WO2022126592A1 - 一种声学输出装置 - Google Patents

一种声学输出装置 Download PDF

Info

Publication number
WO2022126592A1
WO2022126592A1 PCT/CN2020/137595 CN2020137595W WO2022126592A1 WO 2022126592 A1 WO2022126592 A1 WO 2022126592A1 CN 2020137595 W CN2020137595 W CN 2020137595W WO 2022126592 A1 WO2022126592 A1 WO 2022126592A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
sound guide
acoustic
guide hole
output device
Prior art date
Application number
PCT/CN2020/137595
Other languages
English (en)
French (fr)
Inventor
王力维
张磊
廖风云
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3187015A priority Critical patent/CA3187015A1/en
Priority to EP20965608.1A priority patent/EP4156714A4/en
Priority to KR1020237000852A priority patent/KR20230022230A/ko
Priority to JP2023511847A priority patent/JP2023538562A/ja
Priority to PCT/CN2020/137595 priority patent/WO2022126592A1/zh
Priority to CN202080100729.XA priority patent/CN115516877A/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PE2023000045A priority patent/PE20230872A1/es
Priority to MX2023000599A priority patent/MX2023000599A/es
Priority to AU2020481327A priority patent/AU2020481327A1/en
Publication of WO2022126592A1 publication Critical patent/WO2022126592A1/zh
Priority to US18/064,942 priority patent/US20230111069A1/en
Priority to CONC2023/0000378A priority patent/CO2023000378A2/es

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/023Screens for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • H04R1/347Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers for obtaining a phase-shift between the front and back acoustic wave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Definitions

  • the present application relates to the field of acoustics, and in particular, to an acoustic output device.
  • the open binaural acoustic output device is a portable audio output device that realizes sound conduction within a specific range. Compared with traditional in-ear and over-ear headphones, the open-ear acoustic output device has the characteristics of not blocking or covering the ear canal, allowing users to obtain sound information from the external environment while listening to music, improving safety. Sex and comfort. Due to the use of the open structure, the sound leakage of the open binaural acoustic output device is often more serious than that of the traditional earphone. At present, the acoustic output device with open ears may have the problems of insufficient sound loudness and large sound leakage.
  • An embodiment of the present application provides an acoustic output device, the device includes: at least one acoustic driver, the at least one acoustic driver generates a set of sounds with opposite phases, and the sounds with opposite phases are directed from at least two sound guide holes to external radiation; and a housing structure configured to carry the at least one acoustic driver, the housing structure including a user interface configured to output the acoustic output when the user is wearing When the device is installed, the user contact surface is in contact with the user's body; wherein, the included angle formed by the connecting line of the at least two sound guide holes and the user contact surface is in the range of 75°-90°.
  • the at least two sound guide holes include a first sound guide hole and a second sound guide hole, and the distance from the first sound guide hole to the user contact surface is smaller than the second sound guide hole The distance to the user contact surface.
  • the distance from the first sound guide hole to the user contact surface is not greater than 5 mm.
  • the distance from the first sound guide hole to the user contact surface is not greater than 2 mm.
  • the distance between the first sound guide hole and the second sound guide hole is not greater than 2 mm.
  • the distance between the first sound guide hole and the second sound guide hole is not greater than 0.5 mm.
  • the at least one acoustic driver includes a diaphragm and a magnetic circuit structure, and a side of the diaphragm facing away from the magnetic circuit structure forms a front face of the acoustic driver, the magnetic circuit structure facing away from all One side of the diaphragm forms the back of the acoustic driver, and the diaphragm vibrates so that the acoustic driver radiates sound outward from its front and back, respectively.
  • the at least one acoustic driver includes a first acoustic driver and a second acoustic driver
  • the first acoustic driver includes a first diaphragm
  • the second acoustic driver includes a second diaphragm
  • a damping layer is provided on the at least two sound guide holes.
  • the damping layer is a metal filter mesh or a gauze mesh.
  • an acoustic output device comprising: at least one acoustic driver, the at least one acoustic driver generates a set of opposite-phase sounds, the opposite-phase sounds respectively from at least two and a housing structure configured to carry the at least one acoustic driver, the housing structure including a user interface configured to When wearing the acoustic output device, the user contact surface is in contact with the user's body; wherein, the included angle formed by the connection line of the at least two sound guide holes and the user contact surface is in the range of 0°-15° .
  • the at least two sound guide holes include a first sound guide hole and a second sound guide hole, the first sound guide hole or the second sound guide hole and the user contact surface
  • the distance is not more than 5mm.
  • the distance from the first sound guide hole or the second sound guide hole to the user contact surface is not more than 2 mm.
  • the distance between the first sound guide hole and the second sound guide hole is not greater than 2 mm.
  • the distance between the first sound guide hole and the second sound guide hole is not greater than 0.5 mm.
  • the at least one acoustic driver includes a diaphragm and a magnetic circuit structure, a side of the diaphragm facing away from the magnetic circuit structure forms a front face of the acoustic driver, and the magnetic circuit structure facing away One side of the diaphragm forms the back of the acoustic driver, and the diaphragm vibrates so that the acoustic driver radiates sound outward from its front and back, respectively.
  • the at least one acoustic driver includes a first acoustic driver and a second acoustic driver
  • the first acoustic driver includes a first diaphragm
  • the second acoustic driver includes a second diaphragm
  • the sound generated by the vibration of the first diaphragm and the sound generated by the vibration of the second diaphragm are opposite in phase, and the sound generated by the vibration of the first diaphragm and the second diaphragm passes through the at least two sound guides respectively.
  • the holes radiate outward.
  • FIG. 1 is a schematic diagram of two sound guide holes and a user contact surface or a user body part provided according to some embodiments of the present application;
  • FIG. 2 is a schematic diagram of a dipole provided according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of a dipole provided according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of the relative position of a dipole and a face region provided according to some embodiments of the present application.
  • FIG. 5 is an equivalent schematic diagram of the sound reflection of a dipole by a user's face area provided according to some embodiments of the present application.
  • FIG. 6 is a frequency response curve diagram of the acoustic output device provided according to some embodiments of the present application at different distances d between two point sound sources and between the point sound source and the user's face area at different distances D;
  • FIG. 7 is a sound field energy distribution diagram of two point sound sources at 1000 Hz provided according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of the relative position of a dipole and a user's face area provided according to some embodiments of the present application.
  • FIG. 9 is an equivalent schematic diagram of the sound reflection of a dipole by a user's face area provided according to some embodiments of the present application.
  • FIG. 10 is a frequency response curve diagram of the acoustic output device provided according to some embodiments of the present application at different distances d between two point sound sources and between the point sound source and the user face area at different distances D;
  • 11 is a sound field energy distribution diagram of two point sound sources at 1000 Hz provided according to some embodiments of the present application.
  • Fig. 12 is a sound pressure curve diagram of the angle between the connection line of the two sound guide holes and the user contact surface or the user's body part provided according to some embodiments of the present application under different conditions;
  • FIG. 13 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of another acoustic output device provided according to some embodiments of the present application.
  • FIG. 15 is a schematic structural diagram of another acoustic output device provided according to some embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • FIG. 17 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the acoustic output device may include an acoustic driver and a housing structure.
  • the acoustic driver is located inside the housing structure.
  • the sound generated by the at least one acoustic driver in the acoustic output device can propagate outward through at least two sound guide holes acoustically coupled thereto.
  • the two sound guide holes that are acoustically coupled to the same acoustic driver may be distributed on the same side of the user's head or face. In this case, the user's head or face may be approximately regarded as a baffle, and the baffle The sound emitted from the two sound guide holes can be reflected.
  • the sound reflected by the baffle and the sound directly radiated by the sound guide hole will interfere, thereby changing the amplitude of the sound transmitted by the acoustic output device to a specific position.
  • the sound generated by the acoustic output device in the surrounding environment can have a smaller amplitude, so as to reduce the noise generated by the acoustic output device in the surrounding environment. Sound leakage in the environment can also prevent the sound produced by the acoustic output device from being heard by others near the user.
  • the present application provides an acoustic output device.
  • the acoustic output device can be combined with products such as glasses, headsets, head-mounted display devices, AR/VR helmets, etc., in which case the acoustic output device can be suspended or clamped Fixed near the user's ear.
  • the acoustic output device is located at least on one side of the user's head, close to but not blocking the user's ear.
  • the outer surface of the acoustic output device may be provided with a hook, and the shape of the hook matches the shape of the pinna, so that the acoustic output device can be independently worn on the user's ear through the hook.
  • the independently worn acoustic output device can communicate with a signal source (eg, a computer, a mobile phone or other mobile devices) through a wired or wireless (eg, Bluetooth) manner.
  • a signal source eg, a computer, a mobile phone or other mobile devices
  • a wired or wireless eg, Bluetooth
  • the acoustic output devices at the left and right ears may include a first output device and a second output device, wherein the first output device may be communicatively connected to the signal source, and the second output device may be wirelessly connected to the first output device in a wireless manner , the synchronization of audio playback is achieved between the first output device and the second output device through one or more synchronization signals.
  • the manner of wireless connection may include, but is not limited to, Bluetooth, local area network, wide area network, wireless personal area network, near field communication, etc., or any combination thereof.
  • the acoustic output device can be worn on the user's head (eg, non-in-ear open-ear headphones worn in glasses, headbands, or other structures), or on other parts of the user's body (eg, the user's neck/shoulders) /face area), or placed near the user's ear by other means (eg, by the user's hand).
  • the acoustic driver can be close to but not block the ear canal, so that the user's ear remains open, and the user can not only hear the sound output by the acoustic output device, but also obtain the sound of the external environment.
  • the acoustic output device may be arranged around or partially around the user's ear, and may transmit sound by means of air conduction or bone conduction.
  • An acoustic driver is a component that can receive electrical signals and convert them into sound signals for output.
  • the types of acoustic drivers may include low frequency (eg, 30Hz-150Hz) acoustic drivers, mid-low frequency (eg, 150Hz-500Hz) acoustic drivers, mid-high frequency (eg, 500Hz-5kHz) acoustic drivers A driver, a high frequency (eg, 5kHz-16kHz) acoustic driver, or a full frequency (eg, 30Hz-16kHz) acoustic driver, or any combination thereof.
  • the low frequency, high frequency, etc. mentioned here only represent the approximate range of frequencies, and in different application scenarios, there may be different division methods.
  • a crossover point may be determined, where the low frequency represents the frequency range below the crossover point, and the high frequency represents the frequency above the crossover point.
  • the frequency division point can be any value within the audible range of the human ear, for example, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 1000 Hz, and so on.
  • the acoustic driver may also include, but is not limited to, a moving coil type, a moving iron type, a piezoelectric type, an electrostatic type, a magnetostrictive type, and other drivers according to the principle.
  • the acoustic driver may include a diaphragm.
  • the sound can be emitted from the front side and the rear side of the diaphragm respectively, and the sound emitted from the front side of the acoustic driver diaphragm has the same amplitude and opposite phase as the sound emitted from the rear side of the acoustic driver diaphragm.
  • the two parts of the sound will interfere during the propagation process, thereby reducing the far-field effect of the acoustic output device. of sound leakage.
  • the acoustic driver may include a diaphragm and a magnetic circuit structure.
  • the diaphragm and the magnetic circuit structure are sequentially arranged along the vibration direction of the diaphragm.
  • the diaphragm may be mounted on a basin frame, and the basin The frame is then fixed on the magnetic circuit structure.
  • the diaphragm can be directly and fixedly connected to the side wall of the magnetic circuit structure.
  • the side of the diaphragm facing away from the magnetic circuit structure forms the front side of the acoustic driver
  • the side of the magnetic circuit structure facing away from the diaphragm forms the back side of the acoustic driver
  • the diaphragm vibrates so that The acoustic driver radiates sound outward from its front and back, respectively.
  • the acoustic driver may also include a voice coil.
  • the voice coil can be fixed on the side of the diaphragm facing the magnetic circuit structure, and is located in the magnetic field formed by the magnetic circuit structure.
  • the voice coil When the voice coil is energized, it can vibrate under the action of a magnetic field and drive the diaphragm to vibrate, thereby generating sound, and the diaphragm vibration can cause the acoustic driver to radiate sound from the front and back of the acoustic driver, respectively.
  • the housing structure may be a closed or semi-closed housing structure with a hollow interior, and the acoustic driver is located inside the housing structure.
  • the shell structure can be a shell structure with a shape suitable for human ears, such as a circular ring, an ellipse, a polygon (regular or irregular), a U shape, a V shape, a semicircle, so that the shell structure can be directly attached to the near the user's ear.
  • the housing structure may also include one or more securing structures.
  • the fixing structure may include ear hooks, head beams or elastic straps, so that the acoustic output device can be better fixed on the user and prevent the user from falling during use.
  • the securing structure may be an earhook, which may be configured to be worn around the ear area.
  • the securing structure may be a neck strap configured to be worn around the neck/shoulder area.
  • the earhook can be a continuous hook and can be elastically stretched to fit over the user's ear, while the earhook can also apply pressure to the user's pinna, making the acoustic output device securely Fixed to a specific location on the user's ear or head.
  • the earhook may be a discontinuous band.
  • the earhook may include a rigid portion and a flexible portion, wherein the rigid portion may be made of a rigid material (eg, plastic or metal), and the rigid portion may be physically connected (eg, snap-fit, threaded connection, etc.)
  • the flexible portion may be made of an elastic material (eg, cloth, composite or/and neoprene).
  • the housing structure includes at least one first sound guide hole and at least one second sound guide hole.
  • the first sound guide hole and the second sound guide hole may be respectively coupled to the front and rear sides of the diaphragm in the same acoustic driver.
  • the housing structure can make the first sound guide hole and the second sound guide hole located on the same side of the user's face.
  • an antechamber for transmitting sound is provided at a location in front of the acoustic driver (diaphragm) within the housing structure.
  • the front chamber is acoustically coupled with the first sound guide hole, and the sound at the front of the acoustic driver can be emitted from the first sound guide hole through the front chamber.
  • a rear chamber for sound transmission is provided at the back of the acoustic driver (diaphragm) within the housing structure.
  • the rear chamber is acoustically coupled with the second sound guide hole, and the sound on the back of the acoustic driver can be emitted from the second sound guide hole through the rear chamber.
  • the structures of the front chamber and the rear chamber can be adjusted so that the sound output from the sound guide holes on the front side of the acoustic driver and the sound guide holes on the rear side of the acoustic driver meet certain conditions.
  • the lengths of the front and rear chambers can be designed so that a set of sounds with a specific phase relationship (eg, opposite phases) can be output at the acoustic driver front sound guide holes and the acoustic driver rear sound guide holes, so that the acoustic output device
  • a specific phase relationship eg, opposite phases
  • the shape of the sound guide hole includes, but is not limited to, a square, a circle, and a prism.
  • the housing structure is provided with a user interface.
  • the user contact surface may conform to or be close to the user's body part (eg, face, head).
  • the user contact surface can also be called the user projection surface, which can be understood as the surface of the casing structure with the largest projection area on the user's body part, which is closer to the user's body than the acoustic driver.
  • the user contact surface is substantially parallel to the user's body part (eg, the face area) that is in direct contact with or directly opposite to the user contact surface.
  • the acoustic output device can output the sound to the casing through the sound guide hole on the casing structure, no matter whether the user contact surface is close to but not in contact with the user's body part, or close to the user's body part outside of the structure to deliver sound to the user's ears.
  • the shape of the user contact surface may be a circle, an ellipse, a rectangle, a triangle, a diamond, or other regular or irregular shapes.
  • the surface of the user contact surface may be a smooth plane, or may be a surface containing one or more raised or recessed areas.
  • the user interface may include a layer of silicone material or a layer of hard plastic material (eg, rubber, plastic, etc.) that may cover the outer surface bonded to the housing structure, or It is integrally formed with the shell structure.
  • a layer of silicone material or a layer of hard plastic material (eg, rubber, plastic, etc.) that may cover the outer surface bonded to the housing structure, or It is integrally formed with the shell structure.
  • FIG. 1 is a schematic diagram of a contact surface between two sound guide holes on a casing structure and a user provided according to some embodiments of the present application.
  • the at least two sound guide holes may include a first sound guide hole B 1 and a second sound guide hole B 2 , and the first sound guide hole B 1 and the second sound guide hole B 2 Radiates sound outward in a dipole or dipole-like fashion.
  • the distance from the first sound guide hole B 1 to the user contact surface (the parallelogram represents the user contact surface in FIG. 1 ) is smaller than the distance from the second sound guide hole B 2 to the user contact surface.
  • the direction vector of the straight line where the first sound guide hole B 1 and the second sound guide hole B 2 are connected is: direction vector The direction is the direction from the first sound guide hole B1 to the second sound guide hole B2.
  • the direction vector of the straight line where the first sound guide hole B 1 and the second sound guide hole B 2 are connected The normal vector at point A of the contact surface with the user There is an angle ⁇ .
  • the user interface when the user wears the acoustic output device, the user interface is substantially parallel to the part of the user's body (eg, the face area) that is in direct contact with or directly opposite the user interface.
  • the following description takes the face area of the user as an example of the body part of the user. That is to say, the user contact surface on the acoustic output device is substantially parallel to the face area.
  • the angular relationship between the connection line of the at least two sound guide holes and the face area is basically equal to the connection of the at least two sound guide holes. The angular relationship of the line to the user interface.
  • the connecting line of the at least two sound guide holes is approximately perpendicular to the face area, that is, the connecting line of the at least two sound guide holes is approximately perpendicular to the user contact surface.
  • the approximate vertical mentioned here may mean that the included angle between the line connecting the first sound guide hole B 1 and the second sound guide hole B 2 and the user contact surface is 75°-90°.
  • the included angle between the connecting line of the at least two sound guide holes and the user contact surface may refer to the direction vector The normal vector at point A of the contact surface with the user Complementary angle of the included angle ( ⁇ ) formed between them.
  • the first sound guide hole B 1 and the second sound guide hole B 2 The direction vector of the line where the connection is located The normal vector at point A with the user interface
  • the angle ⁇ is 0-15°.
  • the first sound guide hole B 1 and the second sound guide hole B 2 may be located on the side surface of the housing structure that is perpendicular or approximately perpendicular to the user contact surface at the same time.
  • the first sound guide hole B 1 and the second sound guide hole B 2 may be located on the side of the housing structure that is perpendicular or approximately perpendicular to the user contact surface at the same time, or alternatively, the first sound guide hole B 1 may be located on the user contact surface, The second sound guide hole B2 may be located on the side of the housing structure opposite to the user contact surface.
  • the included angle between the connecting line of the at least two sound guide holes and the user contact surface is 90°.
  • the direction vector of the straight line where the line connecting the first sound guide hole and the second sound guide hole is located is 90°.
  • the normal vector at point A with the user interface The angle ⁇ is 0°.
  • the front surface or diaphragm of the acoustic driver and the housing structure form a first cavity
  • the back surface of the acoustic driver and the housing structure form a second cavity.
  • the front side of the acoustic driver radiates sound toward the first cavity
  • the back side of the acoustic driver radiates sound toward the second cavity.
  • the housing structure may further include a first sound guide hole and a second sound guide hole, the first sound guide hole communicates with the first cavity, and the second sound guide hole communicates with the second cavity.
  • the magnetic circuit structure may include a magnetic conductive plate disposed opposite to the diaphragm. At least one sound-guiding hole (also referred to as a pressure relief hole) is opened on the magnetic conducting plate, which is used to export the sound generated by the vibration of the diaphragm from the back of the acoustic driver and transmit it to the outside through the second cavity.
  • the acoustic output device forms a double-point sound source (or multiple sound sources) similar to a dipole structure through the sound radiation of the first sound guide hole and the second sound guide hole, and generates a specific sound field with a certain directivity.
  • the front of the acoustic driver and the housing structure form a cavity, the front of the acoustic driver radiates sound toward the cavity, and the back of the acoustic driver radiates sound directly to the outside of the acoustic output device.
  • the housing structure is provided with one or more sound guide holes.
  • the sound guide hole is acoustically coupled with the cavity, and leads the sound radiated from the front of the acoustic driver to the cavity to the outside of the acoustic output device.
  • the magnetic circuit structure may include a magnetic conductive plate disposed opposite to the diaphragm.
  • One or more sound guide holes are provided on the magnetic conducting plate.
  • the sound guide hole guides the sound generated by the vibration of the diaphragm from the back of the acoustic driver to the outside of the acoustic output device. Since the sound guide holes on the front of the acoustic driver and the sound guide holes on the back of the acoustic driver are located on both sides of the diaphragm, it can be considered that the sound guide holes on the front of the acoustic driver and the sound guide holes on the back of the acoustic driver have opposite or approximately opposite sounds. Therefore, the sound guide holes on the front of the acoustic driver and the sound guide holes on the back can form a set of two-point sound sources.
  • the back of the acoustic driver and the housing structure form a cavity, the back of the acoustic driver radiates sound toward the cavity, and the front of the acoustic driver radiates sound directly to the outside of the acoustic output device.
  • the magnetic circuit structure may include a magnetic conducting plate disposed opposite to the diaphragm, and one or more sound conducting holes (also referred to as pressure relief holes) are provided on the magnetic conducting plate. The sound guide hole guides the sound produced by the vibration of the diaphragm from the back of the acoustic driver to the cavity.
  • the housing structure may be provided with one or more sound guide holes.
  • the sound guide hole is acoustically coupled with the cavity, and outputs the sound radiated to the cavity by the acoustic driver to the outside of the acoustic output device.
  • one or more sound guide holes may be disposed on the side wall of the housing structure close to the magnetic circuit structure. For example, when the user wears the acoustic output device, the diaphragm is opposite to the human ear, and the line connecting one or more sound guide holes and the center position of the front of the diaphragm is approximately perpendicular to the user's face.
  • the diaphragm when the user wears the acoustic output device, the diaphragm is not opposite to the human ear, the diaphragm is located at the upper or lower part of the casing structure, and one or more sound guide holes are located in the opposite direction to the diaphragm in the casing structure,
  • the line connecting one or more sound guide holes and the center of the front of the diaphragm is approximately parallel to the user's face.
  • the sound propagating from the front of the diaphragm directly to the outside world and the sound derived from the sound guide hole have opposite or approximately opposite phases, so the front face of the diaphragm and the sound guide hole can form a set of double-point sound sources.
  • the acoustic output device may include a first acoustic driver, a second acoustic driver.
  • the first acoustic driver may include a first diaphragm
  • the second acoustic driver may include a second diaphragm
  • the first acoustic driver and the second acoustic driver may receive the first electrical signal and the second electrical signal, respectively.
  • the first diaphragm and the second diaphragm can generate a set of sounds with opposite phases.
  • the casing structure can carry the first acoustic driver and the second acoustic driver, wherein the sound generated by the vibration of the first diaphragm can be radiated outward through the first sound guide hole on the casing structure, and the vibration generated by the second diaphragm can radiate to the outside.
  • the sound can be radiated outward through the second sound guide hole on the shell structure.
  • the sound generated by the vibration of the first diaphragm may refer to the sound generated by the front side of the first acoustic driver
  • the sound generated by the vibration of the second diaphragm may refer to the sound generated by the front side of the second acoustic driver.
  • the first sound guide holes and the second sound guide holes here Apertures can be approximated as dual sound sources (eg, dual point sound sources).
  • the positions of the first sound guide hole and the second sound guide hole are opposite.
  • the first sound guide hole is positioned opposite to the human ear, and the line connecting the first sound guide hole and the second sound guide hole is approximately perpendicular to the user's face.
  • the side wall of the acoustic output device adjacent to the side wall where the first sound guide hole or the second sound guide hole is located is opposite to the position of the human ear, and the first sound guide hole and the second sound guide hole are positioned opposite to the human ear.
  • the connection line of the sound hole is approximately parallel to the user's face.
  • the first acoustic driver and the second acoustic driver may be the same or similar acoustic drivers, so that the amplitude-frequency responses of the first acoustic driver and the second acoustic driver in the whole frequency band are the same or similar.
  • the first acoustic driver and the second acoustic driver may be different acoustic drivers.
  • the frequency responses of the first acoustic driver and the second acoustic driver are the same or similar at mid-high frequencies, while the frequency responses of the first acoustic driver and the second acoustic driver are different at low frequency frequencies.
  • the first acoustic driver is located in the first cavity, the first acoustic driver includes a first diaphragm, the front surface of the first acoustic driver and the housing structure form a first front cavity, the first acoustic driver The back of the driver and the housing structure form a first rear cavity.
  • the front side of the first acoustic driver radiates sound toward the first front cavity, and the back side of the first acoustic driver radiates sound toward the first rear cavity.
  • the second acoustic driver is located in the second cavity.
  • the front surface of the second acoustic driver and the housing structure form a second front cavity, and the back surface of the second acoustic driver and the housing structure form a second rear cavity.
  • the front side of the second acoustic driver radiates sound toward the second front cavity, and the back side of the second acoustic driver radiates sound toward the second rear cavity.
  • the first cavity and the second cavity are the same.
  • the first acoustic driver and the second acoustic driver may be disposed in the first cavity and the second cavity, respectively, in the same manner, so that the first front cavity and the second front cavity are the same, and the first rear cavity and the second rear cavity are the same. This can make the acoustic impedance of the front or back of the first acoustic driver and the second acoustic driver the same.
  • the first cavity and the second cavity can also be different, and the first acoustic driver and the second acoustic driver can be made to face the front of the first acoustic driver and the second acoustic driver by changing the size and/or length of the cavity or adding a sound guide tube. or the same impedance on the back.
  • the first acoustic driver includes a first diaphragm
  • the second acoustic driver includes a second diaphragm.
  • the acoustic impedance of the first diaphragm and one of the at least two sound guide holes is the same as the second diaphragm.
  • the acoustic impedance of the diaphragm is the same as that of the other sound guide hole in the at least two sound guide holes.
  • sound damping structures eg, metal filters, gauze, tuning nets, tuning cotton, sound guide tubes, etc.
  • the magnitude of the frequency response so that it is close to or equal to the magnitude of the corresponding frequency response on the back or front of the acoustic driver.
  • FIG. 2 is a schematic diagram of a dipole provided according to some embodiments of the present application
  • FIG. 3 is a schematic diagram of a contact surface between a dipole and a user provided according to some embodiments of the present application.
  • the sound guide holes on the acoustic output device may be The sound guide hole is regarded as the sound source of the external output sound to describe.
  • each sound guide hole on the acoustic output device can be approximately regarded as a point sound source.
  • the two sound guide holes of the acoustic output device can be regarded as two point sound sources, and the radiated sounds have the same amplitude and opposite phases, which are represented by "+" and "-” respectively.
  • the two sound guide holes constitute dipoles or similar dipoles, and the sound radiated outward has obvious directivity, forming a "8"-shaped sound radiation area.
  • any sound guide hole provided on the acoustic output device for outputting sound can be approximated as a single-point sound source on the acoustic output device.
  • the sound field sound pressure p generated by a single point sound source satisfies the formula:
  • is the angular frequency
  • r is the distance between a point in space and the sound source
  • is the wave number
  • the sound pressure of the point sound source is inversely proportional to the distance to the point sound source.
  • the sound radiated by the acoustic output device to the surrounding environment can be reduced by disposing at least two sound guide holes in the acoustic output device to construct a dual-point sound source.
  • the acoustic output device includes at least two sound guide holes, that is, double-point sound sources, and the output sound has a certain phase difference. When the position and phase difference between the two-point sound sources meet certain conditions, the acoustic output device can be made to show different sound effects in the near field and the far field.
  • the far-field leakage can be realized. sound reduction.
  • the distance between the centers of the sound guide holes of the acoustic output device is d, forming a pair of dipoles (the dipoles can be regarded as a combination of two pulsating spheres with a distance d and opposite phases).
  • the sound pressure of a target point p in space is expressed as:
  • A represents the vibration intensity of the diaphragm, represents the intensity of the point sound source "+”, It represents the intensity of the point sound source "-”, ⁇ is the angular frequency, ⁇ is the wave number, r + is the distance between the target point and the point sound source "+”, and r - is the distance between the target point and the point sound source "-”.
  • r is the distance between any target point p in the space and the center of the double-point sound source
  • d is the distance between the two point sound sources
  • represents the connection between the target point p and the center of the double-point sound source and the double-point sound source.
  • FIG. 4 is a schematic diagram of the relative positions of a dipole and a user's face area provided according to some embodiments of the present application
  • FIG. 5 is an equivalent principle of the sound of the dipole formed by the user's face area according to some embodiments of the present application. picture.
  • FIG. 4 and FIG. 5 when the user wears the acoustic output device, at least two sound guide holes of the acoustic output device can be regarded as double-point sound sources, and the two single-point sound sources output the same amplitude and phase respectively.
  • Opposite sounds (represented by the symbols "+" and "-", respectively), form a pair of dipoles.
  • the interference based on the sound cancels out, and the volume at this point will be very small .
  • the distances from the spatial point to the two single-point sound sources are not equal, the greater the distance difference, the greater the volume of the point.
  • the included angle is 75° At -90°, it can be considered that the line connecting the two single-point sound sources is approximately perpendicular to the face area.
  • the user contact surface on the housing structure of the acoustic output device is substantially parallel to the face area, and at this time, it can be considered that the two single-point sound sources are also similar perpendicular to the user interface.
  • the face area can be abstracted as a baffle 410, the distance between the two single-point sound sources formed by at least two sound guide holes in the acoustic output device is d, and the distance between the two single-point sound sources is d.
  • the closest distance of the baffle 410 is D.
  • the two single-point sound sources When the two single-point sound sources generate sound, a part of the sound will be directly radiated into the environment, and the other part of the sound will be emitted to the baffle 410 first, reflected by the baffle 410 and then radiated into the environment.
  • the sound radiation effect of the two single-point sound sources on the environment can be equivalent to the schematic diagram in FIG. 5 .
  • the double-point sound source formed by the two sound guide holes of the acoustic output device constitutes a dipole, which is located on the right side of the baffle 510.
  • the distance between the double-point sound sources is d, and the double-point sound source is d.
  • the distances from the source to the baffle 510 are not equal, and the closest distance between the two-point sound source and the baffle 510 is D.
  • the angle between the line connecting the center of the double-point sound source and any observation point P in space and the straight line where the double-point sound source is located is ⁇ , and the distance from the center of the double-point sound source to the observation point P is r 2 .
  • the two virtual double-point sound sources form a dipole, the distance between the virtual double-point sound sources is d, and the closest distance between the virtual double-point sound source and the baffle 510 is D.
  • the distance between the center of the virtual double-point sound source connecting line and the observation point P is r 1 .
  • the virtual double-point sound source and the double-point sound source form a double-dipole, the angle between the line connecting the observation point and the center of the double-dipole and the baffle is ⁇ , and the double-dipole
  • the distance between the sub-center and the observation point is r.
  • the sound pressure received by the observation point is:
  • the synthesized sound pressure radiation is obtained from formulas (5), (6) and (7), that is, when there is a baffle, the two single-point sound
  • Fig. 6 is a frequency response curve diagram of different distances d and different distances D from the user's face when two point sound sources of the acoustic output device provided according to some embodiments of the present application are arranged in the manner shown in Fig. 4; A sound field energy distribution diagram at 1000 Hz when two point sound sources are arranged in the manner shown in FIG. 4 according to some embodiments of the present application.
  • the connecting lines of the at least two sound guide holes of the acoustic output device are perpendicular to the user's face area (ie, perpendicular to the user contact surface that is parallel or substantially parallel to the user's face area), respectively.
  • the corresponding sound pressure value when d is 0.5mm, 1mm, 1.5mm, 2mm, where the sound pressure value is expressed by sound pressure level (dB) .
  • dB sound pressure level
  • the connection line of at least two sound guide holes of the acoustic output device is approximately perpendicular to the contact surface of the user's body, the closest distance between the dipole and the baffle is 3mm, the distance between the dipoles is 0.5mm, and the frequency is 1KHz
  • the sound pressure level in the far sound field is lighter in color, that is, the sound pressure level in the far sound field is small, and the far field sound leakage is small.
  • the far-field sound leakage volume of the acoustic output device can be reduced by adjusting the distance between the sound guide hole and the user contact surface or the user's face area.
  • the at least two sound guide holes may include a first sound guide hole and a second sound guide hole, and the distance from the first sound guide hole to the face area or the user contact surface is smaller than the distance from the second sound guide hole to the face area or the user contact surface. face distance.
  • the distance from the first sound guide hole to the user contact surface is not greater than 5 mm. More preferably, the distance from the first sound guide hole to the user contact surface is not greater than 2 mm. Further preferably, the first sound guide hole is located on the user contact surface.
  • the body part of the user may function as a baffle, and the positional relationship between the first sound guide hole, the second sound guide hole and the user contact surface is also applicable to the first sound guide hole, the second sound guide hole and the The positional relationship of the user's body parts (eg, face regions).
  • the first sound guide hole reaches the user's body part The distance is smaller than the distance from the second sound guide hole to the user's body part.
  • the distance from the first sound guide hole to the user's body part is not greater than 5 mm.
  • the distance from the first sound guide hole to the user's body part is not greater than 2 mm.
  • the part of the user's body here refers to the part with the largest projected area of the user's contact surface on the user's body when the user wears the acoustic output device.
  • the sound leakage volume of the acoustic output device in the far field can be reduced by adjusting the distance between the two sound guide holes, and the distance between the first sound guide hole and the second sound guide hole is not greater than 5 mm, preferably, The distance between the first sound guide hole and the second sound guide hole is not more than 2mm, and more preferably, the distance between the first sound guide hole and the second sound guide hole is not more than 0.5mm.
  • FIG. 8 is a schematic diagram of the relative positions of a dipole and a user's face area provided according to some embodiments of the present application
  • FIG. 9 is an equivalent principle of the sound of the dipole formed by the user's face area according to some embodiments of the present application. picture.
  • FIG. 8 and FIG. 9 when the user wears the acoustic output device, at least two sound guide holes of the acoustic output device can be regarded as two single-point sound sources, forming a double-point sound source.
  • the two single-point sound sources Output sounds with the same amplitude and opposite phase (represented by the symbols "+" and "-” respectively) to form a pair of dipoles.
  • the user contact surface on the housing structure of the acoustic output device is substantially parallel to the face area, and at this time, it can be considered that the two single-point sound sources are also similar parallel to the user interface.
  • the face area can be abstracted as a baffle, the distance between the two single-point sound sources formed by at least two sound guide holes in the acoustic output device is d, and the distance between the two single-point sound sources is d.
  • the closest distance of the baffle is D.
  • the sound radiation effect of the two single-point sound sources on the environment can be equivalent to the schematic diagram in FIG. 9 .
  • the double-point sound source formed by the two sound guide holes of the acoustic output device constitutes a dipole, which is located on the right side of the baffle.
  • the distance between the double-point sound sources is d.
  • the distances to the baffle are equal, and the closest distance between the two-point sound source and the baffle is D.
  • the angle between the line connecting the center of the double-point sound source and any observation point P in space and the straight line where the double-point sound source is located is ⁇ , and the distance from the center of the double-point sound source to the observation point P is r 2 .
  • the effect is equivalent to forming a pair of two virtual double-point sound sources with the same amplitude and phase as the double-point sound source on the left side of the baffle.
  • the two virtual double-point sound sources form a dipole, the distance between the virtual double-point sound sources is d, and the closest distance between the virtual double-point sound source and the baffle is D.
  • the distance between the center of the virtual double-point sound source connecting line and the observation point P is r 1 .
  • the virtual double-point sound source and the double-point sound source form a double-dipole, the angle between the line connecting the observation point and the center of the double-dipole and the baffle is ⁇ , and the double-dipole
  • the distance between the sub-center and the observation point is r.
  • the sound pressure received by the observation point is:
  • the synthesized sound pressure radiation is obtained from equations (9), (10) and (11):
  • FIG. 10 is a graph showing the frequency response at different distances d and at different distances D from the user’s face when two point sound sources of the acoustic output device provided according to some embodiments of the present application are arranged in the manner shown in FIG. 8 ;
  • FIG. 11 is a A sound field energy distribution diagram at 1000 Hz when two point sound sources are arranged in the manner shown in FIG. 8 according to some embodiments of the present application. As shown in FIG. 10 and FIG.
  • the connecting lines of the at least two sound guide holes of the acoustic output device are approximately parallel to the user's face area (ie, perpendicular to the user contact surface parallel or substantially parallel to the user's face area),
  • the corresponding sound pressure value when d is 0.5mm, 1mm, 1.5mm, 2mm, where the sound pressure value is sound pressure level (dB) express.
  • dB sound pressure level
  • the distances from the second acoustic holes to the user's face area or the user's contact surface may be equal or approximately equal.
  • the approximate equality here may mean that the difference between the distance from the first sound guide hole to the user's face area or user contact surface and the distance from the second sound guide hole to the user's face area or user contact surface is within a specific range.
  • the specific range here may be no greater than 5 mm, or no greater than 3 mm, or no greater than 1.5 mm.
  • the at least two sound guide holes may include a first sound guide hole and a second sound guide hole, and the distance from the first sound guide hole to the face area or user contact surface is close to the distance from the second sound guide hole to The face area or distance of the user's contact surface.
  • the distance from the first sound guide hole to the user contact surface is not greater than 5 mm. More preferably, the distance from the first sound guide hole to the user contact surface is not greater than 2 mm.
  • the shortest distance between the dipole and the baffle is in the range of 0-5mm, and the distance between the dipoles has a great influence on the sound pressure of the far-field observation point. Further, the sound pressure level of the far-field observation point decreases with the decrease of the distance between the dipoles. When the distance between the dipoles is 0.5 mm, the sound pressure level of the far-field observation point is the smallest, and the drop The sound leakage effect is better.
  • the far-field sound leakage volume of the acoustic output device can be reduced by adjusting the distance between the sound guide hole and the user contact surface or the user's face area.
  • the at least two sound guide holes may include a first sound guide hole and a second sound guide hole, and the distance from the first sound guide hole to the face area or the user contact surface is smaller than the distance from the second sound guide hole to the face area or the user contact surface. face distance.
  • the distance from the first sound guide hole to the user contact surface is not greater than 5 mm. More preferably, the distance from the first sound guide hole to the user contact surface is not greater than 2 mm.
  • the first sound guide hole and the second sound guide hole may be located on the user contact surface at the same time, or the first sound guide hole and the second sound guide hole may be respectively located on two side walls adjacent to the user contact surface on the housing structure.
  • the connection line of at least two sound guide holes of the acoustic output device is approximately parallel to the face area of the user's body, the closest distance between the dipole and the baffle is 3mm, the distance between the dipoles is 0.5mm, and the frequency is At 1kHz, taking the area outside the 250mm semi-circle as the far sound field, it can be seen that the color in the half-figure 8-shaped area in the near sound field is darker, that is, the sound pressure level in this area of the near sound field is larger, and the near field volume is stronger.
  • the color of a part of the area is lighter, that is, the sound pressure level of the sound field in this area is smaller, and the sound leakage is smaller.
  • the sound leakage volume of the acoustic output device in the far field can be reduced by adjusting the distance between the two sound guide holes, and the distance between the first sound guide hole and the second sound guide hole is not more than 2 mm.
  • the distance between the first sound guide hole and the second sound guide hole is not greater than 0.5 mm.
  • FIG. 12 is a sound pressure curve diagram of the angle between the connection line of the two sound guide holes and the user contact surface or the user body part provided according to some embodiments of the present application under different conditions.
  • the dipole formed by at least two sound guide holes is 3mm closest to the user's body part (baffle plate), the distance between the dipoles is 0.5mm, and the far-field area is the center of the dipole.
  • the horizontal axis is the angle between an observation point in the far-field region and the center of the dipole, and the vertical axis is the sound pressure at the observation point.
  • the solid line in the figure is the absolute value of the sound pressure at the far-field observation point and the observation angle (the observation point is connected to the center of the double dipole) when the connection line of the at least two sound guide holes of the acoustic output device is approximately perpendicular to the user's face area.
  • the sound pressure of the observation point in the far-field region varies with the observation angle. increases gradually within the range; in When the line connecting the far-field observation point and the center of the dipole is perpendicular to the baffle, the absolute value of the sound pressure is the largest; the sound pressure of the observation point in the far-field region increases with the angle between the observation point and the center of the dipole.
  • the range increases and gradually decreases.
  • the dotted line in the figure is the relationship curve between the absolute value of the sound pressure at the far-field observation point and the observation angle when the dipole user face regions formed by at least two sound guide holes of the acoustic output device are approximately parallel.
  • the sound pressure of the observation point in the far-field region varies with the angle between the observation point and the center of the dipole. increases and gradually decreases within the range; , that is, when the line connecting the far-field observation point and the center of the dipole is perpendicular to the baffle, the absolute value of the sound pressure is the smallest; the sound pressure of the observation point in the far-field area varies with the angle between the observation point and the center of the dipole. gradually increase within the range.
  • the absolute value of the maximum sound pressure is smaller than that of the dipole formed by the at least two sound guide holes of the acoustic output device and the user's face. The absolute value of the maximum sound pressure when the regions are approximately parallel.
  • FIG. 13 is a schematic structural diagram of an acoustic output device provided according to some embodiments of the present application.
  • the sound guide holes of FIG. 13 are suitable for use with sound guide holes that form two-point sound sources or dipoles as described elsewhere in this application.
  • the acoustic driver 1200 may include a diaphragm 1201 and a magnetic circuit structure 1222 .
  • the acoustic driver 1200 may also include a voice coil (not shown). The voice coil can be fixed on the side of the diaphragm 1201 facing the magnetic circuit structure 1222 and located in the magnetic field formed by the magnetic circuit structure 1222 .
  • the voice coil When the voice coil is energized, it can vibrate under the action of the magnetic field and drive the diaphragm 1201 to vibrate, thereby generating sound.
  • the side of the diaphragm 1201 facing away from the magnetic circuit structure 1222 ie, the right side of the diaphragm 1201 in FIG. 13
  • the side of the magnetic circuit structure 1222 facing away from the diaphragm 1201 ie, the left side of the magnetic circuit structure 1222 in FIG. 13
  • the backside of the acoustic driver 1200 can be considered the backside of the acoustic driver 1200 .
  • Vibration of the diaphragm 1201 may cause the acoustic driver 1200 to radiate sound outward from its front and back, respectively.
  • the front surface or diaphragm 1201 of the acoustic driver 1200 and the housing structure 1210 form a first cavity 1211
  • the back surface of the acoustic driver 1200 and the housing structure 1210 form a second cavity 1212 .
  • the front of the acoustic driver 1200 radiates sound toward the first cavity 1211
  • the back of the acoustic driver 1200 radiates sound toward the second cavity 1212 .
  • the housing structure 1210 may further include a first sound guide hole 1213 and a second sound guide hole 1214, the first sound guide hole 1213 communicates with the first cavity 1211, and the second sound guide hole 1214 communicates with the second sound guide hole 1214.
  • the cavity 1212 communicates.
  • the sound generated at the front of the acoustic driver 1200 is propagated to the outside through the first sound guide hole 1213
  • the sound generated at the back of the acoustic driver 1200 is propagated to the outside through the second sound guide hole 1214 .
  • the magnetic circuit structure 1222 may include a magnetic conductive plate 1221 disposed opposite to the diaphragm.
  • At least one sound guide hole 1223 (also referred to as a pressure relief hole) is formed on the magnetic conducting plate 1221 to guide the sound generated by the vibration of the diaphragm 1201 from the back of the acoustic driver 1200 and propagate to the outside through the second cavity 1212 .
  • the acoustic output device forms a dual sound source (or multiple sound sources) similar to a dipole structure through the sound radiation of the first sound guide hole 1213 and the second sound guide hole 1214, and generates a specific sound field with a certain directivity.
  • the acoustic driver 1220 may directly output sound to the outside world, that is, the acoustic output device 1200 may not be provided with the first cavity 1211 and/or the second cavity 1212, and the sound emitted from the front and back of the acoustic driver 1220 may be used as Dual sound source.
  • the acoustic output device in the embodiments of the present specification is not limited to the application of earphones, and may also be applied to other audio output devices (eg, hearing aids, loudspeakers, etc.).
  • FIG. 14 and 15 are schematic structural diagrams of another acoustic output device provided according to some embodiments of the present application.
  • the connection line between the first sound guide hole 1313 of the first acoustic driver 1320 and the second sound guide hole 1314 of the second acoustic driver 1330 is approximately perpendicular to the user's body part or the user contact surface of the acoustic output device.
  • the first acoustic driver 1320 and the second acoustic driver 1330 may be the same acoustic driver, and the signal processing module may control the front surface and the second acoustic driver of the first acoustic driver 1320 through control signals (eg, the first electrical signal and the second electrical signal).
  • the front faces of the two acoustic drivers 1330 generate sounds having certain phase and amplitude conditions (eg, sounds with the same amplitude and opposite phases, sounds with different amplitudes and opposite phases, etc.).
  • the sound generated from the front of the first acoustic driver 1320 is radiated to the outside of the acoustic output device 1310 through the first sound guide hole 1313
  • the sound generated from the front of the second acoustic driver 1330 is radiated to the outside of the acoustic output device 1310 through the second sound guide hole 1314 .
  • the first sound guide hole 1313 and the second sound guide hole 1314 can be equivalent to two sound sources outputting sounds of opposite phases.
  • the oppositely-phased sounds are generated and pass through the first
  • the sound guide hole 1313 and the second sound guide hole 1314 radiate to the outside, when the acoustic impedance from the first acoustic driver 1320 to the first sound guide hole 1313 is the same as the acoustic impedance from the second acoustic driver 1330 to the second sound guide hole 1314 or
  • the sound emitted by the first sound guide hole 1313 and the second sound guide hole 1314 in the acoustic output device 1310 can be constructed as an effective dual sound source, that is, the first sound guide hole 1313 and the second sound guide hole 1314 can be more Accurately sound out of phase.
  • the sound emitted by the first sound guide hole 1313 can better cancel each other with the sound emitted by the second sound guide hole 1314, so that to a certain extent In this way, the sound leakage of the acoustic output device in the middle and high frequency bands can be better suppressed, and the sound generated by the acoustic output device 1310 can be prevented from being heard by others near the user, thereby improving the sound leakage reduction effect of the acoustic output device 1310 .
  • the housing structure 1310 acts as a baffle between the dual sound sources (eg, the sound from the first sound guide hole 1313 and the sound from the second sound guide hole 1314 ). At this time, the housing structure 1310 separates the first sound guide hole 1313 and the second sound guide hole 1314, so that the first sound guide hole 1313 and the second sound guide hole 1314 have different acoustic paths to the user's ear canal.
  • distributing the first sound guide holes 1313 and the second sound guide holes 1314 on both sides of the housing structure 1310 can increase the sound path of the first sound guide holes 1313 and the second sound guide holes 1314 respectively transmitting sound to the user's ears (that is, the difference in the distance between the sound emitted by the first sound guide hole 1313 and the second sound guide hole 1314 reaching the ear canal of the user), so that the effect of canceling the sound at the user's ear (ie, the near field) is weakened, thereby increasing the number of ears of the user.
  • the volume of the sound also known as near-field sound heard, thereby providing the user with a better listening experience.
  • the shell structure 1310 has little effect on the sound transmitted by the sound guide hole to the environment (also called far-field sound), and the far-field sound generated by the first sound guide hole 1313 and the second sound guide hole 1314 can still be relatively If they cancel each other out well, the sound leakage of the acoustic output device 1300 can be suppressed to a certain extent, and at the same time, the sound generated by the acoustic output device 1300 can be prevented from being heard by others near the user. Therefore, through the above arrangement, the listening volume of the acoustic output device 1300 in the near field can be improved and the sound leakage volume of the acoustic output device 1300 in the far field can be reduced.
  • the overall structure of the acoustic output device shown in FIG. 15 is substantially the same as that of the acoustic output device shown in FIG. 14 , the difference is that the front of the first acoustic driver 1320 faces down, the front of the second acoustic driver faces up, and the housing
  • the first sound guide hole 1313 on the structure 1310 is used to output the sound from the front of the first acoustic driver 1320
  • the second sound guide hole 1314 on the housing structure 1310 is used to output the sound from the front of the second acoustic driver 1330.
  • the connection line of the dipole formed by the sound emitted by a sound guide hole 1313 and the sound emitted by the second sound guide hole 1314 is approximately parallel to the user's body part or the user contact surface of the acoustic output device.
  • the acoustic output device may further include at least one microphone, the at least one microphone may be used to collect noise signals of the external environment, and the microphone transmits the noise signals to the acoustic output device
  • the signal processing module can emit a sound with the opposite phase and the same amplitude as the noise signal based on the parameters of the noise signal (such as phase and amplitude) to achieve noise reduction.
  • FIG. 16 is a schematic structural diagram of an acoustic output device according to some embodiments of the present application. As shown in FIG.
  • the microphone 1601 may be located at the housing structure 1610 of the acoustic output device 1600 or at the acoustic driver (eg, the magnetic circuit structure). In some embodiments, the microphone 1601 may be disposed on the outside or inside of the side wall of the housing structure 1610 . In some embodiments, the microphone 1601 may also be located at the side wall of the housing structure 1610 on the peripheral side of the magnetic circuit structure.
  • the microphone 1610 when the microphone 1601 collects the external environment, in order to reduce the sound emitted by the acoustic output device 1600 itself, the microphone 1610 may be located away from the sound guide hole, for example, the microphone 1601 may be located on the housing structure 1610 and the guide hole The side wall where the sound hole is located is different from the side wall.
  • the connection line of the dipoles formed by the sound at the two sound guide holes of the acoustic output device 1600 is approximately perpendicular to the face area of the user, the acoustic output device has a sound pressure minimum area (the dotted line in FIG. Nearby area), the sound pressure minimum value area may refer to an area where the sound intensity output by the acoustic output device is relatively small.
  • the microphone 1601 may be located in the sound pressure minima region of the acoustic output device.
  • the connection line of the double-point sound source formed by the at least two sound guide holes of the acoustic output device 1600 is approximately perpendicular to the face area of the user, three strong sound field areas (for example, The sound field area 1621 , the sound field area 1622 and the sound field area 1623 shown in FIG. 16 simultaneously present two sound pressure minimum value areas, namely the dotted line in FIG. 16 and its vicinity. 7 and 16, the strong sound field region corresponds to the three dark value regions shown in Fig.
  • FIG. 7 For example, region 703, region 704 and region 705
  • the sound pressure minimum value region corresponds to Fig. 7
  • Two lighter colored regions 701 and 702 are shown.
  • One or more microphones 1601 are placed in the lighter areas 701 and 702 shown in FIG. 7 , preferably, one or more microphones 1601 are placed in the lighter areas 701 and/or 702 in FIG. 7 .
  • the center line that is, the position of the dotted line shown in Figure 16.
  • the microphone 1601 at the minimum sound pressure region of the acoustic output device allows the microphone 1601 to receive as little as possible the sound from the acoustic device 1600 itself while collecting the noise of the external environment, so that the microphone 1601 can provide a more realistic environment
  • the sound is used for subsequent sound signal processing to realize functions such as active noise reduction of the acoustic output device 1600 .
  • FIG. 17 is a schematic structural diagram of an acoustic output device according to some embodiments of the present application.
  • the connection line of the dipole formed by the sound emitted by the two sound guide holes of the acoustic output device 1700 represented by “+” and “-” shown in FIG. 17
  • the microphone 1701 may be located at the housing structure 1710 of the acoustic output device 1700 or at the acoustic driver (eg, the magnetic circuit structure).
  • the microphone 1701 may be disposed on the outside or inside of the side wall of the housing structure 1710 .
  • the microphone 1701 may also be located at the side wall of the housing structure 1710 on the peripheral side of the magnetic circuit structure.
  • the microphone 1710 may be located away from the sound guide hole, for example, the microphone 1701 may be located on the housing structure 1710 and the guide hole The sound holes are located at different side walls of the side walls. Further, when the connection line of the dipole formed by the sound at the two sound guide holes of the acoustic output device 1700 is approximately parallel to the user's face area, the acoustic output device has a sound pressure minimum area (the dotted line in FIG.
  • the microphone 1701 may be located in the sound pressure minimum area of the acoustic output device.
  • the connection line of the double-point sound source formed by the at least two sound guide holes of the acoustic output device 1700 is approximately parallel to the user's face area, two strong sound field areas (Fig. Area 1721 and area 1722 shown in Fig. 17), and at the same time present a sound pressure minimum area, that is, the dotted line in Fig. 16 and its vicinity. 11 and FIG. 17 , the strong sound field area 1721 and the sound field area 1722 correspond to the two dark sound pressure areas 1102 and 1103 shown in FIG.
  • the sound pressure minimum area corresponds to the diagram The light-colored sound pressure minimum value area 1101 shown in 11.
  • One or more microphones 1701 may be located on the dotted line shown in FIG. 17 and its vicinity. Preferably, one or more microphones 1701 may be located on the dotted line shown in FIG. 17 . Setting the microphone 1701 at the minimum sound pressure region of the acoustic output device 1700 allows the microphone 1701 to receive as little as possible the sound from the acoustic device 1700 itself while collecting the noise of the external environment, so that the microphone 1701 can provide a more realistic sound.
  • the ambient sound is used for subsequent sound signal processing to realize functions such as active noise reduction of the acoustic output device 1700 .
  • the above-mentioned acoustic output device 1600 in FIG. 16 and the acoustic output device 1700 in FIG. 17 are only illustrative, and the acoustic output device may also be an output device with two acoustic drivers, for example, as shown in FIG. 14 and FIG.
  • the acoustic output device shown in 15, that is, the selection conditions for the positions of the microphones (eg, the microphone 1601 and the microphone 1701 ) are also applicable to the acoustic output devices of FIGS. 14 and 15 .
  • aspects of this application may be illustrated and described in several patentable categories or situations, including any new and useful process, machine, product, or combination of matter, or combinations of them. of any new and useful improvements. Accordingly, various aspects of the present application may be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.), or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code embodied in one or more computer readable media.
  • a computer storage medium may contain a propagated data signal with the computer program code embodied therein, for example, on baseband or as part of a carrier wave.
  • the propagating signal may take a variety of manifestations, including electromagnetic, optical, etc., or a suitable combination.
  • Computer storage media can be any computer-readable media other than computer-readable storage media that can communicate, propagate, or transmit a program for use by coupling to an instruction execution system, apparatus, or device.
  • Program code on a computer storage medium may be transmitted over any suitable medium, including radio, cable, fiber optic cable, RF, or the like, or a combination of any of the foregoing.
  • the computer program coding required for the operation of the various parts of this application may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages, etc.
  • the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a service Use eg software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS software as a service

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Paper (AREA)
  • Amplifiers (AREA)
  • Headphones And Earphones (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本申请公开了一种声学输出装置,该声学输出装置可以包括至少一个声学驱动器、壳体结构和至少两个导声孔。所述至少一个声学驱动器从所述至少两个导声孔输出相位相反的声音。所述壳体结构被配置为承载所述至少一个声学驱动器。所述壳体结构上设有用于与用户接触的用户接触面。当用户在佩戴所述声学输出装置时,所述用户接触面与用户身体接触。所述至少两个导声孔的连线与所述用户接触面的夹角为75°-105°。

Description

一种声学输出装置 技术领域
本申请涉及声学领域,特别涉及一种声学输出装置。
背景技术
开放双耳的声学输出装置是一种在特定范围内实现声传导的便携式音频输出设备。与传统的入耳式、耳罩式耳机相比,开放双耳的声学输出装置具有不堵塞、不覆盖耳道的特点,可以让用户在聆听音乐的同时,获取外界环境中的声音信息,提高安全性与舒适感。由于开放式结构的使用,开放双耳的声学输出装置的漏音往往较传统耳机更为严重。目前,开放双耳的声学输出装置可能具有声音响度不够以及漏音较大的问题。
因此希望能够提供一种更有效的声学输出装置,可以同时达到提高用户听音音量和降低漏音的效果。
发明内容
本申请实施例提供一种声学输出装置,所述装置包括:至少一个声学驱动器,所述至少一个声学驱动器产生一组相位相反的声音,所述相位相反的声音分别从至少两个导声孔向外辐射;以及壳体结构,所述壳体结构被配置为承载所述至少一个声学驱动器,所述壳体结构包括用户接触面,所述用户接触面被配置为当用户在佩戴所述声学输出装置时,所述用户接触面与用户身体接触;其中,所述至少两个导声孔的连线与所述用户接触面形成的夹角在75°-90°的范围内。
在一些实施例中,所述至少两个导声孔包括第一导声孔和第二导声孔,所述第一导声孔至所述用户接触面的距离小于所述第二导声孔至所述用户接触面的距离。
在一些实施例中,所述第一导声孔至所述用户接触面的距离不大于5mm。
在一些实施例中,所述第一导声孔至所述用户接触面的距离不大于2mm。
在一些实施例中,所述第一导声孔与所述第二导声孔的距离不大于2mm。
在一些实施例中,所述第一导声孔与所述第二导声孔的距离不大于0.5mm。
在一些实施例中,所述至少一个声学驱动器包括振膜和磁路结构,所述振膜背朝所述磁路结构的一侧形成所述声学驱动器的正面,所述磁路结构背朝所述振膜的一侧形成所述声学驱动器的背面,所述振膜振动使得所述声学驱动器分别从其正面和背面向外辐射声音。
在一些实施例中,所述至少一个声学驱动器包括第一声学驱动器和第二声学驱动器, 所述第一声学驱动器包括第一振膜,所述第二声学驱动器包括第二振膜,所述第一振膜振动产生的声音和所述第二振膜振动产生的声音相位相反,所述第一振膜和所述第二振膜振动产生的声音分别通过所述至少两个导声孔向外辐射。
在一些实施例中,所述至少两个导声孔上设置有阻尼层。
在一些实施例中,所述阻尼层为金属过滤网、纱网。
在本申请的另一些实施例中提供一种声学输出装置,所述装置包括:至少一个声学驱动器,所述至少一个声学驱动器产生一组相位相反的声音,所述相位相反的声音分别从至少两个导声孔向外辐射;以及壳体结构,所述壳体结构被配置为承载所述至少一个声学驱动器,所述壳体结构包括用户接触面,所述用户接触面被配置为当用户在佩戴所述声学输出装置时,所述用户接触面与用户身体接触;其中,所述至少两个导声孔的连线与所述用户接触面形成的夹角在0°-15°的范围内。
在另一些实施例中,所述至少两个导声孔包括第一导声孔和第二导声孔,所述第一导声孔或所述第二导声孔与所述用户接触面的距离不大于5mm。
所述第一导声孔或所述第二导声孔至所述用户接触面的距离不大于2mm。
在另一些实施例中,所述第一导声孔与所述第二导声孔的距离不大于2mm。
在另一些实施例中,所述第一导声孔与所述第二导声孔的距离不大于0.5mm。
在另一些实施例中,所述至少一个声学驱动器包括振膜和磁路结构,所述振膜背朝所述磁路结构的一侧形成所述声学驱动器的正面,所述磁路结构背朝所述振膜的一侧形成所述声学驱动器的背面,所述振膜振动使得所述声学驱动器分别从其正面和背面向外辐射声音。在另一些实施例中,所述至少一个声学驱动器包括第一声学驱动器和第二声学驱动器,所述第一声学驱动器包括第一振膜,所述第二声学驱动器包括第二振膜,所述第一振膜振动产生的声音和所述第二振膜振动产生的声音相位相反,所述第一振膜和所述第二振膜振动产生的声音分别通过所述至少两个导声孔向外辐射。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例提供的两个导声孔与用户接触面或用户身体部位的示意图;
图2是根据本申请一些实施例提供的偶极子的示意图;
图3是根据本申请一些实施例提供的偶极子的原理图;
图4是根据本申请一些实施例提供的偶极子与脸部区域相对位置的示意图;
图5是根据本申请一些实施例提供的用户脸部区域对偶极子的声音形成反射的等效原理图;
图6是根据本申请一些实施例提供的声学输出装置的两个点声源之间在不同间距d以及点声源与用户脸部区域在不同间距D的频率响应曲线图;
图7是根据本申请一些实施例提供的两个点声源在1000Hz时的声场能量分布图;
图8是根据本申请一些实施例提供的偶极子与用户脸部区域相对位置的示意图;
图9是根据本申请一些实施例提供的用户脸部区域对偶极子的声音形成反射的等效原理图;
图10是根据本申请一些实施例提供的声学输出装置的两个点声源之间在不同间距d以及点声源与用户脸部区域在不同间距D的频率响应曲线图;
图11是根据本申请一些实施例提供的两个点声源在1000Hz时的声场能量分布图;
图12是根据本申请一些实施例提供的两个导声孔的连线与用户接触面或用户身体部位的夹角在不同情况下的声压曲线图;
图13是根据本申请一些实施例提供的一种声学输出装置的结构示意图;
图14是根据本申请一些实施例提供的另一种声学输出装置的结构示意图;
图15是根据本申请一些实施例提供的另一种声学输出装置的结构示意图;
图16是根据本申请一些实施例提供的声学输出装置的结构示意图;以及
图17是根据本申请一些实施例提供的声学输出装置的结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目 的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
在一些实施例中,声学输出装置可以包括声学驱动器和壳体结构。所述声学驱动器位于壳体结构内部。该声学输出装置中至少一个声学驱动器产生的声音可以通过与其声耦合的至少两个导声孔向外传播。在一些实施例中,与同一个声学驱动器声耦合的两个导声孔可以分布于用户头部或者脸部的同侧,此时用户头部或者脸部可以近似视为挡板,该挡板可以反射从所述两个导声孔发出的声音。在空间中,经由挡板反射的声音与导声孔直接辐射的声音会发生干涉,从而改变声学输出装置传递到特定位置上的声音的幅值。在一些实施例中,通过设计导声孔与用户头部或者脸部的距离与角度,能够使声学输出装置在周围环境中产生的声音具有较小的幅值,从而达到降低声学输出装置在周围环境中的漏音,同时也能够防止声学输出装置产生的声音被该用户附近的他人听见。
本申请提供了一种声学输出装置。在一些实施例中,声学输出装置可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,声学输出装置可以采用悬挂或夹持的方式固定在用户的耳朵附近。在用户佩戴所述声学输出装置时,所述声学输出装置至少位于用户头部一侧,靠近但不堵塞用户耳朵。在一些可替代的实施例中,声学输出装置的外表面可以设有挂钩,且挂钩的形状与耳廓的形状相匹配,从而声学输出装置可以通过挂钩独立佩戴在用户的耳朵上。独立佩戴使用的声学输出装置可以通过有线或无线(例如,蓝牙)的方式与信号源(例如,电脑、手机或其他移动设备)通信连接。例如,左右耳处的声学输出装置可以均通过无线的方式与信号源直接通信连接。又例如,左右耳处的声学输出装置可以包括第一输出装置和第二输出装置,其中第一输出装置可以与信号源进行通信连接,第二输出装置可以通过无线方式与第一输出装置无线连接,第一输出装置和第二输出装置之间通过一个或多个同步信号实现音频播放的同步。无线连接的方式可以包括但不限于蓝牙、局域网、广域网、无线个域网、 近场通讯等或其任意组合。该声学输出装置可以佩戴在用户头部(例如,以眼镜、头带或其它结构方式佩戴的非入耳式的开放式耳机),或者佩戴在用户身体的其他部位(例如用户的颈部/肩部/脸部区域),或者通过其它方式(例如,用户手持的方式)放置在用户耳朵附近。同时声学驱动器可以靠近但不堵塞耳道,使得用户耳朵保持开放的状态,在用户既能听到声学输出装置输出声音的同时,又能获取外部环境的声音。例如,声学输出装置可以环绕设置或者部分环绕设置在用户耳朵的周侧,并可以通过气传导或骨传导的方式进行声音的传递。
声学驱动器是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,声学驱动器的类型可以包括低频(例如,30Hz–150Hz)声学驱动器、中低频(例如,150Hz–500Hz)声学驱动器、中高频(例如,500Hz–5kHz)声学驱动器、高频(例如,5kHz–16kHz)声学驱动器或全频(例如,30Hz–16kHz)声学驱动器,或其任意组合。当然,这里所说的低频、高频等只表示频率的大致范围,在不同的应用场景中,可以具有不同的划分方式。例如,可以确定一个分频点,低频表示分频点以下的频率范围,高频表示分频点以上的频率。该分频点可以为人耳可听范围内的任意值,例如,500Hz,600Hz,700Hz,800Hz,1000Hz等。在一些实施例中,按原理进行区分,声学驱动器还可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等驱动器。声学驱动器可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧和后侧发出,且声学驱动器振膜前侧发出的声音与声学驱动器振膜后侧发出的声音幅值相等、相位相反。在这种情况下,当声学驱动器振膜前后侧发出的声音分别通过各自对应的导声孔向外界辐射时,这两部分声音将在传播过程中发生干涉,从而减小声学输出装置在远场的漏音。在一些实施例中,声学驱动器可以包括振膜和磁路结构,振膜和磁路结构沿着振膜的振动方向依次设置,在一些实施例中,振膜可以安装在一个盆架上,盆架再固定在磁路结构上。可替换地,振膜可以直接与磁路结构的侧壁固定连接。所述振膜背朝所述磁路结构的一侧形成所述声学驱动器的正面,所述磁路结构背朝所述振膜的一侧形成所述声学驱动器的背面,所述振膜振动使得所述声学驱动器分别从其正面和背面向外辐射声音。声学驱动器还可以包括音圈。所述音圈可以固定在振膜朝向磁路结构的一侧,并位于磁路结构所形成的磁场中。当所述音圈通电后,其可以在磁场的作用下振动并带动振膜振动,从而产生声音,振膜振动可以使得声学驱动器分别从其正面和背面向外辐射声音。
壳体结构可以是内部中空的封闭式或半封闭式壳体结构,且声学驱动器位于壳体结 构的内部。壳体结构可以为具有人体耳朵适配形状的壳体结构,例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便壳体结构可以直接挂靠在用户的耳朵附近。在一些实施例中,壳体结构还可以包括一个或多个固定结构。所述固定结构可以包括耳挂、头梁或弹性带,使得声学输出装置可以更好地固定在用户身上,防止用户在使用时发生掉落。仅作为示例性说明,例如,固定结构可以为耳挂,耳挂可以被配置为围绕耳部区域佩戴。又例如,固定结构可以为颈带,被配置为围绕颈/肩区域佩戴。在一些实施例中,耳挂可以是连续的钩状物,并可以被弹性地拉伸以佩戴在用户的耳部,同时耳挂还可以对用户的耳廓施加压力,使得声学输出装置牢固地固定在用户的耳部或头部的特定位置上。在一些实施例中,耳挂可以是不连续的带状物。例如,耳挂可以包括刚性部分和柔性部分,其中,刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学输出装置的壳体结构通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料制成(例如,布料、复合材料或/和氯丁橡胶)。
壳体结构包括至少一个第一导声孔和至少一个第二导声孔。所述第一导声孔和第二导声孔可以分别耦合到同一声学驱动器中振膜的前后两侧。当用户佩戴声学输出装置时,壳体结构可以使得第一导声孔和第二导声孔位于用户脸部的同侧。在一些实施例中,壳体结构内声学驱动器(振膜)正面的位置设有用于传递声音的前室。前室与第一导声孔声学耦合,声学驱动器正面的声音可以通过前室从第一导声孔中发出。壳体结构内声学驱动器(振膜)背面的位置设有用于传递声音的后室。后室与第二导声孔声学耦合,声学驱动器背面的声音可以通过后室从第二导声孔中发出。在一些实施例中,可以通过调整前室和后室的结构,使得声学驱动器前侧导声孔和声学驱动器后侧导声孔处输出的声音满足特定的条件。例如,可以设计前室和后室的长度,使得声学驱动器前侧导声孔和声学驱动器后侧导声孔处可以输出一组具有特定相位关系(例如,相位相反)的声音,使得声学输出装置远场的漏音问题得到有效改善。在一些实施例中,所述导声孔的形状包括但不限于方形、圆形、棱形。
在一些场景下,壳体结构上设有用户接触面。当用户佩戴声学输出装置时,用户接触面可以与用户身体部位(例如,脸部、头部)贴合或靠近用户身体部位。为方便描述,用户接触面也可以叫做用户投影面,其可以理解为是壳体结构在用户身体部位具有最大投影面积的一面,相对于声学驱动器更加靠近用户身体。当用户佩戴声学输出装置时,可以认为用户接触面和与用户接触面直接接触或正对着的用户身体部位(例如,脸部区域)基本平行。当用户佩戴所述声学输出装置时,无论用户接触面是靠近但不接触用户 身体部位,还是紧贴用户身体部位,声学输出装置都可以通过壳体结构上的导声孔将声音输出至壳体结构外部,以此将声音传递至用户的耳朵。在一些实施例中,用户接触面的形状可以为圆形、椭圆形、长方形、三角形、菱形等其它规则或不规则形状。在一些实施例中,用户接触面的表面可以为光滑的平面,也可以为包含一个或多个凸起或者凹陷区域的面。在一些实施例中,用户接触面可以包括硅胶材料层或硬塑材料(例如,橡胶、塑料等)层,该硅胶材料层或硬塑材料层可以覆盖粘接于壳体结构的外表面,或与壳体结构一体成型。需要注意的是,关于壳体结构中用户接触面的形状和结构并不限于上述的描述,可以根据具体的情况进行适应性调整,在此不做进一步限定。
图1是根据本申请一些实施例提供的壳体结构上两个导声孔与用户接触面的示意图。如图1所示,在一些实施例中,至少两个导声孔可以包括第一导声孔B 1和第二导声孔B 2,第一导声孔B 1和第二导声孔B 2以偶极子或类似偶极子的方式向外辐射声音。第一导声孔B 1至用户接触面(图1中平行四边形表示用户接触面)的距离小于第二导声孔B 2至所述用户接触面的距离。第一导声孔B 1和第二导声孔B 2连线所在直线与用户接触面存在一个交点A,用户接触面在A点处的法向量为
Figure PCTCN2020137595-appb-000001
第一导声孔B 1和第二导声孔B 2连线所在直线的方向向量为
Figure PCTCN2020137595-appb-000002
方向向量
Figure PCTCN2020137595-appb-000003
的方向为第一导声孔B 1至第二导声孔B 2的方向。第一导声孔B 1与所述第二导声孔B 2连线所在直线的方向向量
Figure PCTCN2020137595-appb-000004
与用户接触面在A点处法向量
Figure PCTCN2020137595-appb-000005
存在角度γ。
在一些实施例中,当用户佩戴声学输出装置时,用户接触面和与用户接触面直接接触或正对着的用户身体部位(例如,脸部区域)基本平行。为方便描述,以下以用户的脸部区域作为用户身体部位的示例进行说明。也就是说,声学输出装置上的用户接触面与脸部区域基本平行,此时,上述至少两个导声孔的连线与脸部区域的角度关系基本等同于至少两个导声孔的连线与用户接触面的角度关系。
在一些实施例中个,至少两个导声孔的连线与脸部区域近似垂直,即至少两个导声孔的连线与用户接触面近似垂直。这里所说的近似垂直可以是第一导声孔B 1与第二导声孔B 2连线所在直线与用户接触面的夹角为75°-90°。在本说明书的实施例中,至少两个导声孔的连线与用户接触面的夹角可以是指方向向量
Figure PCTCN2020137595-appb-000006
与用户接触面在A点处法向量
Figure PCTCN2020137595-appb-000007
之间形成的夹角(γ)的余角。例如,当第一导声孔B 1与第二导声孔B 2连线所在直线与用户接触面的夹角为75°-90°,第一导声孔B 1与第二导声孔B 2连线所在直线的方向向量
Figure PCTCN2020137595-appb-000008
与所述用户接触面在A点处法向量
Figure PCTCN2020137595-appb-000009
的角度γ为0-15°。仅仅作为示例,在用 户接触面与用户身体部位接触的情况下,为了使得第一导声孔B 1与第二导声孔B 2连线所在直线近似垂直于用户身体接触部位,第一导声孔B 1与第二导声孔B 2可以同时位于壳体结构上与用户接触面垂直或近似垂直的侧面。再例如,在用户接触面靠近但不与用户身体部位接触的情况下,为了使得第一导声孔B 1与第二导声孔B 2连线所在直线近似垂直于用户身体接触部位,第一导声孔B 1与第二导声孔B 2可以同时位于壳体结构上与用户接触面垂直或近似垂直的侧面,或者可替换地,第一导声孔B 1可以位于用户接触面上,第二导声孔B 2可以位于壳体结构上与用户接触面相对的一侧。优选的,至少两个导声孔的连线与用户接触面的夹角为90°,此时第一导声孔与第二导声孔连线所在直线的方向向量
Figure PCTCN2020137595-appb-000010
与所述用户接触面在A点处法向量
Figure PCTCN2020137595-appb-000011
的角度γ为0°。当至少两个导声孔的连线近似垂直于脸部区域时,所述声学输出装置从至少两个导声孔输出的声音被用户脸部区域反射。在远场空间,反射声音与声学输出装置直接辐射的声音的发生干涉,减小了远场声音,从而改善远场漏音。
在一些实施例中,声学驱动器的正面或振膜与壳体结构形成第一腔体,声学驱动器的背面与壳体结构形成第二腔体。声学驱动器的正面向第一腔体辐射声音,声学驱动的背面向第二腔体辐射声音。在一些实施例中,壳体结构还可以包括第一导声孔和第二导声孔,第一导声孔与第一腔体连通,第二导声孔与第二腔体连通。声学驱动器正面产生的声音通过第一导声孔向外界传播,声学驱动器背面产生的声音通过第二导声孔向外界传播。在一些实施例中,磁路结构可以包括与振膜相对设置的导磁板。导磁板上开设至少一个导声孔(也被称为泄压孔),用于将振膜振动产生的声音从声学驱动器的背面导出并通过第二腔体向外界传播。该声学输出装置通过第一导声孔和第二导声孔的声辐射形成类似偶极子结构的双点声源(或多声源),产生具有一定指向性的特定声场。
在一些实施例中,声学驱动器的正面与壳体结构形成腔体,声学驱动器的正面向腔体辐射声音,而声学驱动器的背面直接向声学输出装置的外部辐射声音。在一些实施例中,壳体结构上设有一个或多个导声孔。导声孔与腔体声学耦合,并将声学驱动器从正面向腔体辐射的声音导出到声学输出装置的外部。在一些实施例中,磁路结构可以包括与振膜相对设置的导磁板。导磁板上设有一个或多个导声孔(也被称为泄压孔)。导声孔将振膜振动产生的声音从声学驱动器的背面导出至声学输出装置的外部。由于声学驱动器正面的导声孔和声学驱动器背面的导声孔分别位于振膜的两侧,故可认为声学驱动器正面的导声孔和声学驱动器背面的导声孔导出的声音具有相反或者近似相反的相位,因而声学驱动器正面的导声孔和背面的导声孔可以构成一组双点声源。
在一些实施例中,声学驱动器的背面与壳体结构形成腔体,声学驱动器的背面向腔体辐射声音,而声学驱动器的正面直接向声学输出装置的外部辐射声音。在一些实施例中,磁路结构可以包括与振膜相对设置的导磁板,导磁板上设有一个或多个导声孔(也被称为泄压孔)。导声孔将振膜振动产生的声音从声学驱动器的背面导出至腔体。在一些实施例中,壳体结构可以设有一个或多个导声孔。导声孔与腔体声学耦合,并将声学驱动器向腔体辐射的声音导出到声学输出装置的外部。在一些实施例中,一个或多个导声孔可以设置于壳体结构靠近磁路结构的侧壁上。例如,当用户佩戴声学输出装置时,振膜与人体耳朵位置相对,一个或多个导声孔与振膜正面中心位置的连线与用户脸部近似垂直。又例如,当用户佩戴声学输出装置时,振膜不与人体耳朵位置相对,振膜位于壳体结构的上部或下部,一个或多个导声孔位于壳体结构中与振膜相反的方向,使得一个多个导声孔与振膜正面中心位置的连线与用户脸部近似平行。在一些情况下,可认为振膜的正面直接向外界传播的声音和导声孔导出的声音具有相反或者近似相反的相位,因而振膜的正面和导声孔可以构成一组双点声源。
在一些实施例中,声学输出装置可以包括第一声学驱动器、第二声学驱动器。第一声学驱动器可以包括第一振膜,第二声学驱动器可以包括第二振膜,第一声学驱动器和第二声学驱动器可以分别接收第一电信号和第二电信号。在一些实施例中,当第一电信号和第二电信号幅值相同且相位相反时(例如,第一声学驱动器和第二声学驱动器分别以极性相反的方式电连接信号源,接收信号源发出的同一原始声音电信号),第一振膜和第二振膜可以产生一组相位相反的声音。进一步地,壳体结构可以承载第一声学驱动器和第二声学驱动器,其中,第一振膜振动产生的声音可以通过壳体结构上第一导声孔向外辐射,第二振膜振动产生的声音可以通过壳体结构上第二导声孔向外辐射。为方便描述,第一振膜振动产生的声音可以是指第一声学驱动器正面产生的声音,第二振膜振动产生的声音可以是指第二声学驱动器正面产生的声音。当第一振膜振动产生的声音和第二振膜振动产生的声音直接通过对应的第一导声孔和第二导声孔向外辐射时,这里的第一导声孔和第二导声孔可以近似视为双声源(例如,双点声源)。在一些实施例中,第一导声孔与第二导声孔的位置相对。例如,当用户佩戴声学输出装置时,第一导声孔与人体耳朵位置相对,第一导声孔与第二导声孔的连线与用户脸部近似垂直。又例如,当用户佩戴声学输出装置时,声学输出装置中与第一导声孔或第二导声孔所在侧壁相邻的侧壁与人体耳朵位置相对,第一导声孔与第二导声孔的连线与用户脸部近似平行。
一些实施例中,第一声学驱动器和第二声学驱动器可以是相同或类似的声学驱动器, 这样可以使得第一声学驱动器与第二声学驱动器的在全频段的幅频响应相同或相近。在一些实施例中,第一声学驱动器与第二声学驱动器可以是不同的声学驱动器。例如,第一声学驱动器和第二声学驱动器在中高频的频率响应相同或相近,而在低频段,第一声学驱动器与第二声学驱动器的频率响应不同。
在一些实施例中,第一声学驱动器位于第一腔体中,第一声学驱动器包括第一振膜,第一声学驱动器的正面与壳体结构形成第一前腔,第一声学驱动器的背面与壳体结构形成第一后腔。第一声学驱动器的正面向第一前腔辐射声音,第一声学驱动器的背面向第一后腔辐射声音。第二声学驱动器位于第二腔体中。第二声学驱动器的正面与壳体结构形成第二前腔,第二声学驱动器的背面与壳体结构形成第二后腔。第二声学驱动器的正面向第二前腔辐射声音,第二声学驱动器的背面向第二后腔辐射声音。在一些实施例中,第一腔体和第二腔体相同。第一声学驱动器和第二声学驱动器可以按照相同的方式分别设置在第一腔体和第二腔体中,使得第一前腔和第二前腔相同,第一后腔和第二后腔相同,这样可以使得第一声学驱动器和第二声学驱动器正面或背面的声阻抗相同。在其它的实施例中,第一腔体和第二腔体也可以不同,可以通过改变腔体的大小和/或长度或者增加导声管的方式使得第一声学驱动器和第二声学驱动器正面或背面的阻抗相同。第一声学驱动器包括第一振膜,第二声学驱动器包括第二振膜,此时第一振膜与所述至少两个导声孔中的一个导声孔的声阻抗与所述第二振膜与所述至少两个导声孔中的另一导声孔的声阻抗相同。
在一些实施例中,可以在导声孔处设置声阻尼结构(例如,金属过滤网、纱网、调音网、调音棉、导声管等结构),以减小声学驱动器正面背面对应的频响的幅值,使其接近或等同于声学驱动器背面或正面对应的频响的幅值。
图2是根据本申请一些实施例提供的偶极子的示意图,图3是根据本申请一些实施例提供的偶极子与用户接触面的原理图。为了进一步说明声学输出装置上导声孔的设置对声学输出装置声音输出效果的影响,且考虑到声音可以被看作是从导声孔处向外传播,本申请中可以将声学输出装置上的导声孔看作对外输出声音的声源进行描述。仅仅为了方便描述和出于说明的目的,当声学输出装置上的导声孔尺寸较小时,每个导声孔可以近似视为一个点声源。如图2和图3所示,所述声学输出装置的两个导声孔可视为两个点声源,其辐射声音的幅值相同,相位相反,分别通过“+”和“-”表示。所述两个导声孔构成偶极子或类似偶极子,向外辐射声音具有明显的指向性,形成一个“8”字形声音辐射区域。在导声孔连线所在的直线方向,导声孔辐射的声音最大,其余方向辐射 声音明显较小。所述两个导声孔在空间不同点处产生的声音不同,可根据两个导声孔连线的中点和空间任一点的连线与两个导声孔连线之间的角度θ计算。在一些实施例中,开设在声学输出装置上的任一用于输出声音的导声孔,都可被近似成该声学输出装置上的一个单点声源。单点声源产生的声场声压p满足公式:
Figure PCTCN2020137595-appb-000012
其中,
Figure PCTCN2020137595-appb-000013
为声压幅值,ω为角频率,r为空间一点与声源的距离,κ为波数,点声源的声场声压的大小与到点声源的距离呈反比。
可以通过在声学输出装置中设置至少两个导声孔以构造双点声源来减小声学输出装置向周围环境辐射的声音(即远场漏音)。在一些实施例中,声学输出装置包括至少两个导声孔,即双点声源,输出的声音具有一定的相位差。当双点声源之间的位置、相位差等满足一定条件时,可以使得声学输出装置在近场和远场表现出不同的声音效果。例如,当两个导声孔对应的点声源的相位相反,即两个点声源之间的相位差的绝对值为180°时,根据声波反相相消的原理,可实现远场漏音的削减。如图2所示,声学输出装置的导声孔中心距离为d,形成一对偶极子(偶极子可以看成了两个距离为d相位相反的脉动球组合),此时声学输出装置对空间中一目标点p的声压表示为:
Figure PCTCN2020137595-appb-000014
其中,A代表振膜的振动强度,
Figure PCTCN2020137595-appb-000015
代表点声源“+”的强度大小,
Figure PCTCN2020137595-appb-000016
代表点声源“-”的强度大小,ω为角频率,κ为波数,r +为目标点与点声源“+”的距离,r -为目标点与点声源“-”的距离。仅考虑远场声场时,假设r>>d,那么由两个点声源辐射的声波达到目标点时的振幅差距很小,可以将上式中振幅部分r +和r -的部分用r代替,但是不能忽略他们的相位差异,有如下近似关系:
Figure PCTCN2020137595-appb-000017
Figure PCTCN2020137595-appb-000018
其中,r为空间中任一目标点p与双点声源中心位置的距离,d为两个点声源之间的间距,θ表示该目标点p与双点声源中心的连线与双点声源所在直线的夹角。带入上式后,当频率不是很高的时候,kd<1,可化简为:
Figure PCTCN2020137595-appb-000019
通过公式(4)可知,声场中目标点的声压p的大小与目标点与双点声源中心的连线与双 点声源所在直线的夹角θ、两个点声源之间的间距d有关。
图4是根据本申请一些实施例提供的偶极子与用户脸部区域相对位置的示意图,图5是根据本申请一些实施例提供的用户脸部区域对偶极子的声音形成反射的等效原理图。如图4和图5所示,当用户佩戴所述声学输出装置,声学输出装置的至少两个导声孔可视为双点声源,所述两单点声源分别输出幅值相同、相位相反的声音(分别以符号“+”和“-”表示),构成一对偶极子。在这种情况下,考虑用户所处环境中的任一空间点,当该空间点到所述两单点声源的距离相等时,基于声音的干涉相消,该点处的音量会很小。而当该空间点到所述两单点声源的距离不等时,距离差异越大,该点的音量也会越大。当两单点声源的连线与脸部区域(为简化起见,将用户脸上与声学输出装置直接贴合或正对的区域所在的平面等效为脸部区域)的夹角为75°-90°时,这时可以认为两单点声源的连线与脸部区域近似垂直。在一些实施例中,当用户佩戴所述声学输出装置时,声学输出装置壳体结构上的用户接触面与所述脸部区域基本平行,此时可以视为所述两单点声源也近似垂直于用户接触面。为便于理解,如图4所示,脸部区域可以抽象为挡板410,声学输出装置中至少两个导声孔形成的两单点声源之间的距离为d,两单点声源距所述挡板410最近的距离为D。当两单点声源产生声音时,一部分声音会直接辐射到环境中,另一部分声音会先射向挡板410,经由挡板410反射后再辐射到环境中。在理想情况下,有挡板存在时,两单点声源对环境的声音辐射效果可以等效成图5的原理图。如图5所示,所述声学输出装置的两个导声孔形成的双点声源构成偶极子,其位于挡板510的右侧,所述双点声源间距为d,双点声源至所述挡板510的距离不相等,所述双点声源与所述挡板510的最近距离为D。所述双点声源的中心和空间任一观测点P的连线与所述双点声源所在直线角度为θ,所述双点声源的中心至所述观测点P的距离为r 2。考虑到双点声源输出的声音将受到挡板510的反射,其效果相当于在挡板左侧形成一对与双点声源幅值相等,相位相反的两虚拟双点声源。所述两虚拟双点声源构成偶极子,所述虚拟双点声源间的距离为d,所述虚拟双点声源与所述挡板510的最近距离为D。所述虚拟双点声源连线的中心与所述观测点P的距离为r 1。所述虚拟双点声源与所述双点声源构成双偶极子,所述观测点与所述双偶极子中心连线与所述挡板的夹角为α,所述双偶极子中心与所述观测点的距离为r。所述观测点受到的声压为:
Figure PCTCN2020137595-appb-000020
在远场条件下,可以忽略观察点P的声波的振幅差别,保留它们的相位差,如果取观 测点到双偶极子中心点的连线和双偶极子中心点处的法线所成角度为α,那么由图有
Figure PCTCN2020137595-appb-000021
有如下近似关系:
Figure PCTCN2020137595-appb-000022
Figure PCTCN2020137595-appb-000023
由公式(5)、(6)和(7)得到合成的声压辐射,即有挡板存在时,两单点声
源对环境的声音辐射:
Figure PCTCN2020137595-appb-000024
图6是根据本申请一些实施例提供的声学输出装置的两个点声源以图4所示方式布置时,不同间距d以及与用户脸部在不同间距D的频率响应曲线图;图7是根据本申请一些实施例提供的两个点声源以图4所示方式布置时在1000Hz时的声场能量分布图。如图6和图7所示,所述声学输出装置的至少两个导声孔连线垂直于用户脸部区域(即,垂直于与用户脸部区域平行或基本平行的用户接触面),分别测试远场观测点在250mm时,D为0、1mm、2mm、3mm时,对应d为0.5mm、1mm、1.5mm、2mm时的声压值,这里声压值用声压级(dB)表示。由图6可知,偶极子距离挡板最近距离在0-5mm范围内,偶极子与挡板的距离、偶极子间距离对远场观测点的声压均有影响。进一步地,远场观测点的声压级随着偶极子与挡板距离的减小而减小,远场观测点的声压级随着偶极子间距离的减小而减小,当偶极子与挡板的距离为0,偶极子间的距离为0.5时,观测点的声压级最小,此时降漏音效果较好。如图7所示,所述声学输出装置的至少两个导声孔连线近似垂直于用户身体接触面、偶极子距离挡板最近距离为3mm、偶极子间距为0.5mm、频率为1KHz时,以250mm的半圆以外区域为远声场,可以看到在远声场的声压级颜色较浅,即远声场的声压级较小,远场漏音较小。在一些实施例中,通过调整导声孔与用户接触面或用户脸部区域的距离可以降低声学输出装置的远场漏音音量。所述至少两个导声孔可以包括第一导声孔和第二导声孔,第一导声孔至脸部区域或用户接触面的距离小于第二导声孔至脸部区域或用户接触面的距离。优选地,第一导声孔至用户接触面的距离不大于5mm。较为优选地,第一导声孔至用户接触面的距离不大于2mm。进一步优选地,第一导声孔位于用户接触面上。在其它的实施例中,用户身体部位可以起到挡板作用,第一导声孔、第二导声孔与用户接触面的位置关系同样适用于第一导声孔、第二导声孔与用户身体部位(例如,脸部区域)的位置关系。例如,在一些实施例中,在用户佩戴所述声学输出装置的情况下(即壳体结构上用户接触 面紧贴脸部区域或靠近脸部区域时),第一导声孔至用户身体部位的距离小于第二导声孔至用户身体部位的距离。优选地,第一导声孔至用户身体部位的距离不大于5mm。较为优选地,第一导声孔至用户身体部位的距离不大于2mm。需要注意的是,这里的用户身体部位指的是当用户佩戴声学输出装置时,用户接触面在用户身体处的具有最大投影面积的部位。在一些实施例中,通过调整两个导声孔之间的距离可以降低声学输出装置在远场的漏音音量,第一导声孔与第二导声孔的距离不大于5mm,优选地,第一导声孔与第二导声孔距离不大于2mm,较为优选地,第一导声孔与所第二导声孔的距离不大于0.5mm。
图8是根据本申请一些实施例提供的偶极子与用户脸部区域相对位置的示意图,图9是根据本申请一些实施例提供的用户脸部区域对偶极子的声音形成反射的等效原理图。如图8和图9所示,当用户佩戴所述声学输出装置,声学输出装置的至少两个导声孔可视为两单点声源,构成一双点声源,所述两单点声源分别输出幅值相同、相位相反的声音(分别以符号“+”和“-”表示),构成一对偶极子。在这种情况下,考虑用户所处环境中的任一空间点,当该空间点到所述两单点声源的距离相等时,基于声音的干涉相消,该点处的音量会很小。而当该空间点到所述两单点声源的距离不等时,距离差异越大,该点的音量也会越大。当两单点声源的连线与脸部区域(为简化起见,将用户脸上与声学输出装置直接贴合或正对的区域所在的平面等效为脸部区域)的夹角为0-15°时,这时可以认为两单点声源的连线与脸部区域近似平行。在一些实施例中,当用户佩戴所述声学输出装置时,声学输出装置壳体结构上的用户接触面与所述脸部区域基本平行,此时可以视为所述两单点声源也近似平行于用户接触面。为便于理解,如图8所示,脸部区域可以抽象为挡板,声学输出装置中至少两个导声孔形成的两单点声源之间的距离为d,两单点声源距所述挡板最近的距离为D。当两单点声源产生声音时,一部分声音会直接辐射到环境中,另一部分声音会先射向挡板,经由挡板反射后再辐射到环境中。在理想情况下,有挡板存在时,两单点声源对环境的声音辐射效果可以等效成图9的原理图。如图9所示,所述声学输出装置的两个导声孔形成的双点声源构成偶极子,其位于挡板的右侧,所述双点声源间距为d,双点声源至所述挡板的距离相等,所述双点声源与所述挡板的最近距离为D。所述双点声源的中心和空间任一观测点P的连线与所述双点声源所在直线角度为θ,所述双点声源的中心至所述观测点P的距离为r 2。考虑到双点声源输出的声音将受到挡板的反射,其效果相当于在挡板左侧形成一对与双点声源幅值相等,相位一致的两虚拟双点声源。所述两虚拟双点声源构成偶极子, 所述虚拟双点声源间的距离为d,所述虚拟双点声源与所述挡板的最近距离为D。所述虚拟双点声源连线的中心与所述观测点P的距离为r 1。所述虚拟双点声源与所述双点声源构成双偶极子,所述观测点与所述双偶极子中心连线与所述挡板的夹角为α,所述双偶极子中心与所述观测点的距离为r。所述观测点受到的声压为:
Figure PCTCN2020137595-appb-000025
远场条件下,可以忽略观察点P的声波的振幅差别,保留它们的相位差,如果取双偶极子中心点的连线和双偶极子中心点处的法线所成角度为α,那么由图有θ≈α,有如下近似关系:
r 1≈r+D sinα,          (10)
r 2≈r-D sinα.          (11)
由公式(9)、(10)和(11)得到合成的声压辐射:
Figure PCTCN2020137595-appb-000026
图10是根据本申请一些实施例提供的声学输出装置的两个点声源以图8所示方式布置时,不同间距d以及与用户脸部在不同间距D的频率响应曲线图;图11是根据本申请一些实施例提供的两个点声源以图8所示方式布置时在1000Hz时的声场能量分布图。如图10和图11所示,所述声学输出装置的至少两个导声孔连线近似平行于用户脸部区域(即,垂直于与用户脸部区域平行或基本平行的用户接触面),分别测试远场观测点在250mm时,D为0、1mm、2mm、3mm时,对应d为0.5mm、1mm、1.5mm、2mm时的声压值,这里声压值用声压级(dB)表示。需要说明的是,第一导声孔和第二导声孔的连线与用户脸部区域或用户接触面近似平行时,第一导声孔至用户脸部区域或用户接触面的距离与第二导声孔至用户脸部区域或用户接触面的距离可以相等或近似相等。这里的近似相等可以是指第一导声孔至用户脸部区域或用户接触面的距离与第二导声孔至用户脸部区域或用户接触面的距离之间的差值在特定范围内。这里的特定范围可以为不大于5mm,或者不大于3mm,或者不大于1.5mm。仅作为示例性说明,所述至少两个导声孔可以包括第一导声孔和第二导声孔,第一导声孔至脸部区域或用户接触面的距离接近第二导声孔至脸部区域或用户接触面的距离。优选地,第一导声孔至用户接触面的距离不大于5mm。较为优选地,第一导声孔至用户接触面的距离不大于2mm。由图10可知,偶极子距离挡板最近距离在0-5mm范围内,偶极子间距离 对远场观测点的声压影响较大。进一步地,远场观测点的声压级随着偶极子间距离的减小而减小,当偶极子间的距离为0.5mm时,远场观测点的声压级最小,此时降漏音效果较好。在一些实施例中,通过调整导声孔与用户接触面或用户脸部区域的距离可以降低声学输出装置的远场漏音音量。所述至少两个导声孔可以包括第一导声孔和第二导声孔,第一导声孔至脸部区域或用户接触面的距离小于第二导声孔至脸部区域或用户接触面的距离。优选地,第一导声孔至用户接触面的距离不大于5mm。较为优选地,第一导声孔至用户接触面的距离不大于2mm。第一导声孔和第二导声孔可以同时位于用户接触面上,或者第一导声孔和第二导声孔可以分别位于壳体结构上与用户接触面相邻接的两个侧壁上。如图10所示,所述声学输出装置的至少两个导声孔连线近似平行于用户身体脸部区域,偶极子距离挡板最近距离为3mm,偶极子间距为0.5mm,频率为1kHz时,以250mm的半圆以外区域为远声场,可以看到在近声场成半8字形区域颜色较深,即近声场该区域的声压级较大,近场音量较强。在垂直于所述偶极子连线的方向部分区域颜色较浅,即该区域声场的声压级较小,漏音较小。在这种情况下,通过调整两个导声孔之间的距离可以降低声学输出装置在远场的漏音音量,第一导声孔与第二导声孔的距离不大于2mm。优选地,第一导声孔与所述第二导声孔的距离不大于0.5mm。
图12是根据本申请一些实施例提供的两个导声孔的连线与用户接触面或用户身体部位的夹角在不同情况下的声压曲线图。图12所对应的声学输出装置中至少两个导声孔构成的偶极子距离用户身体部位(挡板)最近距离为3mm,偶极子间距为0.5mm,远场区域为以偶极子中心为原点,半径为250mm的圆以外的区域。图中横轴为远场区域一观测点与偶极子中心的角度,纵轴为该观测点处的声压。图中实线为所述声学输出装置至少两个导声孔的连线与用户脸区域部近似垂直时,远场观测点的声压绝对值与观测角度(观测点与双偶极子中心连线与双偶极子中心连线的法线所成的角度)的关系曲线。远场区域观测点的声压随着观测角度在
Figure PCTCN2020137595-appb-000027
范围内增大而逐渐增大;在
Figure PCTCN2020137595-appb-000028
时即远场观测点与偶极子中心的连线垂直于挡板时,声压绝对值最大;远场区域观测点的声压随着观测点与偶极子中心的角度在
Figure PCTCN2020137595-appb-000029
范围内增大而逐渐减小。图中虚线为所述声学输出装置至少两个导声孔构成的偶极子用户脸区域部近似平行时,远场观测点的声压绝对值与观测角度的关系曲线。远场区域观测点的声压随着观测点与偶极子中心的角度在
Figure PCTCN2020137595-appb-000030
范围内增大而逐渐减小;在
Figure PCTCN2020137595-appb-000031
时,即远场观测点与偶极子中心的连线垂直于挡板时,声压绝对值最小;远场区域观测点的声压随着观测点与偶极子中心的角度在
Figure PCTCN2020137595-appb-000032
范围 内增大而逐渐增大。所述声学输出装置至少两个导声孔构成的偶极子与用户脸部区域近似垂直时最大声压绝对值小于所述声学输出装置至少两个导声孔构成的偶极子与用户脸部区域近似平行时最大声压绝对值。
图13是根据本申请一些实施例提供的一种声学输出装置的结构示意图。在一些实施例中,图13中的导声孔适用于本申请中其它地方所描述的形成双点声源或偶极子的导声孔。如图13所示,声学驱动器1200可以包括振膜1201和磁路结构1222。声学驱动器1200还可以包括音圈(图中未示出)。所述音圈可以固定在振膜1201朝向磁路结构1222的一侧,并位于磁路结构1222所形成的磁场中。当所述音圈通电后,其可以在磁场的作用下振动并带动振膜1201振动,从而产生声音。为方便描述,振膜1201背朝磁路结构1222的一侧(即图13中振膜1201的右侧)可以被认为是声学驱动器1200的正面,磁路结构1222背朝振膜1201的一侧(即图13中磁路结构1222的左侧)可以被认为是声学驱动器1200的背面。振膜1201振动可以使得声学驱动器1200分别从其正面和背面向外辐射声音。如图13所示,声学驱动器1200的正面或振膜1201与壳体结构1210形成第一腔体1211,声学驱动器1200的背面与壳体结构1210形成第二腔体1212。声学驱动器1200的正面向第一腔体1211辐射声音,声学驱动器1200的背面向第二腔体1212辐射声音。在一些实施例中,壳体结构1210还可以包括第一导声孔1213和第二导声孔1214,第一导声孔1213与第一腔体1211连通,第二导声孔1214与第二腔体1212连通。声学驱动器1200正面产生的声音通过第一导声孔1213向外界传播,声学驱动器1200背面产生的声音通过第二导声孔1214向外界传播。在一些实施例中,磁路结构1222可以包括与振膜相对设置的导磁板1221。导磁板1221上开设至少一个导声孔1223(也被称为泄压孔),用于将振膜1201振动产生的声音从声学驱动器1200的背面导出并通过第二腔体1212向外界传播。该声学输出装置通过第一导声孔1213和第二导声孔1214的声辐射形成类似偶极子结构的双声源(或多声源),产生具有一定指向性的特定声场。在一些实施例中,声学驱动器1220可以直接向外界输出声音,即声学输出装置1200可以不设置第一腔体1211和/或第二腔体1212,声学驱动器1220的正面和背面发出的声音可以作为双声源。需要说明的是,本说明书实施例中的声学输出装置不局限于耳机的应用,也可以应用于其它的音频输出设备(例如,助听器、扩音器等)。
图14和图15是根据本申请一些实施例提供的另一种声学输出装置的结构示意图。如图14所示,第一声学驱动器1320的第一导声孔1313和第二声学驱动器1330第二 导声孔1314的连线与用户身体部位或声学输出装置的用户接触面近似垂直。第一声学驱动器1320和第二声学驱动器1330可以是相同的声学驱动器,信号处理模块可以通过控制信号(例如,第一电信号和第二电信号)控制第一声学驱动器1320的正面和第二声学驱动器1330的正面产生具有满足一定相位和幅值条件的声音(例如,振幅相同且相位相反的声音、振幅不同且相位相反的声音等)。第一声学驱动器1320正面产生的声音通过第一导声孔1313向声学输出装置1310外部辐射,第二声学驱动器1330正面产生的声音通过第二导声孔1314向声学输出装置1310的外部辐射。第一导声孔1313和第二导声孔1314可以等效为输出相反相位声音的双声源。不同于通过声学驱动器正面和背面发出的声音构建双声源的情况,通过两个声学驱动器的正面,即第一声学驱动器1320正面和第二声学驱动器1330正面,产生相位相反的声音并通过第一导声孔1313和第二导声孔1314向外部辐射,当第一声学驱动器1320到第一导声孔1313的声阻抗与第二声学驱动器1330到第二导声孔1314的声阻抗相同或大致相同时,可以使得声学输出装置1310中第一导声孔1313和第二导声孔1314发出的声音构建成有效的双声源,即第一导声孔1313和第二导声孔1314可以更准确地发出相位相反的声音。在远场,尤其是在中高频段(例如,200Hz-20kHz),第一导声孔1313处发出的声音可以更好地和第二导声孔1314处发出的声音相互抵消,从而在一定程度上更好地抑制声学输出装置在中高频段的漏音,同时能够防止声学输出装置1310产生的声音被该用户附近的他人听见,从而提高声学输出装置1310的降漏音效果。
当第一声学驱动器1320的正面和第二声学驱动器1330的正面位于壳体结构的不同侧时,第一导声孔1313和第二导声孔1314也位于壳体结构1310的不同侧,则壳体结构1310起到双声源(如,第一导声孔1313发出的声音和第二导声孔1314发出的声音)之间的挡板作用。此时,壳体结构1310将第一导声孔1313和第二导声孔1314隔开,使得第一导声孔1313和第二导声孔1314具有不同的到用户耳道的声学路径。一方面,将第一导声孔1313和第二导声孔1314分布于壳体结构1310的两侧可以增加第一导声孔1313和第二导声孔1314分别向用户耳朵传递声音的声程差(即第一导声孔1313和第二导声孔1314发出的声音到达用户耳道的路程差),使得在用户耳朵处(即近场)声音相消的效果变弱,进而增加用户耳朵听到的声音(也称为近场声音)的音量,从而为用户提供较佳的听觉体验。另一方面,壳体结构1310对导声孔向环境传播声音(也称为远场声音)的影响很小,第一导声孔1313和第二导声孔1314产生的远场声音仍然可以较好地相互抵消,可以在一定程度上抑制声学输出装置1300的漏音,同时能够防 止声学输出装置1300产生的声音被该用户附近的他人听见。因此,通过以上设置,可以提高声学输出装置1300在近场的听音音量和降低声学输出装置1300在远场的漏音音量。
图15所示的声学输出装置与图14所示的声学输出装置整体结构大致相同,其区别之处在于,第一声学驱动器1320的正面朝下,第二声学驱动器的正面朝上,壳体结构1310上的第一导声孔1313用于输出第一声学驱动器1320正面发出的声音,壳体结构1310上的第二导声孔1314用于输出第二声学驱动器1330正面发出的声音,第一导声孔1313发出的声音和第二导声孔1314发出的声音形成的偶极子的连线与用户身体部位或声学输出装置的用户接触面近似平行。
在一些实施例中,为了提高声学输出装置的降噪效果,声学输出装置还可以包括至少一个麦克风,该至少一个麦克风可以用于采集外部环境的噪声信号,麦克风将该噪声信号传递至声学输出装置的信号处理模块,信号处理模块可以基于噪声信号的参数(比如相位和振幅)发出与噪声信号相位相反、振幅相同的声音以实现降噪。图16是根据本申请一些实施例所示的声学输出装置的结构示意图。如图16所示,声学输出装置1600的两个导声孔发出的声音(以图16中所示的“+”、“-”来表示)形成的偶极子的连线与用户脸部区域近似垂直时,麦克风1601可以位于声学输出装置1600的壳体结构1610或声学驱动器(例如,磁路结构)处。在一些实施例中,麦克风1601可以设置于壳体结构1610的侧壁的外侧或内侧。在一些实施例中,麦克风1601还可以位于磁路结构周侧的壳体结构1610的侧壁处。在一些实施例中,在麦克风1601采集外部环境的同时,为了减少声学输出装置1600本身发出的声音,麦克风1610可以位于远离导声孔的位置,例如,麦克风1601可以位于壳体结构1610上与导声孔所在的侧壁不同的侧壁。进一步地,声学输出装置1600的两个导声孔处声音形成的偶极子的连线与用户脸部区域近似垂直时,声学输出装置具有声压极小值区域(图16中的虚线及其附近区域),该声压极小值区域可以是指声学输出装置输出的声音强度相对较小的区域。例如,图7中颜色较浅的区域701和区域702。在一些实施例中,麦克风1601可以位于声学输出装置的声压极小值区域。具体地,如图16所示,声学输出装置1600的至少两个导声孔形成的双点声源的连线近似垂直于用户的脸部区域时,呈现三个较强的声场区域(例如,图16中所示的声场区域1621、声场区域1622和声场区域1623),同时呈现两个声压极小值区域,即图16中虚线及其附近区域。结合图7和图16,所述较强的声场区域对应图7所示的三个深色值区域(例如,区域703、区域704以及区域705),所述声压 极小值区域对应图7所示的两个颜色较浅色的区域701和区域702。一个或多个麦克风1601放置于图7所示的颜色较浅的区域701和区域702,优选地,一个或多个麦克风1601放置于图7中的颜色较浅的区域701和/或区域702的中心线,即如图16所示的虚线位置上。将麦克风1601设置于声学输出装置声压极小值区域处,可以使麦克风1601在采集外部环境的噪声的同时可以尽量少收到声学装置1600本身发出的声音,使得麦克风1601可以提供更加真实的环境音以用于后续的声音信号处理,实现声学输出装置1600的有源降噪等功能。
图17是根据本申请一些实施例所示的声学输出装置的结构示意图。如图17所示,声学输出装置1700的两个导声孔发出的声音(以图17中所示的“+”、“-”来表示)形成的偶极子的连线与用户脸部区域近似平行时,麦克风1701可以位于声学输出装置1700的壳体结构1710或声学驱动器(例如,磁路结构)处。在一些实施例中,麦克风1701可以设置于壳体结构1710的侧壁的外侧或内侧。在一些实施例中,麦克风1701还可以位于磁路结构周侧的壳体结构1710的侧壁处。在一些实施例中,在麦克风1701采集外部环境的同时,为了减少声学输出装置1700本身发出的声音,麦克风1710可以位于远离导声孔的位置,例如,麦克风1701可以位于壳体结构1710上与导声孔所在侧壁不同的侧壁处。进一步地,声学输出装置1700的两个导声孔处声音形成的偶极子的连线与用户脸部区域近似平行时,声学输出装置具有声压极小值区域(图17中的虚线及其附近区域),在一些实施例中,麦克风1701可以位于声学输出装置的声压极小值区域。具体地,如图17所示,声学输出装置1700的至少两个导声孔形成的双点声源的连线近似平行于用户的脸部区域时,呈现两个个较强的声场区域(图17中所示的区域1721和区域1722),同时呈现一个声压极小值区域,即图16中虚线及其附近区域。结合图11和图17,所述较强的声场区域1721和声场区域1722对应图11所示的两个深色声压较大值区域1102和区域1103,所述声压极小值区域对应图11所示的浅色声压极小值区域1101。一个或多个麦克风1701可以位于图17所示的虚线及其附近区域,优选地,一个或多个麦克风1701可以位于图17所示的虚线位置上。将麦克风1701设置于声学输出装置1700声压极小值区域处,可以使麦克风1701在采集外部环境的噪声的同时可以尽量少收到声学装置1700本身发出的声音,使得麦克风1701可以提供更加真实的环境音以用于后续的声音信号处理,实现声学输出装置1700的有源降噪等功能。
需要注意的是,上述的图16的声学输出装置1600和图17中的声学输出装置1700仅作为示例性说明,声学输出装置还可以为具有两个声学驱动器的输出装置,例如,图 14和图15所示的声学输出装置,也就是说,麦克风(例如,麦克风1601和麦克风1701)位置的选取条件同样适用图14和图15的声学输出装置。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。 在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述 的实施例。

Claims (17)

  1. 一种声学输出装置,其特征在于,所述装置包括:
    至少一个声学驱动器,所述至少一个声学驱动器产生一组相位相反的声音,所述相位相反的声音分别从至少两个导声孔向外辐射;以及
    壳体结构,所述壳体结构被配置为承载所述至少一个声学驱动器,所述壳体结构包括用户接触面,所述用户接触面被配置为当用户在佩戴所述声学输出装置时,所述用户接触面与用户身体接触,其中,所述至少两个导声孔的连线与所述用户接触面形成的夹角在75°-90°的范围内。
  2. 根据权利要求1所述的声学输出装置,其特征在于,所述至少两个导声孔包括第一导声孔和第二导声孔,所述第一导声孔至所述用户接触面的距离小于所述第二导声孔至所述用户接触面的距离。
  3. 根据权利要求2所述的声学输出装置,其特征在于,所述第一导声孔至所述用户接触面的距离不大于5mm。
  4. 根据权利要求3所述的声学输出装置,其特征在于,所述第一导声孔至所述用户接触面的距离不大于2mm。
  5. 根据权利要求2所述的声学输出装置,其特征在于,所述第一导声孔与所述第二导声孔的距离不大于2mm。
  6. 根据权利要求2所述的声学输出装置,其特征在于,所述第一导声孔与所述第二导声孔的距离不大于0.5mm。
  7. 根据权利要求1所述的声学输出装置,其特征在于,所述至少一个声学驱动器包括 振膜和磁路结构,所述振膜背朝所述磁路结构的一侧形成所述声学驱动器的正面,所述磁路结构背朝所述振膜的一侧形成所述声学驱动器的背面,所述振膜振动使得所述声学驱动器分别从其正面和背面向外辐射声音。
  8. 根据权利要求1所述的声学输出装置,其特征在于,所述至少一个声学驱动器包括第一声学驱动器和第二声学驱动器,所述第一声学驱动器包括第一振膜,所述第二声学驱动器包括第二振膜,所述第一振膜振动产生的声音和所述第二振膜振动产生的声音相位相反,所述第一振膜和所述第二振膜振动产生的声音分别通过所述至少两个导声孔向外辐射。
  9. 根据权利要求1所述的声学输出装置,其特征在于,所述至少两个导声孔上设置有阻尼层。
  10. 根据权利要求9所述的声学输出装置,其特征在于,所述阻尼层为金属过滤网、纱网。
  11. 一种声学输出装置,其特征在于,所述装置包括:
    至少一个声学驱动器,所述至少一个声学驱动器产生一组相位相反的声音,所述相位相反的声音分别从至少两个导声孔向外辐射;以及
    壳体结构,所述壳体结构被配置为承载所述至少一个声学驱动器,所述壳体结构包括用户接触面,所述用户接触面被配置为当用户在佩戴所述声学输出装置时,所述用户接触面与用户身体接触,其中,所述至少两个导声孔的连线与所述用户接触面形成的夹角在0°-15°的范围内。
  12. 根据权利要求11所述的声学输出装置,其特征在于,所述至少两个导声孔包括第一导声孔和第二导声孔,所述第一导声孔或所述第二导声孔与所述用户接触面的距离不 大于5mm。
  13. 根据权利要求12所述的声学输出装置,其特征在于,所述第一导声孔或所述第二导声孔至所述用户接触面的距离不大于2mm。
  14. 根据权利要求11所述的声学输出装置,其特征在于,所述第一导声孔与所述第二导声孔的距离不大于2mm。
  15. 根据权利要求14所述的声学输出装置,其特征在于,所述第一导声孔与所述第二导声孔的距离不大于0.5mm。
  16. 根据权利要求11所述的声学输出装置,其特征在于,所述至少一个声学驱动器包括振膜和磁路结构,所述振膜背朝所述磁路结构的一侧形成所述声学驱动器的正面,所述磁路结构背朝所述振膜的一侧形成所述声学驱动器的背面,所述振膜振动使得所述声学驱动器分别从其正面和背面向外辐射声音。
  17. 根据权利要求13所述的声学输出装置,其特征在于,所述至少一个声学驱动器包括第一声学驱动器和第二声学驱动器,所述第一声学驱动器包括第一振膜,所述第二声学驱动器包括第二振膜,所述第一振膜振动产生的声音和所述第二振膜振动产生的声音相位相反,所述第一振膜和所述第二振膜振动产生的声音分别通过所述至少两个导声孔向外辐射。
PCT/CN2020/137595 2020-12-18 2020-12-18 一种声学输出装置 WO2022126592A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP20965608.1A EP4156714A4 (en) 2020-12-18 2020-12-18 AUDIBLE OUTPUT DEVICE
KR1020237000852A KR20230022230A (ko) 2020-12-18 2020-12-18 음향출력장치
JP2023511847A JP2023538562A (ja) 2020-12-18 2020-12-18 音響出力装置
PCT/CN2020/137595 WO2022126592A1 (zh) 2020-12-18 2020-12-18 一种声学输出装置
CN202080100729.XA CN115516877A (zh) 2020-12-18 2020-12-18 一种声学输出装置
CA3187015A CA3187015A1 (en) 2020-12-18 2020-12-18 Acoustic output apparatus
PE2023000045A PE20230872A1 (es) 2020-12-18 2020-12-18 Aparato de salida acustica
MX2023000599A MX2023000599A (es) 2020-12-18 2020-12-18 Aparato de salida acustica.
AU2020481327A AU2020481327A1 (en) 2020-12-18 2020-12-18 Acoustic output apparatus
US18/064,942 US20230111069A1 (en) 2020-12-18 2022-12-13 Acoustic output apparatus
CONC2023/0000378A CO2023000378A2 (es) 2020-12-18 2023-01-13 Aparato de salida acústica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137595 WO2022126592A1 (zh) 2020-12-18 2020-12-18 一种声学输出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,942 Continuation US20230111069A1 (en) 2020-12-18 2022-12-13 Acoustic output apparatus

Publications (1)

Publication Number Publication Date
WO2022126592A1 true WO2022126592A1 (zh) 2022-06-23

Family

ID=82059938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137595 WO2022126592A1 (zh) 2020-12-18 2020-12-18 一种声学输出装置

Country Status (11)

Country Link
US (1) US20230111069A1 (zh)
EP (1) EP4156714A4 (zh)
JP (1) JP2023538562A (zh)
KR (1) KR20230022230A (zh)
CN (1) CN115516877A (zh)
AU (1) AU2020481327A1 (zh)
CA (1) CA3187015A1 (zh)
CO (1) CO2023000378A2 (zh)
MX (1) MX2023000599A (zh)
PE (1) PE20230872A1 (zh)
WO (1) WO2022126592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235806A1 (en) * 2020-01-31 2021-08-05 Bose Corporation Helmet with low spillage audio speaker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185822A1 (en) * 2012-12-28 2014-07-03 Panasonic Corporation Bone conduction speaker and bone conduction headphone device
CN105142077A (zh) * 2015-08-13 2015-12-09 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的方法及骨传导扬声器
CN106470371A (zh) * 2014-01-06 2017-03-01 深圳市韶音科技有限公司 一种能够抑制漏音的骨传导扬声器
CN109121038A (zh) * 2018-08-30 2019-01-01 Oppo广东移动通信有限公司 一种抑制漏音的穿戴式设备、抑制漏音方法及存储介质
CN209710309U (zh) * 2019-05-22 2019-11-29 深圳市新听感科技有限公司 一种骨传导振子扬声器
CN110568633A (zh) * 2019-08-14 2019-12-13 歌尔股份有限公司 一种智能头戴设备
CN110611873A (zh) * 2018-06-15 2019-12-24 深圳市韶音科技有限公司 一种骨传导扬声器的测试方法
CN211406274U (zh) * 2020-01-19 2020-09-01 深圳市创想听力技术有限公司 一种骨传导扬声器及复合型扬声器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499555B1 (en) * 2002-12-02 2009-03-03 Plantronics, Inc. Personal communication method and apparatus with acoustic stray field cancellation
GB2446982B (en) * 2007-02-16 2009-04-29 Wolfson Microelectronics Plc Ear-worn speaker-carrying devices
US9020168B2 (en) * 2011-08-30 2015-04-28 Nokia Corporation Apparatus and method for audio delivery with different sound conduction transducers
US9100732B1 (en) * 2013-03-29 2015-08-04 Google Inc. Hertzian dipole headphone speaker

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185822A1 (en) * 2012-12-28 2014-07-03 Panasonic Corporation Bone conduction speaker and bone conduction headphone device
CN106470371A (zh) * 2014-01-06 2017-03-01 深圳市韶音科技有限公司 一种能够抑制漏音的骨传导扬声器
CN105142077A (zh) * 2015-08-13 2015-12-09 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的方法及骨传导扬声器
CN110611873A (zh) * 2018-06-15 2019-12-24 深圳市韶音科技有限公司 一种骨传导扬声器的测试方法
CN109121038A (zh) * 2018-08-30 2019-01-01 Oppo广东移动通信有限公司 一种抑制漏音的穿戴式设备、抑制漏音方法及存储介质
CN209710309U (zh) * 2019-05-22 2019-11-29 深圳市新听感科技有限公司 一种骨传导振子扬声器
CN110568633A (zh) * 2019-08-14 2019-12-13 歌尔股份有限公司 一种智能头戴设备
CN211406274U (zh) * 2020-01-19 2020-09-01 深圳市创想听力技术有限公司 一种骨传导扬声器及复合型扬声器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156714A4 *

Also Published As

Publication number Publication date
CN115516877A (zh) 2022-12-23
EP4156714A4 (en) 2023-08-30
MX2023000599A (es) 2023-02-14
KR20230022230A (ko) 2023-02-14
US20230111069A1 (en) 2023-04-13
JP2023538562A (ja) 2023-09-08
EP4156714A1 (en) 2023-03-29
CO2023000378A2 (es) 2023-01-26
AU2020481327A1 (en) 2023-02-02
CA3187015A1 (en) 2022-06-23
PE20230872A1 (es) 2023-05-31

Similar Documents

Publication Publication Date Title
US11917352B2 (en) Acoustic output device and noise reduction and sound transmission device
WO2022027915A1 (zh) 一种声学输出装置
JP2024502888A (ja) 音響出力装置
TW202236866A (zh) 聽力輔助裝置
WO2022126592A1 (zh) 一种声学输出装置
RU2801637C1 (ru) Акустическое выходное устройство
RU2796796C1 (ru) Акустическое выходное устройство
RU2803551C1 (ru) Устройство вывода акустических сигналов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3187015

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237000852

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020965608

Country of ref document: EP

Effective date: 20221220

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020481327

Country of ref document: AU

Date of ref document: 20201218

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023511847

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023000539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230111

NENP Non-entry into the national phase

Ref country code: DE