WO2021052485A1 - 一种声学输出装置 - Google Patents

一种声学输出装置 Download PDF

Info

Publication number
WO2021052485A1
WO2021052485A1 PCT/CN2020/116319 CN2020116319W WO2021052485A1 WO 2021052485 A1 WO2021052485 A1 WO 2021052485A1 CN 2020116319 W CN2020116319 W CN 2020116319W WO 2021052485 A1 WO2021052485 A1 WO 2021052485A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic driver
acoustic
sound
guide hole
output device
Prior art date
Application number
PCT/CN2020/116319
Other languages
English (en)
French (fr)
Inventor
付峻江
张磊
齐心
廖风云
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PE2022000408A priority Critical patent/PE20220631A1/es
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202080053883.6A priority patent/CN114175673B/zh
Priority to KR1020227012878A priority patent/KR102602344B1/ko
Priority to BR112022004399A priority patent/BR112022004399A2/pt
Priority to CA3153093A priority patent/CA3153093C/en
Priority to MX2022003326A priority patent/MX2022003326A/es
Priority to EP20865964.9A priority patent/EP4009660A4/en
Priority to JP2022517898A priority patent/JP7528199B2/ja
Priority to AU2020349994A priority patent/AU2020349994B2/en
Publication of WO2021052485A1 publication Critical patent/WO2021052485A1/zh
Priority to US17/652,483 priority patent/US11956591B2/en
Priority to CONC2022/0003143A priority patent/CO2022003143A2/es
Priority to US18/628,711 priority patent/US20240251202A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/06Hearing aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/023Screens for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/227Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  using transducers reproducing the same frequency band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2884Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of the enclosure structure, i.e. strengthening or shape of the enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • H04R1/347Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers for obtaining a phase-shift between the front and back acoustic wave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2842Enclosures comprising vibrating or resonating arrangements of the bandpass type for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2846Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2846Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2849Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests

Definitions

  • This application relates to the field of acoustics, in particular to an acoustic output device.
  • the open binaural acoustic output device is a portable audio output device that realizes sound conduction in a specific range. Compared with traditional in-ear and over-ear headphones, the open binaural acoustic output device has the characteristics of not blocking or covering the ear canal, allowing users to listen to music while acquiring sound information in the external environment, improving safety Sex and comfort. Due to the use of an open structure, the sound leakage of an open binaural acoustic output device is often more serious than that of a traditional earphone. At present, the common practice in the industry is to use the sound radiation from the front and back of the speaker to construct a dual sound source, construct a specific sound field, and regulate the sound pressure distribution to reduce sound leakage.
  • this method can achieve the effect of reducing sound leakage to a certain extent, it still has certain limitations.
  • the sound waves emitted by the speaker are the radiated sound waves from the front and back of the diaphragm, and the sound waves radiated from the back of the diaphragm need to pass through the cavity formed by the diaphragm and an electromagnetic structure (such as a magnetic plate), and then pass through the electromagnetic structure.
  • the upper opening radiates to the outside world, resulting in a mismatch between the acoustic impedance on the front of the speaker and the acoustic impedance on the back.
  • the acoustic radiation on the front and back cannot form an effective dual sound source (especially at mid and high frequencies), resulting in increased sound leakage.
  • an acoustic output device capable of providing more effective dual sound sources, which can simultaneously achieve the effects of increasing the user's listening volume and reducing the leakage of sound.
  • An embodiment of the present application provides an acoustic output device, the acoustic output device includes: a first acoustic driver, the first acoustic driver includes a first diaphragm; a second acoustic driver, the second acoustic driver includes a second Diaphragm; control circuit, the control circuit is electrically connected to the first acoustic driver and the second acoustic driver, the control circuit provides a first electrical signal to drive the vibration of the first diaphragm and the drive The second electrical signal of the second diaphragm vibration, the first electrical signal and the second electrical signal are opposite in phase; and a housing structure that carries the first acoustic driver and the first acoustic driver Two acoustic drivers, wherein the sound generated by the vibration of the first diaphragm is radiated outward through the first sound guide hole on the housing structure, and the sound generated by the vibration of the second diaphragm passes through the first sound guide on the housing structure.
  • the first acoustic driver includes a first magnetic circuit structure
  • the second acoustic driver includes a second magnetic circuit structure.
  • the housing structure includes at least a first cavity and a second cavity, wherein the first cavity and the second cavity are not connected; the first acoustic driver is located at the In the first cavity, the second acoustic driver is located in the second cavity.
  • the first cavity and the second cavity are the same, wherein the front cavity of the first acoustic driver is the same as the front cavity of the second acoustic driver, and the The back cavity is the same as the back cavity of the second acoustic driver.
  • the first sound guide hole is in communication with the first cavity, and the second sound guide hole is in communication with the second cavity; the first acoustic driver is connected to the first cavity.
  • the sound guide hole emits sound
  • the second acoustic driver emits sound from the second sound guide hole; wherein, the sound emitted by the first acoustic driver at the first sound guide hole and the second acoustic The phase of the sound emitted by the driver at the second sound guide hole is opposite.
  • the first sound guide hole and the second sound guide hole are located on adjacent or opposite side walls of the housing structure.
  • control circuit generates an audio signal
  • the first acoustic driver and the second acoustic driver respectively receive the audio signal in a manner of opposite polarities, so as to obtain the first electrical signal respectively And the second electrical signal.
  • the first acoustic driver and the second acoustic driver are electrically connected to the control circuit with the same polarity, respectively, wherein the first acoustic driver or the second acoustic driver is electrically connected to the control circuit.
  • the driver and the control circuit are electrically connected through an inverter circuit.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-to-high frequency range is not more than 6 dB.
  • the medium and high frequency range is within 200 Hz-20 kHz.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in at least part of the low-frequency range is not less than 10 dB.
  • the acoustic path from the first acoustic driver and the second acoustic driver with a larger amplitude-frequency response value in the low frequency range to the user's ear is smaller.
  • the back cavity of the first acoustic driver and the back cavity of the second acoustic driver are provided with at least one tuning hole.
  • the acoustic output device further includes a third acoustic driver, the third acoustic driver includes a third diaphragm; the control circuit provides a third electrical signal that drives the third diaphragm to vibrate and generates low-frequency sound The low-frequency sound is radiated outward through the third sound guide hole and the fourth sound guide hole on the shell structure.
  • the third sound guide hole and the fourth sound guide hole are located on adjacent or opposite side walls of the housing structure.
  • the third sound guide hole and the fourth sound guide hole are respectively used to derive the sound of the front cavity and the rear cavity of the third acoustic driver.
  • the phase of the sound emitted by one of the third sound guide hole and the fourth sound guide hole that is close to the user's ear is close to that of the first sound guide hole and the second sound guide hole.
  • the phase of the sound emitted by one of the user's ears is the same.
  • the sound path difference of the sound emitted from the third sound guide hole and the fourth sound guide hole to the user's ear is greater than that emitted from the first sound guide hole and the second sound guide hole The sound path difference from the sound to the user’s ears.
  • the physical size of the third acoustic driver is larger than the physical size of the first acoustic driver or the second acoustic driver.
  • the area of the third diaphragm of the third acoustic driver is larger than the area of the first diaphragm of the first acoustic driver or the area of the second diaphragm of the second acoustic driver.
  • Fig. 1 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application
  • Fig. 2 is a far-field sound leakage diagram of the acoustic driver provided according to Fig. 1;
  • Fig. 3 is a schematic diagram of a module frame of an acoustic output device provided according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of an exemplary structure of an acoustic output device according to some embodiments of the present application.
  • FIG. 5 is a graph of frequency response when two acoustic drivers in an acoustic output device provided according to some embodiments of the present application are the same;
  • FIG. 6 is a graph of frequency response curves of two acoustic drivers in an acoustic output device provided according to some embodiments
  • Fig. 7 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • Fig. 8 is another structural schematic diagram of an acoustic output device provided according to some embodiments of the present application.
  • system is a method for distinguishing different components, elements, parts, parts, or assemblies of different levels.
  • the words can be replaced by other expressions.
  • a flowchart is used in this application to illustrate the operations performed by the system according to the embodiment of the application. It should be understood that the preceding or following operations are not necessarily performed exactly in order. Instead, the individual steps can be processed in reverse order or at the same time. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.
  • Fig. 1 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • the acoustic output device 100 may include a housing structure 110 with a hollow inside and an acoustic driver 120 disposed in an inner cavity of the housing structure 110.
  • the acoustic driver 120 may include a diaphragm 121 and a magnetic circuit structure 1220.
  • the acoustic driver 120 may also include a voice coil (not shown in FIG. 1). The voice coil may be fixed on the side of the diaphragm 121 facing the magnetic circuit structure 1220 and located in the magnetic field formed by the magnetic circuit structure 1220.
  • the voice coil When the voice coil is energized, it can vibrate under the action of a magnetic field and drive the diaphragm 121 to vibrate, thereby generating sound.
  • the side of the diaphragm 121 facing away from the magnetic circuit structure 1220 (that is, the right side of the diaphragm 121 in FIG. 1) can be regarded as the front side of the acoustic driver 120
  • the side of the magnetic circuit structure 1220 facing away from the diaphragm 121 Ie, the left side of the magnetic circuit structure 1220 in FIG. 1
  • the back of the acoustic driver 120 the side of the magnetic circuit structure 1220 facing away from the diaphragm 121
  • the vibration of the diaphragm 121 may cause the acoustic driver 120 to radiate sound outward from its front and back, respectively.
  • the front surface of the acoustic driver 120 or the diaphragm 121 and the housing structure 110 form a front cavity 111, and the back of the acoustic driver 120 and the housing structure 110 form a rear cavity 112.
  • the front of the acoustic driver 120 radiates sound to the front cavity 111, and the back of the acoustic driver 120 radiates sound to the rear cavity 112.
  • the housing structure 110 may further include a first sound guide hole 113 and a second sound guide hole 114.
  • the first sound guide hole 113 is in communication with the front cavity 111, and the second sound guide hole 113 is in communication with the rear cavity 112. .
  • the sound generated at the front of the acoustic driver 120 is transmitted to the outside through the first sound guide hole 113, and the sound generated at the back of the acoustic driver 120 is transmitted to the outside through the second sound guide hole 114.
  • the magnetic circuit structure 1220 may include a magnetic conductive plate 1221 disposed opposite to the diaphragm.
  • At least one sound guide hole 1222 (also called a pressure relief hole) is provided on the magnetic conductive plate 1221 for guiding the sound generated by the vibration of the diaphragm 121 from the back of the acoustic driver 120 and propagating to the outside through the rear cavity 112.
  • the acoustic output device 100 forms a dual sound source (or multiple sound sources) similar to a dipole structure through the sound radiation of the first sound guide hole 113 and the second sound guide hole 114, and generates a specific sound field with a certain directivity.
  • the sound generated on the front of the acoustic driver 120 is directly radiated out through the first sound guide hole 113 at the front cavity 111, the sound generated on the back of the acoustic driver 120 needs to pass through the cavity formed by the diaphragm 121 and the magnetic circuit structure 1220 first, and then It passes through the sound guide hole 1222 on the magnetic circuit structure 1220 (for example, the magnetic plate 1221) and the second sound guide hole 114 at the rear cavity 112 in turn, and then radiates to the outside, resulting in the acoustic impedance on the front of the acoustic driver 120 and the acoustic impedance on the back.
  • FIG. 2 is a far-field sound leakage diagram of the acoustic driver provided according to Fig. 1. As shown in FIG.
  • the front cavity 111 and the back cavity 112 provided in the acoustic output device 100, the cavity formed by the diaphragm 121 and the magnetic circuit structure 1220 will cause the acoustic output device 100 to be in the front cavity 111 (" The sound at the front cavity”) and the back cavity 112 (“back cavity” in FIG. 2) generates a resonance peak at a mid-frequency or a mid-high frequency (for example, 2000 Hz-4000 Hz).
  • the frequency response at the front cavity 111 and the back cavity 112 will be weakened differently (the frequency response at the back cavity 112 will weaken faster), resulting in the dipole-like structure formed by the acoustic output device 100
  • the higher-frequency frequency response is poor (for example, the first sound guide hole 113 and the second sound guide hole 114 radiate sound with a larger magnitude difference), and the sound leakage of the acoustic output device 100 in the far field cannot be well suppressed .
  • this specification describes another or more acoustic output devices including at least two acoustic drivers.
  • the acoustic output device When the user wears the acoustic output device, the acoustic output device is located at least on the side of the user's head, close to but not blocking the user's ears.
  • the acoustic output device can be worn on the user's head (for example, non-ear earphones worn with glasses, headbands or other structures), or on other parts of the user's body (for example, the user's neck/shoulder) Area), or placed near the user's ears by other means (for example, the way the user holds them by hand).
  • the acoustic output device may include a first acoustic driver, a second acoustic driver, a control circuit, and a housing structure.
  • the first acoustic driver may include a first diaphragm
  • the second acoustic driver may include a second diaphragm
  • the control circuit may be electrically connected to the first acoustic driver and the second acoustic driver, and the control circuit provides driving the first diaphragm to vibrate The first electrical signal and the second electrical signal that drives the second diaphragm to vibrate.
  • the first electrical signal and the second electrical signal have the same amplitude and opposite phases (for example, the first acoustic driver and the second acoustic driver are electrically connected to the control circuit with opposite polarities, respectively).
  • the first diaphragm and the second diaphragm can generate a set of sounds with opposite phases.
  • the housing structure can carry the first acoustic driver and the second acoustic driver, wherein the sound generated by the vibration of the first diaphragm can be radiated outward through the first sound guide hole on the housing structure, and the vibration of the second diaphragm can be generated.
  • the sound can be radiated outward through the second sound guide hole on the shell structure.
  • the sound generated by the vibration of the first diaphragm may refer to the sound generated by the front of the first acoustic driver
  • the sound generated by the vibration of the second diaphragm may refer to the sound generated by the front of the second acoustic driver.
  • the first sound guide hole and the second sound guide hole here
  • the hole can be approximated as a dual sound source (for example, a dual point sound source).
  • the sound generated by the first diaphragm and the sound generated by the second diaphragm do not need to pass through the magnetic circuit structure of the acoustic driver and then radiate outward, which can ensure the front side of the first acoustic driver.
  • the acoustic impedance is basically the same as the acoustic impedance on the front of the second acoustic drive driver, so that the sound emitted at the first sound guide hole and the second sound guide hole form an effective dual sound source.
  • the frequency response of the first acoustic driver and the second acoustic driver at medium and high frequencies is the same or similar, because the first electrical signal driving the first diaphragm and the second electrical signal driving the second diaphragm are opposite in phase
  • the sound emitted by the first sound guide hole can be the sound emitted by the second sound guide hole It can cancel each other out, can suppress the leakage of the acoustic output device to a certain extent, and can prevent the sound generated by the acoustic output device from being heard by others near the user.
  • the first acoustic driver and the second acoustic driver may be the same or similar acoustic drivers, so that the amplitude of the first acoustic driver and the second acoustic driver in the full frequency band The response is the same or similar.
  • the first acoustic driver and the second acoustic driver may be different acoustic drivers.
  • the first acoustic driver and the second acoustic driver have the same or similar frequency responses at medium and high frequencies, while in the low frequency range, the frequency responses of the first acoustic driver and the second acoustic driver are different.
  • the sound generated by the vibration of the first/second diaphragm may also refer to the sound generated on the back of the first/second acoustic driver. It is only necessary to ensure that the two acoustic drivers are connected to their corresponding sound guides.
  • the acoustic impedance between the holes may be the same or substantially the same.
  • Fig. 3 is a schematic diagram of a module frame of an acoustic output device provided according to some embodiments of the present application.
  • the acoustic output device 300 may include a signal processing module 310 and an output module 320.
  • the signal processing module 310 may include a control circuit 311.
  • the control circuit 311 may be configured to receive the initial acoustic signal, process the initial acoustic signal, and output a corresponding control signal (also referred to as an audio signal). That is, the signal that controls the generation and output of sound waves.
  • the initial acoustic signal may be an electrical signal converted from an external environment sound by one or more acoustic-electric conversion devices (for example, a microphone).
  • the acoustic output device 300 may include one or more air conduction or bone conduction microphones, which collect air vibration or any other perceivable mechanical vibration, convert it into an electrical signal and send it to the signal processing module 310.
  • the acoustic output device may obtain the initial acoustic signal from one or more signal sources.
  • the one or more signal sources may be internal equipment (for example, a memory) of the acoustic output device 300 or external equipment of the acoustic output device 300.
  • the external device may send a signal containing sound information to the acoustic output device 300 in a wired or wireless manner.
  • the output module 320 may include one or more electro-acoustic conversion devices (ie, acoustic drivers).
  • the acoustic driver in the output module 320 may be electrically coupled to the control circuit 311 and configured to generate sound waves according to the control signal.
  • the output module 320 may include a first acoustic driver 321 and a second acoustic driver 322, and the control signal may include a first electrical signal and a second electrical signal, wherein the first electrical signal is configured to drive the first The acoustic driver 321 emits sound, and the second electrical signal is configured to drive the second acoustic driver 322 to emit sound.
  • the first acoustic driver 321 may include a first diaphragm and a first magnetic circuit structure
  • the second acoustic driver 322 may include a second diaphragm and a second magnetic circuit structure, wherein the first electrical signal drives the first vibration The diaphragm vibrates, and the second electrical signal drives the second diaphragm to vibrate.
  • the first electrical signal and the second electrical signal have opposite phases.
  • the first diaphragm is driven by the first electrical signal to vibrate toward the first magnetic circuit structure
  • the second diaphragm is driven by the second electrical signal. Driven by, it vibrates away from the second magnetic circuit structure, so that the sound generated by the first acoustic driver 321 and the second acoustic driver 322 are opposite in phase.
  • the first acoustic driver 321 and the second acoustic driver 322 are electrically connected to the control circuit 311 with opposite polarities, respectively. At this time, the first acoustic driver 321 and the second acoustic driver 322 are connected in parallel and then connected in series with the control circuit 311. For ease of understanding, the manner in which the polarity is reversed can be described as that the positive pole of the first acoustic driver 321 is connected to the output terminal of the control circuit 311, and the negative pole of the second acoustic driver 322 is connected to the output terminal of the control circuit 311.
  • the control circuit 311 can generate a set of audio signals.
  • the audio signals are respectively input to the input terminals of the two acoustic drivers (ie, the positive pole of the first acoustic driver 321 and the negative pole of the second acoustic driver), two The acoustic driver obtains a first electrical signal and a second electrical signal with opposite polarities, respectively.
  • the first acoustic driver 321 and the second acoustic driver 322 are electrically connected to the signal processing module 310 with the same polarity, respectively.
  • the signal processing module 310 may output two sets of opposite phase audio signals.
  • an inverter circuit may be added between the control circuit 311 and the first acoustic driver 321 or the second acoustic driver 322.
  • the inverter circuit is configured to invert the phase of the audio signal by 180°.
  • the audio signal generated by the control circuit 311 is transmitted to the first acoustic driver 321 and the second acoustic driver 322 in a positive phase and a reverse phase, so that the two acoustic drivers obtain the first electrical signal and the second acoustic driver with opposite polarities.
  • the second electrical signal is configured to invert the phase of the audio signal by 180°.
  • the acoustic output device 300 may further include a housing structure.
  • the housing structure can carry the first acoustic driver 321 and the second acoustic driver 322, and the housing structure is provided with at least one first sound guide hole and at least one second sound guide hole.
  • the sound generated by the vibration of the first diaphragm of the first acoustic driver 321 may be radiated outward through at least one first sound guide hole, and the sound generated by the vibration of the second diaphragm of the second acoustic driver 322 may pass through at least one second sound guide.
  • the hole radiates outward.
  • the first sound guide hole and the second sound guide hole are respectively located in the front cavity of the first acoustic driver 321 and the second acoustic driver 322, or the first sound guide hole and the second sound guide hole are respectively located in the first acoustic driver 321 and the second acoustic driver 322.
  • the first guide The sound at the sound hole and the sound at the second sound guide hole can cancel each other, thereby reducing the sound leakage volume of the acoustic output device 300.
  • Acoustic driver is a component that can receive electrical signals and convert them into sound signals for output.
  • the first acoustic driver 321 and/or the second acoustic driver 322 may be speakers that output air-conducted sound waves.
  • the first acoustic driver 321 and/or the second acoustic driver 322 may also be speakers that output sound waves conducted by a solid medium (such as bone conduction sound waves).
  • the type of acoustic driver may include a low frequency (for example, 20 Hz to 200 Hz) acoustic driver, a medium and high frequency (for example, 200 Hz to 8 kHz) acoustic driver, or a high frequency (for example, greater than 8K).
  • Hz Acoustic driver
  • the low frequency, high frequency, etc. mentioned here only represent the approximate range of the frequency, and different division methods can be used in different application scenarios. For example, a crossover point can be determined, low frequency represents the frequency range below the crossover point, and high frequency represents the frequency above the crossover point.
  • the crossover point can be any value within the audible range of the human ear, for example, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 1000 Hz, etc.
  • the acoustic driver may also include, but is not limited to, moving coil, moving iron, piezoelectric, electrostatic, magnetostrictive, and other drivers.
  • the first acoustic driver 321 and the second acoustic driver 322 may be identical acoustic drivers.
  • the first acoustic driver 321 and the second acoustic driver 322 may be acoustic drivers of the same model manufactured by the same manufacturer.
  • the first acoustic driver 321 and the second acoustic driver 322 may both be mid-to-high frequency speakers, and have the same amplitude-frequency response in the mid-to-high frequency range.
  • the phases of the first electrical signal and the second electrical signal are opposite, the sound output from the front (or back) of the first acoustic driver 321 and the second acoustic driver 322 are opposite in phase.
  • the sound waves generated from the front of the first acoustic driver 321 and the second acoustic driver 322 radiate to the outside through the corresponding sound guide holes (for example, the first sound guide hole and the second sound guide hole), and the corresponding sound guide holes emit
  • the sound can be regarded as two point sound sources.
  • the two point sound sources produce mid- and high-frequency sounds with opposite phases, and they cancel each other in the far field, thereby reducing the sound leakage volume in the mid- and high-frequency ranges of the far field.
  • the physical size of the low-frequency acoustic driver may be larger than the physical size of the medium and high-frequency acoustic driver. It can be understood here that the diaphragm area of the low-frequency acoustic driver is larger than the diaphragm area of the mid- and high-frequency acoustic driver.
  • the diaphragm area here refers to the effective diaphragm area of the diaphragm in the vibration process.
  • the diaphragm structure or the diaphragm material can be changed to ensure the output effect of the low-frequency acoustic driver at low frequencies.
  • the first acoustic driver 321 and the second acoustic driver 322 may be different acoustic drivers.
  • the first acoustic driver 321 and the second acoustic driver 322 have different amplitude-frequency responses in the low frequency range, and have the same or similar amplitude-frequency responses in the middle and high frequency ranges.
  • the amplitude-frequency response of the first acoustic driver 321 and the second acoustic driver 322 are basically the same, based on the above-mentioned first signal and second signal, dual sound sources with opposite phases in the mid-to-high frequency range can be constructed to reduce the mid-to-high frequency range.
  • the first acoustic driver 321 and the second acoustic driver 322 are different or the difference is large, driven by the above-mentioned first signal and the second signal, the first acoustic driver 321 and the second acoustic driver 321 Although the low-frequency sound generated by the driver 322 is opposite in phase, the intensity difference is relatively large, so the effect of sound cancellation is weak, and the user's ear can still hear relatively large low-frequency near-field sound.
  • the signal processing module 310 may include a filter/filter bank (also referred to as a filtering system).
  • the filter/filter bank can adaptively change the first signal and/or the second signal input to the first acoustic driver 321 and/or the second acoustic driver 322 according to actual conditions.
  • the filter/filter bank can filter out low-frequency signals in the first electrical signal, so that the first acoustic driver 321 only outputs sounds in the middle and high frequency bands.
  • this method can improve the acoustic output effect of the acoustic output device in the low frequency band.
  • the output module 320 may further include a third acoustic driver 323.
  • the third acoustic driver 323 may include a third diaphragm, and the third diaphragm vibrates under the driving of the third electrical signal.
  • the third acoustic driver 323 may be a low-frequency acoustic driver.
  • the filter/filter bank can filter out the mid and high frequency band signals in the control signal, and send the remaining low frequency signals to the third acoustic driver 323, so that the third acoustic driver 323 can only output low-frequency sound, thereby improving
  • the acoustic output device 300 has an acoustic output effect in a low frequency band.
  • the third acoustic driver 323 may output the same phase as the first acoustic driver 321 or the second acoustic driver 322 or have a specific phase. Difference (for example, the absolute value of the phase difference is less than 90°) sound.
  • the low-frequency or medium-high frequency sound output by the third acoustic driver 323 can be used as compensation for the low-frequency or medium-high frequency sound heard by the user's ears, so that the user can more easily hear the sound of the acoustic output device in a high-noise environment.
  • control circuit 311 may further include a switch for controlling the switch state of the filter/filter bank, the inverter circuit, and/or the acoustic driver.
  • the switch can control the acoustic output device to adjust the sound according to different scenes. For example, in a high-noise environment, the far-field sound leakage is not easy to be heard by others near the user.
  • the inverter circuit Adjust the phases of the first electrical signal and the second electrical signal to be the same, so that the first acoustic driver 321 and the second acoustic driver 322 generate and output sounds with the same phase in the middle and high frequency bands, and improve the acoustic output device in the middle and high frequency bands. Output volume.
  • the filter electrically connected to the low-frequency acoustic driver can be turned off /Filter bank, so that the low-frequency acoustic driver can also generate sound waves in the middle and high frequency bands according to the control signal, so as to increase the volume of the middle and high frequency bands output by the acoustic output device.
  • the control signal for example, the third electrical signal
  • the signal processing module 310 may adjust the frequency division.
  • the phase of the low-frequency signal obtained by frequency division makes the low-frequency sound wave generated by the third acoustic driver 323 opposite to the low-frequency noise in the external noise, thereby realizing the effect of actively reducing low-frequency noise; in addition, the mid- and high-frequency signal obtained by frequency division can make the third
  • the acoustic driver 323 generates mid- and high-frequency sounds that have the same phase or a small phase difference (for example, not greater than 90°) with the mid- and high-frequency sounds generated by the first acoustic driver 321 and the second acoustic driver 322, thereby simultaneously achieving The effect of reducing noise in the low frequency band and increasing the output volume of the middle and high frequency bands.
  • the corresponding control signal may be processed in the signal processing module 310 so that the sound wave output by each acoustic driver contains a specific frequency.
  • the components can also be set and optimized in the output module 320 to configure and optimize the structure of the components or the arrangement of the components, so that the sound waves output by the acoustic drivers contain specific frequency components.
  • filters/filter banks can be set to process the signal to output signals containing different frequency components, and then output to the corresponding output module 320 for sound Output. Filters/filter banks include, but are not limited to, analog filters, digital filters, passive filters, active filters, etc.
  • the low frequency may refer to the frequency band generally from 20 Hz to 200 Hz
  • the medium and high frequency may refer to the frequency band generally from 200 Hz to 20 kHz.
  • the mid-to-high frequency may refer to a frequency band of generally 400 Hz-10 kHz. More preferably, the mid-to-high frequency may refer to the frequency band of generally 600 Hz-8 kHz.
  • the frequency band may also be subdivided into low frequency band, mid-low frequency band, mid frequency band, mid-high frequency band, high frequency band, and so on. Those of ordinary skill in the art will understand that the above-mentioned division of frequency bands is only used as an example to give an approximate range.
  • low frequency refers to the frequency band generally from 20Hz to 80Hz
  • mid-to-low frequency can refer to the frequency band generally between 80Hz-160Hz
  • mid-frequency can refer to the frequency band generally from 160Hz to 2kHz
  • mid-to-high frequency can refer to generally
  • the high frequency band can refer to the frequency band from 8kHz to 20kHz in general.
  • Fig. 4 is a schematic diagram of an exemplary structure of an acoustic output device according to some embodiments of the present application.
  • the acoustic output device 400 may include a housing structure 410 with a hollow interior, and a first acoustic driver 420 and a second acoustic driver 430 disposed in the housing structure 410.
  • the acoustic output device 400 may be worn on the user's body (for example, the head, neck, or upper torso of the human body) through the housing structure 410, while the housing structure 410, the first acoustic driver 420, and the second The second acoustic driver 430 can be close to but does not block the ear canal, so that the user's ears are kept open, and the user can hear the sound output by the acoustic output device 400 while also hearing the sound of the external environment.
  • the acoustic output device 400 may be arranged around or partly around the circumference of the user's ear, and may transmit sound through air conduction or bone conduction.
  • the housing structure 410 may be used to be worn on a user's body, and may carry acoustic drivers (for example, the first acoustic driver 420 and the second acoustic driver 430).
  • the housing structure 410 may be a closed housing structure with a hollow inside, and the acoustic driver may be located inside the housing structure 410.
  • the acoustic output device 400 can be combined with glasses, headsets, head-mounted display devices, AR/VR helmets and other products. In this case, the housing structure 410 can be suspended or clamped. The way is fixed near the user’s ear.
  • a hook may be provided on the housing structure 410, and the shape of the hook matches the shape of the auricle, so that the acoustic output device 400 can be independently worn on the user's ear through the hook.
  • the acoustic output device 400 for independent wear may be connected to a signal source (for example, a computer, a mobile phone or other mobile devices) in a wired or wireless manner (for example, Bluetooth).
  • a signal source for example, a computer, a mobile phone or other mobile devices
  • a wired or wireless manner for example, Bluetooth
  • the acoustic output device 400 at the left and right ears may be directly connected to the signal source in a wireless manner.
  • the acoustic output device 400 at the left and right ears may include a first output device and a second output device, where the first output device may be communicatively connected with the signal source, and the second output device may be wirelessly connected to the first output device in a wireless manner.
  • the first output device and the second output device realize the synchronization of audio playback through one or more synchronization signals.
  • the wireless connection mode may include, but is not limited to, Bluetooth, local area network, wide area network, wireless personal area network, near field communication, etc., or any combination thereof.
  • the housing structure 410 may be a housing structure having a human ear fitting shape, such as a circular ring shape, an oval shape, a polygonal shape (regular or irregular), a U shape, a V shape, and a semicircular shape.
  • the housing structure 410 can be directly hung on the user's ear.
  • the housing structure 410 may also include one or more fixing structures.
  • the fixing structure may include an ear hook, a head beam or an elastic band, so that the acoustic output device 400 can be better fixed on the user, and prevent the user from falling during use.
  • the elastic band may be a headband, and the headband may be configured to be worn around the head area.
  • the elastic band may be a neckband, configured to be worn around the neck/shoulder area.
  • the elastic band may be a continuous belt, and can be stretched elastically to be worn on the user's head, while the elastic band can also apply pressure to the user's head, making the acoustic output device 100 firm The ground is fixed on a specific position of the user's head.
  • the elastic band may be a discontinuous band.
  • the elastic band may include a rigid part and a flexible part.
  • the rigid part may be made of a rigid material (for example, plastic or metal), and the rigid part may be physically connected to the housing structure 410 of the acoustic output device 400 (for example, a card). Connection, threaded connection, etc.).
  • the flexible part may be made of elastic material (for example, cloth, composite material or/and neoprene).
  • the acoustic drivers may each include a diaphragm and a magnetic circuit structure.
  • the control signal for example, the first electrical signal and the second electrical signal
  • the sound can be emitted from the front side and the back side of the diaphragm, respectively.
  • the housing structure 410 may include a first cavity 411 and a second cavity 412, wherein the first cavity 411 and the second cavity 412 are not connected, that is, the housing structure 410 is provided with A baffle separates the first cavity 411 from the second cavity 412.
  • the housing structure 410 may include a first housing structure and a second housing structure, the first housing structure is fixedly connected to the second housing structure, and the first housing structure is provided with a first housing structure.
  • the cavity 411 is provided with a second cavity 412 inside the second housing structure.
  • the first acoustic driver 420 is located in the first cavity 411.
  • the front side of the first acoustic driver 420 and the housing structure 410 form a first front cavity 4111, and the back side of the first acoustic driver 420 and the housing structure 420 form a first rear cavity 4112.
  • the front of the first acoustic driver 420 radiates sound to the first front cavity 4111, and the back of the first acoustic driver 420 radiates sound to the first rear cavity 4112.
  • the second acoustic driver 430 is located in the second cavity 412.
  • the front surface of the second acoustic driver 430 and the housing structure 410 form a second front cavity 4121, and the back of the second acoustic driver 430 and the housing structure 410 form a second rear cavity 4122.
  • the front of the second acoustic driver 430 radiates sound to the second front cavity 4121, and the back of the second acoustic driver 430 radiates sound to the second rear cavity 4122.
  • the first cavity 411 and the second cavity 412 are the same.
  • the first acoustic driver 420 and the second acoustic driver 430 can be respectively disposed in the first cavity 411 and the second cavity 412 in the same manner, so that the first front cavity 4111 and the second front cavity 4121 are the same, and the first rear cavity
  • the cavity 4112 and the second rear cavity 4122 are the same, so that the acoustic impedance of the front or back of the first acoustic driver 420 and the second acoustic driver 430 can be the same.
  • the first cavity 411 and the second cavity 412 may also be different, and the first acoustic driver 420 and the second acoustic driver can be made by changing the size and/or length of the cavity or increasing the damping.
  • the side wall of the housing structure 410 where the first front cavity 4111 is located is provided with one or more first sound guide holes 413, one or more first sound guide holes 413 and the first front cavity 4111 Connected, the sound output from the front of the first acoustic driver 420 can radiate sound to the outside of the acoustic output device 400 through one or more first sound guide holes 413.
  • One or more second sound guide holes 414 are provided on the side wall of the housing structure 410 where the second front cavity 4121 is located.
  • the one or more second sound guide holes 414 are in communication with the second front cavity 4121, and the second acoustic driver The sound output from the front of the 430 may radiate sound to the outside of the acoustic output device 400 through the one or more second sound guide holes 414.
  • the first sound guide hole 413 and the second sound guide hole 414 may be located on opposite side walls of the housing structure 410.
  • the first sound guide hole 413 may be located on the side wall of the housing structure 410 facing the user's ear
  • the second sound guide hole 414 may be located on the side wall of the housing structure 410 facing the user's ear.
  • the first sound guide hole 413 may be located on the side wall of the housing structure 410 opposite to the front of the first acoustic driver 420, and the second sound guide hole 414 may be located on the housing structure opposite to the front of the second acoustic driver 430. 410 on the side wall.
  • the acoustic output device 400 may not include the first front cavity 4111, the second front cavity 4121, the first back cavity 4112, or the second back cavity 4122.
  • the front of the first acoustic driver 420 and the front of the second acoustic driver 430 directly radiate sound to the outside, that is, the first front cavity 4111 is not formed between the front of the first acoustic driver 420 and the housing structure 410, and the second No second front cavity 4121 is formed between the front surface of the acoustic driver 430 and the housing structure 410.
  • the first rear chamber 4112 and the second rear chamber 4122 may be closed or provided with one or more tuning holes (also called pressure relief holes) for adjusting the air pressure inside the rear chamber. Not shown).
  • the first acoustic driver 420 and the second acoustic driver 430 may be the same acoustic driver, and the signal processing module may control the first acoustic driver through control signals (for example, the first electrical signal and the second electrical signal).
  • the front surface of the driver 420 and the front surface of the second acoustic driver 430 generate sounds that satisfy certain phase and amplitude conditions (for example, sounds with the same amplitude and opposite phase, sounds with different amplitudes and opposite phase, etc.).
  • the sound generated in the front of the first acoustic driver 420 is radiated to the outside of the acoustic output device 400 through the first sound guide hole 413, and the sound generated in the front of the second acoustic driver 430 is radiated to the outside of the acoustic output device 400 through the second sound guide hole 414.
  • the first sound guide hole 413 and the second sound guide hole 414 may be equivalent to dual sound sources outputting sounds of opposite phases.
  • the fronts of the two acoustic drivers namely the front of the first acoustic driver 420 and the front of the second acoustic driver 430, generate opposite-phase sounds and pass the first
  • the sound guide hole 413 and the second sound guide hole 414 radiate to the outside.
  • the sound emitted by the first sound guide hole 413 and the second sound guide hole 414 in the acoustic output device 400 can be constructed as an effective dual sound source, that is, the first sound guide hole 413 and the second sound guide hole 414 can be more Sounds in opposite phases accurately.
  • the sound emitted at the first sound guide hole 413 can better cancel out the sound emitted at the second sound guide hole 414, thereby to a certain extent
  • the above can better suppress the sound leakage of the acoustic output device in the middle and high frequency bands, and at the same time can prevent the sound generated by the acoustic output device 400 from being heard by others near the user, thereby improving the sound leakage reduction effect of the acoustic output device 400.
  • the housing structure 410 serves as a barrier between the dual sound sources (for example, the sound emitted by the first sound guide hole 413 and the sound emitted by the second sound guide hole 414). At this time, the housing structure 410 separates the first sound guide hole 413 and the second sound guide hole 414 so that the first sound guide hole 413 and the second sound guide hole 414 have different acoustic paths to the user's ear canal.
  • distributing the first sound guide hole 413 and the second sound guide hole 414 on both sides of the housing structure 410 can increase the sound path of the first sound guide hole 413 and the second sound guide hole 414 respectively to transmit sound to the user’s ears.
  • the difference (that is, the distance between the sound from the first sound guide hole 413 and the second sound guide hole 414 to reach the user’s ear canal) makes the sound cancellation effect at the user’s ears (ie near field) weaker, thereby increasing the user’s ears
  • the volume of the heard sound also called near-field sound
  • the shell structure 410 has little effect on the sound transmission of the sound guide hole to the environment (also called far-field sound), and the far-field sound generated by the first sound guide hole 413 and the second sound guide hole 414 can still be relatively low.
  • Good cancellation of each other can suppress the leakage of the acoustic output device 400 to a certain extent, and at the same time can prevent the sound generated by the acoustic output device 400 from being heard by others near the user. Therefore, with the above configuration, the listening volume of the acoustic output device 400 in the near field can be increased and the leakage volume of the acoustic output device 400 in the far field can be reduced.
  • the first cavity 411 (for example, the first front cavity 4111 and the first rear cavity 4112) and the second cavity 412 (for example, the second front cavity 4121 and the second rear cavity 4122) can also be provided. ), so that the sound output by the first acoustic driver 420 at the first sound guide hole 413 and the second acoustic driver 430 at the second sound guide hole 414 meet specific conditions.
  • the size and/or length of the first front cavity 4111 and the second front cavity 4112 can be designed so that the first sound guide hole 413 and the second sound guide hole 414 can output a set of specific phase relationships (for example, opposite phases). (Or approximately the opposite), the acoustic output device 400 has a lower listening volume in the near field and the problem of sound leakage in the far field is effectively improved.
  • the positions of the first cavity 411 and the second cavity 412 in FIG. 4 in the embodiment of this specification are not limited to the positions of the user's ears in FIG. 4 up and down vertically, and may also be relative to the user's ears.
  • the position is relatively inclined up and down, horizontally arranged horizontally, and relatively inclined horizontally.
  • the positions of the first cavity 411, the second cavity 412, the first acoustic driver 420, and the second acoustic driver 430 can be adjusted adaptively according to actual conditions, which are not further limited herein.
  • Fig. 5 is a graph of frequency response when two acoustic drivers in an acoustic output device provided according to some embodiments of the present application are the same.
  • the acoustic output device is provided with two identical first acoustic drivers 420 ("speaker A” shown in FIG. 5) and second acoustic drivers 430 ("speaker B" shown in FIG. ), the first acoustic driver 420 and the second acoustic driver 430 have approximately the same amplitude-frequency response in the mid-high frequency band (for example, 200Hz-8kHz) and the high frequency band (for example, greater than 8kHz).
  • the first acoustic driver 420 and the second acoustic driver 420 have approximately the same amplitude-frequency response.
  • the two acoustic drivers 430 are driven by the first electrical signal and the second electrical signal with opposite phases to emit sounds of opposite phases through the first sound guide hole 413 and the second sound guide hole 414, so that the acoustic output device is in the middle and high frequency range and
  • the high frequency band can construct an effective dual sound source.
  • the first acoustic driver and the second acoustic driver operate in the mid-to-high frequency range and high frequency range.
  • the difference in the frequency response of the frequency band is not more than 6dB.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-high frequency band and the high frequency band is not more than 5 dB. More preferably, the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-high frequency band and the high frequency band is not more than 4 dB. Further preferably, the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-high frequency band and the high frequency band is not more than 3 dB.
  • the mid-high frequency band and the high frequency band range are within a specific frequency band range, and the specific frequency band ranges from 200 Hz to 20 kHz.
  • Fig. 6 is a graph showing the frequency response of two acoustic drivers in an acoustic output device provided according to some embodiments at different times.
  • the acoustic output device is provided with two different first acoustic drivers 420 ("speaker A” shown in FIG. 6) and second acoustic drivers 430 ("speaker B" shown in FIG. 6)
  • the first acoustic driver 420 and the second acoustic driver 430 have a certain difference in their amplitude-frequency response in the low frequency range (for example, 100Hz-200Hz)
  • the first acoustic driver 420 and the second acoustic driver 430 have a certain difference in the mid-to-high frequency range and the high frequency range.
  • the frequency response of the frequency band is roughly the same.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in at least part of the low-frequency range is not less than 10dB, so that the two acoustic drivers The output volume in this low frequency range has a large difference.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in at least part of the low-frequency range is not less than 15 dB. Further preferably, the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in at least part of the low-frequency range is not less than 20 dB.
  • the acoustic path from the first acoustic driver 420 to the user’s ear may be smaller than the acoustic path from the second acoustic driver 430 to the user’s ear, thereby further increasing the first acoustic driver 420
  • the volume difference between the emitted low-frequency sound and the low-frequency sound emitted by the second acoustic driver 430 at the user's ears reduces the degree of mutual cancellation of the low-frequency sounds, thereby increasing the low-frequency listening volume at the user's ears.
  • the acoustic path from the acoustic driver to the user's ear may refer to the distance from the diaphragm to the user's ear.
  • the distance from the first diaphragm of the first acoustic driver 420 to the user's ear may refer to the acoustic distance from the sound guide hole corresponding to the acoustic driver to the user’s ear, for example, the first sound guide hole 413 corresponding to the first acoustic driver 420 to the user’s ear The acoustic distance.
  • the first acoustic driver 420 and the second acoustic driver 430 can pass through the first sound guide hole 413 and the second sound guide hole under the driving of the first electric signal and the second electric signal with opposite phases.
  • the 414 emits sounds with opposite phases and the same or close amplitude, so that the acoustic output device can construct an effective dual sound source in the middle and high frequency bands.
  • the first acoustic driver and the second acoustic driver in order to ensure that the sound emitted by the first acoustic driver and the second acoustic driver through the corresponding sound guide holes can form an effective dual sound source of the middle and high frequency bands, the first acoustic driver and the second acoustic driver
  • the difference between the amplitude-frequency response of the driver in the mid-high frequency band and the high frequency band is not more than 6dB.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-high frequency band and the high frequency band is not more than 5 dB.
  • the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-high frequency band and the high frequency band is not more than 4 dB. Further preferably, the difference between the amplitude-frequency response of the first acoustic driver and the second acoustic driver in the mid-high frequency band and the high frequency band is not more than 3 dB. In some embodiments, the mid-high frequency band and the high frequency band range are within a specific frequency band range, and the specific frequency band ranges from 200 Hz to 20 kHz.
  • the acoustic output device 700 may include a first acoustic driver 720, a second acoustic driver 730, a third acoustic driver 740, and a housing structure 710.
  • the housing structure 710 may include a first cavity 711, a second cavity 712, and a third cavity 713 that are not connected to each other.
  • the first acoustic driver 720 is located in the first cavity 711, and the second acoustic driver 730 It is located in the second cavity 712, and the third acoustic driver 740 is located in the third cavity 713.
  • the front surface of the first acoustic driver 720 and the housing structure 710 form a first front cavity 7111, and the back surface of the first acoustic driver 720 and the housing structure 720 form a first rear cavity 7112.
  • the front of the first acoustic driver 720 radiates sound to the first front cavity 7111, and the back of the first acoustic driver 720 radiates sound to the first rear cavity 7112.
  • the front surface of the second acoustic driver 730 and the housing structure 710 form a second front cavity 7121, and the back of the second acoustic driver 730 and the housing structure 710 form a second rear cavity 7122.
  • the front side of the second acoustic driver 730 radiates sound to the second front cavity 7121, and the back side of the second acoustic driver 730 radiates sound to the second rear cavity 7122.
  • the front surface of the third acoustic driver 740 and the housing structure 710 form a third front cavity 7131, and the back of the third acoustic driver 740 and the housing structure 710 form a third rear cavity 7132.
  • the front of the third acoustic driver 730 radiates sound to the third front cavity 7131, and the back of the third acoustic driver 740 radiates sound to the third rear cavity 7122.
  • the side wall of the housing structure 710 where the first front cavity 7111 is located is provided with one or more first sound guide holes 714, one or more first sound guide holes 714 and the first front cavity 7111 Connected, the sound output from the front of the first acoustic driver 720 can radiate sound to the outside of the acoustic output device 700 through the one or more first sound guide holes 714.
  • One or more second sound guide holes 715 are provided on the side wall of the housing structure 710 where the second front cavity 7121 is located.
  • One or more second sound guide holes 715 are in communication with the second front cavity 712, and the second acoustic driver The sound output from the front of the 730 may radiate sound to the outside of the acoustic output device 700 through the one or more second sound guide holes 715.
  • the first sound guide hole 714 and the second sound guide hole 715 may be located on different sidewalls of the housing structure 710.
  • the first sound guide hole 714 and the second sound guide hole 715 are respectively located on adjacent side walls of the housing structure 710.
  • the first sound guide hole 714 and the second sound guide hole 715 are respectively located on opposite side walls of the housing structure 710.
  • One or more third sound guide holes 716 are provided on the side wall of the housing structure 710 where the third front cavity 7131 is located, one or more third sound guide holes 715 are in communication with the third front cavity 7131, and a third acoustic driver
  • the sound output from the front of the 740 may radiate sound to the outside of the acoustic output device 700 through one or more third sound guide holes 716.
  • One or more fourth sound guide holes 717 are provided on the side wall of the housing structure 710 where the third rear cavity 7132 is located, one or more fourth sound guide holes 717 are in communication with the fourth rear cavity 7132, and the third acoustic driver
  • the sound output from the back of the 740 may radiate sound to the outside of the acoustic output device 700 through one or more fourth sound guide holes 717.
  • the third sound guide hole 716 and the fourth sound guide hole 717 may be located on different sidewalls of the housing structure 710.
  • the third sound guide hole 716 and the fourth sound guide hole 717 are respectively located on adjacent side walls of the housing structure 710.
  • the third sound guide hole 716 and the fourth sound guide hole 717 are respectively located on opposite side walls of the housing structure 710.
  • the first acoustic driver 720 and the second acoustic driver 730 are medium and high frequency acoustic drivers
  • the third acoustic driver 740 is a low frequency acoustic driver.
  • the first acoustic driver 720 and the second acoustic driver 730 emit sound waves with opposite phases under the control of the first electrical signal and the second electrical signal with opposite phases.
  • the third acoustic driver 740 can filter out the second acoustic wave through a filter/filter bank. The mid-to-high frequency part of an electric signal or a second electric signal only outputs low-frequency sound.
  • the third acoustic driver 730 outputs sound waves with opposite phases through the third sound guide hole 716 and the fourth sound guide hole 717.
  • the first sound guide hole 714 and the third sound guide hole 716 may face the user’s ears
  • the second sound guide hole 715 may face the user’s ears or face away from the user’s ears
  • the fourth sound guide hole 715 may face the user’s ears or face away from the user’s ears.
  • the sound guide hole 717 may face away from the user's ear.
  • the phase of the sound emitted by the third sound guide hole 716 and the fourth sound guide hole 717 near the user’s ear is in phase with the one of the first sound guide hole 714 and the second sound guide hole 715 near the user’s ear.
  • the phase of the sound emitted is the same. What needs to be known is that the phases of sounds emitted by different sound guide holes close to the user's ears are the same, so that the sounds from different sound guide holes can be superimposed, thereby increasing the listening volume at the user's ears. In a place far away from the user’s ears (i.e.
  • the sound waves emitted by different sound guide holes are caused by The opposite phases can cancel each other, thereby reducing the sound leakage volume of the acoustic output device in the far field.
  • the first cavity 711 (for example, the first front cavity 7111 and the first rear cavity 7112)/the second cavity 712 (for example, the second front cavity 7121 and the second rear cavity 7122)
  • the structure of the third cavity 713 makes the first acoustic driver 720 in the first sound guide hole 714/the second acoustic driver 730 in the second guide
  • the sound output by the sound hole 715 and the third acoustic driver 740 at the third sound guide hole 716 or the fourth sound guide hole 717 satisfies certain conditions.
  • the size and/or length of the first front cavity 4111 and the third front cavity 7131 can be designed so that a group of sounds with the same phase can be output at the first sound guide hole 413 and the second sound guide hole 414.
  • the wavelength of the low-frequency sound is longer than the wavelength of the middle-high-frequency or high-frequency sound
  • the third acoustic driver 740 emitting at the third sound guide hole 716 and the fourth sound guide hole 717 in order to reduce the third acoustic driver 740 emitting at the third sound guide hole 716 and the fourth sound guide hole 717
  • the sound path difference from the third sound guide hole 716 and the fourth sound guide hole 717 to the user’s ear is greater than that of the first sound guide hole 714 and the second sound guide hole 715
  • the sound path from the emitted sound to the user’s ears is poor.
  • the acoustic output device 700 shown in FIG. 7 and FIG. 8 can not only reduce the sound leakage volume in the far field of the middle and high frequency bands and improve the listening effect of the low frequency bands, but also be suitable for high-noise environments. .
  • the sound leakage in the far field is not easily heard by others near the user.
  • first acoustic driver 720 and the second acoustic driver 730 are both medium and high-frequency acoustic drivers, Turn off the inverter circuit to adjust the phases of the first electrical signal and the second electrical signal to be the same, so that the first acoustic driver 720 outputs the phase through the first sound guide hole 714, and the second acoustic driver 730 outputs the phase through the second sound guide hole 715
  • the same mid-to-high frequency range sound increases the output volume of the acoustic output device in the mid-to-high frequency range.
  • the electrical connection with the third acoustic driver 730 can be turned off.
  • Filter/filter group so that the third acoustic driver 730 can also generate sound waves in the middle and high frequency bands according to the control signal, and the sound waves can pass through the third sound guide hole 716 and the fourth sound guide hole 717 toward or away from the user’s ear Radiate sound to increase the volume of the mid-to-high frequency band output by the acoustic output device.
  • the control signal for example, the third electrical signal
  • the signal processing module may adjust the frequency division.
  • the phase of the low-frequency signal obtained by the frequency is such that the low-frequency sound wave generated by the third acoustic driver 740 radiates to the outside through the third sound guide hole 716 and the fourth sound guide hole 717, and the third sound guide hole 716 and the fourth sound guide hole 717
  • the sound wave emitted to the external radiation is opposite to the low-frequency noise in the external noise, thereby realizing the effect of actively reducing low-frequency noise; in addition, the frequency-divided mid-high frequency signal can make the third acoustic driver 740 generate mid-high frequency sound.
  • the mid- and high-frequency sound has the same phase as the mid- and high-frequency sounds generated by the first acoustic driver 720 and the second acoustic driver 730, or the phase difference is small (for example, not greater than 90°), so as to achieve both low-frequency noise reduction and height adjustment.
  • the effect of the output volume in the high frequency range is small (for example, not greater than 90°), so as to achieve both low-frequency noise reduction and height adjustment.
  • the number of acoustic drivers is not limited to the above three, but can also be four, five, etc.
  • the number of acoustic drivers and the corresponding sound parameters can be based on The actual demand will be adjusted accordingly, and no further restrictions will be made here.
  • the specific structure of the acoustic driver refer to Figure 1 of the specification of this application and its related descriptions.
  • the first/second/third acoustic drivers in FIG. 7 and FIG. 8 are the same as or similar to the first/second/third acoustic drivers mentioned in FIG. 3 or FIG. 4 and the description thereof.
  • this application uses specific words to describe the embodiments of this application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “one embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. .
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.
  • the computer storage medium may contain a propagated data signal containing a computer program code, for example on a baseband or as part of a carrier wave.
  • the propagated signal may have multiple manifestations, including electromagnetic forms, optical forms, etc., or suitable combinations.
  • the computer storage medium may be any computer readable medium other than the computer readable storage medium, and the medium may be connected to an instruction execution system, device, or device to realize communication, propagation, or transmission of the program for use.
  • the program code located on the computer storage medium can be transmitted through any suitable medium, including radio, cable, fiber optic cable, RF, or similar medium, or any combination of the above medium.
  • the computer program codes required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python Etc., conventional programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code can be run entirely on the user's computer, or run as an independent software package on the user's computer, or partly run on the user's computer and partly run on a remote computer, or run entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any network form, such as a local area network (LAN) or a wide area network (WAN), or connected to an external computer (for example, via the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service
  • numbers describing the number of ingredients and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifier "about”, “approximately” or “substantially” in some examples. Retouch. Unless otherwise stated, “approximately”, “approximately” or “substantially” indicates that the number is allowed to vary by ⁇ 20%.
  • the numerical parameters used in the description and claims are approximate values, and the approximate values can be changed according to the required characteristics of individual embodiments. In some embodiments, the numerical parameter should consider the prescribed effective digits and adopt the method of general digit retention. Although the numerical ranges and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Headphones And Earphones (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本申请公开了一种声学输出装置,该声学输出装置可以包括第一声学驱动器,所述第一声学驱动器包括第一振膜;第二声学驱动器,所述第二声学驱动器包括第二振膜;控制电路,所述控制电路分别电连接到所述第一声学驱动器和所述第二声学驱动器,所述控制电路提供驱动所述第一振膜振动的第一电信号和驱动所述第二振膜振动的第二电信号,所述第一电信号和所述第二电信号相位相反;以及壳体结构,所述壳体结构承载所述第一声学驱动器和所述第二声学驱动器,其中,所述第一振膜振动产生的声音通过所述壳体结构上第一导声孔向外辐射,所述第二振膜振动产生的声音通过所述壳体结构上第二导声孔向外辐射。

Description

一种声学输出装置
优先权信息
本申请要求2019年9月19日提交的中国申请号201910888762.2的优先权,以及2019年9月19日提交的中国申请号201910888067.6的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及声学领域,特别涉及一种声学输出装置。
背景技术
开放双耳的声学输出装置是一种在特定范围内实现声传导的便携式音频输出设备。与传统的入耳式、耳罩式耳机相比,开放双耳的声学输出装置具有不堵塞、不覆盖耳道的特点,可以让用户在聆听音乐的同时,获取外界环境中的声音信息,提高安全性与舒适感。由于开放式结构的使用,开放双耳的声学输出装置的漏音往往较传统耳机更为严重。目前,行业内的普遍做法是利用扬声器正面和背面的声辐射构建双声源,构建特定声场,调控声压分布,以降低漏音。该方法虽然能够在一定程度上能够达到降低漏音的效果,但是仍然存在一定的局限性。例如,由于扬声器发出的声波为振膜正面和振膜背面的辐射声波,而振膜背面辐射的声波需要先经过振膜与电磁结构(如,导磁板)形成的腔体,然后通过电磁结构上的开孔向外界辐射,导致了扬声器正面的声阻抗和背面声阻抗不匹配,从而造成正面和背面的声辐射无法形成有效的双声源(尤其是在中高频),从而造成漏音增加。
因此希望提供一种能够提供更有效的双声源的声学输出装置,可以同时达到提高用户听音音量和降低漏音的效果。
发明内容
本申请实施例提供一种声学输出装置,该声学输出装置包括:第一声学驱动器,所述第一声学驱动器包括第一振膜;第二声学驱动器,所述第二声学驱动器包括第二振膜;控制电路,所述控制电路分别电连接到所述第一声学驱动器和所述第二声学驱动器,所述控制电路提供驱动所述第一振膜振动的第一电信号和驱动所述第二振膜振动的第二电信号,所述第一电信号和所述第二电信号相位相反;以及壳体结构,所述壳体结构承载所述第一声学驱动器和所述第二声学驱动器,其中,所述第一振膜振动产生的声音通过所述壳体结构上第一导声孔向外辐射,所述第二振膜振动产生的声音通过所述壳体 结构上第二导声孔向外辐射。
在一些实施例中,所述第一声学驱动器包括第一磁路结构,所述第二声学驱动器包括第二磁路结构,当所述第一振膜在所述第一电信号的驱动下朝向所述第一磁路结构振动时,所述第二振膜在所述第二电信号的驱动下远离所述第二磁路结构振动。
在一些实施例中,所述壳体结构至少包括第一腔体和第二腔体,其中,所述第一腔体与所述第二腔体不连通;所述第一声学驱动器位于所述第一腔体中,所述第二声学驱动器位于所述第二腔体中。
在一些实施例中,所述第一腔体和第二腔体相同,其中,所述第一声学驱动器的前腔与所述第二声学驱动器的前腔相同,所述第二声学驱动器的后腔与所述第二声学驱动器的后腔相同。
在一些实施例中,所述第一导声孔与所述第一腔体连通,所述第二导声孔与所述第二腔体连通;所述第一声学驱动器从所述第一导声孔发出声音,所述第二声学驱动器从所述第二导声孔发出声音;其中,所述第一声学驱动器在所述第一导声孔处发出的声音和所述第二声学驱动器在所述第二导声孔处发出的声音相位相反。
在一些实施例中,所述第一导声孔和第二导声孔位于壳体结构相邻或相对的侧壁上。
在一些实施例中,所述控制电路产生音频信号,所述第一声学驱动器和所述第二声学驱动器以极性相反的方式分别接收所述音频信号,从而分别获得所述第一电信号和所述第二电信号。
在一些实施例中,所述第一声学驱动器和所述第二声学驱动器以极性相同的方式分别电连接到所述控制电路,其中,所述第一声学驱动器或所述第二声学驱动器与控制电路之间通过反相电路电连接。
在一些实施例中,所述第一声学驱动器和所述第二声学驱动器在中高频范围的幅频响应的差值不大于6dB。
在一些实施例中,所述中高频范围在200Hz-20kHz以内。
在一些实施例中,所述第一声学驱动器和所述第二声学驱动器在至少部分低频范围的幅频响应的差值不小于10dB。
在一些实施例中,所述第一声学驱动器和所述第二声学驱动器在低频范围的幅频响应值较大的一个声学驱动器到用户耳朵的声学路径较小。
在一些实施例中,所述第一声学驱动器的后腔和所述第二声学驱动器的后腔设 有至少一个调音孔。
在一些实施例中,声学输出装置还包括第三声学驱动器,所述第三声学驱动器包括第三振膜;所述控制电路提供驱动所述第三振膜振动的第三电信号并产生低频声音,所述低频声音通过所述壳体结构上第三导声孔和第四导声孔向外辐射。
在一些实施例中,所述第三导声孔和第四导声孔位于壳体结构相邻或相对的侧壁上。
在一些实施例中,所述第三导声孔和第四导声孔分别用于导出所述第三声学驱动器前腔和后腔的声音。
在一些实施例中,所述第三导声孔和所述第四导声孔中靠近用户耳朵的一个发出的声音的相位与所述第一导声孔和所述第二导声孔中靠近用户耳朵的一个发出的声音的相位相同。
在一些实施例中,所述第三导声孔和所述第四导声孔处发出的声音到用户耳朵的声程差大于所述第一导声孔和所述第二导声孔处发出的声音到用户耳朵的声程差。
在一些实施例中,所述第三声学驱动器的物理尺寸大于所述第一声学驱动器或第二声学驱动器的物理尺寸。
在一些实施例中,所述第三声学驱动器的第三振膜的面积大于所述第一声学驱动器的第一振膜的面积或第二声学驱动器的第二振膜的面积。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例提供的声学输出装置的结构示意图;
图2是根据图1提供的声学驱动器的远场漏音图;
图3是根据本申请一些实施例提供的声学输出装置的模块框架示意图;
图4是根据本申请一些实施例所示的声学输出装置的示例性的结构示意图;
图5是根据本申请一些实施例提供的声学输出装置中的两个声学驱动器相同时的频率响应曲线图;
图6是根据一些实施例提供的声学输出装置中的两个声学驱动器不同时的频率响应曲线图;
图7是根据本申请一些实施例提供的声学输出装置的结构示意图;以及
图8是根据本申请一些实施例提供的声学输出装置的另一结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本申请一些实施例提供的声学输出装置的结构示意图。声学输出装置100可以包括内部中空的壳体结构110以及设置在壳体结构110内部腔体中的声学驱动器120。声学驱动器120可以包括振膜121和磁路结构1220。声学驱动器120还可以包括音圈(图1中未示出)。所述音圈可以固定在振膜121朝向磁路结构1220的一侧,并位于磁路结构1220所形成的磁场中。当所述音圈通电后,其可以在磁场的作用下振动并带动振膜121振动,从而产生声音。为方便描述,振膜121背朝磁路结构1220的一侧(即图1中振膜121的右侧)可以被认为是声学驱动器120的正面,磁路结构1220背朝振膜121的一侧(即图1中磁路结构1220的左侧)可以被认为是声学驱动器120的背面。振膜121振动可以使得声学驱动器120分别从其正面和背面向外辐射声音。声学驱动器120的正面或振膜121与壳体结构110形成前腔111,声学驱动器120 的背面与壳体结构110形成后腔112。声学驱动器120的正面向前腔111辐射声音,声学驱动器120的背面向后腔112辐射声音。在一些实施例中,壳体结构110还可以包括第一导声孔113和第二导声孔114,第一导声孔113与前腔111连通,第二导声孔113与后腔112连通。声学驱动器120正面产生的声音通过第一导声孔113向外界传播,声学驱动器120背面产生的声音通过第二导声孔114向外界传播。在一些实施例中,磁路结构1220可以包括与振膜相对设置的导磁板1221。导磁板1221上开设至少一个导声孔1222(也被称为泄压孔),用于将振膜121振动产生的声音从声学驱动器120的背面导出并通过后腔112向外界传播。该声学输出装置100通过第一导声孔113和第二导声孔114的声辐射形成类似偶极子结构的双声源(或多声源),产生具有一定指向性的特定声场。由于声学驱动器120正面产生的声音直接通过前腔111处的第一导声孔113向外辐射,而声学驱动器120背面产生的声音需要先经过振膜121与磁路结构1220形成的腔体,然后依次经过磁路结构1220(例如,导磁板1221)上的导声孔1222以及后腔112处的第二导声孔114再向外界辐射,就导致了声学驱动器120正面的声阻抗和背面声阻抗存在较大差异,以至于声学输出装置100的第一导声孔113和第二导声孔114处发出的声音的幅值差异较大,而无法形成有效的双声源(尤其是在中高频),从而造成漏音增加。图2是根据图1提供的声学驱动器的远场漏音图。如图2所示,该声学输出装置100中设置的前腔111以及后腔112和振膜121与磁路结构1220形成的腔体会分别导致声学输出装置100在前腔111(图2中的“前腔”)和后腔112(图2中的“后腔”)处的声音在中频或中高频(例如,2000Hz-4000Hz)产生一个谐振峰。在谐振峰之后,前腔111和后腔112处的频率响应的减弱程度会出现差异(后腔112处的频率响应会更快地减弱),导致声学输出装置100形成的类偶极子结构在较高频的频率响应不佳(例如,第一导声孔113和第二导声孔114处辐射具有较大幅值差异的声音),无法很好地抑制声学输出装置100在远场的漏音。
为了进一步提高声学输出装置100的声音输出效果,本说明书描述了另一种或多种包括至少两个声学驱动器的声学输出装置。在用户佩戴所述声学输出装置时,所述声学输出装置至少位于用户头部一侧,靠近但不堵塞用户耳朵。该声学输出装置可以佩戴在用户头部(例如,以眼镜、头带或其它结构方式佩戴的非入耳式的开放式耳机),或者佩戴在用户身体的其他部位(例如用户的颈部/肩部区域),或者通过其它方式(例如,用户手持的方式)放置在用户耳朵附近。在一些实施例中,声学输出装置可以包括第一声学驱动器、第二声学驱动器、控制电路和壳体结构。第一声学驱动器可以包括第 一振膜,第二声学驱动器可以包括第二振膜,控制电路可以分别电连接到第一声学驱动器和第二声学驱动器,控制电路提供驱动第一振膜振动的第一电信号和驱动第二振膜振动的第二电信号。在一些实施例中,当第一电信号和第二电信号幅值相同且相位相反时(例如,第一声学驱动器和第二声学驱动器分别以极性相反的方式电连接所述控制电路并接收控制电路提供的同一电信号),第一振膜和第二振膜可以产生一组相位相反的声音。进一步地,壳体结构可以承载第一声学驱动器和第二声学驱动器,其中,第一振膜振动产生的声音可以通过壳体结构上第一导声孔向外辐射,第二振膜振动产生的声音可以通过壳体结构上第二导声孔向外辐射。为方便描述,第一振膜振动产生的声音可以是指第一声学驱动器正面产生的声音,第二振膜振动产生的声音可以是指第二声学驱动器正面产生的声音。当第一振膜振动产生的声音和第二振膜振动产生的声音直接通过对应的第一导声孔和第二导声孔向外辐射时,这里的第一导声孔和第二导声孔可以近似视为双声源(例如,双点声源)。相比于图1中所描述的结构,第一振膜产生的声音和第二振膜产生的声音均不需要通过声学驱动器的磁路结构再向外辐射,可以确保第一声学驱动器正面的声阻抗和第二声学驱动驱动器正面的声阻抗基本一致,从而使得第一导声孔和第二导声孔处发出的声音构形成有效的双声源。在一些实施例中,第一声学驱动器与第二声学驱动器在中高频的频率响应相同或相近,由于驱动第一振膜的第一电信号和驱动第二振膜的第二电信号相位相反,在远场(例如,距离用户耳朵较远的位置),尤其是在中高频段(例如,200Hz-20K Hz),第一导声孔处发出的声音可以第二导声孔处发出的声音可以相互抵消,可以在一定程度上抑制声学输出装置的漏音,同时能够防止声学输出装置产生的声音被该用户附近的他人听见。
需要说明的是,在一些实施例中,第一声学驱动器和第二声学驱动器可以是相同或类似的声学驱动器,这样可以使得第一声学驱动器与第二声学驱动器的在全频段的幅频响应相同或相近。在一些实施例中,第一声学驱动器与第二声学驱动器可以是不同的声学驱动器。例如,第一声学驱动器和第二声学驱动器在中高频的频率响应相同或相近,而在低频段,第一声学驱动器与第二声学驱动器的频率响应不同。关于第一声学驱动器和第二声学驱动器的具体内容可以参考本申请图3、图4及其相关描述。在一些可替代的实施例中,上述第一/第二振膜振动产生的声音也可以是指第一/第二声学驱动器背面产生的声音,只需要保证两个声学驱动器到各自对应的导声孔之间的声阻抗相同或基本相同即可。
图3是根据本申请一些实施例提供的声学输出装置的模块框架示意图。如图3 所示,声学输出装置300可以包括信号处理模块310和输出模块320。
信号处理模块310可以包括控制电路311。控制电路311可被配置为接收初始声学信号,对初始声学信号进行处理,并输出相应的控制信号(也被称为音频信号)。即控制声波的产生和输出的信号。在一些实施例中,所述初始声学信号可以是由一个或多个声电转换器件(例如,麦克风)将外部环境的声音转换成的电信号。例如,声学输出装置300可以包括一个或多个气导或骨导麦克风,采集空气振动或者其它任何可被感知的机械振动并转换成电信号后发送到信号处理模块310。在一些实施例中,声学输出装置可以从一个或多个信号源获取所述初始声学信号。所述一个或多个信号源可以是声学输出装置300的内部设备(例如,存储器),也可以是声学输出装置300的外部设备。所述外部设备可以将包含声音信息的信号通过有线或者无线的方式发送给声学输出装置300。
输出模块320可以包括一个或多个电声转换器件(即声学驱动器)。输出模块320中的声学驱动器可电耦合至控制电路311并被配置为根据控制信号产生声波。在一些实施例中,输出模块320可以包括第一声学驱动器321和第二声学驱动器322,控制信号可以包括第一电信号和第二电信号,其中,第一电信号被配置为驱动第一声学驱动器321发出声音,第二电信号被配置为驱动第二声学驱动器322发出声音。具体地,第一声学驱动器321可以包括第一振膜和第一磁路结构,第二声学驱动器322可以包括第二振膜和第二磁路结构,其中,第一电信号驱动第一振膜振动,第二电信号驱动第二振膜振动。
在一些实施例中,第一电信号和第二电信号的相位相反,当第一振膜在第一电信号的驱动下朝向第一磁路结构振动时,第二振膜在第二电信号的驱动下远离第二磁路结构振动,使得第一声学驱动器321和第二声学驱动器322处产生的声音相位相反。
在一些实施例中,第一声学驱动器321和第二声学驱动器322以极性相反的方式分别电连接到控制电路311。此时,第一声学驱动器321和第二声学驱动器322并联后再与控制电路311串联。为方便理解,所述极性相反的方式可以描述为,第一声学驱动器321的正极与控制电路311的输出端相连,而第二声学驱动器322的负极与控制电路311的输出端相连。控制电路311可以产生一组音频信号,当该音频信号分别传入到两个声学驱动器的输入端(即,第一声学驱动器321的正极和第二声学驱动器的负极)时,可以使得两个声学驱动器分别获得极性相反的第一电信号和第二电信号。在一些可替代的实施例中,第一声学驱动器321和第二声学驱动器322以极性相同的方式分别电 连接到信号处理模块310。为了使得两个声学驱动器产生两组相位相反的声音,信号处理模块310可以输出两组相位相反的音频信号。具体地,在控制电路311与第一声学驱动器321或第二声学驱动器322之间可以添加反相电路。所述反相电路被配置为将音频信号的相位反转180°。此时,控制电路311产生的音频信号分别以正相和反相的方式传入第一声学驱动器321和第二声学驱动器322,使得两个声学驱动器分别获得极性相反的第一电信号和第二电信号。
在一些实施例中,声学输出装置300还可以包括壳体结构。壳体结构可以承载第一声学驱动器321和第二声学驱动器322,壳体结构上开设有至少一个第一导声孔和至少一个第二导声孔。第一声学驱动器321的第一振膜振动产生的声音可以通过至少一个第一导声孔向外辐射,第二声学驱动器322的第二振膜振动产生的声音可以通过至少一个第二导声孔向外辐射。所述第一导声孔和第二导声孔分别位于第一声学驱动器321和第二声学驱动器322的前腔,或者所述第一导声孔和第二导声孔分别位于第一声学驱动器321和第二声学驱动器322的后腔。由于第一电信号和第二电信号的相位相反,第一导声孔处的声音和第二导声孔处的声音相位相反,在远场(距离用户耳朵较远的位置),第一导声孔处的声音和第二导声孔处的声音可以相互抵消,从而降低声学输出装置300的漏音音量。
声学驱动器是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,第一声学驱动器321和/或第二声学驱动器322可以是输出气导声波的扬声器。在其它替代性的实施例中,第一声学驱动器321和/或第二声学驱动器322也可以是输出固体媒介传导的声波(如骨传导声波)的扬声器。在一些实施例中,按输出声音的频率进行区分,声学驱动器的类型可以包括低频(例如,20Hz至200Hz)声学驱动器、中高频(例如,200Hz至8kHz)声学驱动器或高频(例如,大于8K Hz)声学驱动器,或其任意组合。当然,这里所说的低频、高频等只表示频率的大致范围,在不同的应用场景中,可以具有不同的划分方式。例如,可以确定一个分频点,低频表示分频点以下的频率范围,高频表示分频点以上的频率。该分频点可以为人耳可听范围内的任意值,例如,500Hz,600Hz,700Hz,800Hz,1000Hz等。在一些实施例中,按原理进行区分,声学驱动器还可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等驱动器。在一些实施例中,第一声学驱动器321和第二声学驱动器322可以是完全相同的声学驱动器。例如,第一声学驱动器321和第二声学驱动器322可以是同一个生产厂商所制造的同一型号的声学驱动器。再例如,第一声学驱动器321和第二 声学驱动器322可以均为中高频扬声器,且具有相同的中高频段的幅频响应。在这种情况下,由于第一电信号和第二电信号的相位相反,第一声学驱动器321和第二声学驱动器322的正面(或背面)输出的声音相位相反。这里,第一声学驱动器321和第二声学驱动器322正面产生的声波通过对应的导声孔(例如,第一导声孔和第二导声孔)向外界辐射,对应的导声孔发出的声音可以视为两个点声源。两个点声源产生相位相反的中高频声音,在远场反向相消,从而降低远场中高频段的漏音音量。在一些实施例中,为了防止声学输出装置的低频声学驱动器发出的低频声音不失真,低频声学驱动器的物理尺寸可以大于中高频声学驱动器的物理尺寸。这里可以理解为低频声学驱动器的振膜面积大于中高频声学驱动器的振膜面积。需要知道的是,这里的振膜面积指的是振膜在振动过程中有效的振膜面积。在其他实施例中,可以通过改变振膜结构或者振膜材料来保证低频声学驱动器在低频的输出效果。
在一些实施例中,为了使声学输出装置适用于更多场景,第一声学驱动器321和第二声学驱动器322可以是不同的声学驱动器。例如,第一声学驱动器321和第二声学驱动器322在低频段具有不同的幅频响应,而在中高频段具有相同或相近的幅频响应。在中高频段,由于第一声学驱动器321和第二声学驱动器322的幅频响应基本相同,从而根据上述第一信号和第二信号,可以构建中高频段相位相反的双声源,达到降低中高频段远场漏音音量的效果。在低频段,由于第一声学驱动器321和第二声学驱动器322的幅频响应不同或差别较大,在上述第一信号和第二信号的驱动下,第一声学驱动器321和第二声学驱动器322产生的低频声音虽然相位相反,但强度相差较大,因而声音相消的效果较弱,仍然可以使用户耳朵听到较大的低频近场声音。
在一些场景下,信号处理模块310可以包括滤波器/滤波器组(也被称为滤波系统)。滤波器/滤波器组可以根据实际情况适应性地改变输入到第一声学驱动器321和/或第二声学驱动器322中的第一信号和/或第二信号。例如,滤波器/滤波器组可以滤除第一电信号中的低频信号,使第一声学驱动器321仅输出中高频段的声音。此时,由于第二声学驱动器322基于第二电信号产生的低频声音在用户耳朵处无法被抵消,故该方式可以提高声学输出装置在低频段的声学输出效果。
在一些实施例中,为了提高声学输出装置在低频段的声学输出效果,输出模块320还可以包括第三声学驱动器323。第三声学驱动器323可以包括第三振膜,第三振膜在第三电信号的驱动下发生振动。在一些实施例中,第三声学驱动器323可以为低频声学驱动器。滤波器/滤波器组可以滤除控制信号中的中高频段信号,并将剩下的低频 信号发送给第三声学驱动器323,这样可以使得第三声学驱动器323只输出低频段的声音,从而提高声学输出装置300在低频段的声学输出效果。在一些实施例中,为了使声学输出装置在高噪声环境中具有较好的声学输出效果,第三声学驱动器323可以输出与第一声学驱动器321或第二声学驱动器322相位相同或具有特定相位差(例如,相位差的绝对值小于90°)的声音。此时,第三声学驱动器323输出的低频或中高频声音可以作为用户耳朵听到的低频或中高频声音的补偿,使得用户在高噪声环境中更容易听到声学输出装置的声音。
在一些实施例中,控制电路311还可以包括用于控制滤波器/滤波器组、反相电路和/或声学驱动器开关状态的开关。所述开关可以控制声学输出装置根据不同场景进行声音的调整。例如,在高噪声环境下,远场的漏音不容易被用户附近的他人听到,当第一声学驱动器321和第二声学驱动器322均为中高频声学驱动器时,可以通过关闭反相电路使第一电信号和第二电信号的相位调整为相同,从而使得第一声学驱动器321和第二声学驱动器322在中高频段产生并输出相位相同的声音,提高声学输出装置在中高频段的输出音量。又例如,在高噪声环境下,当第一声学驱动器321和第二声学驱动器322为中高频声学驱动器,第三声学驱动器323为低频声学驱动器时,可以关闭与低频声学驱动器电连接的滤波器/滤波器组,使得低频声学驱动器也可以根据控制信号产生中高频段的声波,以提高声学输出装置输出的中高频段的音量。在其他实施例中,可以通过控制第三声学驱动器323的滤波器/滤波器组,将控制第三声学驱动器323的控制信号(例如,第三电信号)进行分频,信号处理模块310调整分频得到的低频信号的相位,使得第三声学驱动器323产生的低频声波与外界噪声中的低频噪声相位相反,从而实现主动降低低频噪声的效果;另外,分频得到的中高频信号可以使得第三声学驱动器323产生中高频声音,该中高频声音与第一声学驱动器321和第二声学驱动器322产生的中高频声音的相位相同或相位差较小(例如,不大于90°),从而同时达到在低频段降噪和调高中高频段的输出音量的效果。
在一些实施例中,为了调整声波的输出特性(例如,频率、相位、幅值等),可以在信号处理模块310中对相应控制信号进行处理,使得各声学驱动器输出的声波分别包含特定的频率成分,也可以通过在输出模块320中设置和优化各部件的结构或者各部件的布置方式,以使得各声学驱动器输出的声波分别包含特定的频率成分。在通过调整信号处理模块310来改变所输出的声波的性质时,可以设置若干滤波器/滤波器组对信号进行处理,以输出包含不同频率成分的信号,进而输出至相应的输出模块320进行 声音的输出。滤波器/滤波器组包括但不限于模拟滤波器、数字滤波器、无源滤波器、有源滤波器等。
需要说明的是,在本说明书实施例中,低频可以指的是大体上20Hz至200Hz的频段,中高频可以指的是大体上200Hz-20kHz的频段。优选地,中高频可以指的是大体上400Hz-10kHz的频段。更优选的,中高频可以指的是大体上600Hz-8kHz的频段。在其它的实施例中,频段还可以细分为低频段、中低频段、中频段、中高频段、高频段等。本领域普通技术人员将会理解,上述频段的区分只是作为一个例子大概给出区间。上述频段的定义可以随着不同行业、不同的应用场景和不同分类标准而改变。比如在另外一些应用场景下,低频指的是大体上20Hz至80Hz的频段,中低频可以指大体上80Hz-160Hz之间的频段,中频可以指大体上160Hz至2kHz的频段,中高频可以指大体上2kHz-8kHz的频段,高频段可以指大体上8kHz至20kHz的频段。关于第一声学驱动器321、第二声学驱动322、第三声学驱动器323及其部件的具体结构和分布方式的具体内容可以参考本说明书图1、图4及其相关描述。
图4是根据本申请一些实施例所示的声学输出装置的示例性的结构示意图。如图4所示,声学输出装置400可以包括内部中空的壳体结构410以及设置在壳体结构410内的第一声学驱动器420和第二声学驱动器430。
在一些实施例中,声学输出装置400可以通过壳体结构410佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干),同时壳体结构410、第一声学驱动器420和第二声学驱动器430可以靠近但不堵塞耳道,使得用户耳朵保持开放的状态,在用户既能听到声学输出装置400输出的声音的同时,又能听到外部环境的声音。例如,声学输出装置400可以环绕设置或者部分环绕设置在用户耳朵的周侧,并可以通过气传导或骨传导的方式进行声音的传递。
壳体结构410可以用于佩戴在用户的身体上,并可以承载声学驱动器(例如,第一声学驱动器420和第二声学驱动器430)。在一些实施例中,壳体结构410可以是内部中空的封闭式壳体结构,且声学驱动器可以位于壳体结构410的内部。在一些实施例中,声学输出装置400可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,壳体结构410可以采用悬挂或夹持的方式固定在用户的耳朵的附近。在一些可替代的实施例中,壳体结构410上可以设有挂钩,且挂钩的形状与耳廓的形状相匹配,从而声学输出装置400可以通过挂钩独立佩戴在用户的耳朵上。独立佩戴使用的声学输出装置400可以通过有线或无线(例如,蓝牙)的方式与信号源 (例如,电脑、手机或其他移动设备)通信连接。例如,左右耳处的声学输出装置400可以均通过无线的方式与信号源直接通信连接。又例如,左右耳处的声学输出装置400可以包括第一输出装置和第二输出装置,其中第一输出装置可以与信号源进行通信连接,第二输出装置可以通过无线方式与第一输出装置无线连接,第一输出装置和第二输出装置之间通过一个或多个同步信号实现音频播放的同步。无线连接的方式可以包括但不限于蓝牙、局域网、广域网、无线个域网、近场通讯等或其任意组合。
在一些实施例中,壳体结构410可以为具有人体耳朵适配形状的壳体结构,例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便壳体结构410可以直接挂靠在用户的耳朵处。在一些实施例中,壳体结构410还可以包括一个或多个固定结构。所述固定结构可以包括耳挂、头梁或弹性带,使得声学输出装置400可以更好地固定在用户身上,防止用户在使用时发生掉落。仅作为示例性说明,例如,弹性带可以为头带,头带可以被配置为围绕头部区域佩戴。又例如,弹性带可以为颈带,被配置为围绕颈/肩区域佩戴。在一些实施例中,弹性带可以是连续的带状物,并可以被弹性地拉伸以佩戴在用户的头部,同时弹性带还可以对用户的头部施加压力,使得声学输出装置100牢固地固定在用户的头部的特定位置上。在一些实施例中,弹性带可以是不连续的带状物。例如,弹性带可以包括刚性部分和柔性部分,其中,刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学输出装置400的壳体结构410通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料制成(例如,布料、复合材料或/和氯丁橡胶)。
在一些实施例中,声学驱动器(例如,第一声学驱动器420和第二声学驱动器430)均可以包括振膜和磁路结构。关于第一声学驱动器420和第二声学驱动器430的具体结构可以参考本申请图1及其相关描述,在此不做赘述。当声学驱动器的振膜在控制信号(例如,第一电信号和第二电信号)的驱动下发生振动时,声音可以分别从振膜的前侧和后侧发出。在一些实施例中,壳体结构410可以包括第一腔体411和第二腔体412,其中,第一腔体411和第二腔体412不连通,也就是说,壳体结构410中设有挡板将第一腔体411与第二腔体412进行隔离。在其它实施例中,壳体结构410可以包括第一壳体结构和第二壳体结构,第一壳体结构与第二壳体结构固定连接,且第一壳体结构的内部设有第一腔体411,第二壳体结构内部设有第二腔体412。第一声学驱动器420位于第一腔体411中。第一声学驱动器420的正面与壳体结构410形成第一前腔4111,第一声学驱动器420的背面与壳体结构420形成第一后腔4112。第一声学驱动器420 的正面向第一前腔4111辐射声音,第一声学驱动器420的背面向第一后腔4112辐射声音。第二声学驱动器430位于第二腔体412中。第二声学驱动器430的正面与壳体结构410形成第二前腔4121,第二声学驱动器430的背面与壳体结构410形成第二后腔4122。第二声学驱动器430的正面向第二前腔4121辐射声音,第二声学驱动器430的背面向第二后腔4122辐射声音。在一些实施例中,第一腔体411和第二腔体412相同。第一声学驱动器420和第二声学驱动器430可以按照相同的方式分别设置在第一腔体411和第二腔体412中,使得第一前腔4111和第二前腔4121相同,第一后腔4112和第二后腔4122相同,这样可以使得第一声学驱动器420和第二声学驱动器430正面或背面的声阻抗相同。在其它的实施例中,第一腔体411和第二腔体412也可以不同,可以通过改变腔体的大小和/或长度或者增加阻尼的方式使得第一声学驱动器420和第二声学驱动器430正面或背面的阻抗相同。在一些实施例中,第一前腔4111所在的壳体结构410的侧壁上设有一个或多个第一导声孔413,一个或多个第一导声孔413与第一前腔4111连通,第一声学驱动器420正面输出的声音可以通过一个或多个第一导声孔413向声学输出装置400的外部辐射声音。第二前腔4121所在的壳体结构410的侧壁上设有一个或多个第二导声孔414,一个或多个第二导声孔414与第二前腔4121连通,第二声学驱动器430正面输出的声音可以通过一个或多个第二导声孔414向声学输出装置400的外部辐射声音。在一些实施例中,第一导声孔413和第二导声孔414可以位于壳体结构410位置相对的侧壁上。例如,第一导声孔413可以位于壳体结构410上面朝用户耳朵的侧壁上,而第二导声孔414可以位于壳体结构410上背朝用户耳朵的侧壁上。再例如,第一导声孔413可以位于与第一声学驱动器420正面相对的壳体结构410的侧壁上,第二导声孔414可以位于与第二声学驱动器430正面相对的壳体结构410的侧壁上。在一些实施例中,声学输出装置400中也可以不包括第一前腔4111、第二前腔4121、第一后腔4112或第二后腔4122。例如,第一声学驱动器420正面和第二声学驱动器430正面直接向外部辐射声音,也就是说,第一声学驱动器420正面与壳体结构410之间不形成第一前腔4111,第二声学驱动器430正面与壳体结构410之间不形成第二前腔4121。在一些实施例中,第一后腔4112和第二后腔4122可以是封闭的或设置用于调整后腔内部气压的一个或多个调音孔(也被称为泄压孔,图4中未示出)。
在一些实施例中,第一声学驱动器420和第二声学驱动器430可以是相同的声学驱动器,信号处理模块可以通过控制信号(例如,第一电信号和第二电信号)控制第一声学驱动器420的正面和第二声学驱动器430的正面产生具有满足一定相位和幅值 条件的声音(例如,振幅相同且相位相反的声音、振幅不同且相位相反的声音等)。第一声学驱动器420正面产生的声音通过第一导声孔413向声学输出装置400外部辐射,第二声学驱动器430正面产生的声音通过第二导声孔414向声学输出装置400的外部辐射。第一导声孔413和第二导声孔414可以等效为输出相反相位声音的双声源。不同于通过声学驱动器正面和背面发出的声音构建双声源的情况,通过两个声学驱动器的正面,即第一声学驱动器420正面和第二声学驱动器430正面,产生相位相反的声音并通过第一导声孔413和第二导声孔414向外部辐射,当第一声学驱动器420到第一导声孔413的声阻抗与第二声学驱动器430到第二导声孔414的声阻抗相同或大致相同时,可以使得声学输出装置400中第一导声孔413和第二导声孔414发出的声音构建成有效的双声源,即第一导声孔413和第二导声孔414可以更准确地发出相位相反的声音。在远场,尤其是在中高频段(例如,200Hz-20kHz),第一导声孔413处发出的声音可以更好地和第二导声孔414处发出的声音相互抵消,从而在一定程度上更好地抑制声学输出装置在中高频段的漏音,同时能够防止声学输出装置400产生的声音被该用户附近的他人听见,从而提高声学输出装置400的降漏音效果。
进一步地,当第一声学驱动器420的正面和第二声学驱动器430的正面位于壳体结构410的不同侧时,第一导声孔413和第二导声孔414也位于壳体结构410的不同侧,则壳体结构410起到双声源(如,第一导声孔413发出的声音和第二导声孔414发出的声音)之间的挡板作用。此时,壳体结构410将第一导声孔413和第二导声孔414隔开,使得第一导声孔413和第二导声孔414具有不同的到用户耳道的声学路径。一方面,将第一导声孔413和第二导声孔414分布于壳体结构410的两侧可以增加第一导声孔413和第二导声孔414分别向用户耳朵传递声音的声程差(即第一导声孔413和第二导声孔414发出的声音到达用户耳道的路程差),使得在用户耳朵处(即近场)声音相消的效果变弱,进而增加用户耳朵听到的声音(也称为近场声音)的音量,从而为用户提供较佳的听觉体验。另一方面,壳体结构410对导声孔向环境传播声音(也称为远场声音)的影响很小,第一导声孔413和第二导声孔414产生的远场声音仍然可以较好地相互抵消,可以在一定程度上抑制声学输出装置400的漏音,同时能够防止声学输出装置400产生的声音被该用户附近的他人听见。因此,通过以上设置,可以提高声学输出装置400在近场的听音音量和降低声学输出装置400在远场的漏音音量。
在一些实施例中,还可以通过设置第一腔体411(例如,第一前腔4111和第一后腔4112)和第二腔体412(例如,第二前腔4121和第二后腔4122)的结构,使得第 一声学驱动器420在第一导声孔413以及第二声学驱动器430在第二导声孔414处输出的声音满足特定的条件。例如,可以设计第一前腔4111和第二前腔4112的大小和/或长度,使得第一导声孔413和第二导声孔414处可以输出一组具有特定相位关系(例如,相位相反或近似相反)的声音,使得声学输出装置400近场的听音音量较小和远场的漏音问题均得到有效改善。
需要注意的是,本说明书实施例图4中的第一腔体411和第二腔体412的位置不限于图4中相对于用户耳朵的位置上下竖直设置,还可以为相对于用户耳朵的位置上下相对倾斜设置、横向水平设置、横向相对倾斜设置等其它方式。可以根据实际情况对第一腔体411、第二腔体412、第一声学驱动器420和第二声学驱动器430的位置进行适应性调整,在此不作进一步限定。
图5是根据本申请一些实施例提供的声学输出装置中的两个声学驱动器相同时的频率响应曲线图。结合图4和图5,声学输出装置设置两个相同的第一声学驱动器420(图5中所示的“扬声器A”)和第二声学驱动器430(图5中所示的“扬声器B”)时,第一声学驱动器420和第二声学驱动器430在中高频段(例如,200Hz-8kHz)和高频段(例如,大于8kHz)的幅频响应大致相同,第一声学驱动器420和第二声学驱动器430在相位相反的第一电信号和第二电信号的驱动下可以通过第一导声孔413和第二导声孔414发出相位相反的声音,使得声学输出装置在中高频段和高频段可以构建有效的双声源。在一些实施例中,为了保证第一声学驱动器和第二声学驱动器通过对应的导声孔发出的声音可以形成有效的双声源,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于6dB。优选地,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于5dB。更优选地,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于4dB。进一步优选地,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于3dB。在一些实施例中,所述中高频段和高频段范围在特定频段范围内,所述特定频段的范围为200Hz-20kHz。
图6是根据一些实施例提供的声学输出装置中的两个声学驱动器不同时的频率响应曲线图。如图6所示,声学输出装置设置两个不同的第一声学驱动器420(图6中所示的“扬声器A”)和第二声学驱动器430(图6中所示的“扬声器B”)时,第一声学驱动器420和第二声学驱动器430在低频段(例如,100Hz-200Hz)的幅频响应具有一定差异,第一声学驱动器420和第二声学驱动器430在中高频段和高频段的幅频响 应大致相同。
考虑到第一声学驱动器420和第二声学驱动器430在低频段发出的相位相反的声波会相互抵消,为了提高声学输出装置在低频段范围的声学输出效果(尤其是声学输出装置在近场的低频输出音量),在一些实施例中,第一声学驱动器和第二声学驱动器在至少部分低频范围(例如,100Hz-200Hz)的幅频响应的差值不小于10dB,从而使得两个声学驱动器在该低频范围内输出的音量具有较大的差值。优选地,第一声学驱动器和第二声学驱动器在至少部分低频范围的幅频响应的差值不小于15dB。进一步优选地,第一声学驱动器和第二声学驱动器在至少部分低频范围的幅频响应的差值不小于20dB。在一些实施例中,用户在佩戴声学输出装置时,第一声学驱动器420到用户耳朵的声学路径可以小于第二声学驱动器430到用户耳朵的声学路径,从而进一步增大第一声学驱动器420发出的低频声音和第二声学驱动器430发出的低频声音在用户耳朵处的音量差异,使得低频声音相互抵消的程度减弱,从而增大用户耳朵处低频的听音音量。在一些实施例中,声学驱动器到用户耳朵的声学路径可以指振膜到用户耳朵距离。例如,第一声学驱动器420的第一振膜到用户耳朵的距离。在其它的实施例中,声学驱动器到用户耳朵的声学路径可以指声学驱动器对应的导声孔到用户耳朵的声学距离,例如,第一声学驱动器420对应的第一导声孔413到用户耳朵的声学距离。
在中高频段和高频段,第一声学驱动器420和第二声学驱动器430在相位相反的第一电信号和第二电信号的驱动下可以通过第一导声孔413和第二导声孔414发出相位相反且幅值相同或接近的声音,使得声学输出装置可以构建中高频段和高频段的有效的双声源。在一些实施例中,为了保证第一声学驱动器和第二声学驱动器通过对应的导声孔发出的声音可以形成中高频段和高频段的有效的双声源,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于6dB。优选地,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于5dB。更优选地,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于4dB。进一步优选地,第一声学驱动器和第二声学驱动器在中高频段和高频段的幅频响应的差值不大于3dB。在一些实施例中,所述中高频段和高频段范围在特定频段范围内,所述特定频段的范围为200Hz-20kHz。
图7和图8是根据本申请一些实施例提供的声学输出装置的结构示意图。如图7和图8所示,在一些实施例中,声学输出装置700可以包括第一声学驱动器720、第二声学驱动器730、第三声学驱动器740以及壳体结构710。壳体结构710内部可以包 括互不连通的第一腔体711、第二腔体712以及第三腔体713,其中,第一声学驱动器720位于第一腔体711中,第二声学驱动器730位于第二腔体712中,第三声学驱动器740位于第三腔体713中。第一声学驱动器720的正面与壳体结构710形成第一前腔7111,第一声学驱动器720的背面与壳体结构720形成第一后腔7112。第一声学驱动器720的正面向第一前腔7111辐射声音,第一声学驱动器720的背面向第一后腔7112辐射声音。第二声学驱动器730的正面与壳体结构710形成第二前腔7121,第二声学驱动器730的背面与壳体结构710形成第二后腔7122。第二声学驱动器730的正面向第二前腔7121辐射声音,第二声学驱动器730的背面向第二后腔7122辐射声音。第三声学驱动器740的正面与壳体结构710形成第三前腔7131,第三声学驱动器740的背面与壳体结构710形成第三后腔7132。第三声学驱动器730的正面向第三前腔7131辐射声音,第三声学驱动器740的背面向第三后腔7122辐射声音。在一些实施例中,第一前腔7111所在的壳体结构710的侧壁上设有一个或多个第一导声孔714,一个或多个第一导声孔714与第一前腔7111连通,第一声学驱动器720正面输出的声音可以通过一个或多个第一导声孔714向声学输出装置700的外部辐射声音。第二前腔7121所在的壳体结构710的侧壁上设有一个或多个第二导声孔715,一个或多个第二导声孔715与第二前腔712连通,第二声学驱动器730正面输出的声音可以通过一个或多个第二导声孔715向声学输出装置700的外部辐射声音。在一些实施例中,第一导声孔714和第二导声孔715可以位于壳体结构710不同的侧壁上。例如,第一导声孔714和第二导声孔715分别位于壳体结构710位置相邻的侧壁上。又例如,第一导声孔714和第二导声孔715分别位于壳体结构710位置相对的侧壁上。第三前腔7131所在的壳体结构710的侧壁上设有一个或多个第三导声孔716,一个或多个第三导声孔715与第三前腔7131连通,第三声学驱动器740正面输出的声音可以通过一个或多个第三导声孔716向声学输出装置700的外部辐射声音。第三后腔7132所在的壳体结构710的侧壁上设有一个或多个第四导声孔717,一个或多个第四导声孔717与第四后腔7132连通,第三声学驱动器740背面输出的声音可以通过一个或多个第四导声孔717向声学输出装置700的外部辐射声音。在一些实施例中,第三导声孔716和第四导声孔717可以位于壳体结构710不同的侧壁上。例如,第三导声孔716和第四导声孔717分别位于壳体结构710位置相邻的侧壁上。又例如,第三导声孔716和第四导声孔717分别位于壳体结构710位置相对的侧壁上。
在一些实施例中,第一声学驱动器720和第二声学驱动器730为中高频声学驱 动器,第三声学驱动器740为低频声学驱动器。第一声学驱动器720和第二声学驱动器730在相位相反的第一电信号和第二电信号的控制下发出相位相反的声波,第三声学驱动器740可以通过滤波器/滤波器组滤除第一电信号或第二电信号的中高频部分,仅输出低频段的声音。进一步地,第三声学驱动器730通过第三导声孔716和第四导声孔717输出相位相反的声波。仅作为示例性说明,当用户佩戴声学输出装置700时,第一导声孔714和第三导声孔716可以朝向用户耳朵,第二导声孔715可以朝向用户耳朵或背离用户耳朵,第四导声孔717可以背离用户耳朵。在一些实施例中,第三导声716孔和第四导声孔717中靠近用户耳朵的一个发出的声音的相位与第一导声孔714和第二导声孔715中靠近用户耳朵的一个发出的声音的相位相同。需要知道的是,靠近用户耳朵的不同导声孔发出的声音相位相同,可以使得不同导声孔发出的声音相叠加,从而提高用户耳朵处的听音音量。在远离用户耳朵的地方(即远场),不同导声孔(例如,第一导声孔714和第二导声715、第三导声孔716和第四导声孔717)发出的声波由于相位相反可以相互抵消,从而降低声学输出装置在远场的漏音音量。在一些实施例中,可以通过设置第一腔体711(例如,第一前腔7111和第一后腔7112)/第二腔体712(例如,第二前腔7121和第二后腔7122)的结构和第三腔体713(例如,第三前腔7131和第三后腔7132)的结构,使得第一声学驱动器720在第一导声孔714/第二声学驱动器730在第二导声孔715与第三声学驱动器740在第三导声孔716或第四导声孔717处输出的声音满足特定的条件。例如,可以设计第一前腔4111和第三前腔7131的大小和/或长度,使得第一导声孔413和第二导声孔414处可以输出一组具有相位相同的声音。
在一些实施例中,由于低频段的声音的波长相对于中高频段或高频段的声音的波长较长,为了降低第三声学驱动器740在第三导声孔716第四导声孔717处发出的声音在用户耳朵附近相互抵消的程度,第三导声孔716和第四导声孔717处发出的声音到用户耳朵的声程差大于第一导声孔714和第二导声孔715处发出的声音到用户耳朵的声程差。
在一些实施例中,图7和图8所示的声学输出装置700除了可以降低中高频段在远场的漏音音量以及提高低频段的听音效果之外,还可以适用于高噪声环境中。仅作为示例性说明,在高噪声环境下,远场的漏音不容易被用户附近的他人听到,当第一声学驱动器720和第二声学驱动器730均为中高频声学驱动器时,可以通过关闭反相电路使第一电信号和第二电信号的相位调整为相同,从而使得第一声学驱动器720通过第一导声孔714、第二声学驱动器730通过第二导声孔715输出相位相同的中高频段声音, 提高声学输出装置在中高频段的输出音量。又例如,在高噪声环境下,当第一声学驱动器720和第二声学驱动器730为中高频声学驱动器,第三声学驱动器740为低频声学驱动器时,可以关闭与第三声学驱动器730电连接的滤波器/滤波器组,使得第三声学驱动器730也可以根据控制信号产生中高频段的声波,所述声波可以通过第三导声孔716和第四导声孔717向朝向或背离用户耳朵方向辐射声音,以提高声学输出装置输出的中高频段的音量。在其他实施例中,还可以通过控制第三声学驱动器740的滤波器/滤波器组,将控制第三声学驱动器740的控制信号(例如,第三电信号)进行分频,信号处理模块调整分频得到的低频信号的相位,使得第三声学驱动器740产生的低频段声波通过第三导声孔716和第四导声孔717向外部辐射,第三导声孔716和第四导声孔717向外部辐射处发出的声波与外界噪声中的低频噪声相位相反,从而实现主动降低低频噪声的效果;另外,分频得到的中高频信号可以使得第三声学驱动器740产生中高频声音。该中高频声音与第一声学驱动器720和第二声学驱动器730产生的中高频声音的相位相同或相位差较小(例如,不大于90°),从而同时达到在低频段降噪和调高中高频段的输出音量的效果。
需要注意的是,声学驱动器的数量不局限于上述的三个,还可以为四个、五个等,关于声学驱动器的数量和对应的声音参数(例如,相位、频率和/或振幅)可以根据实际需求作相应调整,在此不作进一步限定。关于声学驱动器的具体结构可以参考本申请说明书图1及其相关描述。关于图7和图8中的第一/第二/第三声学驱动器与图3或图4及其描述中提及的第一/第二/第三声学驱动器是相同或相似的。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合, 或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利 要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (20)

  1. 一种声学输出装置,其特征在于,包括:
    第一声学驱动器,所述第一声学驱动器包括第一振膜;
    第二声学驱动器,所述第二声学驱动器包括第二振膜;
    控制电路,所述控制电路分别电连接到所述第一声学驱动器和所述第二声学驱动器,所述控制电路提供驱动所述第一振膜振动的第一电信号和驱动所述第二振膜振动的第二电信号,所述第一电信号和所述第二电信号相位相反;以及
    壳体结构,所述壳体结构承载所述第一声学驱动器和所述第二声学驱动器,其中,所述第一振膜振动产生的声音通过所述壳体结构上第一导声孔向外辐射,所述第二振膜振动产生的声音通过所述壳体结构上第二导声孔向外辐射。
  2. 根据权利要求1所述的声学输出装置,其特征在于,所述第一声学驱动器包括第一磁路结构,所述第二声学驱动器包括第二磁路结构,当所述第一振膜在所述第一电信号的驱动下朝向所述第一磁路结构振动时,所述第二振膜在所述第二电信号的驱动下远离所述第二磁路结构振动。
  3. 根据权利要求2所述的声学输出装置,其特征在于,所述壳体结构至少包括第一腔体和第二腔体,其中,所述第一腔体与所述第二腔体不连通;所述第一声学驱动器位于所述第一腔体中,所述第二声学驱动器位于所述第二腔体中。
  4. 根据权利要求3所述的声学输出装置,其特征在于,所述第一腔体和第二腔体相同,其中,所述第一声学驱动器的前腔与所述第二声学驱动器的前腔相同,所述第二声学驱动器的后腔与所述第二声学驱动器的后腔相同。
  5. 根据权利要求3所述的声学输出装置,其特征在于,所述第一导声孔与所述第一腔体连通,所述第二导声孔与所述第二腔体连通;所述第一声学驱动器从所述第一导声孔 发出声音,所述第二声学驱动器从所述第二导声孔发出声音;其中,所述第一声学驱动器在所述第一导声孔处发出的声音和所述第二声学驱动器在所述第二导声孔处发出的声音相位相反。
  6. 根据权利要求1所述的声学输出装置,其特征在于,所述第一导声孔和第二导声孔位于壳体结构相邻或相对的侧壁上。
  7. 根据权利要求1所述的声学输出装置,其特征在于,所述控制电路产生音频信号,所述第一声学驱动器和所述第二声学驱动器以极性相反的方式分别接收所述音频信号,从而分别获得所述第一电信号和所述第二电信号。
  8. 根据权利要求1所述的声学输出装置,其特征在于,所述第一声学驱动器和所述第二声学驱动器以极性相同的方式分别电连接到所述控制电路,其中,所述第一声学驱动器或所述第二声学驱动器与控制电路之间通过反相电路电连接。
  9. 根据权利要求1所述的声学输出装置,其特征在于,所述第一声学驱动器和所述第二声学驱动器在中高频范围的幅频响应的差值不大于6dB。
  10. 根据权利要求9所述的声学输出装置,其特征在于,所述中高频范围在200Hz-20kHz以内。
  11. 根据权利要求9所述的声学输出装置,其特征在于,所述第一声学驱动器和所述第二声学驱动器在至少部分低频范围的幅频响应的差值不小于10dB。
  12. 根据权利要求11所述的声学输出装置,其特征在于,所述第一声学驱动器和所述第二声学驱动器在低频范围的幅频响应值较大的一个声学驱动器到用户耳朵的声学路 径较小。
  13. 根据权利要求1所述的声学输出装置,其特征在于,所述第一声学驱动器的后腔和所述第二声学驱动器的后腔设有至少一个调音孔。
  14. 根据权利要求1所述的声学输出装置,其特征在于,还包括:
    第三声学驱动器,所述第三声学驱动器包括第三振膜;
    所述控制电路提供驱动所述第三振膜振动的第三电信号并产生低频声音,所述低频声音通过所述壳体结构上第三导声孔和第四导声孔向外辐射。
  15. 根据权利要求14所述的声学输出装置,其特征在于,所述第三导声孔和第四导声孔位于壳体结构相邻或相对的侧壁上。
  16. 根据权利要求14所述的声学输出装置,其特征在于,所述第三导声孔和第四导声孔分别用于导出所述第三声学驱动器前腔和后腔的声音。
  17. 根据权利要求16所述的声学输出装置,其特征在于,所述第三导声孔和所述第四导声孔中靠近用户耳朵的一个发出的声音的相位与所述第一导声孔和所述第二导声孔中靠近用户耳朵的一个发出的声音的相位相同。
  18. 根据权利要求14所述的声学输出装置,其特征在于,所述第三导声孔和所述第四导声孔处发出的声音到用户耳朵的声程差大于所述第一导声孔和所述第二导声孔处发出的声音到用户耳朵的声程差。
  19. 根据权利要求14所述的声学输出装置,其特征在于,所述第三声学驱动器的物理尺 寸大于所述第一声学驱动器或第二声学驱动器的物理尺寸。
  20. 根据权利要求14所述的声学输出装置,其特征在于,所述第三声学驱动器的第三振膜的面积大于所述第一声学驱动器的第一振膜的面积或第二声学驱动器的第二振膜的面积。
PCT/CN2020/116319 2019-09-19 2020-09-18 一种声学输出装置 WO2021052485A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
MX2022003326A MX2022003326A (es) 2019-09-19 2020-09-18 Dispositivo de emisión acústica.
CN202080053883.6A CN114175673B (zh) 2019-09-19 2020-09-18 一种声学输出装置
KR1020227012878A KR102602344B1 (ko) 2019-09-19 2020-09-18 음향 출력 디바이스
BR112022004399A BR112022004399A2 (pt) 2019-09-19 2020-09-18 Dispositivo de saída acústica
CA3153093A CA3153093C (en) 2019-09-19 2020-09-18 Acoustic output device
PE2022000408A PE20220631A1 (es) 2019-09-19 2020-09-18 Dispositivo de emision acustica
EP20865964.9A EP4009660A4 (en) 2019-09-19 2020-09-18 ACOUSTIC EXIT DEVICE
JP2022517898A JP7528199B2 (ja) 2019-09-19 2020-09-18 音響出力装置
AU2020349994A AU2020349994B2 (en) 2019-09-19 2020-09-18 Acoustic output device
US17/652,483 US11956591B2 (en) 2019-09-19 2022-02-24 Acoustic output device
CONC2022/0003143A CO2022003143A2 (es) 2019-09-19 2022-03-18 Dispositivo de emisión acústica
US18/628,711 US20240251202A1 (en) 2019-09-19 2024-04-06 Acoustic output device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910888762 2019-09-19
CN201910888067.6 2019-09-19
CN201910888762.2 2019-09-19
CN201910888067 2019-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/652,483 Continuation US11956591B2 (en) 2019-09-19 2022-02-24 Acoustic output device

Publications (1)

Publication Number Publication Date
WO2021052485A1 true WO2021052485A1 (zh) 2021-03-25

Family

ID=74883893

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/106759 WO2021052046A1 (zh) 2019-09-19 2020-08-04 一种声学输出装置
PCT/CN2020/116319 WO2021052485A1 (zh) 2019-09-19 2020-09-18 一种声学输出装置
PCT/CN2020/140815 WO2022027915A1 (zh) 2019-09-19 2020-12-29 一种声学输出装置
PCT/CN2021/119308 WO2022142500A1 (zh) 2019-09-19 2021-09-18 一种发声装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106759 WO2021052046A1 (zh) 2019-09-19 2020-08-04 一种声学输出装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/140815 WO2022027915A1 (zh) 2019-09-19 2020-12-29 一种声学输出装置
PCT/CN2021/119308 WO2022142500A1 (zh) 2019-09-19 2021-09-18 一种发声装置

Country Status (13)

Country Link
US (5) US12047737B2 (zh)
EP (4) EP4009665A4 (zh)
JP (4) JP2022549232A (zh)
KR (4) KR102602341B1 (zh)
CN (5) CN114175677B (zh)
AU (2) AU2020350921B2 (zh)
BR (4) BR112022004279A2 (zh)
CA (2) CA3153521C (zh)
CL (2) CL2022000657A1 (zh)
CO (2) CO2022003130A2 (zh)
MX (2) MX2022003327A (zh)
PE (2) PE20220598A1 (zh)
WO (4) WO2021052046A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163297A (zh) * 2021-04-29 2021-07-23 歌尔光学科技有限公司 音频装置以及智能头戴设备
CN113225643A (zh) * 2021-04-29 2021-08-06 歌尔光学科技有限公司 一种音频装置及智能头戴设备
CN113993031A (zh) * 2021-11-10 2022-01-28 歌尔光学科技有限公司 发声装置、发声装置的校准方法及发声单元
CN114143640A (zh) * 2021-11-30 2022-03-04 歌尔光学科技有限公司 一种头戴设备及其远场消声方法、装置及系统
CN115460307A (zh) * 2022-08-29 2022-12-09 湖北星纪时代科技有限公司 电子设备及电子设备发声方法
WO2023050971A1 (zh) * 2021-09-29 2023-04-06 歌尔科技有限公司 发声装置及其控制方法、以及控制装置
WO2023159496A1 (zh) * 2022-02-25 2023-08-31 深圳市韶音科技有限公司 一种声学输出装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665174B2 (en) 2011-01-13 2014-03-04 The Boeing Company Triangular phased array antenna subarray
EP4074063A4 (en) 2019-12-13 2023-09-27 Shenzhen Shokz Co., Ltd. SOUND OUTPUT DEVICE
CN114125115B (zh) * 2021-11-16 2023-09-15 维沃移动通信有限公司 电声模组和电子设备
KR20240118118A (ko) * 2022-06-24 2024-08-02 썬전 샥 컴퍼니, 리미티드 음향장치
KR20240144367A (ko) * 2022-10-28 2024-10-02 썬전 샥 컴퍼니, 리미티드 개방식 이어폰
CN117956365A (zh) * 2022-10-28 2024-04-30 深圳市韶音科技有限公司 一种耳机
CN115623398A (zh) * 2022-10-31 2023-01-17 维沃移动通信有限公司 电子设备
CN115604637B (zh) * 2022-12-15 2023-03-03 苏州敏芯微电子技术股份有限公司 Mems麦克风和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993684A (ja) * 1995-09-28 1997-04-04 Fujitsu Ten Ltd ヘッドホン装置
JP2004343286A (ja) * 2003-05-14 2004-12-02 Fujitsu Ten Ltd スピーカ装置
CN108698541A (zh) * 2016-02-10 2018-10-23 松下知识产权经营株式会社 车辆接近通知装置

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156526U (zh) 1976-05-22 1977-11-28
IT1086464B (it) 1977-09-06 1985-05-28 Selmin Sas Metodo e dispositivi per l'irradiazione omnidirezionale di onde acustiche
JPS599491Y2 (ja) 1979-04-18 1984-03-26 三菱電機株式会社 スピ−カ
JPS58191598A (ja) 1982-05-06 1983-11-08 Matsushita Electric Ind Co Ltd スピ−カシステム
JPS58194499A (ja) 1982-05-07 1983-11-12 Matsushita Electric Ind Co Ltd スピ−カシステム
JPS5912685A (ja) 1982-07-12 1984-01-23 Matsushita Electric Ind Co Ltd スピ−カ装置
JPS619988U (ja) 1984-06-21 1986-01-21 三菱電機株式会社 バスレフ型スピ−カボツクス
US4899390A (en) 1986-09-19 1990-02-06 Matsushita Electric Industrial Co., Ltd. Thin speaker having an enclosure within an open portion and a closed portion
JP2568675Y2 (ja) * 1988-07-22 1998-04-15 ヤマハ株式会社 音響装置
JPH02133090U (zh) * 1989-04-05 1990-11-05
EP0410352B1 (en) * 1989-07-24 1994-09-28 Matsushita Electric Industrial Co., Ltd. Loudspeaker system
JPH0348997U (zh) 1989-09-20 1991-05-13
JP2786285B2 (ja) * 1989-12-25 1998-08-13 カルソニック株式会社 アクティブ・ノイズ・キャンセラー
JPH03274892A (ja) * 1990-03-23 1991-12-05 Sharp Corp 電気音響変換器
US5147986A (en) * 1990-12-03 1992-09-15 Tandy Corporation Subwoofer speaker system
KR940002165A (ko) * 1992-07-31 1994-02-16 제럴드 켄트 화이트 초순도의 탄화규소와 이것으로 만든 고온의 반도체 처리 장치
JP3281181B2 (ja) * 1994-06-27 2002-05-13 松下電器産業株式会社 音場再生用スピーカシステム
JP3625233B2 (ja) 1995-12-26 2005-03-02 フオスター電機株式会社 スピーカユニット及びスピーカシステム
JP3815513B2 (ja) * 1996-08-19 2006-08-30 ソニー株式会社 イヤホン
US5815589A (en) * 1997-02-18 1998-09-29 Wainwright; Charles E. Push-pull transmission line loudspeaker
JPH1132388A (ja) 1997-07-10 1999-02-02 Sony Corp スピーカ装置
JPH11220789A (ja) * 1998-01-30 1999-08-10 Sony Corp 電気音響変換装置
JP2000023285A (ja) 1998-07-01 2000-01-21 Sony Corp スピーカ及びスピーカ装置
JP2000023280A (ja) 1998-07-07 2000-01-21 Sony Corp スピーカ装置
JP2000041292A (ja) 1998-07-23 2000-02-08 Sony Corp スピーカ装置
JP3742963B2 (ja) 1999-07-02 2006-02-08 株式会社ケンウッド スピーカ装置、および音響再生方法
US6650758B1 (en) * 1999-12-23 2003-11-18 Nortel Networks Limited Adaptive dual port loudspeaker implementation for reducing lateral transmission
US7103193B2 (en) * 2000-09-15 2006-09-05 American Technology Corporation Bandpass woofer enclosure with multiple acoustic fibers
US6729726B2 (en) * 2001-10-06 2004-05-04 Stryker Corporation Eyewear for hands-free communication
US7499555B1 (en) * 2002-12-02 2009-03-03 Plantronics, Inc. Personal communication method and apparatus with acoustic stray field cancellation
JP4235803B2 (ja) 2003-04-14 2009-03-11 日本ビクター株式会社 スピーカ・システム
JP3790528B2 (ja) 2003-11-17 2006-06-28 ヤマハリビングテック株式会社 スピーカシステム
US7346315B2 (en) * 2004-03-30 2008-03-18 Motorola Inc Handheld device loudspeaker system
JP2005311986A (ja) 2004-04-26 2005-11-04 Berutekku:Kk スピーカ装置
KR20070045776A (ko) 2005-10-28 2007-05-02 주식회사 현대오토넷 크기가 조절되는 인클로저를 갖는 차량용 스피커 시스템
KR100757462B1 (ko) * 2006-07-14 2007-09-11 삼성전자주식회사 이어폰
JP2008135864A (ja) 2006-11-27 2008-06-12 Matsushita Electric Works Ltd 通話装置
US8565463B2 (en) * 2007-06-12 2013-10-22 Panasonic Corporation Loudspeaker system
JP4905280B2 (ja) * 2007-07-23 2012-03-28 船井電機株式会社 ヘッドホンシステム
JP4341851B1 (ja) 2008-08-26 2009-10-14 重幸 黒川 スピーカ装置
CN101511048B (zh) * 2009-03-16 2012-09-05 歌尔声学股份有限公司 具有新型振动系统的电声转换器及其振动系统的制造方法
JP5399158B2 (ja) * 2009-07-27 2014-01-29 有限会社ジョイ創建 二重バッフルを有するスピーカー装置
CN201616895U (zh) * 2010-02-08 2010-10-27 华为终端有限公司 一种音腔及电子设备
US11540057B2 (en) * 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
FR2982110B3 (fr) * 2012-01-10 2014-03-14 Samsung Electronics Co Ltd Dispositif de lunettes pour visionner une image d'affichage
US8971561B2 (en) * 2012-06-20 2015-03-03 Apple Inc. Earphone having a controlled acoustic leak port
CN103108268B (zh) * 2013-02-07 2016-08-24 歌尔声学股份有限公司 扬声器模组及其使用该扬声器模组的电子装置
TWI469652B (zh) * 2013-02-08 2015-01-11 Cotron Corp 耳機
CN103209377B (zh) * 2013-03-19 2016-02-17 歌尔声学股份有限公司 多功能扬声器
CN203301726U (zh) * 2013-05-08 2013-11-20 歌尔声学股份有限公司 一种低音扬声器及其应用该低音扬声器的电子装置
CN103260117A (zh) * 2013-05-08 2013-08-21 歌尔声学股份有限公司 一种低音扬声器及其应用该低音扬声器的电子装置
CN103297904B (zh) * 2013-05-18 2015-09-02 歌尔声学股份有限公司 一种双振膜扬声器模组
JP6137942B2 (ja) 2013-05-31 2017-05-31 フォスター電機株式会社 スピーカシステム
US9883280B2 (en) 2013-08-12 2018-01-30 Sony Corporation Headphone and acoustic characteristic adjusting method
CN203523010U (zh) 2013-10-10 2014-04-02 深圳雷柏科技股份有限公司 一种辐射倒相式音箱
CN203720476U (zh) * 2013-11-08 2014-07-16 深圳市广百思科技有限公司 一种蓝牙太阳镜
JP2015103825A (ja) 2013-11-21 2015-06-04 オンキヨー株式会社 スピーカーシステム
CN106303861B (zh) 2014-01-06 2018-06-12 深圳市韶音科技有限公司 一种能够抑制漏音的骨传导扬声器
CN104540076B (zh) * 2014-11-20 2018-09-07 歌尔股份有限公司 扬声器模组
CN104540080B (zh) * 2014-12-26 2018-05-01 歌尔股份有限公司 扬声器模组
CN204465855U (zh) * 2015-02-13 2015-07-08 瑞声光电科技(常州)有限公司 扬声器
CN104754454B (zh) * 2015-03-25 2019-03-26 歌尔股份有限公司 扬声器模组
CN204733358U (zh) * 2015-07-01 2015-10-28 歌尔声学股份有限公司 微型扬声器
EP3346727A4 (en) * 2015-09-01 2018-09-19 Panasonic Intellectual Property Management Co., Ltd. Speaker device
WO2017045262A1 (zh) * 2015-09-15 2017-03-23 歌尔声学股份有限公司 扬声器模组
JP6563327B2 (ja) 2015-12-17 2019-08-21 株式会社オーディオテクニカ イヤホン
CN205283805U (zh) 2015-12-31 2016-06-01 歌尔声学股份有限公司 扬声器模组
US9794676B2 (en) * 2016-01-12 2017-10-17 Bose Corporation Headphone
DE102016103477A1 (de) * 2016-02-26 2017-08-31 USound GmbH Audiosystem mit strahlformenden Lautsprechern sowie Brille mit einem derartigen Audiosystem
US9838787B1 (en) * 2016-06-06 2017-12-05 Bose Corporation Acoustic device
US10015586B2 (en) * 2016-07-20 2018-07-03 AAC Technologies Pte. Ltd. Speaker box and method for manufacturing same
CN205847592U (zh) * 2016-07-21 2016-12-28 瑞声科技(新加坡)有限公司 扬声器
US9881600B1 (en) * 2016-07-29 2018-01-30 Bose Corporation Acoustically open headphone with active noise reduction
US10587950B2 (en) 2016-09-23 2020-03-10 Apple Inc. Speaker back volume extending past a speaker diaphragm
US10397681B2 (en) * 2016-12-11 2019-08-27 Base Corporation Acoustic transducer
WO2018116834A1 (en) 2016-12-21 2018-06-28 Sony Corporation Headphone device
WO2018132772A1 (en) 2017-01-12 2018-07-19 Mark Olsson Magnetic field canceling audio speakers for use with buried utility locators or other devices
CN206674192U (zh) * 2017-04-13 2017-11-24 瑞声科技(新加坡)有限公司 微型扬声器
CN207070324U (zh) * 2017-05-31 2018-03-02 歌尔股份有限公司 扬声器模组以及电子设备
JP6866808B2 (ja) * 2017-09-06 2021-04-28 株式会社Jvcケンウッド イヤホン
CN207665190U (zh) * 2017-12-25 2018-07-27 歌尔科技有限公司 扬声器模组及电子设备
CN207677986U (zh) * 2017-12-29 2018-07-31 歌尔科技有限公司 一种扬声器模组
JP2019121898A (ja) 2018-01-04 2019-07-22 オンキヨー株式会社 スピーカー装置
CN111656800B (zh) * 2018-01-24 2022-10-04 哈曼贝克自动系统股份有限公司 用于生成自然的定向耳廓提示的头戴式耳机装置
US10555071B2 (en) 2018-01-31 2020-02-04 Bose Corporation Eyeglass headphones
US10390143B1 (en) * 2018-02-15 2019-08-20 Bose Corporation Electro-acoustic transducer for open audio device
JP2019145963A (ja) 2018-02-19 2019-08-29 オンキヨー株式会社 イヤホン
JP2019145965A (ja) * 2018-02-19 2019-08-29 オンキヨー株式会社 イヤホン
US10674244B2 (en) * 2018-02-21 2020-06-02 Bose Corporation Audio device
US10516929B2 (en) * 2018-03-06 2019-12-24 Bose Corporation Audio device
US10904667B1 (en) * 2018-03-19 2021-01-26 Amazon Technologies, Inc. Compact audio module for head-mounted wearable device
CN108718430B (zh) * 2018-04-17 2020-05-29 歌尔股份有限公司 半入耳式耳机
CN109143580B (zh) * 2018-08-04 2021-09-10 瑞声科技(新加坡)有限公司 一种增强现实眼镜
US10609465B1 (en) * 2018-10-04 2020-03-31 Bose Corporation Acoustic device
CN208806980U (zh) 2018-11-09 2019-04-30 苏州市信天游光电材料有限公司 一种防尘防静电的喇叭网罩
CN209572154U (zh) 2019-04-10 2019-11-01 南京咩咩达智能科技有限公司 小型平面振膜扬声器及耳机
CN110554520B (zh) * 2019-08-14 2020-11-20 歌尔股份有限公司 一种智能头戴设备
CN110568633A (zh) * 2019-08-14 2019-12-13 歌尔股份有限公司 一种智能头戴设备
CN110830867B (zh) * 2019-11-01 2021-09-17 歌尔股份有限公司 一种智能头戴设备
CN110933548A (zh) * 2019-11-22 2020-03-27 歌尔股份有限公司 一种智能头戴设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993684A (ja) * 1995-09-28 1997-04-04 Fujitsu Ten Ltd ヘッドホン装置
JP2004343286A (ja) * 2003-05-14 2004-12-02 Fujitsu Ten Ltd スピーカ装置
CN108698541A (zh) * 2016-02-10 2018-10-23 松下知识产权经营株式会社 车辆接近通知装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163297A (zh) * 2021-04-29 2021-07-23 歌尔光学科技有限公司 音频装置以及智能头戴设备
CN113225643A (zh) * 2021-04-29 2021-08-06 歌尔光学科技有限公司 一种音频装置及智能头戴设备
CN113163297B (zh) * 2021-04-29 2023-10-27 歌尔科技有限公司 音频装置以及智能头戴设备
WO2023050971A1 (zh) * 2021-09-29 2023-04-06 歌尔科技有限公司 发声装置及其控制方法、以及控制装置
CN113993031A (zh) * 2021-11-10 2022-01-28 歌尔光学科技有限公司 发声装置、发声装置的校准方法及发声单元
CN114143640A (zh) * 2021-11-30 2022-03-04 歌尔光学科技有限公司 一种头戴设备及其远场消声方法、装置及系统
WO2023159496A1 (zh) * 2022-02-25 2023-08-31 深圳市韶音科技有限公司 一种声学输出装置
CN115460307A (zh) * 2022-08-29 2022-12-09 湖北星纪时代科技有限公司 电子设备及电子设备发声方法
CN115460307B (zh) * 2022-08-29 2024-07-23 湖北星纪魅族科技有限公司 电子设备及电子设备发声方法

Also Published As

Publication number Publication date
BR112022019699A2 (pt) 2023-03-07
AU2020349994B2 (en) 2023-03-16
AU2020350921B2 (en) 2023-05-25
EP4009665A4 (en) 2022-09-28
CN114175677B (zh) 2024-07-05
US12047737B2 (en) 2024-07-23
CL2022000657A1 (es) 2022-10-14
CA3153521C (en) 2024-02-13
WO2022027915A1 (zh) 2022-02-10
WO2022142500A1 (zh) 2022-07-07
US20240251202A1 (en) 2024-07-25
US12108208B2 (en) 2024-10-01
KR20230058150A (ko) 2023-05-02
JP2022549232A (ja) 2022-11-24
EP4184940A4 (en) 2024-06-12
KR20220066918A (ko) 2022-05-24
AU2020350921A1 (en) 2022-03-24
EP4109925A4 (en) 2023-08-30
BR112022004279A2 (pt) 2022-06-21
CA3153521A1 (en) 2021-03-25
CA3153093A1 (en) 2021-03-25
US11956591B2 (en) 2024-04-09
PE20220598A1 (es) 2022-04-22
EP4009660A4 (en) 2022-10-05
WO2021052046A1 (zh) 2021-03-25
JP2023522681A (ja) 2023-05-31
US20230009102A1 (en) 2023-01-12
EP4009660A1 (en) 2022-06-08
KR20220164011A (ko) 2022-12-12
CO2022003130A2 (es) 2022-07-08
CN114175673A (zh) 2022-03-11
CA3153093C (en) 2024-02-06
AU2020349994A1 (en) 2022-03-24
BR112023004520A2 (pt) 2023-12-05
CN114424585A (zh) 2022-04-29
CN114175673B (zh) 2023-11-24
BR112022004399A2 (pt) 2022-05-31
US20220360888A1 (en) 2022-11-10
EP4184940A1 (en) 2023-05-24
US20220182754A1 (en) 2022-06-09
MX2022003327A (es) 2022-04-07
JP2023544634A (ja) 2023-10-24
EP4109925A1 (en) 2022-12-28
CN114175677A (zh) 2022-03-11
EP4009665A1 (en) 2022-06-08
PE20220631A1 (es) 2022-04-26
MX2022003326A (es) 2022-05-06
JP2022549231A (ja) 2022-11-24
KR102602344B1 (ko) 2023-11-16
CL2022000669A1 (es) 2022-10-14
KR20220066921A (ko) 2022-05-24
KR102602341B1 (ko) 2023-11-16
CO2022003143A2 (es) 2022-07-08
CN114982252A (zh) 2022-08-30
US20230188897A1 (en) 2023-06-15
JP7528199B2 (ja) 2024-08-05
CN114697800A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2021052485A1 (zh) 一种声学输出装置
WO2020221337A1 (zh) 一种声学输出装置和降噪传声装置
WO2022126592A1 (zh) 一种声学输出装置
CN116438810A (zh) 一种听力辅助装置
US20230014930A1 (en) Assistive listening devices
RU2790965C1 (ru) Акустическое выходное устройство
RU2796796C1 (ru) Акустическое выходное устройство
RU2801637C1 (ru) Акустическое выходное устройство
RU2803551C1 (ru) Устройство вывода акустических сигналов
RU2800623C1 (ru) Слуховой аппарат
RU2801638C1 (ru) Вспомогательные слуховые устройства
US20240365055A1 (en) Acoustic output apparatus
KR20200074059A (ko) 골전도 스피커의 진동을 이용하여 소리를 전달하는 소리전달 기기 및 골전도 스피커를 내장한 이어셋
CN116300144A (zh) 一种智能眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3153093

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022517898

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020865964

Country of ref document: EP

Effective date: 20220301

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004399

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020349994

Country of ref document: AU

Date of ref document: 20200918

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227012878

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022004399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220310