WO2021051897A1 - 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法 - Google Patents

一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法 Download PDF

Info

Publication number
WO2021051897A1
WO2021051897A1 PCT/CN2020/095323 CN2020095323W WO2021051897A1 WO 2021051897 A1 WO2021051897 A1 WO 2021051897A1 CN 2020095323 W CN2020095323 W CN 2020095323W WO 2021051897 A1 WO2021051897 A1 WO 2021051897A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic cell
nitrogen
electrode
carrier
carbon
Prior art date
Application number
PCT/CN2020/095323
Other languages
English (en)
French (fr)
Inventor
谌春林
周振强
张建
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to US17/762,116 priority Critical patent/US11859296B2/en
Publication of WO2021051897A1 publication Critical patent/WO2021051897A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/05Heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the application relates to a method for preparing 2,5-furandicarboxylic acid by electrocatalyzing the oxidation of 5-hydroxymethyl furfural and simultaneously electrolyzing water to produce hydrogen.
  • FDCA 2,5-furandicarboxylic acid
  • TPA terephthalic acid
  • PEF polyethylene furandicarboxylate
  • PET glass transition temperature and mechanical properties Esters
  • FDCA is usually prepared by catalytic oxidation of 5-hydroxymethylfurfural (HMF) in a liquid phase system with catalyst participation.
  • HMF 5-hydroxymethylfurfural
  • noble metal catalysts are usually used to conduct the reaction at a higher temperature and oxygen pressure, which increases the cost and also causes some safety problems.
  • mechanism studies have shown that the participation and activation of water molecules play a key role in the conversion of HMF to FDCA.
  • it is difficult to activate water molecules in the liquid-phase thermal catalytic process it is difficult to improve the energy utilization efficiency in the traditional liquid-solid phase reaction.
  • Electrocatalytic oxidation is a very promising technology with a wide range of substrate tolerance.
  • the reaction depth can be precisely controlled by adjusting the potential window, and the energy dissipation is low. It can be carried out at room temperature and pressure.
  • the catalyzed oxidation of aldol to the corresponding aldehyde or acid is a typical organic electrooxidation reaction due to its low activation energy and low electric potential when electrochemical oxidation is used, and a relatively low energy supply can complete the reaction.
  • the quick control step for the production of hydrogen by electrolysis of water is the four-electron anode oxygen evolution reaction, which has a higher energy barrier and relatively low product oxygen value, a low-potential organic electrooxidation reaction is used to replace the electrolytic water anode oxygen evolution reaction. , which helps to reduce the energy barrier of the total reaction of hydrogen production by electrolysis of water and accelerate the total reaction rate.
  • the anode product has no gaseous product, the reaction does not require hydrogen and oxygen gas separation, and there is no need for expensive proton exchange membranes or diaphragms. The purity of hydrogen can be easily guaranteed, and the danger of hydrogen and oxygen mixed explosions can also be avoided.
  • the development of a monolithic dual-function catalyst with both the performance of oxidizing HMF and hydrogen evolution and its application method replacing the anode oxygen evolution reaction with a low reaction potential HMF oxidation reaction, to produce high value-added product FDCA, and at the same time to generate hydrogen at the cathode to improve energy utilization effectiveness.
  • the method can also be extended to other bio-based platform compounds, and further use distributed renewable electric energy for reaction, which has important theoretical and practical significance for the development of clean energy and the high-value utilization of biological resources.
  • this application provides a method for preparing 2,5-furandicarboxylic acid by electrocatalytic oxidation of 5-hydroxymethylfurfural.
  • the method has high activity and high selectivity, and the anode catalyst is resistant to HMF. High sex.
  • the electrolytic cell adopts a three-electrode electrolytic cell or a two-electrode electrolytic cell; the anode catalyst used is an integral electrode;
  • the monolithic electrode includes a carrier and an active material carried on the carrier;
  • the active material includes nitrogen-doped carbon nanowires encapsulating cobalt tetroxide particles.
  • the electrolyte in the electrolytic cell is an aqueous solution containing 5-hydroxymethyl furfural;
  • the concentration of 5-hydroxymethyl furfural in the aqueous solution containing 5-hydroxymethyl furfural is 0.001 mM to 500 mM.
  • the electrolyte in the electrolytic cell is an aqueous sodium hydroxide solution containing 5-hydroxymethyl furfural.
  • the upper limit of the concentration of 5-hydroxymethyl furfural in the aqueous solution containing 5-hydroxymethyl furfural is selected from 0.1 mM, 1 mM, 5 mM, 10 mM, 30 mM, 50 mM, 100 mM, 150 mM, 200 mM, 250 mM, 300 mM, 350 mM. , 400mM, 450mM, 500mM; the lower limit is selected from 0mM, 0.1mM, 1mM, 5mM, 10mM, 30mM, 50mM, 100mM, 150mM, 200mM, 250mM, 300mM, 350mM, 400mM or 450mM.
  • the voltage of the electrolytic cell is 1.067V to 2.0V.
  • the minimum voltage of the three-electrode electrolytic cell is 1.067V, and the minimum voltage of the two-electrode electrolytic cell is 1.175V.
  • the electrolysis cell simultaneously electrolyzes water to precipitate hydrogen.
  • the cathode is selected from at least one of the monolithic electrode, graphite rod, platinum sheet, platinum wire, and platinum mesh.
  • the active substance grows in situ on the surface of the carrier.
  • the morphology of the active material is a dendritic shape formed by nitrogen-doped carbon nanowires encapsulating cobalt tetroxide particles.
  • the carrier is selected from at least one of foamed metal, foamed carbon, and carbon fiber cloth;
  • the particle size of cobalt tetroxide particles is 3-10nm;
  • the diameter of the nanowire is 40-60nm
  • the length of the nanowire is 500-2000nm.
  • the molar content of nitrogen in the active material is 0.5% to 2%; the molar content of carbon in the active material is 20% to 40%; and the molar content of cobalt in the active material is 5% to 10%.
  • the upper limit of the molar content of the nitrogen element in the active material is selected from 1%, 1.5% or 2%; the lower limit is selected from 0.5%, 1% or 1.5%.
  • the upper limit of the molar content of the cobalt element in the active material is selected from 6%, 7%, 8%, 9% or 10%; the lower limit is selected from 5%, 6%, 7%, 8% or 9%.
  • Another aspect of the present application provides a method for preparing a monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst that is simple to prepare, low in cost, strong in catalytic performance, long in service life, and extremely easy to separate.
  • the preparation method of the monolithic catalyst includes the following steps:
  • the molar ratio of the cobalt element in the cobalt source, the nitrogen element in the nitrogen source, and the carbon element in the carbon source to water in the aqueous solution in step S100 is 1:3-10:1.5-50:600-1200.
  • the cobalt source is selected from CoF 2, CoCl 2, CoBr 2 , CoI 2, CoCO 3, Co (NO 3) 2, CoSO 4, at least one of;
  • the nitrogen source is selected from at least one of urea and tetrasodium edetate;
  • the carbon source is selected from at least one of urea and tetrasodium edetate.
  • the temperature of the heating reaction in step S200 is 110° C. to 160° C., and the time of the heating reaction is 8 to 24 h;
  • Step S200 is: immersing the carrier in an aqueous solution, heating and reacting, washing, and drying to obtain a precursor;
  • Washing is: rinse with water and ethanol for 2 to 3 times in sequence;
  • the drying conditions are: drying at 60°C ⁇ 80°C for 8h ⁇ 12h.
  • the protective gas in step S300 is selected from at least one of nitrogen, argon, and helium;
  • the flow rate of the shielding gas is 100mL/min ⁇ 180mL/min.
  • the temperature of the heating reaction in step S300 is 300° C. to 400° C.
  • the time of the heating reaction is 0.5 h to 1 h.
  • the conditions for the heating reaction in step S300 are: heating from room temperature to 300°C to 400°C at a rate of 4°C/min to 8°C/min, and after holding for 0.5h to 1h, heating at a rate of 2°C/min to 3°C Cool to room temperature at a rate of /min.
  • HMF is the abbreviation of 5-hydroxymethylfurfural
  • FDCA is the abbreviation of 2,5-furandicarboxylic acid
  • FFCA is the abbreviation of 5-formyl-2-furan carboxylic acid
  • DFF It is the abbreviation of 2,5-furandicarbaldehyde
  • HMFCA is the abbreviation of 5-hydroxymethyl-2-furancarboxylic acid.
  • the electrocatalytic method for preparing 2,5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural provided by this application has a three-electrode system and also has a good ability to decompose water and produce hydrogen. The addition of HMF to the electrolyte does not affect Hydrogen production performance.
  • the electrocatalytic method for preparing 2,5-furandicarboxylic acid by the electrocatalytic oxidation of 5-hydroxymethylfurfural uses the catalyst to electrocatalyze the HMF oxidation to prepare FDCA, which has very high FDCA selectivity and good product purity. At the same time, the Faraday efficiency is close to 100%, and there is almost no energy waste.
  • the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst has a macroscopic morphology and a hierarchical structure, which can provide strength suitable for practical applications and effective mass transfer channels for reactants.
  • the carbon-coated design can It blocks the corrosion of exposed metals by acids and bases, prolongs the service life of the catalyst, and at the same time builds a confined space.
  • Nitrogen doping can increase the density of the local electron cloud on the carbon surface and improve the catalytic performance. Compared with cobalt-based powder catalyst, it is easier to separate after use.
  • the method for preparing the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst provided by this application has high catalytic efficiency, strong catalytic stability, long service life, and easy separation from the product after use.
  • Figure 1 is an XRD spectrum of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst and its surface exfoliated components prepared in Example 1 of the application;
  • Figure 2 is a scanning electron micrograph of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst prepared in Example 1 of the application; where (a) is a scale of 5 ⁇ m, (b) is a scale of 500 ⁇ m, and (c) is The scale bar is 50 ⁇ m;
  • Figure 3 is a transmission electron microscope image of the exfoliated material on the surface of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst prepared in Example 1 of the application; where (a) is the scale bar is 0.2 ⁇ m, (b) is the scale bar is 100 nm, (c) The scale bar is 5nm;
  • Example 4 is an X-ray electron spectrogram of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst prepared in Example 1 of the application;
  • Example 5 is a STEM element distribution diagram of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst prepared in Example 1 of the application; where (a) is carbon element, (b) is nitrogen element, and (c) is oxygen Element, (d) is cobalt element.
  • Figure 6 is a diagram of a two-electrode electrocatalytic device used in this application.
  • Fig. 7 is a graph of anodic current density-potential of different electrolytes in a three-electrode system using sample 1 as an anode catalyst prepared in Example 1 of this application;
  • FIG. 8 is a graph showing the current density-potential of different electrolytes in a three-electrode system using sample 1 as a cathode catalyst prepared in Example 1 of this application;
  • Example 9 is a graph of current density-voltage in different electrolyte circuits in a two-electrode system where sample 1 prepared in Example 1 is used as a cathode catalyst and an anode catalyst at the same time;
  • FIG. 10 is a graph showing the conversion rate of raw material HMF or the yield of anode product versus charge in a two-electrode system using sample 1 prepared in Example 1 of the present application as both a cathode catalyst and an anode catalyst.
  • the Bruker D8 DISCOVER X-ray diffractometer was used for XRD analysis with Cu as the target.
  • the FEI F20 transmission electron microscope was used for TEM analysis at 200kV.
  • the Kratos AXIS ULTRA DLD equipment was used to perform X-ray electron spectroscopy analysis with Al as the target.
  • the method for preparing 2,5-furandicarboxylic acid by electrocatalytic oxidation of 5-hydroxymethyl furfural uses an electrolytic cell for catalytic oxidation;
  • the electrolytic cell adopts a three-electrode electrolytic cell or a two-electrode electrolytic cell
  • the anode used is a monolithic catalyst
  • the monolithic catalyst includes a carrier and an active material carried on the carrier;
  • the active material includes nitrogen-doped carbon nanowires encapsulating cobalt tetroxide particles.
  • the preparation method of the monolithic catalyst includes the following steps:
  • the nitrogen-containing and carbon-containing compound is one or two of urea and tetrasodium edetate.
  • the concentration of the prepared solution there is no particular limitation on the concentration of the prepared solution.
  • the molar ratio of Co(NO 3 ) 2 to water is 1:600-1: 1200.
  • hydrothermal reaction put the solution obtained in step S100 in a reaction kettle, add a carrier such as foamed metal or foamed carbon or carbon fiber cloth, and keep it at 110°C ⁇ 160°C for 8h ⁇ 24h, wash and dry to obtain the precursor .
  • a carrier such as foamed metal or foamed carbon or carbon fiber cloth
  • step S200 there are no special restrictions on the added carrier such as metal foam, carbon foam, or carbon fiber cloth.
  • the specifications of the carrier such as foamed metal or foamed carbon or carbon fiber cloth are sufficient to be immersed in the solution.
  • the precursor is obtained through a hydrothermal reaction, wherein the hydrothermal temperature is 110° C. to 160° C., and the heating time is 8 h to 24 h.
  • the surface of the precursor obtained by the reaction is covered with a small amount of precipitate.
  • a washing operation is required.
  • the washing method is: washing the precursor with water and ethanol successively for 2 to 3 times.
  • the drying conditions are: drying at 60°C ⁇ 80°C for 8h ⁇ 12h.
  • step S300 carbonization process: place the precursor obtained in step S200 in a heating furnace, pass in protective gas, and keep it at 300°C ⁇ 400°C for 0.5h ⁇ 1h. After cooling, a monolithic nitrogen-doped carbon-coated cobalt tetroxide can be obtained Nanowire catalyst.
  • the target monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst is obtained through the carbonization process.
  • the heating furnace is preferably a tube furnace with a built-in quartz tube or corundum tube, and the protective gas is preferably nitrogen, One or more of argon and helium.
  • the flow rate of the shielding gas should not be too large, and the flow rate is preferably 100 mL/min to 180 mL/min. At this flow rate, the ablation of the product can be prevented, and the purity of the product can be ensured, thereby improving the physical and chemical properties of the product.
  • step S300 the heating method adopts a one-step heating method.
  • the heating speed should not be too fast.
  • the temperature control process of the heating furnace is: heating from room temperature to 8°C/min at a rate of 4°C/min to 8°C/min 300°C ⁇ 400°C, after holding for 0.5h ⁇ 1h, cooling to room temperature at a rate of 2°C/min ⁇ 3°C/min.
  • the role of nitrogen and carbon compounds is to provide both a source of N and a source of C, forming a nitrogen-doped carbon coating layer, reducing the corrosion of cobalt by acid and alkali, and prolonging the service life of the catalyst.
  • the loading amount of Co element and the doping concentration of N atoms can be adjusted by the initial ratio of each raw material.
  • the preparation of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst of the present invention adopts a simple operation method, has low equipment and technical requirements, uses common chemical raw materials, and has low cost; in the catalyst obtained by the method of the present invention, N The atom distribution is uniform, the Co element loading amount and the N atom doping concentration are adjustable, so as to meet the application under different conditions; and the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst obtained by the present invention has a higher content and good conductivity
  • the doped carbon, and the cobalt tetroxide nanowires work together to make the catalyst have high conductivity and longer service life; in addition, the monolithic catalyst prepared by this method has more mass transfer pores than the nanopowder catalyst, and more after use. It is easy to separate from the catalytic product.
  • step (2) Transfer the solution prepared in step (1) to a 100mL reactor, add the foamed nickel carrier, so that it is immersed in the solution, put it in an oven and react at 120°C for 8h, take it out and rinse with water and ethanol twice in sequence , Placed in a beaker, placed in an oven and dried at 60°C for 12 hours to obtain a precursor.
  • step (3) Put the precursor obtained in step (2) in the quartz boat of the tube furnace, and pass high-purity nitrogen as the full protective gas after sealing.
  • the flow rate of nitrogen is 150 mL/min; after 30 minutes of ventilation, the temperature is 5°C/min.
  • the temperature was raised to 350°C at a rate of min. After holding for 0.5h, it was cooled to room temperature at a rate of 3°C/min.
  • the product obtained was a monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst grown on foamed nickel, which was recorded as sample 1 .
  • Example 1 Compared with Example 1, the quality of urea in the raw materials used in this example has changed, and the other preparation conditions are unchanged. As the quality of urea decreases, the nitrogen-doped carbon coating layer of the finally obtained catalyst becomes thinner. The amount of nitrogen doping is reduced.
  • step (2) Transfer the solution prepared in step (1) to a 100mL reaction kettle, add the foamed nickel carrier, so that it is immersed in the solution, put it in an oven and react at 140°C for 8 hours, take it out and rinse with water and ethanol twice in sequence , Placed in a beaker, placed in an oven and dried at 60°C for 12 hours to obtain a precursor.
  • Example 1 Compared with Example 1, the temperature of the hydrothermal reaction used in this example has changed, and the rest of the preparation conditions are unchanged. With the increase of the hydrothermal reaction temperature, the nitrogen-doped carbon-coated cobalt tetroxide nanowires finally obtained The diameter of the nanowires of the catalyst becomes larger.
  • step (2) Transfer the solution prepared in step (1) to a 100mL reaction kettle, add carbon fiber cloth, so that it is immersed in the solution, put it in an oven to react at 120°C for 12h, take it out, and rinse it with water and ethanol twice. Place it in a beaker and put it in an oven to dry at 60°C for 12 hours to obtain a precursor.
  • step (3) Put the precursor obtained in step (2) in the quartz boat of the tube furnace, and then pass in high-purity argon as the full protective gas after sealing, and the nitrogen flow rate is 120mL/min; after 40 minutes of ventilation, the temperature is 5°C The temperature was raised to 350°C at a rate of 1/min. After holding for 0.5h, it was cooled to room temperature at a rate of 2°C/min. The product obtained was a monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst grown on carbon fiber cloth, which was recorded as sample 4 .
  • step (2) Transfer the solution prepared in step (1) to a 100mL reaction kettle, add the foamed carbon carrier, so that it is immersed in the solution, put it in an oven and react at 130°C for 8 hours, take it out and rinse with water and ethanol twice in sequence , Placed in a beaker, placed in an oven and dried at 60°C for 12 hours to obtain a precursor.
  • step (3) Put the precursor obtained in step (2) in the quartz boat of the tube furnace, and then pass in high-purity argon as the full protective gas after sealing, the flow of nitrogen is 140mL/min; after 30 minutes of ventilation, the temperature is 5°C The temperature was raised to 400°C at a rate of 1/min, and after holding for 0.5h, it was cooled to room temperature at a rate of 3°C/min.
  • the product obtained was a monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst grown on foamed carbon, which was recorded as a sample 5.
  • FIG. 1 shows the XRD spectra of sample 1 and the nitrogen-doped carbon-coated cobalt tetroxide nanowire powder mechanically peeled from the foamed nickel, and the XRD spectrum of the sample before peeling. It can be seen from the figure that the peeled powder sample is 31.27 at the 2-Theta angle.
  • Samples 2 to 3 and the nitrogen-doped carbon-coated cobalt tetroxide nanopowders mechanically peeled off from the foamed nickel were subjected to XRD tests.
  • the difference in peak intensity is only the same as that in Figure 1, and the characteristic peaks are consistent.
  • Sample 4 and the nitrogen-doped carbon-coated cobalt tetroxide nanopowder mechanically peeled from the carbon fiber cloth were subjected to XRD test.
  • the stripped nitrogen-doped carbon-coated cobalt tetraoxide nanopowder and the stripped nitrogen-doped carbon-coated cobalt tetraoxide nanopowder in Figure 1 were peeled off. Only the difference in peak intensity, the characteristic peaks are consistent.
  • Sample 5 and the nitrogen-doped carbon-coated cobalt tetroxide nanopowder mechanically peeled from the foamed carbon were subjected to XRD test.
  • Samples 1 to 5 and the nitrogen-doped carbon mechanically stripped from the carrier were coated with cobalt tetroxide nanopowder for SEM and TEM testing.
  • 2 is a scanning electron microscope image of the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst grown on the foamed nickel obtained in Example 1. It can be seen that the microstructure of the catalyst is pine branch-like.
  • Figure 3 is a transmission electron microscope image of the mechanically stripped nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst obtained in this example. It can be seen from the figure that the catalyst nanowire has a diameter of about 50 nm and a length greater than 500 nm.
  • the SEM images and TEM images of samples 4 to 5 and the nitrogen-doped carbon-coated cobalt tetroxide nanopowder mechanically peeled from the carrier are similar to sample 1, except for the difference between the carrier and the diameter of the nanowire.
  • Nitrogen-doped carbon which was mechanically peeled off the carrier from samples 1 to 5, was coated with cobalt tetraoxide nanopowder for X-ray electron spectroscopy.
  • Figure 4 is the X-ray electron spectrogram of sample 1 in Example 1. The results show that the percentages of the elements on the catalyst surface are C (37.65at%), N (1.08at%), Co (7.27at%) and The carrier nickel element, the total cobalt content determined by inductively coupled plasma mass spectrometer ICP is 20.1at%, so it is proved that the cobalt is actually wrapped by the nitrogen-doped carbon layer in the form of Co 3 O 4.
  • FIG. 1 is a STEM element distribution diagram of sample 1 in Example 1, showing that carbon, nitrogen, oxygen, and cobalt are uniformly distributed.
  • Counter electrode Use graphite rods, platinum wires or other inert conductive materials directly as counter electrodes.
  • Three-electrode system assembly working electrode as anode, counter electrode as cathode, saturated calomel electrode as reference electrode, fixed in a rubber stopper, and fixed on a 100mL reactor.
  • Two-electrode symmetric electrolysis cell the cathode and anode are two identical working electrodes, and the reactor volume is more than 10 mL.
  • the assembled two-electrode system was used to test electrocatalytic performance with water, 10mM HMF aqueous solution, 100mM HMF aqueous solution, and 200mM HMF aqueous solution as electrolytes.
  • the test device is shown in Figure 6.
  • An electrolytic cell including a power supply, electrolyte, anode, cathode and current loop is constructed. A voltage of 1.5V is applied for electrocatalysis.
  • the electrolyte is placed in a closed reactor and the gas generated by the cathode passes through The pipe is introduced into the gas collection device, and the gas volume is obtained by the drainage method.
  • the electrolyte is a 100mM HMF solution, the electrocatalytic energy barrier is low, so that the 1.5V dry battery can be used to drive the coupling reaction and produce about 3.3mL of hydrogen in 160 minutes.
  • Typical test results are shown in Figure 7 to Figure 10, using sample 1 as the anode catalyst.
  • FIG 7 shows that in the three-electrode system, the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst is used as the anode catalyst, and the electrolytic water has better oxygen evolution performance. It is used for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to prepare 2,5 -Furandicarboxylic acid (FDCA) has superior performance and can withstand high concentrations of HMF feed.
  • Figure 8 shows that in the three-electrode system, the monolithic nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst also has a better ability to decompose water and produce hydrogen.
  • HMF 5-hydroxymethylfurfural
  • FDCA 2,5 -Furandicarboxylic acid
  • Example 1 of the present application has a better hydrogen evolution performance in the electrolysis of water with a nitrogen-doped carbon-coated cobalt tetroxide nanowire anode catalyst.
  • Figure 9 shows the sample nitrogen-doped carbon-coated cobalt tetroxide nanowire anode catalyst prepared in Example 1 assembled into a two-electrode symmetric electrolysis cell, and HMF electrocatalytic oxidation is carried out to prepare FDCA, decompose water to produce hydrogen, and the required overpotential is lower than that of pure water decomposition 362mV, indicating that the required energy is lower and the catalytic performance is more excellent.
  • Figure 10 shows the preparation of FDCA by using the sample nitrogen-doped carbon-coated cobalt tetroxide nanowire catalyst prepared in Example 1 as a cathode catalyst and an anode catalyst at the same time as a two-electrode symmetric electrolyzer to prepare FDCA by electrocatalytic HMF oxidation. Great. At the same time, the Faraday efficiency is close to 100%, and there is almost no energy waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,采用电解池进行催化氧化;电解池采用三电极电解池或两电极电解池;采用的阳极为整体式电极;整体式电极包括载体和负载于载体上的催化活性物质;催化活性物质包括包裹四氧化三钴颗粒的氮掺杂碳纳米线。该方法的活性高,选择性高,且阳极催化剂对5-羟甲基糠醛的耐受性高。

Description

一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法 技术领域
本申请涉及一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法。
背景技术
全球能源消耗量的增加与各国对污染物排放的控制使得清洁能源的需求日益受到关注。氢能和生物质的开发和利用被认为是解决上述需求的可行途径。
作为美国能源部认可的十二种生物质平台化合物之一,2,5-呋喃二甲酸(FDCA)具有芳香性,且与对苯二甲酸的结构具有相似性(TPA)。以与乙二醇缩聚为例,衍生自FDCA的生物基聚呋喃二甲酸乙二醇酯(PEF)在阻气性、玻璃化转变温度、机械性能方面均优于聚对苯二甲酸乙二醇酯(PET)。此外,与石油基PET相比,生物基PEF的生产中不可再生能源的消耗和温室气体的排放将大大减少。
FDCA通常由5-羟甲基糠醛(HMF)在催化剂参与的液相体系中催化氧化来制备。为了加速转化,通常采用贵金属催化剂在较高的温度和氧气压力下进行反应,增加了成本的同时还会引起一些安全问题。此外,机理研究表明,水分子的参与和活化在HMF转化为FDCA中起关键作用。然而,由于液相热催化过程难以对水分子进行活化,传统的液固相反应难以提高能量利用效率。
电催化氧化是一种非常有发展前景的技术,具有广泛的底物耐受性,可通过调节电位窗口精确控制反应深度,能量耗散低,常温常压即可进行。醇醛催化氧化为相应的醛或酸由于活化能较低,采用电化学氧化时所需电势较低,较低的能量供给即可完成反应,是一类典型的有机电氧化反应。另一方面,由于电解水制氢的速控步骤为四电子阳极析氧反应,其能垒较高且产物氧气价值相对较低,因此采用低电势的有机电氧化反应替换电解水阳极析氧反应,有助于降低电解水制 氢总反应能垒,加速反应总包速率。同时阳极产物没有气态产物,反应无需进行氢氧气体分离,不需要高价的质子交换膜或隔膜,氢气纯度容易保证,亦可避免氢氧混合爆炸危险。
因此,开发同时具有氧化HMF和析氢性能的整体式双功能催化剂及应用方法,用低反应电势的HMF氧化反应代替阳极析氧反应,产生高附加值产物FDCA,同时在阴极产生氢气,提高能量利用效率。此外,该方法还可拓展到其他生物基平台化合物,进一步利用分布式可再生电能进行反应,这对清洁能源的开发和生物资源高值化利用具有重要的理论和实际意义。
发明内容
为了解决上述技术问题,本申请提供了一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,该方法的活性高,选择性高,且阳极催化剂对HMF的耐受性高。
为实现上述目的,本申请采用的技术方案如下:
本申请一方面,提供了一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,采用电解池进行催化氧化;
电解池采用三电极电解池或两电极电解池;采用的阳极催化剂为整体式电极;
整体式电极包括载体和负载于载体上的活性物质;
活性物质包括包裹四氧化三钴颗粒的氮掺杂碳纳米线。
可选地,所述电解池中电解液为含有5-羟甲基糠醛的水溶液;
所述含有5-羟甲基糠醛的水溶液中5-羟甲基糠醛的浓度为0.001mM~500mM。
可选地,电解池中电解液为含有5-羟甲基糠醛的氢氧化钠水溶液。
可选地,含有5-羟甲基糠醛的水溶液中5-羟甲基糠醛的浓度的上限选自0.1mM、1mM、5mM、10mM、30mM、50mM、100mM、150mM、200mM、250mM、300mM、350mM、400mM、450mM、500mM;下限选自0mM、0.1mM、1mM、5mM、10mM、30mM、 50mM、100mM、150mM、200mM、250mM、300mM、350mM、400mM或450mM。
可选地,电解池的电压为1.067V~2.0V。
可选地,三电极电解池的电压最低为1.067V,两电极电解池最低电压为1.175V。可选地,所述电解池同时电解水析出氢气。
可选地,阴极选自所述整体式电极、石墨棒、铂片、铂丝、铂网中的至少一种。
可选地,活性物质原位生长于所述载体表面。
可选地,活性物质的形貌为包裹四氧化三钴颗粒的氮掺杂碳纳米线形成的枝状。
可选地,载体选自泡沫金属、泡沫碳、碳纤维布中的至少一种;
四氧化三钴颗粒的粒径为3~10nm;
纳米线的直径为40~60nm;
纳米线的长度为500~2000nm。
可选地,活性物质中氮元素的摩尔含量为0.5%~2%;活性物质中碳元素的摩尔含量为20%~40%;活性物质中钴元素的摩尔含量为5%~10%。
可选地,活性物质中氮元素的摩尔含量的上限选自1%、1.5%或2%;下限选自0.5%、1%或1.5%。
可选地,活性物质中钴元素的摩尔含量的上限选自6%、7%、8%、9%或10%;下限选自5%、6%、7%、8%或9%。
本申请的另一方面,提供了一种制备简单、成本低廉、催化性能强、使用寿命长、极易分离的载体上原位生长的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的制备方法。
所述整体式催化剂的制备方法,包括以下步骤:
S100:获得含有钴源、氮源、碳源的水溶液;
S200:将载体浸没于水溶液中,加热反应得到前驱体;
S300:将前驱体在保护气体的气氛中,加热反应,得到整体式催 化剂。
可选地,步骤S100中水溶液中钴源中的钴元素、氮源中的氮元素、碳源中的碳元素与水的摩尔比为1:3~10:1.5~50:600~1200。
可选地,钴源选自CoF 2、CoCl 2、CoBr 2、CoI 2、CoCO 3、Co(NO 3) 2、CoSO 4中的至少一种;
氮源选自尿素、乙二胺四乙酸四钠中的至少一种;
碳源选自尿素、乙二胺四乙酸四钠中的至少一种。
可选地,步骤S200中加热反应的温度为110℃~160℃,加热反应的时间为8~24h;
步骤S200为:将载体浸没于水溶液中,加热反应,洗涤,干燥,得到前驱体;
洗涤为:依次使用水和乙醇冲洗2~3次;
干燥条件为:60℃~80℃下干燥8h~12h。
可选地,步骤S300中保护气体选自氮气、氩气、氦气中的至少一种;
保护气体的流量为100mL/min~180mL/min。
可选地,步骤S300中加热反应的温度为300℃~400℃,加热反应的时间为0.5h~1h。
可选地,步骤S300中加热反应的条件为:以4℃/min~8℃/min的速度由室温升温至300℃~400℃,保温0.5h~1h后,以2℃/min~3℃/min的速度冷却至室温。
本申请中,“HMF”是5-羟甲基糠醛的简写,“FDCA”是2,5-呋喃二甲酸的简写,“FFCA”是5-甲酰基-2-呋喃甲酸的简写,“DFF”是2,5-呋喃二甲醛的简写,“HMFCA”是5-羟甲基-2-呋喃甲酸的简写。
本申请的有益效果在于:
1)本申请所提供的电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,三电极体系中,整体式氮掺杂碳包裹四氧化三钴纳米线催化剂作为阳极催化剂,电解水析氧性能较好,用于电催化5-羟甲基糠 醛(HMF)氧化制备2,5-呋喃二甲酸(FDCA),性能优越,能耐受高浓度的HMF进料。
2)本申请所提供的电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,三电极体系中,同时具有较好的分解水产氢能力,电解液中添加HMF,不影响产氢性能。
3)本申请所提供的电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,组装成两电极对称电解槽,同时进行HMF电催化氧化制备FDCA、分解水产氢,所需过电位比单纯分解水低362mV,表明所需能量更低、催化性能更加优异。
4)本申请所提供的电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,使用该催化剂电催化HMF氧化制备FDCA,具有非常高的FDCA选择性,产物纯度好。同时,法拉第效率接近100%,几乎没有能量浪费。
5)本申请所提供的整体式催化剂,整体式氮掺杂碳包裹四氧化三钴纳米线催化剂具有宏观形貌和分级结构,能够提供适合实际应用的强度和反应物有效传质通道,碳包覆设计能够阻隔酸碱对暴露金属的腐蚀,延长催化剂的使用寿命,同时构建限域空间,氮掺杂能够提升碳表面局域电子云密度,提升催化性能。与钴基粉末催化剂相比,使用后更易分离。
6)本申请所提供的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的制备方法,通过该方法制备出的催化剂催化效率高,催化稳定性强,使用寿命长,在使用后容易与产物分离。
附图说明
图1为本申请实施例1中制得的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂及其表面剥落成分的XRD谱图;
图2为本申请实施例1中制得的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的扫描电镜图;其中,(a)为比例尺为5μm,(b)为比例尺为500μm,(c)为比例尺为50μm;
图3为本申请实施例1中制得的整体式氮掺杂碳包裹四氧化三钴 纳米线催化剂表层剥落物的透射电镜图;其中,(a)为比例尺为0.2μm,(b)为比例尺为100nm,(c)为比例尺为5nm;
图4为本申请实施例1中制得的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的X光电子能谱图;
图5为本申请实施例1中制得的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的STEM元素分布图;其中,(a)为碳元素,(b)为氮元素,(c)为氧元素,(d)为钴元素。
图6为本申请采用的两电极电催化装置图;
图7为本申请实施例1制得的样品1作为阳极催化剂三电极体系中不同电解液阳极电流密度-电势图;
图8为本申请实施例1制得的样品1作为阴极催化剂三电极体系中不同电解液电阴极电流密度-电势图;
图9为本申请实施例1制得的样品1同时作为阴极催化剂和阳极催化剂双电极体系中不同电解液电路中电流密度-电压图;
图10为为本申请实施例1制得的样品1同时作为阴极催化剂和阳极催化剂在两电极体系中原料HMF转化率或阳极产物产率-电荷图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买。
本申请的实施例中分析方法如下:
利用Bruker D8 DISCOVER X射线衍射仪以Cu为靶材进行XRD分析。
利用HITACHI S-4800扫描电子显微镜在8.0kV下进行SEM分析。
利用FEI F20透射电子显微镜在200kV下进行TEM分析。
利用Kratos AXIS ULTRA DLD设备以Al为靶材进行X光电子能谱分析。
利用SPECTRO ARCOS ICP-OES仪器进行ICP分析。
所述电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸的方法,采用电解池进行催化氧化;
所述电解池采用三电极电解池或两电极电解池;
采用的阳极为整体式催化剂;
所述整体式催化剂包括载体和负载于载体上的活性物质;
所述活性物质包括包裹四氧化三钴颗粒的氮掺杂碳纳米线。
所述整体式催化剂的制备方法包括以下步骤:
S100,溶液的制备:将Co(NO 3) 2与含氮、碳化合物按一定比例混合后加水配成溶液;其中,所述Co(NO 3) 2与含氮、碳化合物摩尔比为1:1.5~1:5。
较佳地,作为一种可实施方式,含氮、碳化合物为尿素和乙二胺四乙酸四钠中的一种或两种。
本申请中,对于所制备的溶液的浓度没有特殊限定。为了制备出优异性能的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂,增强其催化稳定性,延长使用寿命,较佳地,Co(NO 3) 2与水的摩尔比为1:600~1:1200。
S200,水热反应:将步骤S100中得到的溶液置于反应釜中,加入泡沫金属或泡沫碳或碳纤维布等载体,于110℃~160℃下保温8h~24h,洗涤、干燥后得到前驱体。
步骤S200中,对于所加泡沫金属或泡沫碳或碳纤维布等载体没有特殊限定。为了制备出均匀的催化剂,提高催化效率,较佳地,泡沫金属或泡沫碳或碳纤维布等载体规格满足于可浸没于溶液中。
本步骤通过水热反应得到前驱体,其中水热温度为110℃~160℃,热时间为8h~24h。
反应得到的前驱体表面覆盖有少量沉淀,为去除沉淀,需进行洗涤操作,较佳地,洗涤方法为:将所述前驱体依次使用水和乙醇冲洗2~3次。
前驱体冲洗完后,为去除残留的水和乙醇,需进行烘干操作。较 佳地,干燥条件为:60℃~80℃下干燥8h~12h。
S300,碳化过程:将步骤S200中得到的前驱体置于加热炉中,通入保护气体,于300℃~400℃下保温0.5h~1h,冷却后即可得到整体式氮掺杂碳包裹四氧化三钴纳米线催化剂。
本步骤通过碳化过程得到目标整体式氮掺杂碳包裹四氧化三钴纳米线催化剂,其中,为方便保护气体的通入,加热炉优选为内置石英管或刚玉管的管式炉,保护气体优选为氮气、氩气和氦气中的一种或多种。保护气体的流量不宜过大,其流量优选为100mL/min~180mL/min。该流量下,既能防止产物的烧蚀,又能保证产物的纯度,进而提高了产物的物理化学性能。
步骤S300中,加热方式采用一步升温方式,为保证产物质量,加热速度不宜过快,较佳地,加热炉的温度控制过程为:以4℃/min~8℃/min的速度由室温升温至300℃~400℃,保温0.5h~1h后,以2℃/min~3℃/min的速度冷却至室温。
本申请中,含氮、碳化合物的作用是同时提供N源和C源,形成掺杂氮的碳包裹层,减少酸碱对钴的腐蚀,延长催化剂使用寿命。
需要说明的是,在最终得到的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂中,Co元素的负载量和N原子的掺杂浓度可通过初始时各原料的比例进行调控。
本发明的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的制备采用简单的操作方法,对设备和技术要求低,使用的原料为常用的化工原料,成本较低;本发明方法得到的催化剂中N原子分布均匀,Co元素负载量和N原子掺杂浓度可调,从而能满足不同条件下的应用;且本发明得到的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂具有较高含量的导电性好的掺杂碳,与四氧化三钴纳米线共同作用,使催化剂具有高导电性和较长的使用寿命;此外,该方法制备的整体式催化剂与纳米粉体催化剂相比,传质孔道多,使用后更容易与催化产物分离。
实施例1
(1)在烧杯中加入0.584g Co(NO 3) 2·6H 2O、0.6g尿素、36mL去离子水,室温下搅拌均匀。其中,Co(NO 3) 2与尿素摩尔比为1:5,Co(NO 3) 2与水的摩尔比为1:1000。
(2)将步骤(1)制备的溶液转移至100mL反应釜中,加入泡沫镍载体,使其浸没于溶液中,放入烘箱中于120℃下反应8h,取出后依次用水和乙醇冲洗2次,置于烧杯中,放入烘箱中于60℃下干燥12h,得到前驱体。
(3)将步骤(2)得到的前驱体置于管式炉的石英舟里,密封后通入高纯氮气作为全程保护气,其中氮气的流量为150mL/min;通气30min后以5℃/min的速度升温至350℃,保温0.5h后,以3℃/min的速度冷却至室温,得到的产物即为泡沫镍上生长的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂,记为样品1。
实施例2
(1)在烧杯中加入0.584g Co(NO 3) 2·6H 2O、0.2g尿素、36mL去离子水,室温下搅拌均匀。其中,Co(NO 3) 2与尿素摩尔比为1:1.67,Co(NO 3) 2与水的摩尔比为1:1000。
(2)同实施例1
(3)同实施例1,得到的样品记为样品2。
与实施例1相比,本实施例所使用的原料中尿素的质量发生了变化,其余制备条件均未改变,随着尿素质量的减少,最终得到的催化剂的氮掺杂碳包裹层变薄,氮掺杂量降低。
实施例3
(1)同实施例1
(2)将步骤(1)制备的溶液转移至100mL反应釜中,加入泡沫镍载体,使其浸没于溶液中,放入烘箱中于140℃下反应8h,取出后依次用水和乙醇冲洗2次,置于烧杯中,放入烘箱中于60℃下干燥12h,得到前驱体。
(3)同实施例1,得到的样品记为样品3。
与实施例1相比,本实施例所使用的水热反应的温度发生了变化,其余制备条件均未改变,随着水热反应温度的升高,最终得到的氮掺杂碳包裹四氧化三钴纳米线催化剂的纳米线直径变大。
实施例4
(1)在烧杯中加入0.3g Co(NO 3) 2·6H 2O、0.124g尿素、20mL去离子水,室温下搅拌均匀。其中,Co(NO 3) 2与尿素摩尔比为1:2,Co(NO 3) 2与水的摩尔比为1:1078。
(2)将步骤(1)制备的溶液转移至100mL反应釜中,加入碳纤维布,使其浸没于溶液中,放入烘箱中于120℃下反应12h,取出后依次用水和乙醇冲洗2次,置于烧杯中,放入烘箱中于60℃下干燥12h,得到前驱体。
(3)将步骤(2)得到的前驱体置于管式炉的石英舟里,密封后通入高纯氩气作为全程保护气,其中氮气的流量为120mL/min;通气40min后以5℃/min的速度升温至350℃,保温0.5h后,以2℃/min的速度冷却至室温,得到的产物为碳纤维布上生长的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂,记为样品4。
实施例5
(1)在烧杯中加入0.584g Co(NO 3) 2·6H2O、0.8g Na 4EDTA·4H 2O、36mL去离子水,室温下搅拌均匀。其中Co(NO 3) 2与Na 4EDTA·4H 2O摩尔比为1:1.77,Co(NO 3) 2与水的摩尔比为1:1000。
(2)将步骤(1)制备的溶液转移至100mL反应釜中,加入泡沫碳载体,使其浸没于溶液中,放入烘箱中于130℃下反应8h,取出后依次用水和乙醇冲洗2次,置于烧杯中,放入烘箱中于60℃下干燥12h,得到前驱体。
(3)将步骤(2)得到的前驱体置于管式炉的石英舟里,密封后通入高纯氩气作为全程保护气,其中氮气的流量为140mL/min;通气30min后以5℃/min的速度升温至400℃,保温0.5h后,以3℃/min的速度冷却至室温,得到的产物即为泡沫碳上生长的整体式氮掺杂碳 包裹四氧化三钴纳米线催化剂,记为样品5。
实施例6
将样品1~样品5以及将从载体上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行XRD测试。图1为样品1以及从泡沫镍上机械剥离的氮掺杂碳包裹四氧化三钴纳米线粉体、以及未剥离前样品的XRD谱图,由图可知,剥离的粉体样品在2-Theta角为31.27(2 2 0)、36.85(3 1 1)、44.81(4 0 0)、59.36(5 1 1)、65.24(4 4 0)处有较明显的衍射峰,归属于四氧化三钴的特征峰,而未剥离的样品由于泡沫镍上生长的氮掺杂碳包裹四氧化三钴纳米线层XRD信号远不如基底金属镍的信号强度,因此整体体现为泡沫镍的信号,仅在2-Theta=36.85处有弱信号。
样品2~样品3以及将从泡沫镍上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行XRD测试,与图1仅有峰强度的差别,特征峰均一致。
样品4以及将从碳纤维布上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行XRD测试,剥离的氮掺杂碳包裹四氧化三钴纳米粉体与图1中剥离的氮掺杂碳包裹四氧化三钴纳米粉体仅有峰强度的差别,特征峰均一致。样品5以及将从泡沫碳上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行XRD测试,剥离的氮掺杂碳包裹四氧化三钴纳米粉体与图1中剥离的氮掺杂碳包裹四氧化三钴纳米粉体仅有峰强度的差别,特征峰均一致。
实施例7
将样品1~样品5以及将从载体上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行SEM和TEM测试。图2为实施例1得到的泡沫镍上生长的整体式氮掺杂碳包裹四氧化三钴纳米线催化剂的扫描电镜图,由图可见催化剂的微观结构为松枝状。图3为本实例得到的机械剥离的氮掺杂碳包裹四氧化三钴纳米线催化剂的透射电镜图,从图中可知,该催化剂纳米线直径为50nm左右,长度大于500nm。
样品2~样品3以及将从载体上机械剥离的氮掺杂碳包裹四氧化 三钴纳米粉体的SEM图和TEM图与样品1相似,仅有纳米线直径的区别。
样品4~样品5以及将从载体上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体的SEM图和TEM图与样品1相似,仅有载体的区别与纳米线直径的区别。
实施例8
将样品1~样品5从载体上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行X光电子能谱测试。图4为实施例1中样品1的X光电子能谱图,结果表明,该催化剂表面各元素百分含量分别为C(37.65at%)、N(1.08at%)、Co(7.27at%)以及载体镍元素,电感耦合等离子体质谱仪ICP测定的总体钴含量为20.1at%,因此综上证明钴实际上以Co 3O 4形式被掺氮碳层包裹。
将样品1~样品5从载体上机械剥离的氮掺杂碳包裹四氧化三钴纳米粉体进行STEM测试,得到STEM元素分布图。图5为实施例1中样品1的STEM元素分布图,表明,碳元素、氮元素、氧元素和钴元素均匀分布。
实施例9
工作电极制备:将样品1~样品5和纯泡沫镍通过不锈钢电极夹固定制备成工作电极。
对电极:将石墨棒、铂丝或其他惰性导电材料直接作为对电极。
三电极体系组装:工作电极作为阳极,对电极作为阴极,饱和甘汞电极作为参比电极,固定在橡胶塞中,并固定在100mL反应器上。
两电极对称电解槽:阴极和阳极是两个相同的工作电极,反应器体积10mL以上。
在常温、常压条件下,利用组装的两电极体系,分别以水、10mM HMF水溶液、100mM HMF水溶液、200mM HMF水溶液作为电解液,进行电催化性能测试。
测试装置如图6所示,构建了包括电源、电解液、阳极、阴极和 电流回路的电解池,施加电压1.5V,进行电催化,电解液置于封闭的反应器中,阴极产生的气体通过导管导入气体收集装置,并用排水法获取气体体积。电解液为100mM HMF溶液时,电催化能垒较低,从而可以用1.5V干电池驱动该耦合反应,160分钟产氢3.3mL左右。典型的测试结果如图7至图10所示,采用样品1作为阳极催化剂。图7表明,三电极体系中,整体式氮掺杂碳包裹四氧化三钴纳米线催化剂作为阳极催化剂,电解水析氧性能较好,用于电催化5-羟甲基糠醛(HMF)氧化制备2,5-呋喃二甲酸(FDCA),性能优越,能耐受高浓度的HMF进料。图8表明,三电极体系中,整体式氮掺杂碳包裹四氧化三钴纳米线催化剂同时具有较好的分解水产氢能力,电解液中添加HMF,不影响产氢性能;与纯泡沫镍阳极催化剂相比,本申请中实施例1制备的样品氮掺杂碳包裹四氧化三钴纳米线阳极催化剂的电解水析氢性能更好。图9为采用实施例1制备的样品氮掺杂碳包裹四氧化三钴纳米线阳极催化剂组装成两电极对称电解槽,同时进行HMF电催化氧化制备FDCA、分解水产氢,所需过电位比单纯分解水低362mV,表明所需能量更低、催化性能更加优异。图10为采用实施例1制备的样品氮掺杂碳包裹四氧化三钴纳米线催化剂同时作为阴极催化剂和阳极催化剂组装成两电极对称电解槽电催化HMF氧化制备FDCA,具有非常高的FDCA选择性,产物纯度好。同时,法拉第效率接近100%,几乎没有能量浪费。
其它样品作为阳极催化剂,均能达到相似的催化效果。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (11)

  1. 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法,其特征在于,采用电解池进行催化氧化;
    所述电解池采用三电极电解池或两电极电解池;
    采用的阳极为整体式电极;
    所述整体式电极包括载体和负载于载体上的催化活性物质;
    所述催化活性物质包括包裹四氧化三钴颗粒的氮掺杂碳纳米线。
  2. 根据权利要求1所述的方法,其特征在于,所述电解池中电解液为含有5-羟甲基糠醛的水溶液;
    所述含有5-羟甲基糠醛的水溶液中5-羟甲基糠醛的浓度为0.001mM~500mM。
  3. 根据权利要求1所述的方法,其特征在于,所述电解池的电压为1.067V~2.0V。
  4. 根据权利要求1所述的方法,其特征在于,所述三电极电解池的电压最低为1.067V,两电极电解池最低电压为1.175V。
  5. 根据权利要求1所述的方法,其特征在于,所述电解池的阴极同时电解水析出氢气。
  6. 根据权利要求1所述的方法,其特征在于,所述阴极选自所述整体式电极、石墨棒、铂片、铂丝、铂网、镍片、镍丝、镍网、镍合金中的至少一种。
  7. 根据权利要求1所述的方法,其特征在于,所述催化活性物质原位生长于所述载体表面。
  8. 根据权利要求1所述的方法,其特征在于,所述催化活性物质的形貌为包裹四氧化三钴颗粒的氮掺杂碳纳米线形成的枝状。
  9. 根据权利要求1所述的方法,其特征在于,所述载体选自泡沫金属、泡沫碳、碳纤维布中的至少一种;
  10. 根据权利要求1所述的方法,其特征在于,所述四氧化三钴颗粒的粒径为3~10nm;
    所述纳米线的直径为40~60nm。
  11. 根据权利要求1所述的方法,其特征在于,所述活性物质中氮元素的摩尔含量为0.5%~2%;所述活性物质中碳元素的摩尔含量为20%~40%;所述活性物质中钴元素的摩尔含量为5%~10%。
PCT/CN2020/095323 2019-09-20 2020-06-10 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法 WO2021051897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/762,116 US11859296B2 (en) 2019-09-20 2020-06-10 Method for producing 2,5-furandicarboxylic acid (FDCA) by electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) and simultaneously generating hydrogen by water electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910891734.6A CN112538636B (zh) 2019-09-20 2019-09-20 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
CN201910891734.6 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021051897A1 true WO2021051897A1 (zh) 2021-03-25

Family

ID=74883943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095323 WO2021051897A1 (zh) 2019-09-20 2020-06-10 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法

Country Status (3)

Country Link
US (1) US11859296B2 (zh)
CN (1) CN112538636B (zh)
WO (1) WO2021051897A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438524A (zh) * 2022-03-10 2022-05-06 郑州大学 一种用于电催化糠醛氧化生产糠酸的催化剂及其制备方法和使用方法
CN114737215A (zh) * 2022-03-31 2022-07-12 福建工程学院 一种镍钨复合电极的制备方法及其在电催化氧化中的应用
CN114752951A (zh) * 2022-05-17 2022-07-15 临沂大学 一种可同步制氢和有机物氧化的装置及电极制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261895A (zh) * 2021-04-30 2022-11-01 中国科学院宁波材料技术与工程研究所 一种整体式钴掺杂镍钼纳米线催化剂的制备方法和应用
CN113897628B (zh) * 2021-08-27 2023-04-18 中国科学院理化技术研究所 一种电催化解聚pet的方法
CN113750987A (zh) * 2021-09-16 2021-12-07 南京信息工程大学 一种正交相MoO3电催化剂及其制备方法和应用
CN114481170B (zh) * 2022-01-24 2023-08-15 吉林大学 一种由糠醛线性成对电化学合成糠酸的方法
CN114438525B (zh) * 2022-01-24 2023-08-15 吉林大学 一种糠醛阴极电化学转化合成糠酸的方法
CN114941155A (zh) * 2022-05-07 2022-08-26 南京信息工程大学 一种双功能电解池的制备工艺
CN117756190B (zh) * 2023-12-13 2024-07-09 江苏海洋大学 一种利用废旧锂离子电池制备钴催化剂并用于电催化升级pet的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
US20180023199A1 (en) * 2016-07-19 2018-01-25 Utah State University Electrocatalytic hydrogen evolution and biomass upgrading
CN108130554A (zh) * 2017-10-31 2018-06-08 天津工业大学 一种次氯酸钠电催化5-hmf制备fdca的方法
CN108160077A (zh) * 2017-12-26 2018-06-15 江苏大学 一种氮掺杂碳纳米管包裹金属铁钴合金复合材料的制备方法
CN108531936A (zh) * 2018-04-29 2018-09-14 浙江工业大学 一种生物质类化合物电催化氧化制取2,5-呋喃二甲酸的方法
CN110205645A (zh) * 2019-04-23 2019-09-06 电子科技大学 5-羟甲基糠醛电氧化为阳极反应的全水解装置及反应方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
CN105413730B (zh) * 2015-11-25 2018-04-27 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN109599565B (zh) * 2018-11-07 2022-03-04 三峡大学 一种双功能钴与氮掺杂碳复合原位电极的制备方法
CN109616669B (zh) * 2018-11-30 2021-11-23 上海师范大学 纳米钴/氮掺杂碳纳米管复合材料的制备方法及其应用
CN109950555A (zh) * 2019-03-12 2019-06-28 安徽师范大学 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用
CN109837555B (zh) * 2019-04-11 2019-12-31 浙江工业大学 一种镍钒磷化物催化剂电催化氧化制取2,5-呋喃二甲酸的方法
CN110106514B (zh) * 2019-05-13 2020-09-29 浙江大学 一种5-羟甲基糠醛电化学氧化制备2,5-呋喃二甲酸的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180023199A1 (en) * 2016-07-19 2018-01-25 Utah State University Electrocatalytic hydrogen evolution and biomass upgrading
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN108130554A (zh) * 2017-10-31 2018-06-08 天津工业大学 一种次氯酸钠电催化5-hmf制备fdca的方法
CN108160077A (zh) * 2017-12-26 2018-06-15 江苏大学 一种氮掺杂碳纳米管包裹金属铁钴合金复合材料的制备方法
CN108531936A (zh) * 2018-04-29 2018-09-14 浙江工业大学 一种生物质类化合物电催化氧化制取2,5-呋喃二甲酸的方法
CN110205645A (zh) * 2019-04-23 2019-09-06 电子科技大学 5-羟甲基糠醛电氧化为阳极反应的全水解装置及反应方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438524A (zh) * 2022-03-10 2022-05-06 郑州大学 一种用于电催化糠醛氧化生产糠酸的催化剂及其制备方法和使用方法
CN114438524B (zh) * 2022-03-10 2023-04-25 郑州大学 一种用于电催化糠醛氧化生产糠酸的催化剂及其制备方法和使用方法
CN114737215A (zh) * 2022-03-31 2022-07-12 福建工程学院 一种镍钨复合电极的制备方法及其在电催化氧化中的应用
CN114737215B (zh) * 2022-03-31 2023-11-14 福建工程学院 一种镍钨复合电极的制备方法及其在电催化氧化中的应用
CN114752951A (zh) * 2022-05-17 2022-07-15 临沂大学 一种可同步制氢和有机物氧化的装置及电极制备方法

Also Published As

Publication number Publication date
CN112538636B (zh) 2021-12-14
US20220349070A1 (en) 2022-11-03
US11859296B2 (en) 2024-01-02
CN112538636A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021051897A1 (zh) 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
Liu et al. Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery
Huang et al. Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium
Mandegarzad et al. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis
Chang et al. Monocrystalline Ni 12 P 5 hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction
CN113005469B (zh) 一种钌负载无定型的氢氧化镍/磷化镍复合电极及其制备方法和应用
CN111111707B (zh) 一种硒掺杂镍铁尖晶石/羟基氧化镍复合电催化剂材料及其制备方法与应用
CN111483999B (zh) 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用
Xiao et al. NiCo 2 O 4 3 dimensional nanosheet as effective and robust catalyst for oxygen evolution reaction
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
CN113457679A (zh) 一种羟基氧化钴催化剂制备方法和应用
CN110117797B (zh) 一种电解池及其在电解水制氢中的应用
Fang et al. Enhanced urea oxidization electrocatalysis on spinel cobalt oxide nanowires via on-site electrochemical defect engineering
CN111334818A (zh) 电解催化氧化的装置以及制备2,5呋喃二甲酸的方法
Qiao et al. Highly efficient oxygen electrode catalyst derived from chitosan biomass by molten salt pyrolysis for zinc-air battery
Shiravani et al. One-step synthesis of graphitic carbon-nitride doped with black-red phosphorus as a novel, efficient and free-metal bifunctional catalyst and its application for electrochemical overall water splitting
Li et al. Electronic modulation of Co 2 P nanoneedle arrays by the doping of transition metal Cr atoms for a urea oxidation reaction
Yang et al. Modulable Cu (0)/Cu (I)/Cu (II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons
WO2021195953A1 (zh) 一种2,5-呋喃二甲酸的制备方法
WO2023279406A1 (zh) 一种负载型催化剂的制备方法及其应用
CN113957469B (zh) 一种析氧铁酸镍或铁酸钴/炭黑复合催化剂及其制备方法和应用
CN112779553B (zh) 复合材料及其制备方法、应用
CN112779550B (zh) 一种三维微米管状析氢反应电催化剂及其制备方法
Wen Cobalt nitride supported on nickel foam as bifunctional catalyst electrodes for urea electrolysis-assisted hydrogen generation
WO2024103425A1 (zh) 一种镍钴皮芯结构催化剂及其制备方法和应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865184

Country of ref document: EP

Kind code of ref document: A1