhesion reliability at low temperatures of -40°C to -60°C. At the same time, adhesion reliability at high temperatures such as 150° C. is also required. Therefore, it is required to have adhesion reliability over a wide temperature range of -60°C to 150°C, that is, to have little change in elastic modulus over a wide temperature range.
  • Patent Document 1 describes (A) a polydimethylsiloxane having two vinyl groups in one molecule, (B) a compound having a hydrosilyl group, (C) a hydrosilylation catalyst, (D) a silane compound, ( E) A conductive silicone rubber composition containing silver powder is disclosed.
  • the conductive silicone rubber composition shown in Patent Document 1 contains polydimethylsiloxane having a vinyl group as a binder, the glass transition temperature of the cured product was as high as about -38°C. Therefore, the elastic modulus of the cured product was high in a low temperature range lower than -40°C, for example, between -60°C and -40°C, and adhesion reliability could not be maintained sufficiently.
  • the present invention relates to a conductive silicone rubber composition capable of providing a cured product that can maintain adhesive reliability in a wide temperature range from a low temperature range of lower than -40°C to a high temperature range of 150°C, and an anisotropic conductive silicone rubber composition using the same.
  • the purpose is to provide a conductive sheet.
  • [1] Contains conductive particles (A1), a silicone compound having an alkenyl group (B), a silicone compound having a hydrosilyl group (C), and a hydrosilylation catalyst (D), the component (B) and At least one of the components (C) is phenyl-modified, and the total amount of alkenyl groups contained in the component (B) and the component (C) is the silicon atom of the component (B) and the component (C). 5 mol% or less based on the total number of moles of monovalent organic groups bonded to an unmodified silicone having an alkenyl group, based on the total amount of the silicone compound containing the component (B) and the component (C).
  • the component (B) includes a silicone compound (B1) having an alkenyl group
  • the component (C) includes a silicone compound (C1) having a hydrosilyl group
  • the component (B1) and the ( The total amount of alkenyl groups contained in component C1) is 1.5 mol% or less based on the total number of moles of monovalent organic groups bonded to silicon atoms of component (B1) and component (C1).
  • the total amount of phenyl groups bonded to the silicon atoms contained in the component (B1) and the component (C1) is the monovalent organic phenyl group bonded to the silicon atoms of the component (B1) and the component (C1).
  • the component (B) further includes a silicone compound (B2) having an alkenyl group
  • the component (C) further includes a silicone compound (C2) having a hydrosilyl group
  • the component (B2) and the The total amount of alkenyl groups contained in component (C2) is more than 1.5 mol% with respect to the total number of moles of monovalent organic groups bonded to silicon atoms in component (B2) and component (C2).
  • the total amount of phenyl groups bonded to the silicon atoms contained in the component (B2) and the component (C2) is the monovalent organic phenyl group bonded to the silicon atoms of the component (B2) and the component (C2).
  • the content of the conductive particles containing the component (A1) is 70 to 90% by mass based on the nonvolatile components of the conductive silicone rubber composition.
  • An insulating layer having a plurality of through holes penetrating from one surface to the other surface in the thickness direction, and a plurality of conductive materials filled inside each of the plurality of through holes,
  • the conductive material is an anisotropic conductive sheet containing a cured product of the conductive silicone rubber composition.
  • a conductive silicone rubber composition capable of providing a cured product that can maintain rubber elasticity in a wide temperature range from a low temperature range lower than -40°C to a high temperature range such as 150°C, and a conductive silicone rubber composition using the same.
  • a directional conductive sheet can be provided.
  • FIG. 1 is a schematic diagram showing an electrical inspection using an anisotropic conductive sheet.
  • FIG. 2A is a schematic partial enlarged plan view of an anisotropically conductive sheet according to an embodiment of the present invention
  • FIG. 2B is a schematic portion taken along line 2B-2B of the anisotropically conductive sheet in FIG. 2A. It is an enlarged sectional view.
  • a mixture containing a silicone compound (B) having an alkyl group and a silicone compound (C) having a hydroxyl group as a binder component which includes: 1) component (B) and ( C) At least one of the components is phenyl-modified, and 2)
  • component (B) and ( C) At least one of the components is phenyl-modified, and 2)
  • phenyl-modified silicone compounds have phenyl groups with large steric hindrance, their molecular chains are less likely to become entangled with each other compared to silicone compounds that do not have phenyl groups.
  • the glass transition temperature of a cured product of a composition containing a phenyl-modified silicone compound tends to be low.
  • the amount of crosslinkable groups (alkenyl group amount) in the entire mixture is not too large, the crosslinking density of the cured product does not become too high. Therefore, it is thought that the cured product has an appropriately low elastic modulus and exhibits good rubber elasticity.
  • the conductive silicone rubber composition of the present invention comprises conductive particles (A1), a silicone compound having an alkenyl group (B), a silicone compound having a hydrosilyl group (C), and a hydrosilylation catalyst (D). including. At least one of component (B) and component (C), preferably both, are phenyl-modified; the total amount of alkenyl groups contained in component (B) and component (C) is The amount is 5 mol % or less based on the total number of moles of monovalent organic groups bonded to silicon atoms in component C). Note that the above composition may contain an unmodified silicone compound (E) having an alkenyl group and an unmodified silicone compound (F) having a hydrosilyl group, but the total amount thereof is 45% by mass or less.
  • composition The conductive silicone rubber composition (hereinafter also simply referred to as “composition”) according to the present embodiment comprises conductive particles (A1), a silicone compound having an alkenyl group (B), and a silicone compound having a hydrosilyl group. and a hydrosilylation catalyst (D).
  • A1 Component is a conductive particle.
  • the material constituting the conductive particles is preferably metal.
  • the type of metal is not particularly limited, but from the viewpoint of reducing volume resistivity, it is preferable to include at least one metal selected from the group consisting of gold, silver, copper, platinum, palladium, and nickel. , platinum. Among these, silver is preferred from the viewpoint of sufficiently reducing the volume resistivity.
  • the shape of the conductive particles is not particularly limited and may be spherical, fibrous, flake, etc., but from the viewpoint of increasing volume resistivity, flake or spherical shapes are preferred.
  • the surfaces of the conductive particles are preferably coated with a dispersant.
  • the expression that the surface of the conductive particles is coated with a dispersant means that the dispersant is attached to at least a portion of the surface of the conductive particles. Whether or not the conductive particles are coated with a dispersant can be confirmed, for example, by thermogravimetric analysis.
  • the dispersant is not particularly limited as long as it is an organic compound having a functional group that adheres to the surface of the conductive particles.
  • functional groups include carboxyl groups, phosphate groups and amino groups, preferably carboxyl groups and amino groups.
  • organic compounds having functional groups include aliphatic hydrocarbon amines and higher fatty acids having one or two amino groups and an aliphatic hydrocarbon group having an alkyl group having 4 to 16 carbon atoms.
  • Examples of aliphatic hydrocarbon amines include octylamine, dodecylamine, and the like.
  • the higher fatty acid is preferably a saturated or unsaturated fatty acid having 12 to 24 carbon atoms, more preferably at least one selected from the group consisting of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and derivatives thereof. There is one.
  • the content of the dispersant is not particularly limited, but is preferably 0.1 to 3% by mass based on the conductive particles.
  • the median diameter of the conductive particles is not particularly limited, but is preferably 2 ⁇ m or more. Conductive particles with a median diameter of 2 ⁇ m or more have a relatively large particle size, so even when using components (B1) and (C1), which have relatively low curing shrinkage as described below, conductive particles can be bonded well. Since contact can be made, it is easy to obtain a cured product having conductivity. From the same viewpoint, the median diameter of the conductive particles is more preferably 2 to 5 ⁇ m.
  • the median diameter D50 refers to a volume-based cumulative 50% particle diameter D50 determined by a laser diffraction method.
  • the content of the conductive particles containing component (A1) is preferably 70 to 90% by mass, more preferably 75 to 80% by mass, based on the nonvolatile components in the composition.
  • the content of the conductive particles is 70% by mass or more, the conductivity of the cured product can be further improved.
  • Component (B) is a silicone compound having an alkenyl group, and can function as a base polymer (main ingredient) of the composition.
  • the silicone compound having an alkenyl group is a polyorganosiloxane having an alkenyl group. Note that component (B) does not have a hydrosilyl group.
  • component (B) is preferably substantially linear, but may have a partially branched structure. Specifically, a linear diorganopolysiloxane whose main chain is composed of repeating diorganosiloxane units and whose molecular chain ends are blocked with triorganosiloxy groups is preferred. Component (B) may be phenyl-modified.
  • alkenyl groups include those having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms.
  • Specific examples include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclohexenyl group, a heptenyl group, and a vinyl group is particularly preferred.
  • the monovalent organic group bonded to the silicon atom other than the alkenyl group in component (B) is not particularly limited, but includes monovalent hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms.
  • monovalent hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl, and heptyl, and aryl groups such as phenyl. Among them, methyl group and phenyl group are preferable.
  • the range of the content of alkenyl groups and phenyl groups in component (B) may be the same as the range of the total amount of alkenyl groups and phenyl groups in components (B) and (C), which will be described later.
  • Component (B) includes methylphenyl silicone having an alkenyl group.
  • dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer with both molecular chain ends blocked by trimethylsiloxy groups dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer with dimethylvinylsiloxy groups blocked at both molecular chain ends, Vinyl group-blocked dimethylsiloxane/diphenylsiloxane copolymer; dimethylsiloxane/methylvinylsiloxane/diphenylsiloxane copolymer blocked with vinyl groups at both molecular chain ends; dimethylsiloxane/methylvinylsiloxane/diphenylsiloxane copolymer blocked with trimethylsiloxy groups at both molecular chain ends.
  • Component (B) is preferably liquid at 25°C.
  • the viscosity of component (B1) at 25° C. is preferably 50 to 500,000 mPa ⁇ s, more preferably 600 to 200,000 mPa ⁇ s. When the viscosity is within this range, the composition will have good handling properties and the cured product will have good mechanical properties.
  • viscosity refers to a value measured at 25° C. and 1 rpm using Toki Sangyo TV-200EH.
  • Component (C) is a silicone compound (organohydrogenpolysiloxane) having a hydrosilyl group. Component (C) can undergo a hydrosilylation addition reaction with the alkenyl group in component (B) and function as a crosslinking agent (curing agent).
  • component (C) is not particularly limited, but is preferably substantially linear, but may have a partially branched structure.
  • Component (C) has at least two silicon-bonded hydrogen atoms (hydrosilyl groups represented by -SiH) in one molecule, and substantially contains silicon-bonded hydroxyl groups (silanol groups). I don't have it.
  • Component (C) may be phenyl-modified.
  • organohydrogenpolysiloxane one represented by the following average composition formula (1) can be used.
  • Formula (1) R a H b SiO (4-ab)/2
  • R is a monovalent hydrocarbon group having 1 to 10 carbon atoms bonded to a silicon atom.
  • monovalent hydrocarbon groups include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, alkenyl group (e.g. vinyl group), phenyl group, etc. aryl groups, preferably methyl group and phenyl group.
  • a is from 0.7 to 2.1, b is from 0.001 to 1.0, and a+b is an integer satisfying from 0.8 to 3.0, preferably a is from 1.0 to 2.0. 0 and b are integers satisfying 0.01 to 1.0, and a+b satisfying 1.5 to 2.5.
  • the range of the content of hydrosilyl groups and phenyl groups in component (C) may be the same as the range of the total amount of hydrosilyl groups and phenyl groups in components (B) and (C), which will be described later.
  • Component (C) includes methylphenyl silicone having a hydrosilyl group.
  • methylphenyl silicone having a hydrosilyl group For example, tris(hydrogendimethylsiloxy)phenylsilane, dimethylsiloxane/methylhydrogensiloxane/methylphenylsiloxane copolymer with trimethylsiloxy groups endblocked at both molecular chain ends, dimethylsiloxane/methylhydrogensiloxane endblocked with trimethylsiloxy groups at both molecular chain ends.
  • Diphenylsiloxane copolymer dimethylsiloxane/methylphenylsiloxane copolymer with dimethyl hydrogen siloxy groups blocked at both ends of the molecular chain
  • component (C) is liquid at 25°C.
  • the viscosity of component (C) at 25° C. can be usually about 0.1 to 1000 mPa ⁇ s, preferably about 0.5 to 500 mPa ⁇ s.
  • the total amount of alkenyl groups contained in components (B) and (C) is the amount of alkenyl groups bonded to the silicon atoms of components (B) and (C).
  • the amount is 5 mol% or less, preferably 0.1 to 5 mol%, more preferably 0.2 to 3 mol%, based on the total number of moles of monovalent organic groups.
  • the crosslinking density of the cured product will not become too high, it will have an appropriately low modulus of elasticity, and exhibit good rubber elasticity.
  • the total amount of hydrosilyl groups contained in component (B) and component (C) may also be in the same range as above.
  • component (B) and component (C), preferably both, are phenyl-modified.
  • the total amount of phenyl groups bonded to silicon atoms contained in components (B) and (C) may be within a range that allows the effects of the present invention to be obtained;
  • the amount is preferably 3 to 60 mol%, more preferably 4 to 20 mol%, based on the total number of moles of monovalent organic groups bonded to silicon atoms.
  • the glass transition temperature of the cured product tends to be lower.
  • the total amount of alkenyl groups, the total amount of hydrosilyl groups, and the total amount of phenyl groups in component (B) and component (C) can be confirmed by NMR. Alternatively, it can also be calculated from the preparation ratio. For example, the total amount of alkenyl groups in a mixture containing components (B1) and (B2) as components (B) and components (C1) and (C2) as components (C) can be calculated from the following formula (2). You can ask for it.
  • components (B) and (C) are low-curable reactive silicone compounds, i.e. It is preferable to include component (B1) and component (C1).
  • component (B1)/component (C1) It is preferable that component (B) contains a silicone compound (B1) having an alkenyl group, and component (C) contains a silicone compound (C1) having a hydrosilyl group. At least one, preferably both, of components (B1) and (C1) are phenyl-modified. In addition, the total amount of alkenyl groups contained in component (B1) and component (C1) is relatively small. Such a low-curing reactive silicone compound can easily lower the glass transition temperature of the cured product and lower the elastic modulus of the cured product.
  • the total amount of alkenyl groups contained in components (B1) and (C1) is 1.5 mol based on the total number of moles of monovalent organic groups bonded to silicon atoms in components (B1) and (C1). % or less, more preferably 0.1 to 1.5 mol%, even more preferably 0.2 to 1.0 mol%.
  • the total amount of hydrosilyl groups contained in component (B1) and component (C1) may also be within the same range.
  • the total amount of phenyl groups bonded to silicon atoms contained in components (B1) and (C1) is the total molar amount of monovalent organic groups bonded to silicon atoms contained in components (B1) and (C1). It is preferably 1 to 70 mol%, more preferably 1 to 50 mol% based on the number.
  • the total amount of phenyl groups in components (B1) and (C1) may be smaller than the total amount of phenyl groups in components (B2) and (C2), which will be described later.
  • the total amount of alkenyl groups, total amount of hydrosilyl groups, and total amount of phenyl groups of component (B1) and component (C1) can be confirmed by the same method as above.
  • the ranges of the amounts of alkenyl groups, hydrosilyl groups, and phenyl groups of component (B1) and component (C1) are the total amount of alkenyl groups of component (B1) and component (C1), and the total amount of hydrosilyl groups. , and the range of the total amount of phenyl groups, respectively.
  • Components (B1) and (C1) can be one-part addition-curing silicone compounds.
  • one-part addition-curing silicone compounds include KER-6020-F (manufactured by Shin-Etsu Silicones, one-part addition-curing type).
  • the total amount of component (B1) and component (C1) is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total amount of silicone compounds in the composition. preferable.
  • the content of the component (B1) and the component (C1) is 50% by mass or more, the curability becomes moderately low, so that the elastic modulus of the cured product can be easily made moderately low.
  • the component (B1) is phenyl-modified, the glass transition temperature of the cured product tends to be lower, and the change in the elastic modulus of the cured product can be further reduced.
  • the total amount of silicone compounds in the composition means the total amount of polymers having siloxane bonds contained in the composition.
  • component (B2)/component (C2) may contain a medium-curable reactive silicone compound, that is, the component (B2) and the component (C2).
  • the component (B) may further include a silicone compound (B2) having an alkenyl group; the component (C) may further include a silicone compound (C2) having a hydrosilyl group. At least one, preferably both, of component (B2) and component (C2) are phenyl-modified. Further, the total amount of alkenyl groups contained in the components (B2) and (C2) is greater than the total amount of alkenyl groups contained in the components (B1) and (C1).
  • Such a mixture of components (B2) and (C2) has a larger amount of curing shrinkage than a mixture of components (B1) and (C1), so small-sized conductive particles such as component (A2) Even compositions containing conductive particles can easily bring the conductive particles into contact with each other. Thereby, a cured product with high conductivity can be obtained.
  • the total amount of alkenyl groups contained in components (B2) and (C2) is 1.5 mol based on the total number of moles of monovalent organic groups bonded to silicon atoms in components (B2) and (C2). %, more preferably more than 1.5 mol% and 11 mol% or less.
  • the total amount of hydrosilyl groups contained in component (B2) and component (C2) may also be in the same range as above.
  • the total amount of phenyl groups bonded to silicon atoms contained in components (B2) and (C2) is the total molar amount of monovalent organic groups bonded to silicon atoms contained in components (B2) and (C2). It is preferably 1 to 70 mol%, more preferably 1 to 50 mol% based on the number.
  • the range of the alkenyl group amount, hydrosilyl group amount, and phenyl group amount of each component (B2) and (C2) component is the total amount of alkenyl groups of component (B2) and (C2) component, and the total amount of hydrosilyl group. , and the range of the total amount of phenyl groups, respectively.
  • Component (B2) and component (C2) may be a two-component addition-curing silicone compound.
  • the (B2) component includes KER-6150A (manufactured by Shin-Etsu Silicone Co., Ltd., two-component addition-curing type);
  • the (C2) component includes KER-6150B (manufactured by Shin-Etsu Silicone Co., Ltd., two-component addition curing type), etc.
  • the ratio (B1+C1)/(B2+C2) of the total amount of components (B1) and (C1) to the total amount of components (B2) and (C2) is 100/0 to 0/100, preferably 50/50 to The ratio is 100/0, more preferably 50/50 to 90/10.
  • the ratio of (B1+C1) increases, the elastic modulus and Tg of the cured product tend to decrease, and the amount of curing shrinkage tends to decrease.
  • the hydrosilylation catalyst of component (D) may be any catalyst as long as it functions as a catalyst for the hydrosilylation reaction.
  • hydrosilylation catalysts include platinum black, platinum chloride, chloroplatinic acid, reaction products of chloroplatinic acid and monohydric alcohols, complexes of chloroplatinic acid and olefins, and platinum-based catalysts such as platinum bisacetoacetate.
  • Catalysts include platinum group metal catalysts such as palladium-based catalysts and rhodium-based catalysts.
  • the content of component (D) can be a catalytic amount, and is 0.5 ppm as a platinum group metal with respect to the total amount of silicone compounds contributing to the hydrosilylation reaction including at least components (B1) and (C1). 5%, preferably 1 ppm to 3%. When the content of component (D) is within the above range, curability can be more easily improved.
  • the conductive particles may further include conductive particles other than the component (A1).
  • the composition may further include conductive particles (A2) having a smaller particle size than the component (A1).
  • Component (A2) is a conductive particle having a smaller median diameter than component (A1).
  • the median diameter of the conductive particles (A2) is less than 2 ⁇ m, the particle size is relatively small, so that the thixotropy of the composition can be further improved. Furthermore, since the conductive particles tend to be densely packed together during curing, the conductivity can be further improved. From the same viewpoint, the median diameter of the conductive particles (A2) is more preferably 0.7 to 1.5 ⁇ m.
  • the material constituting the conductive particles (A2) can also be the same as the material constituting the conductive particles (A1). Among them, silver is preferred.
  • the surfaces of the conductive particles (A2) are preferably coated with the same dispersant as described above, from the viewpoint of suppressing aggregation and precipitation.
  • the ratio of component (A2)/component (A1) is not particularly limited, but is preferably 90/10 to 10/90 (mass ratio), and preferably 80/20 to 20/80 (mass ratio). More preferred.
  • the above ratio is above the lower limit value, the thixotropy of the composition can be further improved, and when it is below the upper limit value, the ratio of the component (B1) and the component (C1) can be increased, so the Tg and elasticity of the cured product It is easier to lower the rate.
  • composition may further contain an unmodified silicone compound (E) having an alkenyl group or an unmodified silicone compound (F) having a hydrosilyl group other than those mentioned above. Note that, as described above, neither the component (E) nor the component (F) is phenyl-modified. These components may be included for the purpose of adjusting the viscosity and curability of the composition, the modulus of elasticity of the cured product, and the like.
  • component (E) is different from component ( B) and may be similar to component (B) except that it is preferably not phenyl-modified.
  • component (E) include dimethylpolysiloxane with dimethylvinylsiloxy groups at both molecular chain ends, methylvinylpolysiloxane with dimethylvinylsiloxy groups at both molecular chain ends, and dimethylsiloxane/methylvinyl with dimethylvinylsiloxy groups at both molecular chain ends.
  • Siloxane copolymer dimethylpolysiloxane with divinylmethylsiloxy groups blocked at both molecular chain ends, dimethylsiloxane/methylvinylsiloxane copolymer with divinylmethylsiloxy groups blocked at both molecular chain ends, dimethylpolysiloxane with trivinylsiloxy groups blocked at both molecular chain ends, Contains a dimethylsiloxane/methylvinylsiloxane copolymer with trivinylsiloxy groups endblocked at both molecular chain ends.
  • component (F) is different from component (C) and may be the same as component (C) except that it is preferably not phenyl-modified.
  • component (F) include organohydrogenpolysiloxane of component (C1) such as 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (hydrogendimethylsiloxy) methylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane/dimethylsiloxane cyclic copolymer, methylhydrogenpolysiloxane with trimethylsiloxy groups blocked at both molecular chain ends, dimethyl blocked with trimethylsiloxy groups on both molecular chain ends Siloxane/methylhydrogensiloxane copolymer, both molecular chain ends blocked with dimethylhydrogensiloxy groups, methylhydrogenpolysiloxane, both mo
  • the total amount of alkenyl groups contained in components (E) and (F) is 1 to 30 moles based on the total number of moles of monovalent organic groups bonded to silicon atoms in components (E) and (F). % is preferable.
  • the total amount of hydroxy groups in component (E) and component (F) may also be in the same range as above.
  • Components (E) and (F) may be one-component addition-curing silicone or two-component addition-curing silicone.
  • Examples of commercial products include KER-3000-M2, KE-1204, etc. (both manufactured by Shin-Etsu Silicone Co., Ltd., methyl silicone rubber).
  • the total amount of components (E) and (F) is 45% by mass or less, preferably 1 to 30% by mass, based on the total amount of silicone compounds. When the total amount of these components is 45% by mass or less, sufficient curing shrinkage can be achieved and the composition can exhibit electrical conductivity.
  • Non-reactive silicone compound (G) The composition may further include a non-reactive silicone compound.
  • the non-reactive silicone compound may be a silicone compound that does not have alkenyl groups or hydroxy groups. Such a silicone compound may be contained for the purpose of adjusting the viscosity of the composition and the elastic modulus of the cured product.
  • Component (G) is a silicone compound having no alkenyl group or hydrosilyl group.
  • Component (G) may or may not be phenyl-modified. Among them, component (G) may be the same as component (B) or component (C) except that it is not phenyl-modified and does not have an alkenyl group or a hydrosilyl group.
  • Examples of such component (G) include SH-510, SH-510 (manufactured by Toray Dow Corning Silicone Co., Ltd., non-reactive methylphenyl silicone oil), and the like.
  • the content of component (G) is preferably 0 to 10% by mass based on the nonvolatile components of the composition.
  • the content of component (G) is 10% by mass or less, the cured product does not become too flexible and a suitable elastic modulus is easily obtained.
  • the total amount of silicone compounds in the composition is preferably 0.05 to 10% by weight based on the nonvolatile components. When the total amount of silicone compounds is within the above range, it is easy to achieve both low viscosity and appropriate curability.
  • composition may further contain inorganic fillers other than the components (A1) and (A2), a hydrosilylation reaction control agent, etc., as necessary.
  • the composition may further contain an inorganic filler from the viewpoint of adjusting the mechanical strength of the cured product.
  • inorganic fillers include silica particles, diatomaceous earth, perlite, mica, calcium carbonate, glass flakes, hollow fillers, and the like. Among these, silica particles are preferred.
  • the specific surface area (BET method) of the silica particles is preferably 10 m 2 /g or more, preferably 50 to 400 m 2 /g.
  • Examples of the silica particles include fumed silica (dry silica) and precipitated silica (wet silica), with fumed silica (dry silica) being preferred.
  • silica particles examples include commercially available Aerosil 130, 200, 300 (trade name manufactured by Nippon Aerosil Co., Ltd.), Cab-O-sil MS-5, MS-7, HS-5, HS-7 (trade name manufactured by Cabot Corporation). Santocel FRC, CS (trade name manufactured by Monsanto Company), and Nipsil VN-3 (trade name manufactured by Nippon Silica Kogyo Co., Ltd.). Further, these surfaces may be subjected to hydrophobic treatment using organopolysiloxane, organopolysilazane, chlorosilane, alkoxysilane, or the like.
  • the content of the inorganic filler is not particularly limited, but may be 0.05 to 10% by mass based on the total amount of silicone compounds.
  • hydrosilylation reaction controlling agent examples include nitrogen-containing compounds, acetylene compounds, phosphorus compounds, nitrile compounds, carboxylates, tin compounds, mercury compounds, and sulfur compounds.
  • the content of the hydrosilylation reaction control agent is not particularly limited, but may be 0.01 to 5% by mass based on the total amount of silicone compounds.
  • the conductive silicone rubber composition can be prepared by further mixing at least component (A1), component (B), component (C), and component (D), and if necessary, other components.
  • the mixing method is not particularly limited, and may be a method using an ordinary mixer or kneader such as a kneader or a planetary mixer.
  • a composition containing component (A1), component (A2), component (B1), component (B2), component (C1), component (C2), and component (D) includes 1) component (B1), ( C1) Preparing a mixture containing component and (D) component; 2) mixing the mixture, component (A1), component (A2), component (B2) and component (C2).
  • component (D) may be included in the above mixture or may be added separately from each mixture.
  • component (D) may be added separately in step 1) and step 2).
  • the viscosity of the conductive silicone rubber composition at 25° C. is preferably 50 to 300 Pa ⁇ s, more preferably 100 to 200 Pa ⁇ s.
  • the above viscosity can be measured using TV-200EH (manufactured by Toki Sangyo) at 1 rpm.
  • the ratio of the viscosity at 1 rpm to the viscosity at 10 rpm (viscosity at 1 rpm/viscosity at 10 rpm) of the conductive silicone rubber composition is not particularly limited, but is preferably 3 or more. Thereby, the thixotropy of the composition can be further improved, making it easier to perform highly accurate printing by, for example, screen printing.
  • the viscosity of the above composition can be adjusted by adjusting the content of the conductive particles, the ratio of component (A2)/component (A1), the content of component (G), etc. For example, if the content of conductive particles or the ratio of component (A2)/component (A1) is reduced, or if component (G) is added, the viscosity of the composition tends to decrease. Furthermore, when the content of small-diameter conductive particles (A2) is increased, that is, when the ratio of component (A2)/component (A1) is increased, the thixotropy of the composition tends to increase.
  • volume resistivity of the cured product of the conductive silicone rubber composition depends on the use, but is, for example, 1.5 ⁇ 10 0 ⁇ cm or less, preferably 1.0 ⁇ 10 ⁇ 1 ⁇ cm or less. , more preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less, and still more preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 ⁇ cm.
  • Volume resistivity can be measured by the following method.
  • the above composition is applied onto a glass slide to have a line width of 5 mm and a length of 6 cm, and is thermally cured on a hot plate at 160° C. for 60 minutes to form wiring.
  • the volume resistivity ( ⁇ cm) of the obtained wiring is measured using Loresta GX (manufactured by Nitto Seiko Analytech).
  • the volume resistivity is determined by the content of conductive particles in the composition, the ratio of the (A2) component/(A1) component, the total amount of the (B2) component + (C2) component/(B1) component and (C1) component. It can be adjusted by adjusting the ratio to the total amount of components. For example, if the content of conductive particles is increased or the ratio of each of the above is increased, the volume resistivity tends to decrease.
  • the elastic modulus of the cured product at 25° C. is not particularly limited, but is preferably 0.1 to 20 MPa, more preferably 0.1 to 15 MPa, and even more preferably 1 to 10 MPa.
  • the elastic modulus of the cured product at -50°C is, for example, preferably 0.1 to 90 MPa, more preferably 0.1 to 80 MPa, and even more preferably 1 to 50 MPa.
  • the ratio of the elastic modulus at -50°C to the elastic modulus at 25°C is preferably 20 or less, more preferably 5 or less. It is preferably 4.5 or less, and more preferably 4.5 or less. If the elastic modulus ratio is at least 20 or less, for example, when used as a conductive filler in an anisotropic conductive sheet, the elastic modulus will not become too high even in a low temperature range, and changes in the elastic modulus will be suppressed over a wide temperature range. can do.
  • the above ratio of elastic moduli can be reduced by lowering the Tg of the cured product.
  • the elastic modulus of the cured product can be measured in tensile mode by dynamic viscoelasticity measurement (DMA) in accordance with JIS K 7244-1:1998.
  • the measurement temperature range may be -80 to 200°C.
  • the Tg of the cured product is not particularly limited, but is preferably -40°C or lower, more preferably -50°C or lower.
  • a cured product having such a Tg is used, for example, as a conductive filler for an anisotropic conductive sheet, the elastic modulus does not become too high even in a low temperature range, and the change in elastic modulus can be reduced over a wide temperature range. can.
  • the Tg of the cured product can be measured using RSAIII (manufactured by TA Instruments).
  • the elastic modulus and Tg of the cured product are determined by the total amount of the (B1) component and (C1) component in the composition, or the total amount of the (B2) component + (C2) component/(B1) component and (C1) component. It can be adjusted by adjusting the ratio to the total amount, the total amount of components (E) and (F), the amount of phenyl modification, etc. For example, if the total amount of components (B1) and (C1) is increased, the above ratio is decreased, or the total amount of components (E) and (F) is decreased, the elastic modulus and Tg will decrease. Prone. Moreover, when the amount of phenyl modification or the content ratio of the phenyl modified component is increased, the Tg of the cured product tends to be lowered.
  • the cured product of the conductive silicone rubber composition can be obtained by heating and curing the conductive silicone rubber composition.
  • the heating temperature may be as long as it can be sufficiently cured, and may be, for example, 25 to 200°C.
  • the cured product of the conductive silicone rubber composition can be used as a conductive material or conductive adhesive for various purposes. Among these, it is useful as a conductive material for anisotropically conductive sheets.
  • a conductive material for anisotropically conductive sheets.
  • the conductive silicone rubber composition an example in which the conductive silicone rubber composition is applied to an anisotropic conductive sheet used for electrical inspection of semiconductor devices and the like will be described.
  • FIG. 1 is a schematic diagram showing an electrical inspection using an anisotropic conductive sheet 100.
  • Electrical inspection usually involves electrically contacting the substrate 10 of the electrical inspection device with the terminals of the test object 20 such as a semiconductor device, and measuring the current when a predetermined voltage is applied between the terminals of the test object 20. It is done by reading.
  • an anisotropically conductive A sex sheet 100 is placed (see FIG. 1).
  • FIG. 2A is a schematic partially enlarged plan view of the anisotropically conductive sheet 100
  • FIG. 2B is a schematic partially enlarged sectional view taken along line 2B-2B of the anisotropically conductive sheet 100 in FIG. 2A.
  • the anisotropic conductive sheet 100 includes an insulating layer 110, a plurality of conductive layers 120, and a plurality of conductive fillers 130 (conductive material).
  • the conductive filler 30 a cured product of the conductive silicone rubber composition described above is used.
  • Insulating layer 110 Insulating layer 110 includes elastomer layer 111 .
  • the insulating layer 110 includes an elastomer layer 111 and a high modulus layer 112 disposed on one side and the other side, respectively. Further, the insulating layer 110 has a first surface 110a on one side in the thickness direction, a second surface 110b on the other side, and a plurality of through holes 113 penetrating from the first surface 110a to the second surface 110b. .
  • Examples of materials constituting the elastomer layer 111 include silicone rubber, urethane rubber (urethane polymer), acrylic rubber (acrylic polymer), ethylene-propylene-diene copolymer (EPDM), chloroprene rubber, and styrene-butadiene. It may also include crosslinked rubber compositions containing copolymers, acrylonitrile-butadiene copolymers, polybutadiene rubbers, natural rubbers, fluorine rubbers, and the like. Among these, crosslinked silicone rubber compositions are preferred.
  • the rubber composition may further contain a crosslinking agent if necessary.
  • the crosslinking agent can be appropriately selected depending on the type of rubber.
  • crosslinking agents for silicone rubber include addition reaction catalysts such as metals, metal compounds, metal complexes, etc. (platinum, platinum compounds, complexes thereof, etc.) that have catalytic activity for hydrosilylation reactions; benzoyl peroxide, bis-2 , 4-dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide and the like.
  • the glass transition temperature of the crosslinked product of the rubber composition is not particularly limited, but from the viewpoint of making the terminals of the test object less likely to be scratched, it is preferably -30°C or lower, more preferably -40°C or lower. preferable. Glass transition temperature can be measured in accordance with JIS K 7095:2012.
  • the storage modulus at 25° C. of the crosslinked rubber composition is preferably 1.0 ⁇ 10 7 Pa or less, more preferably 1.0 ⁇ 10 5 to 9.0 ⁇ 10 6 Pa.
  • the storage modulus of the crosslinked rubber composition can be measured in accordance with JIS K 7244-1:1998/ISO6721-1:1994.
  • High elastic modulus layer 112 Since the high elastic modulus layer 112 has a higher elastic modulus than the elastomer layer 111, even if it is heated during electrical inspection, it can suppress changes in the distance between the centers of gravity between the plurality of first conductive layers 122A due to heat.
  • the glass transition temperature of the high elastic modulus resin composition constituting the high elastic modulus layer 112 is preferably higher than the glass transition temperature of the crosslinked product of the rubber composition constituting the elastomer layer 111. Specifically, since electrical testing is performed at about -40 to 150°C, the glass transition temperature of the high modulus resin composition is preferably 150°C or higher, and preferably 150 to 500°C. More preferred. Glass transition temperature can be measured by the same method as described above.
  • the storage modulus at 25°C of the high modulus resin composition is preferably higher than the storage modulus at 25°C of the crosslinked product of the rubber composition.
  • the composition of the high modulus resin composition is not particularly limited as long as the glass transition temperature and storage modulus satisfy the above ranges.
  • the resin contained in the high modulus resin composition is preferably a heat-resistant resin whose glass transition temperature satisfies the above range; examples include polyamide, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide. , engineering plastics such as polyetheretherketone, polyimide, and polyetherimide, acrylic resins, urethane resins, epoxy resins, and olefin resins.
  • the plurality of through holes 113 are holes that penetrate from the first surface 110a to the second surface 110b of the insulating layer 110 (see FIG. 2B).
  • the equivalent circular diameter D of the opening of the through hole 113 on the first surface 110a side is not particularly limited, and is, for example, 1 to 330 ⁇ m, preferably 10 to 100 ⁇ m (see FIG. 2B).
  • the equivalent circle diameter D of the opening of the through hole 113 on the first surface 110a side is the equivalent circle diameter of the opening of the through hole 113 when viewed along the axial direction of the through hole 113 from the first surface 110a side. (diameter of a perfect circle corresponding to the area of the opening).
  • the center-to-center distance (pitch) p of the openings of the plurality of through holes 113 on the first surface 110a side can be set in accordance with the pitch of the terminals of the object to be inspected 20 (see FIG. 2B). Since the pitch of the terminals of HBM (High Bandwidth Memory) as the inspection object is 55 ⁇ m, and the pitch of the terminals of PoP (Package on Package) is 400 to 650 ⁇ m, the distance between the centers of the openings of the plurality of through holes 113 The distance p is, for example, 5 to 650 ⁇ m, preferably 5 to 55 ⁇ m.
  • the distance p between the centers of the openings of the plurality of through holes 113 on the first surface 110a side refers to the minimum value among the distances between the centers of the openings of the plurality of through holes 113 on the first surface 110a side.
  • the conductive layer 120 is arranged corresponding to each one or more through holes 113.
  • the conductive layer 120 includes a conductive part 121, a first conductive layer 122A, and a second conductive layer 122B (see FIG. 2B).
  • the conductive part 121 is arranged on the inner wall surface of the through hole 113.
  • the first conductive layer 122A is connected to the conductive part 121.
  • the plurality of first conductive layers 122A are spaced apart from each other via the first groove portion 114a.
  • the second conductive layer 122B is connected to the conductive part 121.
  • the plurality of second conductive layers 122B are spaced apart from each other via the second groove portion 114b.
  • the material constituting the conductive layer 120 may be any material that exhibits sufficient conductivity, and includes metal materials such as copper, gold, platinum, silver, nickel, tin, iron, or an alloy of one of these. Among these, from the viewpoint of having high conductivity and flexibility, the conductive layer 120 preferably contains one or more selected from the group consisting of gold, silver, and copper as a main component. It is preferable that the materials forming the conductive part 121, the first conductive layer 122A, and the second conductive layer 122B are the same.
  • Conductive filler 130 The conductive filler 130 is filled inside the through hole 113 , specifically, inside the cavity 113 ′ of the through hole 113 surrounded by the conductive portion 121 . Thereby, peeling of the conductive portion 121 can be suppressed while increasing the conductivity of the anisotropic conductive sheet 100.
  • the conductive filler 130 includes a cured product of the conductive silicone rubber composition.
  • the conductive filler 130 is filled inside the through hole 113 whose inner wall surface is covered with the conductive part 121, but the present invention is not limited to this.
  • a filler 130 may be filled.
  • the conductive filler 130 includes a cured product of the conductive silicone rubber composition described above. Therefore, a low elastic modulus can be maintained over a wide temperature range from a low temperature region around -50° C. to a high temperature region around 150° C. Therefore, it has adhesion reliability over a wide temperature range.
  • median diameter D50 is a volume-based cumulative 50% particle diameter D50 measured by a laser diffraction method using Microtrack.
  • Silicone compound 1-2-1 Reactive silicone compound ⁇ (B1) component/(C1) component> KER-6020-F (manufactured by Shin-Etsu Silicone Co., Ltd., 1-component addition curing type, methylphenyl silicone rubber)
  • B2 KER-6150A (manufactured by Shin-Etsu Silicone Co., Ltd., two-component addition curing type, methylphenyl silicone rubber)
  • C2 KER-6150B (manufactured by Shin-Etsu Silicone Co., Ltd., two-component addition curing type, methylphenyl silicone rubber)
  • B3 ASP-1120A (manufactured by Shin-Etsu Silicone Co., Ltd., two-component addition curing type, methylphenyl silicone rubber)
  • C3 ASP-1120B (manufactured by Shin-Etsu Silicone Co., Ltd., two-component addition curing type, methylphenyl silicone rubber)
  • the skeleton composition of the silicone compound was analyzed by NMR. The analysis was performed in CDCl 3 with 64 integrations. The analysis results are shown in Table 1.
  • Caposil TS-720 manufactured by CABOT, fumed silica surface-treated with polydimethylsiloxane, specific surface area 200 m 2 /g
  • composition 1 2-1. Preparation of Composition Each component was mixed at the composition ratio (parts by mass) shown in Table 2 or 3 to obtain a composition.
  • Viscosity, thixotropy The viscosity of the obtained composition was measured using TV-200EH (manufactured by Toki Sangyo) at 1 rpm and 10 rpm. It was determined that the viscosity at 1 rpm was 300 Pa ⁇ s or less as being good.
  • the thixotropy (TI) was calculated by applying the viscosity at each rotation speed to the following formula.
  • Thixotropy (TI) viscosity at 1 rpm/viscosity at 10 rpm.Thixotropy (TI) of 1.5 or more was judged to be good.
  • volume resistivity (conductivity) The conductive silicone rubber composition prepared above was applied to a slide glass with a line width of 5 mm and a length of 6 cm, and was thermally cured on a hot plate at 150°C for 60 minutes or at 160°C for 60 minutes. , formed the wiring.
  • the volume resistivity ( ⁇ cm) of the obtained wiring was measured using Loresta GX (manufactured by Nitto Seiko Analytech).
  • volume resistivity at 160°C is 1.0 ⁇ 10 -1 ⁇ cm or less ⁇ : Volume resistivity at 160°C is more than 1.5 ⁇ 10 ⁇ ⁇ cm cm or less ⁇ : Volume resistivity at 160°C exceeds 1.5 ⁇ 10 0 ⁇ cm Note that the higher the measurement temperature, the lower the volume resistivity, so the volume resistivity at 150°C is 1.5 ⁇ 10 ⁇ cm Some of the samples with a value of 0 ⁇ cm or less were not measured at 160°C, but were evaluated based on the volume resistivity value at 150°C.
  • Elastic modulus ratio elastic modulus at ⁇ 50° C./elastic modulus at 25° C. Then, the temperature stability of the elastic modulus was evaluated based on the following criteria. ⁇ : Elastic modulus ratio is 4.5 or less ⁇ : Elastic modulus ratio is over 4.5 and 20 or less ⁇ : Elastic modulus ratio is over 20
  • Tg Glass transition temperature
  • the total amount of alkenyl groups in components (B) and (C) is 5 mol% or less, and the total amount of components (E) and (G) with respect to the total amount of silicone compounds is 45% by mass or less.
  • the cured products of Examples 1 to 11 all exhibited small temperature changes in elastic modulus. Furthermore, it can be seen that these cured products also have a small volume resistivity and exhibit good electrical conductivity.
  • composition 2 3-1 Preparation and evaluation of composition 2 3-1. Preparation of Composition Each component was mixed at the composition ratio (parts by mass) shown in Table 4 to obtain a composition.
  • Table 4 shows the evaluation results of Examples 12 to 25.
  • a cured product that can maintain adhesion reliability over a wide temperature range from low to high temperatures can be provided.
  • the composition is suitable for various conductive adhesives, preferably conductive fillers for anisotropically conductive sheets, and the like.
  • Electrode 20 10 Substrate of electrical inspection device 10A Electrode 20 Test object 100 Anisotropic conductive sheet 110 Insulating layer 110a First surface 110b Second surface 111 Elastomer layer 112 High elastic modulus layer 113 Through hole 113' Cavity 114a First groove 114b Second Groove portion 120 Conductive layer 121 Conductive portion 122A First conductive layer 122B Second conductive layer 130 Conductive filler

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

導電性シリコーンゴム組成物は、導電性粒子(A1)と、アルケニル基を有するシリコーン化合物(B)と、ヒドロシリル基を有するシリコーン化合物(C)と、ヒドロシリル化触媒(D)と、を含む。(B)成分及び(C)成分の少なくとも一方は、フェニル変性されている。(B)成分と(C)成分に含まれるアルケニル基の合計量は、(B)成分と(C)成分のケイ素原子に結合した1価の有機基の合計モル数に対して5モル%以下である。(B)成分と(C)成分を含むシリコーン化合物の総量に対して、アルケニル基を有する未変性シリコーン化合物(E)とヒドロシリル基を有する未変性シリコーン化合物(F)の合計量は45質量%以下である。

Description

導電性シリコーンゴム組成物及び異方導電性シート
 本発明は、導電性シリコーンゴム組成物及び異方導電性シートに関する。
 ジメチルポリシロキサン等のシリコーン化合物をバインダーとして用いたシリコーン導電材は、低弾性の硬化物を付与することから、水晶振動子の導電性接着材として使用されている。近年、車載用やスマートホン、パソコン等に用いられる半導体周辺の部材にも、導電性接着材が用いられている。これらの導電性接着材には、-40℃~-60℃といった低温での接着信頼性が求められている。それと同時に、150℃といった高温での接着信頼性も求められている。そのため、-60℃~150℃の広い温度領域で接着信頼性を有すること、即ち、広い温度領域で弾性率の変化が少ないことが求められている。
 従来の導電性接着材としては、付加硬化型のポリジメチルシロキサンを用いた導電性シリコーンゴム組成物が知られている。特許文献1には、(A)1分子中にビニル基を2つ有するポリジメチルシロキサンと、(B)ヒドロシリル基を有する化合物と、(C)ヒドロシリル化触媒と、(D)シラン化合物と、(E)銀粉とを含む導電性シリコーンゴム組成物が開示されている。
国際公開第2019/220902号
 しかしながら、特許文献1に示される導電性シリコーンゴム組成物は、ビニル基を有するポリジメチルシロキサンをバインダーとして含むため、硬化物のガラス転移温度が-38℃程度と高かった。そのため、-40℃よりも低い低温領域、例えば-60℃~-40℃の低温領域での硬化物の弾性率が高く、接着信頼性を十分には維持できなかった。
 本発明は、例えば-40℃よりも低い低温領域から150℃といった高温領域までの広い温度領域で接着信頼性を維持できる硬化物を付与しうる導電性シリコーンゴム組成物及びそれを用いた異方導電性シートを提供することを目的とする。
 [1] 導電性粒子(A1)と、アルケニル基を有するシリコーン化合物(B)と、ヒドロシリル基を有するシリコーン化合物(C)と、ヒドロシリル化触媒(D)と、を含み、前記(B)成分及び(C)成分の少なくとも一方は、フェニル変性されており、前記(B)成分と前記(C)成分に含まれるアルケニル基の合計量は、前記(B)成分と前記(C)成分のケイ素原子に結合した1価の有機基の合計モル数に対して5モル%以下であり、前記(B)成分と前記(C)成分を含むシリコーン化合物の総量に対して、アルケニル基を有する未変性シリコーン化合物(E)とヒドロシリル基を有する未変性シリコーン化合物(F)の合計量は45質量%以下である、導電性シリコーンゴム組成物。
 [2] 前記(B)成分は、アルケニル基を有するシリコーン化合物(B1)と、前記(C)成分は、ヒドロシリル基を有するシリコーン化合物(C1)と、を含み、前記(B1)成分と前記(C1)成分に含まれるアルケニル基の合計量は、前記(B1)成分と前記(C1)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1.5モル%以下であり、前記シリコーン化合物の総量に対して、前記(B1)成分と前記(C1)の合計量は50質量%以上である、[1]に記載の導電性シリコーンゴム組成物。
 [3] 前記(B1)成分と前記(C1)成分に含まれるケイ素原子に結合したフェニル基の合計量は、前記(B1)成分と前記(C1)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1~70モル%である、[2]に記載の導電性シリコーンゴム組成物。
 [4] 前記導電性粒子(A1)のメディアン径は、2μm以上である、[1]~[3]のいずれかに記載の導電性シリコーンゴム組成物。
 [5] メディアン径が2μmよりも小さい導電性粒子(A2)をさらに含む、[4]に記載の導電性シリコーンゴム組成物。
 [6] 前記(B)成分は、アルケニル基を有するシリコーン化合物(B2)と、前記(C)成分は、ヒドロシリル基を有するシリコーン化合物(C2)と、をさらに含み、前記(B2)成分と前記(C2)成分に含まれるアルケニル基の合計量は、前記(B2)成分と前記(C2)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1.5モル%超11モル%以下である、[2]に記載の導電性シリコーンゴム組成物。
 [7] 前記(B2)成分と前記(C2)成分に含まれるケイ素原子に結合したフェニル基の合計量は、前記(B2)成分と前記(C2)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1~70モル%である、[6]に記載の導電性シリコーンゴム組成物。
 [8] 前記(A1)成分を含む導電性粒子の含有量は、前記導電性シリコーンゴム組成物の不揮発成分に対して70~90質量%である、[1]~[7]のいずれかに記載の導電性シリコーンゴム組成物。
 [9] 前記(A1)成分は、銀粒子である、[1]~[8]のいずれかに記載の導電性シリコーンゴム組成物。
 [10] 硬化物のガラス転移温度は、-40℃以下である、[1]~[9]のいずれかに記載の導電性シリコーンゴム組成物。
 [11] 異方導電性シートの導電性材料として用いられる、[1]~[10]のいずれかに記載の導電性シリコーンゴム組成物。
 [12] 厚み方向の一方の面から他方の面まで貫通する複数の貫通孔を有する絶縁層と、前記複数の貫通孔のそれぞれの内部に充填された複数の導電性材料と、を有し、前記導電性材料は、上記導電性シリコーンゴム組成物の硬化物を含む、異方導電性シート。
 本発明によれば、例えば-40℃よりも低い低温領域から150℃といった高温領域までの広い温度領域でゴム弾性を維持できる硬化物を付与しうる導電性シリコーンゴム組成物及びそれを用いた異方導電性シートを提供することができる。
図1は、異方導電性シートを用いた電気検査の様子を示す模式図である。 図2Aは、本発明の一実施形態に係る異方導電性シートの模式的な部分拡大平面図であり、図2Bは、図2Aの異方導電性シートの2B-2B線の模式的な部分拡大断面図である。
 本発明者らは、鋭意検討した結果、バインダー成分として、アルキル基を有するシリコーン化合物(B)と、ヒドロキシ基を有するシリコーン化合物(C)を含む混合物であって、1)(B)成分と(C)成分の少なくとも一方がフェニル変性されており、2)混合物全体のアルキレン基量を適度に低く調整されたものを用いることで、-60℃近傍の低温でも低い弾性率を有する硬化物が得られることを見出した。この理由は明らかではないが、以下のように推測される。
 フェニル変性されたシリコーン化合物は、立体障害が大きなフェニル基を有するため、フェニル基を有さないシリコーン化合物と比べて、分子鎖同士が絡まり合いにくい。その結果、フェニル変性されたシリコーン化合物を含む組成物の硬化物のガラス転移温度は低くなりやすい。また、上記混合物全体の架橋性基量(アルケニル基量)が多すぎないため、硬化物の架橋密度が高くなりすぎない。そのため、硬化物は適度な低い弾性率を有し、良好なゴム弾性を示すと考えられる。
 即ち、本発明の導電性シリコーンゴム組成物は、導電性粒子(A1)と、アルケニル基を有するシリコーン化合物(B)と、ヒドロシリル基を有するシリコーン化合物(C)と、ヒドロシリル化触媒(D)とを含む。そして、(B)成分と(C)成分の少なくとも一方、好ましくは両方がフェニル変性されており;(B)成分と(C)成分に含まれるアルケニル基の合計量は、(B)成分と(C)成分のケイ素原子に結合した1価の有機基の合計モル数に対して5モル%以下である。
 なお、上記組成物は、アルケニル基を有する未変性シリコーン化合物(E)とヒドロシリル基を有する未変性シリコーン化合物(F)とを含みうるが、その合計量は45質量%以下である。
 以下、本発明について、実施形態に基づいて詳細に説明する。
 1.導電性シリコーンゴム組成物
 本実施形態に係る導電性シリコーンゴム組成物(以下、単に「組成物」ともいう)は、導電性粒子(A1)、アルケニル基を有するシリコーン化合物(B)、ヒドロシリル基を有するシリコーン化合物(C)、及びヒドロシリル化触媒(D)を含む。
 1-1.(A1)成分
 (A1)成分は、導電性粒子である。導電性粒子を構成する材料は、金属であることが好ましい。金属の種類は、特に制限されないが、体積抵抗率を低減する観点では、金、銀、銅、白金、パラジウム、ニッケルからなる群より選ばれる少なくとも1種を含むことが好ましく、金、銀、銅、白金からなる群より選ばれる少なくとも1種を含むことがより好ましい。これらの中でも、体積抵抗率を十分に小さくしうる観点では、銀が好ましい。
 導電性粒子の形状は、特に制限されず、球状、繊維状、フレーク状等のいずれであってもよいが、体積抵抗率を高める観点では、フレーク状又は球状であることが好ましい。
 導電性粒子同士の凝集や沈殿を抑制する観点から、導電性粒子の表面は、分散剤で被覆されていることが好ましい。導電性粒子の表面が分散剤で被覆されているとは、導電性粒子の表面の少なくとも一部に分散剤が付着していることを意味する。導電性粒子が分散剤で被覆されているか否かは、例えば熱重量分析により確認することができる。
 分散剤は、導電性粒子の表面に付着する官能基を有する有機化合物であればよく、特に制限されない。そのような官能基の例には、カルボキシル基、リン酸基及びアミノ基が含まれ、好ましくはカルボキシル基及びアミノ基である。官能基を有する有機化合物の例には、1つ又は2つのアミノ基と炭素数4~16のアルキル基を有する脂肪族炭化水素基とを有する脂肪族炭化水素アミン及び高級脂肪酸が含まれる。脂肪族炭化水素アミンの例には、オクチルアミン、ドデシルアミン等が含まれる。高級脂肪酸は、好ましくは炭素数12~24の飽和脂肪酸又は不飽和脂肪酸であり、より好ましくはミリスチル酸、パルミチン酸、ステアリン酸、オレイン酸及びリノール酸、並びにこれらの誘導体からなる群より選ばれる少なくとも1つである。分散剤の含有量は、特に制限されないが、導電性粒子に対して0.1~3質量%であることが好ましい。
 導電性粒子のメディアン径は、特に制限されないが、2μm以上であることが好ましい。メディアン径が2μm以上の導電性粒子は、粒子サイズが比較的大きいため、後述するような硬化収縮が比較的少ない(B1)成分、(C1)成分を用いても、導電性粒子同士を良好に接触させることができるため、導電性を有する硬化物が得られやすい。同様の観点から、導電性粒子のメディアン径は2~5μmであることがより好ましい。メディアン径D50は、レーザー回折法により求められる体積基準の累積50%粒子径D50をいう。
 (A1)成分を含む導電性粒子の含有量は、組成物中の不揮発成分に対して70~90質量%であることが好ましく、75~80質量%であることがより好ましい。導電性粒子の含有量が70質量%以上であると、硬化物の導電性を一層高めうる。
 1-2.(B)成分
 (B)成分は、アルケニル基を有するシリコーン化合物であり、組成物のベースポリマー(主剤)として機能しうる。アルケニル基を有するシリコーン化合物は、アルケニル基を有するポリオルガノシロキサンである。なお、(B)成分は、ヒドロシリル基を有しない。
 (B)成分の分子構造は、実質的に直線状であることが好ましいが、一部に分岐構造があってもよい。具体的には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。(B)成分は、フェニル変性されていてもよい。
 (B)成分中のアルケニル基は、ケイ素原子に結合したアルケニル基(-Si-CH=CH)であることが好ましい。そのようなアルケニル基としては、例えば炭素数2~8、好ましくは炭素数2~4のものが挙げられる。その具体例としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基等が挙げられ、特にビニル基であることが好ましい。
 (B)成分のアルケニル基以外のケイ素原子に結合する1価の有機基は、特に制限されないが、炭素数1~12、好ましくは炭素数1~10の1価の炭化水素基が挙げられる。そのような1価の炭化水素基の例には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基や、フェニル基等のアリール基が挙げられ、好ましくはメチル基、フェニル基である。
 (B)成分中のアルケニル基やフェニル基の含有量の範囲は、後述する(B)成分と(C)成分中のアルケニル基やフェニル基の合計量の範囲と同様でありうる。
 (B)成分としては、アルケニル基を有するメチルフェニルシリコーンが挙げられる。例えば、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖末端ビニル基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体;分子鎖両末端ビニル基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体が含まれる。これらは、1種類で用いてもよいし、2種類以上を併用してもよい。
 (B)成分は、25℃で液状であることが好ましい。(B1)成分の25℃における粘度は、好ましくは50~500,000mPa・s、より好ましくは600~200,000mPa・sである。粘度がこの範囲内にあると、組成物の取り扱い作業性が良好であり、また、硬化物の機械的特性が良好である。なお、本明細書において粘度とは、25℃において東機産業製TV-200EHを用いて1rpmにより測定した値を指す。
 1-3.(C)成分
 (C)成分は、ヒドロシリル基を有するシリコーン化合物(オルガノハイドロジェンポリシロキサン)である。(C)成分は、(B)成分中のアルケニル基とヒドロシリル化付加反応し、架橋剤(硬化剤)として機能しうる。
 (C)成分の分子構造は、特に制限されないが、実質的に直線状であることが好ましいが、一部に分岐構造があってもよい。(C)成分は、1分子中に少なくとも2個の、ケイ素原子に結合した水素原子(-SiHで表されるヒドロシリル基)を有し、実質的にケイ素原子に結合した水酸基(シラノール基)を有さない。(C)成分は、フェニル変性されていてもよい。
 オルガノハイドロジェンポリシロキサンとしては、下記平均組成式(1)で示されるものを用いることができる。
 式(1):RSiO(4-a-b)/2
 式(1)中、Rは、ケイ素原子に結合した炭素数1~10の1価の炭化水素基である。1価の炭化水素基の例には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基、アルケニル基(例えばビニル基)、フェニル基等のアリール基が挙げられ、好ましくはメチル基、フェニル基である。
 aは、0.7~2.1、bは、0.001~1.0で、且つa+bが0.8~3.0を満足する整数であり、好ましくはaは1.0~2.0、bは0.01~1.0、a+bが1.5~2.5を満足する整数である。
 (C)成分中のヒドロシリル基やフェニル基の含有量の範囲は、後述する(B)成分と(C)成分中のヒドロシリル基やフェニル基の合計量の範囲と同様でありうる。
 (C)成分としては、ヒドロシリル基を有するメチルフェニルシリコーンが挙げられる。例えば、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサンや、これらの各化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基やビニル基等のアルケニル基で置換されたものが含まれる。これらは、1種で用いてもよいし、2種以上を併用してもよい。
 (C)成分は、25℃で液状であることが好ましい。(C)成分の25℃における粘度は、通常、0.1~1000mPa・s、好ましくは0.5~500mPa・s程度でありうる。
 1-4.(B)成分と(C)成分の混合物について
 上記の通り、(B)成分と(C)成分に含まれるアルケニル基の合計量は、(B)成分と(C)成分のケイ素原子に結合した1価の有機基の合計モル数に対して5モル%以下、好ましくは0.1~5モル%、より好ましくは0.2~3モル%である。上記アルケニル基の合計量がこの範囲内であると、硬化物の架橋密度が高くなりすぎず、適度な低い弾性率を有し、良好なゴム弾性を示す。(B)成分と(C)成分に含まれるヒドロシリル基の合計量も、上記範囲と同様でありうる。
 また、(B)成分と(C)成分の少なくとも一方、好ましくは両方は、フェニル変性されている。(B)成分と(C)成分に含まれる、ケイ素原子に結合したフェニル基の合計量は、本発明の効果が得られる範囲であればよく、(B)成分と(C)成分に含まれるケイ素原子に結合した1価の有機基の合計モル数に対して3~60モル%であることが好ましく、4~20モル%であることがより好ましい。上記フェニル基の合計量がこの範囲内であると、硬化物のガラス転移温度がより低くなりやすい。
 (B)成分と(C)成分のアルケニル基の合計量、ヒドロシリル基の合計量、フェニル基の合計量は、NMRにより確認することができる。
 あるいは、仕込み比から計算することもできる。例えば、(B)成分として(B1)成分、(B2)成分、(C)成分として(C1)成分、(C2)成分を含む混合物中のアルケニル基の合計量は、例えば下記式(2)から求めることができる。
 式(2):(B)成分と(C)成分のアルケニル基の合計量(モル%)=m1×a+m2×b+m3×c+m4×d(m1:混合物中の(B1)成分の含有比率(質量%)
 m2:混合物中の(B2)成分の含有比率(質量%)
 m3:混合物中の(C1)成分の含有比率(質量%)
 m4:混合物中の(C2)成分の含有比率(質量%)
 a:(B1)成分中のアルケニル基の含有量(モル%)
 b:(B2)成分中のアルケニル基の含有量(モル%)
 c:(C1)成分中のアルケニル基の含有量(モル%)
 d:(C2)成分中のアルケニル基の含有量(モル%))
 (B)成分と(C)成分に含まれるアルケニル基やフェニル基の合計量を上記範囲にする観点から、(B)成分及び(C)成分は、低硬化性の反応性シリコーン化合物、即ち、(B1)成分及び(C1)成分を含むことが好ましい。
 1-4-1.(B1)成分/(C1)成分について
 (B)成分は、アルケニル基を有するシリコーン化合物(B1)を含み、(C)成分は、ヒドロシリル基を有するシリコーン化合物(C1)を含むことが好ましい。(B1)と(C1)成分の少なくとも一方、好ましくは両方は、フェニル変性されている。また、(B1)成分と(C1)成分に含まれるアルケニル基の合計量は相対的に少ない。このような低硬化性の反応性シリコーン化合物は、硬化物のガラス転移温度を低くしやすく、硬化物の弾性率も低くしうる。
 (B1)成分と(C1)成分に含まれるアルケニル基の合計量は、(B1)成分と(C1)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1.5モル%以下であることが好ましく、0.1~1.5モル%であることがより好ましく、0.2~1.0モル%であることがさらに好ましい。(B1)成分と(C1)成分に含まれるヒドロシリル基の合計量も、これと同様の範囲としうる。
 (B1)成分と(C1)成分に含まれる、ケイ素原子に結合したフェニル基の合計量は、(B1)成分と(C1)成分に含まれるケイ素原子に結合した1価の有機基の合計モル数に対して1~70モル%であることが好ましく、1~50モル%であることがより好ましい。例えば、(B1)成分と(C1)成分のフェニル基の合計量は、後述する(B2)成分と(C2)成分のフェニル基の合計量よりも少なくてもよい。
 (B1)成分と(C1)成分のアルケニル基の合計量、ヒドロシリル基の合計量、フェニル基の合計量は、上記と同様の方法で確認することができる。また、(B1)成分、(C1)成分のそれぞれのアルケニル基量、ヒドロシリル基量、フェニル基量の範囲は、(B1)成分と(C1)成分のアルケニル基の合計量、ヒドロシリル基の合計量、フェニル基の合計量の範囲とそれぞれ同様でありうる。
 (B1)成分と(C1)成分は、1液型の付加硬化型シリコーン化合物でありうる。1液型の付加硬化型シリコーン化合物としては、KER-6020-F(信越シリコーン社製、1液付加硬化型)等が挙げられる。
 (B1)成分と(C1)成分の合計量は、特に制限されないが、組成物中のシリコーン化合物の総量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。(B1)成分と(C1)成分の含有量が50質量%以上であると、適度に硬化性が低くなるため、硬化物の弾性率も適度に低くしやすい。また、少なくとも(B1)成分がフェニル変性されているため、硬化物のガラス転移温度もより低くなりやすく、硬化物の弾性率の変化を一層少なくしやすい。なお、本明細書において、組成物中のシリコーン化合物の総量とは、組成物に含まれるシロキサン結合を持つポリマーの総量を意味する。
 1-4-2.(B2)成分/(C2)成分について
 (B)成分及び(C)成分は、中硬化性の反応性シリコーン化合物、即ち、(B2)成分及び(C2)成分を含んでもよい。
 例えば、(B)成分は、アルケニル基を有するシリコーン化合物(B2)をさらに含み;(C)成分は、ヒドロシリル基を有するシリコーン化合物(C2)をさらに含みうる。(B2)成分と(C2)成分の少なくとも一方、好ましくは両方は、フェニル変性されている。また、(B2)成分と(C2)成分に含まれるアルケニル基の合計量は、(B1)成分と(C1)成分に含まれるアルケニル基の合計量よりも多い。このような(B2)成分と(C2)成分の混合物は、(B1)成分と(C1)成分の混合物よりも硬化収縮量が多いため、(A2)成分のような小粒径の導電性粒子を含む組成物でも、導電性粒子同士を接触させやすくしうる。それにより、導電性が高い硬化物を得ることができる。
 (B2)成分と(C2)成分に含まれるアルケニル基の合計量は、(B2)成分と(C2)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1.5モル%超であることが好ましく、1.5モル%超11モル%以下であることがより好ましい。(B2)成分と(C2)成分に含まれるヒドロシリル基の合計量も、上記と同様の範囲でありうる。
 (B2)成分と(C2)成分に含まれる、ケイ素原子に結合したフェニル基の合計量は、(B2)成分と(C2)成分に含まれるケイ素原子に結合した1価の有機基の合計モル数に対して1~70モル%であることが好ましく、1~50モル%であることがより好ましい。
 なお、(B2)成分、(C2)成分のそれぞれのアルケニル基量、ヒドロシリル基量、フェニル基量の範囲は、(B2)成分と(C2)成分のアルケニル基の合計量、ヒドロシリル基の合計量、フェニル基の合計量の範囲とそれぞれ同様でありうる。
 (B2)成分と(C2)成分は、2液型の付加硬化型シリコーン化合物でありうる。2液型の付加硬化型シリコーン化合物としては、(B2)成分としては、KER-6150A(信越シリコーン社製、2液付加硬化型)等が挙げられ;(C2)成分としては、KER-6150B(信越シリコーン社製、2液付加硬化型)等が挙げられる。
 (B1)成分と(C1)成分の合計量と(B2)成分と(C2)成分の合計量の比率(B1+C1)/(B2+C2)は、100/0~0/100、好ましくは50/50~100/0、より好ましくは50/50~90/10である。(B1+C1)の割合が増えると、硬化物の弾性率やTgはより低くなりやすく、硬化収縮量はより少なくなりやすい。
 1-5.(D)成分
 (D)成分のヒドロシリル化触媒は、ヒドロシリル化反応の触媒として機能するものであればよい。ヒドロシリル化触媒の例には、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒等の白金族金属触媒が含まれる。
 (D)成分の含有量は、触媒量とすることができ、少なくとも(B1)成分と(C1)成分を含むヒドロシリル化反応に寄与するシリコーン化合物の総量に対して、白金族金属として0.5ppm~5%、好ましくは1ppm~3%としうる。(D)成分の含有量が上記範囲であると、硬化性をより高めやすい。
 1-6.他の成分
 1-6-1.導電性粒子(A2)
 導電性粒子として、(A1)成分以外の導電性粒子をさらに含んでもよい。例えば、組成物のチクソ性や硬化物の導電性をより高める観点から、組成物は、(A1)成分よりも粒子サイズが小さい導電性粒子(A2)をさらに含んでもよい。
 (A2)成分は、(A1)成分よりもメディアン径が小さい導電性粒子である。導電性粒子(A2)のメディアン径が2μm未満であると、粒子サイズが比較的小さいため、組成物のチクソ性をより高めることができる。また、硬化時に導電性粒子同士が高密度に詰まりやすいため、導電性をより高めることができる。同様の観点から、導電性粒子(A2)のメディアン径は0.7~1.5μmであることがより好ましい。
 導電性粒子(A2)を構成する材料も、導電性粒子(A1)を構成する材料と同様のものを使用することができる。中でも、銀が好ましい。導電性粒子(A2)も、導電性粒子(A1)と同様に、凝集や沈殿を抑制する観点から、表面が上記と同様の分散剤で被覆されていることが好ましい。
 (A2)成分/(A1)成分の比率は、特に制限されないが、90/10~10/90(質量比)であることが好ましく、80/20~20/80(質量比)であることがより好ましい。上記比率が下限値以上であると、組成物のチクソ性を一層高めやすく、上限値以下であると、(B1)成分や(C1)成分の割合を多くしうるため、硬化物のTgや弾性率を一層低くしやすい。
 1-6-2.他の反応性シリコーン化合物
 組成物は、上記以外のアルケニル基を有する未変性シリコーン化合物(E)やヒドロシリル基を有する未変性シリコーン化合物(F)をさらに含んでもよい。なお、(E)成分と(F)成分は、上記の通り、いずれもフェニル変性されていない。これらの成分は、上記組成物の粘度や硬化性、硬化物の弾性率の調整等の目的で含有されうる。
 <(E)成分>
 (E)成分は、B)成分とは異なるものであり、好ましくはフェニル変性されていない以外は(B)成分と同様でありうる。(E)成分の例には、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体が含まれる。
 <(F)成分>
 (F)成分は、(C)成分とは異なるものであり、好ましくはフェニル変性されていない以外は(C)成分と同様でありうる。(F)成分の例には、(C1)成分のオルガノハイドロジェンポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体や、これらの各化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基やビニル基等のアルケニル基で置換されたものが含まれる。
 (E)成分と(F)成分に含まれるアルケニル基の合計量は、(E)成分と(F)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1~30モル%であることが好ましい。(E)成分と(F)成分のヒドロキシ基の合計量も、上記範囲と同様でありうる。
 (E)成分と(F)成分は、1液付加硬化型のシリコーンであってもよいし、2液付加硬化型のシリコーンであってもよい。市販品の例には、KER-3000-M2、KE-1204等(いずれも信越シリコーン社製、メチルシリコーンゴム)が含まれる。
 (E)成分と(F)成分の合計量は、シリコーン化合物の総量に対して45質量%以下であり、1~30質量%であることが好ましい。これらの成分の合計量が45質量%以下であると、硬化収縮が十分発現し、組成物の導電性を発現できる。
 1-6-3.非反応性シリコーン化合物(G)
 組成物は、非反応性シリコーン化合物をさらに含んでもよい。非反応性シリコーン化合物は、アルケニル基やヒドロキシ基を有さないシリコーン化合物でありうる。このようなシリコーン化合物は、組成物の粘度や硬化物の弾性率の調整等の目的で含有されうる。
 <(G)成分>
 (G)成分は、アルケニル基やヒドロシリル基を有しないシリコーン化合物である。(G)成分は、フェニル変性されていてもよいし、されていなくてもよい。中でも、(G)成分は、フェニル変性されておらず、且つアルケニル基やヒドロシリル基を有しない以外は(B)成分又は(C)成分と同様のものでありうる。そのような(G)成分としては、SH-510、SH-510(東レ・ダウコーニング・シリコーン社製、非反応性メチルフェニルシリコーンオイル)等が含まれる。
 (G)成分の含有量は、上記組成物の不揮発成分に対して0~10質量%であることが好ましい。(G)成分の含有量が10質量%以下であると、硬化物が柔軟になりすぎず、適度な弾性率が得られやすい。
 <その他>
 上記組成物中のシリコーン化合物の総量は、不揮発成分に対して0.05~10質量%であることが好ましい。シリコーン化合物の総量が上記範囲内であると、低い粘度と、適度な硬化性とを両立しやすい。
 1-6-4.各種添加剤
 組成物は、必要に応じて、(A1)成分及び(A2)成分以外の無機フィラーや、ヒドロシリル化反応制御剤等をさらに含んでもよい。
 <無機フィラー>
 組成物は、硬化物の機械的強度を調整する観点等から、無機フィラーをさらに含んでもよい。無機フィラーの例には、シリカ粒子、珪藻土、パーライト、マイカ、炭酸カルシウム、ガラスフレーク、中空フィラー等が含まれる。中でも、シリカ粒子が好ましい。
 シリカ粒子の比表面積(BET法)は、10m/g以上、好ましくは50~400m/gであることが好ましい。シリカ粒子としては、煙霧質シリカ(乾式シリカ)、沈殿シリカ(湿式シリカ)が挙げられ、好ましくは煙霧質シリカ(乾式シリカ)である。
 シリカ粒子の例には、市販品ではアエロジル130,200,300(日本アエロジル社製商品名)、Cab-O-sil MS-5,MS-7,HS-5,HS-7(キャボット社製商品名)、SantocelFRC,CS(モンサント社製商品名)、ニップシルVN-3(日本シリカ工業社製商品名)等が挙げられる。また、これらの表面をオルガノポリシロキサン、オルガノポリシラザン、クロロシラン、アルコキシシラン等で疎水化処理してもよい。
 無機フィラーの含有量は、特に制限されないが、シリコーン化合物の総量に対して0.05~10質量%としうる。
 <ヒドロシリル化反応制御剤>
 ヒドロシリル化反応制御剤としては、窒素含有化合物やアセチレン化合物、リン化合物、ニトリル化合物、カルボキシレート、錫化合物、水銀化合物、硫黄化合物等が挙げられる。ヒドロシリル化反応制御剤の含有量は、特に制限されないが、シリコーン化合物の総量に対して0.01~5質量%としうる。
 1-7.調製方法
 導電性シリコーンゴム組成物は、少なくとも(A1)成分、(B)成分、(C)成分及び(D)成分、必要に応じて他の成分をさらに混合して調製することができる。混合方法は、特に制限されず、ニーダー、プラネタリーミキサー等の通常の混合攪拌器や混練器を用いた方法でありうる。
 例えば、(A1)成分、(A2)成分、(B1)成分、(B2)成分、(C1)成分、(C2)成分及び(D)成分を含む組成物は、1)(B1)成分、(C1)成分及び(D)成分を含む混合物を準備する工程、2)当該混合物、(A1)成分、(A2)成分、(B2)成分及び(C2)成分を混合する工程、を経て得ることができる。なお、(D)成分は、上記混合物に含まれてもよいし、各混合物とは別に添加されてもよい。また、(D)成分は、1)の工程と2)の工程に分けて添加されてもよい。
 1-8.物性
 導電性シリコーンゴム組成物の25℃での粘度は、50~300Pa・sであることが好ましく、100~200Pa・sであることがより好ましい。上記粘度は、TV-200EH(東機産業製)を用いて1rpmの条件で測定されうる。
 また、導電性シリコーンゴム組成物の1rpmでの粘度と10rpmでの粘度の比率(1rpmでの粘度/10rpmでの粘度)は、特に制限されないが、3以上であることが好ましい。それにより、組成物のチクソ性をより高めることができるため、例えばスクリーン印刷法による精度の高い印刷が一層容易となる。
 上記組成物の粘度は、導電性粒子の含有量や(A2)成分/(A1)成分の比率、(G)成分の含有量等によって調整することができる。例えば、導電性粒子の含有量や(A2)成分/(A1)成分の比率を少なくしたり、(G)成分を添加したりすると、組成物の粘度は低くなりやすい。また、小粒径の導電性粒子(A2)の含有割合を多くする、即ち、(A2)成分/(A1)成分の比率を高くすると、組成物のチクソ性は高くなりやすい。
 2.硬化物
 2-1.硬化物の物性
 <体積抵抗率>
 導電性シリコーンゴム組成物の硬化物の体積抵抗率は、用途にもよるが、例えば1.5×10Ω・cm以下であり、好ましくは1.0×10-1Ω・cm以下であり、より好ましくは1×10―2Ω・cm以下であり、さらに好ましくは1×10-6~1×10-2Ω・cmである。
 体積抵抗率は、以下の方法で測定することができる。
 スライドガラス上に、上記組成物を線幅5mm、長さ6cmに塗布し、ホットプレート上で160℃60分の条件で熱硬化させて、配線を形成する。得られた配線の体積抵抗率(Ω・cm)を、ロレスタGX(日東精工アナリテック製)により測定する。
 体積抵抗率は、組成物中の導電性粒子の含有量や、(A2)成分/(A1)成分の比率、(B2)成分+(C2)成分の合計量/(B1)成分と(C1)成分の合計量との比率等によって調整することができる。例えば、導電性粒子の含有量を多くしたり、上記したそれぞれの比率を高くしたりすると、体積抵抗率は低くなりやすい。
 <弾性率>
 硬化物の25℃での弾性率は、特に制限されないが、例えば0.1~20MPaであることが好ましく、0.1~15MPaであることがより好ましく、1~10MPaであることがさらに好ましい。硬化物の-50℃での弾性率は、例えば0.1~90MPaであることが好ましく、0.1~80MPaであることがより好ましく、1~50MPaであることがさらに好ましい。
 -50℃での弾性率の、25℃での弾性率に対する比(-50℃での弾性率/25℃での弾性率)は、20以下であることが好ましく、5以下であることがより好ましく、4.5以下であることがさらに好ましい。弾性率の比が少なくとも20以下であると、例えば異方導電性シートの導電性充填材として用いた場合に、低温温度領域でも弾性率が高くなりすぎず、広い温度領域で弾性率変化を少なくすることができる。上記弾性率の比は、硬化物のTgを低くすることによって小さくすることができる。
 硬化物の弾性率は、JIS K 7244-1:1998に準拠して動的粘弾性測定(DMA)により引張モードで測定することができる。測定温度の範囲は、-80~200℃としうる。
 <ガラス転移温度(Tg)>
 硬化物のTgは、特に制限されないが、-40℃以下であることが好ましく、-50℃以下であることがより好ましい。そのようなTgを有する硬化物は、例えば異方導電性シートの導電性充填材として用いた場合に、低温領域でも弾性率が高くなりすぎず、広い温度領域で弾性率変化を少なくすることができる。硬化物のTgは、RSAIII(ティー・エイ・インスツルメント製)により測定することができる。
 硬化物の弾性率やTgは、組成物中の(B1)成分と(C1)成分の合計量や、(B2)成分+(C2)成分の合計量/(B1)成分と(C1)成分の合計量との比率、(E)成分と(F)成分の合計量、フェニル変性量等によって調整することができる。例えば、(B1)成分と(C1)成分の合計量を多くしたり、上記比率を小さくしたり、(E)成分と(F)成分の合計量を少なくしたりすると、弾性率やTgは低くなりやすい。また、フェニル変性量やフェニル変性された成分の含有割合を多くすると、硬化物のTgは低くなりやすい。
 2-2.硬化物の調製方法
 導電性シリコーンゴム組成物の硬化物は、導電性シリコーンゴム組成物を加熱して硬化させて得ることができる。加熱温度は、十分に硬化させることができる程度であればよく、例えば25~200℃でありうる。
 3.用途
 導電性シリコーンゴム組成物の硬化物は、各種用途の導電性材料や導電性接着材として用いることができる。中でも、異方導電性シートの導電性材料として有用である。以下、導電性シリコーンゴム組成物の用途の一例として、半導体デバイス等の電気検査に用いられる異方導電性シートに適用する例について説明する。
 図1は、異方導電性シート100を用いた電気検査の様子を示す模式図である。
 電気検査は、通常、電気検査装置の基板10と、半導体デバイス等の検査対象物20の端子とを電気的に接触させ、検査対象物20の端子間に所定の電圧を印加したときの電流を読み取ることにより行われる。そして、電気検査装置の基板10の電極10Aと、検査対象物20の端子との電気的接触を確実に行うために、電気検査装置の基板10と検査対象物20との間に、異方導電性シート100が配置される(図1参照)。
 図2Aは、異方導電性シート100の模式的な部分拡大平面図であり、図2Bは、図2Aの異方導電性シート100の2B-2B線の模式的な部分拡大断面図である。同図に示されるように、異方導電性シート100は、絶縁層110と、複数の導電層120と、複数の導電性充填材130(導電性材料)とを有する。そして、導電性充填材30として、上記導電性シリコーンゴム組成物の硬化物が用いられる。
 3-1.絶縁層110
 絶縁層110は、エラストマー層111を含む。図2Bでは、絶縁層110は、エラストマー層111と、その一方の面と他方の面にそれぞれ配置された高弾性率層112とを含む。また、絶縁層110は、厚み方向の一方の側の第1面110aと、他方の側の第2面110bと、第1面110aから第2面110bまで貫通する複数の貫通孔113とを有する。
 (エラストマー層111)
 エラストマー層111を構成する材料としては、例えば、シリコーンゴム、ウレタンゴム(ウレタン系ポリマー)、アクリル系ゴム(アクリル系ポリマー)、エチレン-プロピレン-ジエン共重合体(EPDM)、クロロプレンゴム、スチレン-ブタジエン共重合体、アクリルニトリル-ブタジエン共重合体、ポリブタジエンゴム、天然ゴム、フッ素系ゴム等を含むゴム組成物の架橋物を含んでもよい。中でも、シリコーンゴム組成物の架橋物が好ましい。
 ゴム組成物は、必要に応じて架橋剤をさらに含んでもよい。架橋剤は、ゴムの種類に応じて適宜選択されうる。例えば、シリコーンゴムの架橋剤としては、ヒドロシリル化反応の触媒活性を有する金属、金属化合物、金属錯体等(白金、白金化合物、それらの錯体等)の付加反応触媒や;ベンゾイルパーオキサイド、ビス-2,4-ジクロロベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド等の有機過酸化物が含まれる。
 ゴム組成物の架橋物のガラス転移温度は、特に制限されないが、検査対象物の端子に傷を付きにくくする観点では、-30℃以下であることが好ましく、-40℃以下であることがより好ましい。ガラス転移温度は、JIS K 7095:2012に準拠して測定することができる。
 ゴム組成物の架橋物の25℃における貯蔵弾性率は、1.0×10Pa以下であることが好ましく、1.0×10~9.0×10Paであることがより好ましい。ゴム組成物の架橋物の貯蔵弾性率は、JIS K 7244-1:1998/ISO6721-1:1994に準拠して測定することができる。
 (高弾性率層112)
 高弾性率層112は、エラストマー層111よりも高い弾性率を有するため、電気検査時に加熱しても、複数の第1導電層122A間の重心間距離の熱による変動を抑制できる。
 高弾性率層112を構成する高弾性率樹脂組成物のガラス転移温度は、エラストマー層111を構成するゴム組成物の架橋物のガラス転移温度よりも高いことが好ましい。具体的には、電気検査は、約-40~150℃で行われることから、高弾性率樹脂組成物のガラス転移温度は、150℃以上であることが好ましく、150~500℃であることがより好ましい。ガラス転移温度は、前述と同様の方法で測定することができる。
 高弾性率樹脂組成物の25℃での貯蔵弾性率は、上記ゴム組成物の架橋物の25℃での貯蔵弾性率よりも高いことが好ましい。
 高弾性率樹脂組成物の組成は、ガラス転移温度や貯蔵弾性率が上記範囲を満たすものであればよく、特に制限されない。高弾性率樹脂組成物に含まれる樹脂は、ガラス転移温度が上記範囲を満たす耐熱性樹脂であることが好ましく;その例には、ポリアミド、ポリカーボネート、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド等のエンジニアリングプラスチック、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、オレフィン樹脂が含まれる。
 (貫通孔113)
 複数の貫通孔113は、絶縁層110の第1面110aから第2面110bまで貫通する孔である(図2B参照)。
 第1面110a側における貫通孔113の開口部の円相当径Dは、特に制限されず、例えば1~330μm、好ましくは10~100μmである(図2B参照)。第1面110a側における貫通孔113の開口部の円相当径Dとは、第1面110a側から貫通孔113の軸方向に沿って見たときの、貫通孔113の開口部の円相当径(開口部の面積に相当する真円の直径)をいう。
 第1面110a側における複数の貫通孔113の開口部の中心間距離(ピッチ)pは、検査対象物20の端子のピッチに対応して設定されうる(図2B参照)。検査対象物としてのHBM(High Bandwidth Memory)の端子のピッチは55μmであり、PoP(Package on Package)の端子のピッチは400~650μmであることから、複数の貫通孔113の開口部の中心間距離pは、例えば5~650μmであり、好ましくは5~55μmである。第1面110a側における、複数の貫通孔113の開口部の中心間距離pとは、第1面110a側における、複数の貫通孔113の開口部の中心間距離のうち最小値をいう。
 3-2.導電層120
 導電層120は、1又は2以上の貫通孔113ごとに対応して配置されている。導電層120は、導電部121と、第1導電層122Aと、第2導電層122Bとを含む(図2B参照)。
 導電部121は、貫通孔113の内壁面に配置されている。
 第1導電層122Aは、導電部121と接続されている。複数の第1導電層122Aは、第1溝部114aを介して相互に離間して配置されている。
 第2導電層122Bは、導電部121と接続されている。複数の第2導電層122Bは、第2溝部114bを介して相互に離間して配置されている。
 導電層120を構成する材料は、十分な導電性を示すものであればよく、銅、金、白金、銀、ニッケル、錫、鉄又はこれらのうち1種の合金等の金属材料が含まれる。中でも、導電層120は、高い導電性と柔軟性を有する観点から、金、銀及び銅からなる群より選ばれる一以上を主成分として含むことが好ましい。導電部121、第1導電層122A及び第2導電層122Bを構成する材料は、同じであることが好ましい。
 3-3.導電性充填材130
 導電性充填材130は、貫通孔113の内部、具体的には導電部121で囲まれた貫通孔113の空洞113’内に充填されている。それにより、異方導電性シート100の導電性を高めつつ、導電部121の剥がれを抑制しうる。導電性充填材130は、上記の通り、上記導電性シリコーンゴム組成物の硬化物を含む。
 なお、図2Bでは、導電性充填材130は、内壁面が導電部121で覆われた貫通孔113の内部に充填されているが、これに限らず、貫通孔113の内部に直接、導電性充填材130が充填されてもよい。
 3-4.作用
 上記実施形態に係る異方導電性シートによれば、導電性充填材130として、上記導電性シリコーンゴム組成物の硬化物を含む。そのため、-50℃近傍の低温領域から150℃近傍の高温領域まで、広い温度領域で低い弾性率を維持しうる。そのため、広い温度領域での接着信頼性を有する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 1.材料
 1-1.導電性粒子
 <導電性粒子(A1)>
 SF-9H(AMES社製、銀粒子、メディアン径2.9μm)
 <導電性粒子(A2)>
 RC-18939(Metalor社製、銀粒子、メディアン径1.2μm)
 なお、メディアン径D50は、マイクロトラックを用いてレーザー回折法により測定した体積基準の累積50%粒子径D50である。
 1-2.シリコーン化合物
 1-2-1.反応性シリコーン化合物
 <(B1)成分/(C1)成分>
 KER-6020-F(信越シリコーン社製、1液付加硬化型、メチルフェニルシリコーンゴム)
 <(B2)成分/(C2)成分>
 B2:KER-6150A(信越シリコーン社製、2液付加硬化型、メチルフェニルシリコーンゴム)
 C2:KER-6150B(信越シリコーン社製、2液付加硬化型、メチルフェニルシリコーンゴム)
 <(B3)成分/(C3)成分>
 B3:ASP-1120A(信越シリコーン社製、2液付加硬化型、メチルフェニルシリコーンゴム)
 C3:ASP-1120B(信越シリコーン社製、2液付加硬化型、メチルフェニルシリコーンゴム)
 上記シリコーン化合物の骨格組成を、NMRにより分析した。分析は、CDCl中で測定し、積算回数64回の条件で行った。分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <未変性シリコーン(シリコーン希釈剤)>
 E-1/F-1:KER-3000-M2(信越シリコーン社製、1液付加硬化型、メチルシリコーンゴム)
 E-2/F-2:KE-1204(信越シリコーン社製、2液付加硬化型、メチルシリコーンゴム)
 1-2-2.非反応性シリコーン化合物(シリコーンオイル)
 G-1:SH-510(100cSt)(東レ・ダウコーニング・シリコーン社製、非反応性メチルフェニルシリコーンオイル、粘度100cSt)
 G-2:SH-510(500cSt)(東レ・ダウコーニング・シリコーン社製、非反応性メチルフェニルシリコーンオイル、粘度500cSt)
 1-3.ヒドロシリル化触媒(D)
 上記シリコーン化合物として使用した市販品に含まれるものを使用した。
 1-4.他の成分
 カポジルTS-720(CABOT社製、ポリジメチルシロキサンで表面処理されたヒュームドシリカ、比表面積200m/g)
 2.組成物の調製及び評価1
 2-1.組成物の調製
 表2又は3に示される組成比(質量部)で、各成分を混合して、組成物を得た。
 2-2.評価
 そして、得られた組成物の粘度及びチクソ性(TI)、硬化物の弾性率、並びに体積抵抗率(導電性)を、以下の方法で評価した。
 (1)粘度、チクソ性(TI)
 得られた組成物の粘度を、TV-200EH(東機産業製)を用いて1rpm、10rpmの条件で測定した。
 そして、1rpmでの粘度が300Pa・s以下であれば良好と判断した。
 チクソ性(TI)は、各回転数での粘度を、下記式に当てはめて算出した。
 チクソ性(TI)=1rpmでの粘度/10rpmでの粘度
 そして、チクソ性(TI)が1.5以上であれば良好と判断した。
 (2)体積抵抗率(導電性)
 スライドガラス上に、上記調製した導電性シリコーンゴム組成物を線幅5mm、長さ6cmに塗布し、ホットプレート上で150℃60分の条件、又は、160℃60分の条件で熱硬化させて、配線を形成した。得られた配線の体積抵抗率(Ω・cm)を、ロレスタGX(日東精工アナリテック製)により測定した。
 ◎:160℃での体積抵抗率が1.0×10―1Ω・cm以下
 〇:160℃での体積抵抗率が1.0×10―1Ω・cm超1.5×10Ω・cm以下
 ×:160℃での体積抵抗率が1.5×10Ω・cm超
 なお、体積抵抗率は測定温度が高いほど低くなるため、150℃での体積抵抗率が1.5×10Ω・cm以下のものについては、一部、160℃での測定を行わず、150℃での体積抵抗率の値で評価した。
 (3)弾性率
 幅10mm×長さ5cm×厚み500μmの部分を打ち抜いたテフロンシートをガラスクロス含有フッ素樹脂シートに載せ、打ち抜いた部分に上記調製した組成物を塗布し、ホットプレート上で160℃60分で硬化させ、硬化物を得た。得られた硬化物の弾性率を、動的粘弾性測定装置RSAIII(ティー・エイ・インスツルメント製)を用いて測定した。測定は、測定温度-80から200℃までの温度領域について、空気下、1Hzの条件で行った。そして、得られたプロファイルから、25℃での弾性率、-50℃での弾性率を読み取り、下記式に基づいて弾性率比を算出した。
 弾性率比=-50℃での弾性率/25℃での弾性率
 そして、以下の基準に基づいて弾性率の温度安定性を評価した。
 ◎:弾性率比が4.5以下
 〇:弾性率比が4.5超20以下
 ×:弾性率比が20超
 (4)ガラス転移温度(Tg)
 上記(3)で得られた硬化物のTgを、RSAIII(ティー・エイ・インスツルメント製)により測定した。
 実施例1~7の評価結果を表2に示し、実施例8~11及び比較例1~3の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2及び3に示すように、(B)成分と(C)成分のアルケニル基の合計量が5モル%を超える比較例2の硬化物、フェニル変性された反応性シリコーン化合物を含まない比較例3の硬化物は、いずれも弾性率の温度変化が大きかった。また、フェニル変性されていない反応性シリコーン化合物((E)成分と(F)成分)の合計量が、シリコーン化合物の総量に対して45質量%よりも多い比較例1の硬化物は、十分には硬化しておらず、導電性の評価ができなかった。
 一方、(B)成分と(C)成分のアルケニル基の合計量が5モル%以下であり、且つシリコーン化合物の総量に対する(E)成分と(G)成分の合計量が45質量%以下である実施例1~11の硬化物は、いずれも弾性率の温度変化が小さかった。また、これらの硬化物は、体積抵抗値も小さく、良好な導電性を示すことがわかる。
 3.組成物の調製及び評価2
 3-1.組成物の調製
 表4に示される組成比(質量部)で、各成分を混合して、組成物を得た。
 3-2.評価
 得られた組成物の粘度、チクソ性(TI)及び硬化物の体積抵抗率を、上記と同様にして評価した。
 実施例12~25の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、(A2)成分/(A1)成分の比率を大きくすることで、チクソ性(TI)がより向上することがわかる(実施例12と13の対比、14、15及び21の対比)。一方、導電性粒子の総量を一定とした場合、A1成分がA2成分よりも多いほうが、体積抵抗値はより小さくなり、導電性はより向上することがわかる(実施例12と13の対比、14、15及び21の対比)。
 また、シリコーンオイルである(G)成分の量を少なくするほうが、チクソ性(TI)がより向上し、導電性もより向上することがわかる(実施例16~18の対比、実施例23~25の対比)。
 本出願は、2022年9月16日出願の特願2022-148609に基づく優先権を主張する。当該出願明細書及び図面に記載された内容は、すべて本願明細書に援用される。
 本発明の導電性シリコーンゴム組成物によれば、低温から高温までの広い温度領域で接着信頼性を維持できる硬化物を付与しうる。当該組成物は、各種導電性接着材、好ましくは異方導電性シートの導電性充填材等に好適である。
 10 電気検査装置の基板
 10A 電極
 20 検査対象物
 100 異方導電性シート
 110 絶縁層
 110a 第1面
 110b 第2面
 111 エラストマー層
 112 高弾性率層
 113 貫通孔
 113’ 空洞
 114a 第1溝部
 114b 第2溝部
 120 導電層
 121 導電部
 122A 第1導電層
 122B 第2導電層
 130 導電性充填材
 

Claims (12)

  1.  導電性粒子(A1)と、
     アルケニル基を有するシリコーン化合物(B)と、
     ヒドロシリル基を有するシリコーン化合物(C)と、
     ヒドロシリル化触媒(D)と、を含み、
     前記(B)成分及び(C)成分の少なくとも一方は、フェニル変性されており、
     前記(B)成分と前記(C)成分に含まれるアルケニル基の合計量は、前記(B)成分と前記(C)成分のケイ素原子に結合した1価の有機基の合計モル数に対して5モル%以下であり、
     前記(B)成分と前記(C)成分を含むシリコーン化合物の総量に対して、
     アルケニル基を有する未変性シリコーン化合物(E)とヒドロシリル基を有する未変性シリコーン化合物(F)の合計量は45質量%以下である、
     導電性シリコーンゴム組成物。
  2.  前記(B)成分は、アルケニル基を有するシリコーン化合物(B1)と、
     前記(C)成分は、ヒドロシリル基を有するシリコーン化合物(C1)と、を含み、
     前記(B1)成分と前記(C1)成分に含まれるアルケニル基の合計量は、前記(B1)成分と前記(C1)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1.5モル%以下であり、
     前記シリコーン化合物の総量に対して、
     前記(B1)成分と前記(C1)の合計量は50質量%以上である、
     請求項1に記載の導電性シリコーンゴム組成物。
  3.  前記(B1)成分と前記(C1)成分に含まれるケイ素原子に結合したフェニル基の合計量は、前記(B1)成分と前記(C1)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1~70モル%である、
     請求項2に記載の導電性シリコーンゴム組成物。
  4.  前記導電性粒子(A1)のメディアン径は、2μm以上である、
     請求項1に記載の導電性シリコーンゴム組成物。
  5.  メディアン径が2μmよりも小さい導電性粒子(A2)をさらに含む、
     請求項4に記載の導電性シリコーンゴム組成物。
  6.  前記(B)成分は、アルケニル基を有するシリコーン化合物(B2)と、
     前記(C)成分は、ヒドロシリル基を有するシリコーン化合物(C2)と、をさらに含み、
     前記(B2)成分と前記(C2)成分に含まれるアルケニル基の合計量は、前記(B2)成分と前記(C2)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1.5モル%超11モル%以下である、
     請求項2に記載の導電性シリコーンゴム組成物。
  7.  前記(B2)成分と前記(C2)成分に含まれるケイ素原子に結合したフェニル基の合計量は、前記(B2)成分と前記(C2)成分のケイ素原子に結合した1価の有機基の合計モル数に対して1~70モル%である、
     請求項6に記載の導電性シリコーンゴム組成物。
  8.  前記(A1)成分を含む導電性粒子の含有量は、前記導電性シリコーンゴム組成物の不揮発成分に対して70~90質量%である、
     請求項1に記載の導電性シリコーンゴム組成物。
  9.  前記(A1)成分は、銀粒子である、
     請求項1に記載の導電性シリコーンゴム組成物。
  10.  硬化物のガラス転移温度は、-40℃以下である、
     請求項1に記載の導電性シリコーンゴム組成物。
  11.  異方導電性シートの導電性材料として用いられる、
     請求項1に記載の導電性シリコーンゴム組成物。
  12.  厚み方向の一方の面から他方の面まで貫通する複数の貫通孔を有する絶縁層と、
     前記複数の貫通孔のそれぞれの内部に充填された複数の導電性材料と、を有し、
     前記導電性材料は、請求項1~11のいずれか一項に記載の導電性シリコーンゴム組成物の硬化物を含む、
     異方導電性シート。
PCT/JP2023/031155 2022-09-16 2023-08-29 導電性シリコーンゴム組成物及び異方導電性シート WO2024057911A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-148609 2022-09-16
JP2022148609 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024057911A1 true WO2024057911A1 (ja) 2024-03-21

Family

ID=90274992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031155 WO2024057911A1 (ja) 2022-09-16 2023-08-29 導電性シリコーンゴム組成物及び異方導電性シート

Country Status (1)

Country Link
WO (1) WO2024057911A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280461A (ja) * 1988-07-20 1990-03-20 Dow Corning Corp 導電性シリコーン組成物及びその調製方法
JPH02238054A (ja) * 1988-11-04 1990-09-20 Dow Corning Corp 導電性シリコーン組成物及びその使用方法
JP2003292781A (ja) * 2002-04-03 2003-10-15 Dow Corning Toray Silicone Co Ltd 導電性シリコーンゴム組成物
JP2006335926A (ja) * 2005-06-03 2006-12-14 Shin Etsu Chem Co Ltd 圧着性異方導電性樹脂組成物及び弾性異方導電部材
JP2013100464A (ja) * 2011-10-13 2013-05-23 Shin-Etsu Chemical Co Ltd 導電性シリコーン組成物及びその製造方法
JP2020083928A (ja) * 2018-11-16 2020-06-04 信越化学工業株式会社 導電性シリコーン組成物、硬化物、積層体、及び、電子回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280461A (ja) * 1988-07-20 1990-03-20 Dow Corning Corp 導電性シリコーン組成物及びその調製方法
JPH02238054A (ja) * 1988-11-04 1990-09-20 Dow Corning Corp 導電性シリコーン組成物及びその使用方法
JP2003292781A (ja) * 2002-04-03 2003-10-15 Dow Corning Toray Silicone Co Ltd 導電性シリコーンゴム組成物
JP2006335926A (ja) * 2005-06-03 2006-12-14 Shin Etsu Chem Co Ltd 圧着性異方導電性樹脂組成物及び弾性異方導電部材
JP2013100464A (ja) * 2011-10-13 2013-05-23 Shin-Etsu Chemical Co Ltd 導電性シリコーン組成物及びその製造方法
JP2020083928A (ja) * 2018-11-16 2020-06-04 信越化学工業株式会社 導電性シリコーン組成物、硬化物、積層体、及び、電子回路

Similar Documents

Publication Publication Date Title
JP4803350B2 (ja) 圧着性異方導電性樹脂組成物及び微細電極の接続方法
CN109890900B (zh) 单组分可固化型导热硅脂组合物和电子/电气组件
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP5534837B2 (ja) 熱伝導性シリコーンゴム組成物
JP4114037B2 (ja) 電気・電子部品の硫化防止又は遅延用シリコーンゴム封止・シール材及び硫化防止又は遅延方法
JP6014299B2 (ja) 熱伝導性シリコーン組成物及び半導体装置
JP6662458B2 (ja) 熱伝導性シリコーンゴム複合シート
JP3765444B2 (ja) 電気・電子部品封止・充填用シリコーンゲル組成物およびシリコーンゲル
JP6065780B2 (ja) 導電性回路描画用インク組成物、導電性回路形成方法及びそれにより形成された導電性回路
JP5704049B2 (ja) 導電性回路形成方法
US20220363835A1 (en) Thermally conductive silicone composition and method for producing the same
JP2018193491A (ja) 熱伝導性シリコーンゴム複合シート
JP6772448B2 (ja) 導電性樹脂組成物、配線、配線基板および電子装置
JP2017183328A (ja) 電子装置および電子装置の製造方法
JP2021015985A (ja) 伸縮性配線基板およびウェアラブルデバイス
JP6828784B2 (ja) 伸縮性配線基板およびウェアラブルデバイス
JP2009235279A (ja) 熱伝導性成形体およびその製造方法
JP6673322B2 (ja) 導電性ペーストおよび伸縮性配線基板
WO2020153217A1 (ja) 高熱伝導性シリコーン組成物及びその製造方法
JP2018056462A (ja) 配線基板および電子装置
JP4114071B2 (ja) ローラ用付加硬化型液状導電性シリコーンゴム組成物、ローラ、及びローラ用導電性シリコーンゴム硬化物の圧縮永久歪を低下させる方法
WO2024057911A1 (ja) 導電性シリコーンゴム組成物及び異方導電性シート
JP5305558B2 (ja) 圧着性異方導電性樹脂組成物及び弾性異方導電部材
KR20210018428A (ko) 엘라스토머 및 성형체
TWI754257B (zh) 應用於極低溫之測試連接器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865268

Country of ref document: EP

Kind code of ref document: A1