WO2021195953A1 - 一种2,5-呋喃二甲酸的制备方法 - Google Patents

一种2,5-呋喃二甲酸的制备方法 Download PDF

Info

Publication number
WO2021195953A1
WO2021195953A1 PCT/CN2020/082405 CN2020082405W WO2021195953A1 WO 2021195953 A1 WO2021195953 A1 WO 2021195953A1 CN 2020082405 W CN2020082405 W CN 2020082405W WO 2021195953 A1 WO2021195953 A1 WO 2021195953A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
catalyst
cobalt
electrolytic cell
carrier
Prior art date
Application number
PCT/CN2020/082405
Other languages
English (en)
French (fr)
Inventor
谌春林
周振强
张建
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to PCT/CN2020/082405 priority Critical patent/WO2021195953A1/zh
Publication of WO2021195953A1 publication Critical patent/WO2021195953A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen

Definitions

  • This application relates to a preparation method of 2,5-furandicarboxylic acid.
  • polyesters synthesized with terephthalic acid (PTA) as the main raw material such as polyethylene terephthalate (PET) have been widely used in daily production and life with their excellent performance.
  • PTA terephthalic acid
  • PET polyethylene terephthalate
  • the current industrial terephthalic acid is a petroleum-based chemical, and its production and preparation need to consume a large amount of non-renewable petroleum fossil resources, which is not conducive to sustainable development. Therefore, people are actively seeking other bio-based chemicals to replace PTA as raw materials to synthesize bio-based polyesters.
  • 2,5-furandicarboxylic acid 1,4-dicarboxylic acid (succinic acid, fumaric acid, malic acid), levulinic acid, 3-hydroxyl Propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, (R)-3-hydroxy- ⁇ -butyrolactone, glycerol, xylitol, sorbitol, these can be converted into high additive
  • 2,5-furandicarboxylic acid FDCA is particularly eye-catching.
  • the sugar acid disproportionation route, the hexose diacid cyclization route, the furanoylation route, and the diglycolic acid cyclization route have many operating steps, high equipment requirements, many side reactions, low FDCA selectivity, and large emissions of three wastes. Conducive to large-scale production.
  • the HMF oxidation route requires the participation of noble metal catalysts. In order to increase the yield, chemical oxidants or high temperature and high oxygen pressure conditions are also required.
  • due to the active aldehyde group on HMF it is easy to spontaneously oxidize and deteriorate under normal temperature and pressure conditions, the purity is not easy to guarantee, and it will also cause raw material waste and storage problems.
  • the present application provides a method for preparing 2,5-furandicarboxylic acid, using hydrangea-like nanosphere catalyst as the anode catalyst, and adopting an electrocatalytic oxidation method to prepare 2,5-furandicarboxylic acid. Energy consumption and product purity are improved.
  • a method for preparing 2,5-furandicarboxylic acid is proposed, and the method at least includes:
  • the electrolyte is catalyzed and oxidized to obtain 2,5-furandicarboxylic acid through the reaction;
  • the catalyst includes a carrier and a catalytically active material
  • the carrier is a cobalt-based substrate material
  • the catalytically active substance uses the carrier as the cobalt source and grows on the surface of the carrier from its source;
  • the morphology of the catalytically active material is hydrangea-like nanospheres.
  • the cobalt-based base material is selected from at least one of cobalt foam, cobalt sheet, cobalt foil, and cobalt wire.
  • the diameter of the nanosphere is 100-500 nm.
  • the thickness of the surface sheet of the nanosphere is 1-10 nm.
  • the catalytically active substance is cobalt oxyhydroxide.
  • the preparation method of the catalyst at least includes:
  • step S100 is:
  • the dry powder and the carrier are heated and reacted in a protective gas atmosphere to obtain a precursor.
  • step a is: drying the sulfur source in an atmosphere of a certain flow of protective gas at a certain temperature for a certain period of time.
  • a certain temperature refers to 20°C ⁇ 40°C;
  • the protective gas is at least one of nitrogen, argon, and helium;
  • Shielding gas flow rate 50mL/min ⁇ 150mL/min;
  • the sulfur source is dried in a 100 mL/min nitrogen atmosphere at 30° C. for a certain period of time to remove the moisture content.
  • the drying time of the selected sulfur source there is no particular limitation on the drying time of the selected sulfur source.
  • the drying time is preferably 1h-5h.
  • the lotion is selected from at least one of absolute ethanol and acetone;
  • the washing method is: ultrasonic cleaning for 5 ⁇ 30min;
  • the drying conditions are: drying at 40°C ⁇ 60°C for 2h ⁇ 6h.
  • step b is: immersing the carrier in absolute ethanol for ultrasonic cleaning for 10 minutes, and then drying at 60° C. for 4 hours.
  • the carrier should be a cobalt-based material.
  • a carrier such as cobalt foam, cobalt flakes, and cobalt foil with self-supporting properties meets the above requirements.
  • a heating furnace is used as the reaction device.
  • the precursor is obtained through the vulcanization process.
  • the heating furnace is preferably a tube furnace with a built-in quartz tube or corundum tube, and the protective gas is preferably one of nitrogen, argon, and helium. Many kinds.
  • the flow rate of the shielding gas should not be too large, and the flow rate is preferably 10 mL/min to 100 mL/min. At this flow rate, the dry sulfur source powder can be prevented from being blown away directly, and the ablation of the product can be prevented, and the quality of the product is improved, thereby enhancing the mechanical and chemical properties of the product.
  • the mass ratio of the sulfur source to the carrier is 2-10:1;
  • the sulfur source is at least one of sublimed sulfur, sodium sulfide, and thiourea.
  • the upper limit of the mass ratio of the sulfur source to the carrier is independently selected from 4:1, 5:1, 7:1, 8:1, 10:1; the lower limit of the mass ratio of the sulfur source to the carrier is independently selected from 2:1, 3. :1, 3.8:1, 4.3:1, 5.4:1.
  • step S100 the temperature of the heating reaction is 300° C. to 400° C., and the reaction time is 0.25 h to 2 h;
  • the heating rate should not be too fast.
  • the heating rate of the heating reaction is 5°C/min-10°C/min.
  • the upper limit of the heating reaction temperature is independently selected from 350°C, 360°C, 370°C, 380°C, and 400°C; the lower limit of the heating reaction temperature is independently selected from 300°C, 310°C, 320°C, 330°C, and 340°C.
  • the upper limit of the reaction time is independently selected from 1h, 1.2h, 1.5h, 1.7h, and 2h; the lower limit of the reaction time is independently selected from 0.25h, 0.5h, 0.75h, 1h, and 1.25h.
  • the upper limit of the heating rate is independently selected from 7.5°C/min, 8°C/min, 8.5°C/min, 9°C/min, and 10°C/min; the lower limit of the heating rate is independently selected from 5°C/min, 5.5°C/min. min, 6°C/min, 6.5°C/min, 7°C/min.
  • step S200 is:
  • the precursor is used as an anode, electrically activated in the electrolyte, washed and dried to obtain a catalyst.
  • the precursor is used as the anode, the cathode and the reference electrode are assembled to form a three-electrode electrolytic cell, which is electrically activated in the electrolyte, washed and dried to obtain a catalyst.
  • the cathode is: at least one of a graphite rod, a platinum wire, a platinum mesh, and a platinum sheet;
  • the reference electrode is any one of mercury/mercury oxide electrode, saturated calomel electrode, silver/silver chloride electrode;
  • the electrolyte is at least one of potassium hydroxide solution and sodium hydroxide solution;
  • the concentration of the electrolyte is 0.01M to 1M.
  • step S200 is: the precursor is used as the anode, the graphite rod is used as the cathode, and the mercury/mercury oxide electrode is used as the reference electrode to jointly assemble a three-electrode electrolytic cell, which is electrically activated in an electrolyte with a concentration of 1M, washed and dried. A monolithic hydrangea-like cobalt oxyhydroxide nanosphere catalyst is obtained.
  • 2,5-furandimethanol which is not easily reduced, is used as the raw material for preparing 2,5-furandicarboxylic acid.
  • the catalyst is used as an anode to selectively oxidize furandimethanol to furandicarboxylic acid with high selectivity, and as a cathode, it is used as a cathode for the hydrogen evolution of electrolyzed water.
  • the electrolytic cell does not need a diaphragm to separate the electrodes, which can save the cost of an expensive diaphragm.
  • the upper limit of the electrolyte concentration is independently selected from 0.6M, 0.7M, 0.8M, 0.9M, and 1M; the lower limit of the electrolyte concentration is independently selected from 0.01M, 0.05M, 0.1M, 0.3M, and 0.5M.
  • the electro-activation method includes cyclic voltammetry, linear voltammetry, galvanostat, chronopotentiometry, and other methods capable of applying positive potential oxidation to convert the cobalt sulfide precursor into cobalt oxyhydroxide.
  • the electro-activation speed should not be too fast, and the time should not be too short or too long.
  • the electro-activation parameter is: -0.3V vs. RHE ⁇ 1.4V vs. RHE voltage window, activation for 0.5h-4h.
  • the upper limit of the window voltage is independently selected from 0.8Vvs.RHE, 0.9Vvs.RHE, 1.0Vvs.RHE, 1.2Vvs.RHE, 1.4Vvs.RHE;
  • the lower limit of the window voltage is independently selected from -0.3V vs. RHE, -0.2V vs. RHE, -0.1V vs. RHE, 0.5V vs. RHE, 0.7V vs. RHE.
  • the upper limit of the activation time is independently selected from 2h, 2.5h, 3h, 3.5h, and 4h; the lower limit of the activation time is independently selected from 0.5h, 0.75h, 1h, 1.25h, and 1.5h.
  • the conditions for electro-activation by the constant current method are: set the current density to 0.1-100 mA/cm 2 , apply constant current to activate until the potential is stable, and activate for 1-60 min.
  • the upper limit of the activation time is selected from 25 min, 30 min, 40 min, 50 min, and 60 min; the lower limit of the activation time is selected from 1 min, 5 min, 10 min, 15 min, and 20 min.
  • the conditions for the electrical activation of the chronopotentiometric method are: within the potential range of 1 to 1.6 V (relative to the reversible hydrogen electrode), the current is maintained for 1 to 60 minutes.
  • the upper limit of the potential range is independently selected from 1.3V, 1.35V, 1.4V, 1.5V, and 1.6V; the lower limit of the potential range is independently selected from 1.0V, 1.1V, 1.15V, 1.2V, and 1.25V.
  • the upper limit of the activation time is selected from 25 min, 30 min, 40 min, 50 min, and 60 min; the lower limit of the activation time is selected from 1 min, 5 min, 10 min, 15 min, and 20 min.
  • the surface of the catalyst obtained by activation is impregnated with a small amount of electrolyte.
  • a washing operation is required.
  • the washing method is: washing the catalyst with deionized water for 2 to 3 times. After the catalyst is washed, in order to prolong the service life of the catalyst, a drying operation is required.
  • the drying conditions are: drying at 40°C-60°C for 6h-12h.
  • the upper limit of the drying temperature is independently selected from 51°C, 53°C, 55°C, 57°C, and 60°C; the lower limit of the drying temperature is independently selected from 40°C, 42°C, 45°C, 48°C, and 50°C.
  • the upper limit of the drying time is independently selected from 9h, 10h, 10.5h, 11h, and 12h; the lower limit of the drying time is independently selected from 6h, 6.5h, 7h, 7.5h, and 8h.
  • the electrolyte is an alkaline aqueous solution containing 2,5-furandimethanol.
  • the concentration of 2,5-furandimethanol in the electrolyte is 0.01 mM to 500 mM.
  • the upper limit of the concentration of 2,5-furandimethanol is independently selected from 200mM, 250mM, 300mM, 350mM, 400mM, 450mM, 500mM; the lower limit of the concentration of 2,5-furandimethanol is independently selected from 0.01mM, 0.1mM, and 1mM. , 10mM, 50mM, 100mM, 150mM.
  • the concentration of the alkali in the alkaline aqueous solution is 0.01M-2M.
  • the upper limit of the alkali concentration is independently selected from 1M, 1.2M, 1.5M, 1.7M, and 2M; the lower limit of the alkali concentration is independently selected from 0.01M, 0.05M, 0.1M, 0.2M, and 0.5M.
  • the alkaline aqueous solution is at least one of potassium hydroxide aqueous solution, sodium hydroxide aqueous solution, potassium carbonate aqueous solution, sodium carbonate aqueous solution, potassium hydrogen carbonate aqueous solution, and sodium hydrogen carbonate aqueous solution.
  • the electrolytic cell is a three-electrode electrolytic cell or a two-electrode electrolytic cell;
  • the voltage of the electrolytic cell is 1.0V ⁇ 1.9V.
  • the voltage is the potential relative to the reversible hydrogen electrode; when a two-electrode electrolytic cell is used, the voltage is the potential difference between the anode and the anode.
  • the minimum voltage of the three-electrode electrolytic cell is 1.0V; the minimum voltage of the two-electrode electrolytic cell is 1.2V.
  • the upper voltage limit of the electrolytic cell is independently selected from 1.5V, 1.6V, 1.7V, 1.8V, and 1.9V; the lower voltage limit of the electrolytic cell is independently selected from 1.0V, 1.1V, 1.2V, 1.3V, and 1.4V.
  • the cathode of the electrolytic cell simultaneously electrolyzes water to precipitate hydrogen.
  • this application adopts electrocatalytic oxidation technology to prepare FDCA.
  • the electrocatalytic oxidation technology has low energy dissipation and mild reaction conditions.
  • the reaction depth can be precisely controlled by adjusting the potential window; on the other hand, the melting point, boiling point, and stability are better than
  • the 2,5-furandimethanol (BHMF) of HMF is used as the raw material, and FDCA is prepared by catalytic oxidation.
  • BHMF 2,5-furandimethanol
  • the electrocatalytic oxidation of BHMF to prepare FDCA and the hydrogen evolution reaction are coupled to produce not only high value-added FDCA products, but also high purity hydrogen.
  • BHMF is the abbreviation for 2,5-furandimethanol
  • HMF is the abbreviation for 5-hydroxymethylfurfural
  • FDCA is the abbreviation for 2,5-furandicarboxylic acid
  • FFCA is 5.
  • DFF is the abbreviation of 2,5-furandicarbaldehyde
  • HMFCA is the abbreviation of 5-hydroxymethyl-2-furancarboxylic acid.
  • the self-grown monolithic hydrangea-like oxyhydroxide nanosphere catalyst is used as the anode catalyst, and the electrolytic water has better oxygen evolution performance.
  • Good used for electrocatalytic oxidation of 2,5-furandicarboxylic acid (BHMF) to prepare 2,5-furandicarboxylic acid (FDCA), with good catalytic performance and high catalytic efficiency.
  • the self-grown monolithic hydrangea-like oxyhydroxide nanosphere catalyst is used as the anode catalyst, and the catalyst has a very high effect on FDCA.
  • the selectivity to ensure the high purity of the product, and the yield is also very high.
  • the Faraday efficiency is close to 100%, the energy utilization rate is high, and there is almost no energy waste.
  • the method for preparing 2,5-furandicarboxylic acid by electrocatalytic oxidation provided by this application has good hydrogen production capacity from electrolyzed water in the electrode system, and the addition of BHMF to the electrolyte does not reduce its hydrogen production performance .
  • the method for preparing 2,5-furandicarboxylic acid by electrocatalytic oxidation provided in this application is assembled into a two-electrode symmetrical electrolysis cell, and at the same time, electrocatalytic oxidation of BHMF is performed to prepare FDCA and electrolyze water to produce hydrogen.
  • the required overpotential is more than electrocatalytic Decomposition water is lower than 279mV, indicating that BHMF can be made into high value-added with only lower energy, and it has more excellent catalytic performance.
  • the self-grown monolithic cobalt catalyst used in this application has a three-dimensional structure assembled from nanosheets on the surface, and has a high specific surface area, which can fully expose catalytic active sites and improve catalytic efficiency.
  • the number and thickness of the surface sheets of the nanospheres can be controlled by adjusting the preparation conditions to provide effective mass transfer channels for different reactants to meet the needs of multiple reactions.
  • the nanosphere catalyst with a rough surface has better self-supporting properties, is not easy to agglomerate during the application process, and has a longer service life.
  • the preparation method of the cobalt catalyst provided by the present application the catalyst prepared by the method has strong catalytic performance, the active components are not easy to agglomerate and fall off during the application process, and the catalyst is easy to separate after use.
  • the preparation method of the cobalt catalyst provided in the present application induces the formation of nano-spherical morphology by vulcanization, and controls the number and size of nano-spheres by changing the vulcanization conditions, and then activates them into hydrangea-like cobalt oxyhydroxide nano-spheres.
  • the addition of additional templates saves costs and is innovative.
  • Figure 1 is a scanning electron microscope image of the self-grown monolithic hydrangea-like cobalt oxyhydroxide catalyst prepared in Example 1 of the application, with a scale of 500 ⁇ m;
  • Example 2 is a scanning electron micrograph of the self-grown monolithic hydrangea-like cobalt oxyhydroxide catalyst prepared in Example 1 of the application, and the scale bar is 20 ⁇ m;
  • Figure 3 is a scanning electron microscope image of the self-grown monolithic hydrangea-like cobalt oxyhydroxide catalyst prepared in Example 1 of the application, with a scale of 1 ⁇ m;
  • FIG. 4 is a distribution diagram of EDX elements of the self-grown monolithic hydrangea-like cobalt oxyhydroxide catalyst prepared in Example 1 of the application; wherein (a) is cobalt element and (b) is oxygen element;
  • Example 5 is a transmission electron microscope image of the self-grown monolithic hydrangea-like cobalt oxyhydroxide catalyst prepared in Example 1 of this application; wherein (a) is a scale bar of 50 nm, and (b) is a scale bar of 10 nm;
  • FIG. 7 is a schematic diagram of the device structure in Embodiment 9 of this application.
  • FIG. 8 is a graph of anodic current density-voltage of different electrolytes in a three-electrode system using sample 1 as an anode catalyst prepared in Example 1 of this application;
  • Example 10 is a graph of current density-voltage under different electrolyte conditions in a two-electrode system where sample 1 prepared in Example 1 is used as a cathode catalyst and an anode catalyst at the same time;
  • FIG. 11 is a graph showing the concentration-electrical quantity of the raw material BHMF and the anode product in a two-electrode system where the sample 1 prepared in Example 1 is used as a cathode catalyst and an anode catalyst at the same time.
  • the HITACHI S-4800 scanning electron microscope was used for EDX analysis at 20.0kV.
  • the FEI F20 transmission electron microscope was used for TEM analysis at 200kV.
  • the FEI F20 transmission electron microscope was used for the selected area electron diffraction analysis at 200kV.
  • step (3) Put the dry sublimated sulfur powder obtained in step (1) and the cobalt foam obtained in step (2) together in the corundum boat of the tube furnace, and then pass in high-purity nitrogen gas as a full protective gas after sealing.
  • the flow rate is 50mL/min; the temperature is raised to 350°C at a rate of 5°C/min, after holding for 0.5h, it is naturally cooled to room temperature to obtain the precursor.
  • the mass ratio of sublimated sulfur powder to cobalt foam is 5.4:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, the mercury/mercury oxide electrode is used as the reference electrode, and a three-electrode electrolytic cell is assembled together, and it is circulated in a potassium hydroxide solution with a concentration of 1M. Voltammetry was activated under the voltage window of -0.3V vs.RHE ⁇ 1.4V vs.RHE for 1h, rinsed with deionized water twice, dried at 60°C for 10h, and obtained self-grown monolithic hydrangea-like cobalt oxyhydroxide Nanosphere catalyst, denoted as sample 1.
  • step (3) Put the dry sublimated sulfur powder obtained in step (1) and the cobalt foam obtained in step (2) together in the corundum boat of the tube furnace, and then pass in high-purity nitrogen gas as a full protective gas after sealing.
  • the flow rate is 50mL/min; the temperature is raised to 350°C at a rate of 5°C/min, after holding for 0.5h, it is naturally cooled to room temperature to obtain the precursor.
  • the mass ratio of sublimated sulfur powder to cobalt foam is 3:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, the mercury/mercury oxide electrode is used as the reference electrode, and a three-electrode electrolytic cell is assembled together, and it is circulated in a potassium hydroxide solution with a concentration of 1M. Voltammetry was activated under the voltage window of -0.3V vs.RHE ⁇ 1.4V vs.RHE for 1h, rinsed with deionized water twice, dried at 60°C for 10h, and obtained self-grown monolithic hydrangea-like cobalt oxyhydroxide Nanosphere catalyst, denoted as sample 2.
  • Example 1 Compared with Example 1, the quality of the carrier used in this example has changed, and the rest of the preparation conditions are unchanged. With the increase of the carrier quality, the number of cobalt oxyhydroxide nanospheres of the finally obtained catalyst decreases.
  • step (3) Put the dry sublimated sulfur powder obtained in step (1) and the cobalt foam obtained in step (2) together in the corundum boat of the tube furnace, and then pass in high-purity nitrogen gas as a full protective gas after sealing.
  • the flow rate is 50mL/min; the temperature is raised to 350°C at a rate of 5°C/min, after holding for 0.5h, it is naturally cooled to room temperature to obtain the precursor.
  • the mass ratio of sublimated sulfur powder to cobalt foam is 1.8:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, the mercury/mercury oxide electrode is used as the reference electrode, and a three-electrode electrolytic cell is assembled together, and it is circulated in a potassium hydroxide solution with a concentration of 1M. Voltammetry was activated under the voltage window of -0.3V vs.RHE ⁇ 1.4V vs.RHE for 1h, rinsed with deionized water twice, dried at 60°C for 10h, and obtained self-grown monolithic hydrangea-like cobalt oxyhydroxide Nanosphere catalyst, denoted as sample 3.
  • Example 1 Compared with Example 1, the quality of the sulfur source used in this example has changed, and the rest of the preparation conditions are unchanged. As the quality of the sulfur source decreases, the number of cobalt oxyhydroxide nanospheres in the finally obtained catalyst decreases.
  • step (3) Put the dry sublimated sulfur powder obtained in step (1) and the cobalt foam obtained in step (2) together in the corundum boat of the tube furnace, and then pass in high-purity nitrogen gas as a full protective gas after sealing.
  • the flow rate is 100 mL/min; the temperature is raised to 350° C. at a rate of 5° C./min, and after holding for 1 hour, it is naturally cooled to room temperature to obtain a precursor.
  • the mass ratio of sublimated sulfur powder to cobalt foam is 4.3:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, the mercury/mercury oxide electrode is used as the reference electrode, and a three-electrode electrolytic cell is assembled together, and it is circulated in a potassium hydroxide solution with a concentration of 1M. Voltammetry was activated under the voltage window of -0.3V vs.RHE ⁇ 1.4V vs.RHE for 1.5h, rinsed with deionized water twice, and dried at 60°C for 12h to obtain self-grown monolithic hydrangea-like hydroxyl oxidation Cobalt nanosphere catalyst, denoted as sample 4.
  • step (3) Put the dry sodium sulfide powder obtained in step (1) and the cobalt foam obtained in step (2) together in the corundum boat of the tube furnace, and then pass in high-purity argon gas as a full protective gas after sealing.
  • the gas flow rate is 50mL/min; the temperature is raised to 350°C at a rate of 5°C/min, after holding for 0.5h, it is naturally cooled to room temperature to obtain the precursor.
  • the mass ratio of sodium sulfide powder to cobalt foam is 4:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, the mercury/mercury oxide electrode is used as the reference electrode, and the three-electrode electrolytic cell is assembled together, which is circulated in a sodium hydroxide solution with a concentration of 1M Voltammetry was activated under the voltage window of -0.3V vs.RHE ⁇ 1.4V vs.RHE for 1h, rinsed with deionized water for 3 times, dried at 60°C for 10h, and obtained self-grown monolithic hydrangea-like cobalt oxyhydroxide Nanosphere catalyst, denoted as sample 5.
  • step (3) Put the dry sublimated sulfur powder obtained in step (1) and the cobalt flakes obtained in step (2) together in the corundum boat of the tube furnace, and then pass in high-purity argon as the full protective gas after sealing.
  • the gas flow rate is 80mL/min; the temperature is raised to 400°C at a rate of 8°C/min, after holding for 0.5h, it is naturally cooled to room temperature to obtain the precursor.
  • the mass ratio of sublimated sulfur powder to cobalt flakes is 3.8:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, the mercury/mercury oxide electrode is used as the reference electrode, and a three-electrode electrolytic cell is assembled together, and it is circulated in a potassium hydroxide solution with a concentration of 1M. Voltammetry was activated under the voltage window of -0.3V vs.RHE ⁇ 1.4V vs.RHE for 2h, rinsed with deionized water 3 times, dried at 60°C for 8h, and obtained self-grown monolithic hydrangea-like cobalt oxyhydroxide Nanosphere catalyst, denoted as sample 6.
  • step (3) Put the dry sublimated sulfur powder obtained in step (1) and the cobalt foil obtained in step (2) together in a corundum boat of a tube furnace, and then pass high-purity argon gas as a full protective gas after sealing.
  • the gas flow rate is 50mL/min; the temperature is raised to 350°C at a rate of 7°C/min, and after holding for 1 hour, it is naturally cooled to room temperature to obtain the precursor.
  • the mass ratio of sublimated sulfur powder to cobalt foil is 3:1.
  • step (3) The precursor obtained in step (3) is used as the anode, the graphite rod is used as the cathode, and the mercury/mercury oxide electrode is used as the reference electrode. A current density of 5mA/cm 2 is applied to the electric current. After the electric potential is stable and maintained for 10 minutes, it is washed twice with deionized water and dried at 50°C for 12 hours to obtain self-growing monolithic hydrangea-like cobalt oxyhydroxide nanospheres. Catalyst, denoted as sample 7.
  • the samples 1 to 7 were tested by SEM, EDX and TEM.
  • Figures 1 to 3 are scanning electron micrographs of sample 1. It can be seen from the figures that the microstructure of the catalyst is hydrangea-like nanospheres, and the surface of the nanospheres is composed of three-dimensional structures assembled from nanosheets, which have good mechanical properties.
  • Fig. 4 is an element distribution diagram of the EDX test of sample 1. It can be seen from the diagram that cobalt and oxygen are uniformly distributed.
  • Figure 5 is a transmission electron microscope image of sample 1. It can be seen from the figure that the surface of the nanosphere of the catalyst is composed of a three-dimensional structure assembled by nanosheets, and the characterization results are consistent with the results of the scanning electron microscope image.
  • Figure 6 is the selected area electron diffraction pattern of sample 1.
  • the electron diffraction rings in the figure correspond to (0 0 2), (2 4 0), (1 4 0), (0 2 1) of the cobalt oxyhydroxide standard card 26-0480. It is proved that the catalyst phase is cobalt oxyhydroxide.
  • SEM images, element distribution images, and TEM images of samples 2 to 7 are similar to those of sample 1, except for the difference between the number of nanospheres and the size of the nanospheres.
  • Preparation of working electrode Prepare working electrodes by fixing samples 1 to 7 and pure cobalt foam through stainless steel electrode clamps.
  • Counter electrode Use a graphite rod as the counter electrode.
  • the working electrode is used as the anode
  • the counter electrode is used as the cathode
  • the mercury/mercury oxide electrode is used as the reference electrode, fixed in a PTFE plug and fixed on a 10mL reaction cell.
  • Two-electrode symmetric electrolysis cell the cathode and anode are two identical working electrodes, and the reactor volume is more than 10 mL.
  • the assembled two-electrode system was used to control the voltage of the electrolytic cell to 1.7V, and the electrocatalytic performance was tested with potassium hydroxide (1M) solution and 10mM BHMF potassium hydroxide (1M) solution.
  • the test device is shown in Figure 7.
  • An electrolytic cell including a power source 1, an electrolyte 4, an anode 2, a cathode 3, and a current loop is constructed.
  • the electrolyte is placed in a closed reactor, and the gas generated by the cathode is introduced into the gas through the gas pipe 5. Collect the device and use the drainage method to obtain the gas volume.
  • the gas collection device includes a measuring cylinder 6 filled with water and standing upside down in a water tank 7 containing water 8, and the outlet of the air duct is located in the measuring cylinder 6.
  • the electrolyte is a 10mM potassium hydroxide (1M) solution of BHMF, only a lower voltage is required to drive the coupling reaction.
  • Samples 1 to 7 were used as anode catalysts to conduct electrocatalytic oxidation of 2,5-furandimethanol (BHMF) to prepare 2,5-furandicarboxylic acid (FDCA).
  • BHMF 2,5-furandimethanol
  • FDCA 2,5-furandicarboxylic acid
  • the catalytic effects of each sample were similar, and they all had good catalytic effects.
  • a typical example is sample 1 for illustration.
  • Figure 8 shows that in the three-electrode system, the self-grown monolithic hydrangea-like cobalt oxyhydroxide nanosphere catalyst is used as the anode catalyst, and has better oxygen evolution performance than pure foamed cobalt as the anode.
  • the voltage is lower, and the curve is closer to the Y axis), used for electrocatalytic oxidation of 2,5-furandimethanol (BHMF) to prepare 2,5-furandicarboxylic acid (FDCA).
  • BHMF 2,5-furandimethanol
  • FDCA 2,5-furandicarboxylic acid
  • Figure 9 shows that in the three-electrode system, the self-grown monolithic hydrangea-like cobalt oxyhydroxide nanosphere catalyst also has far better than pure foamed cobalt as the cathode in the electrolysis of water hydrogen production capacity (that is to achieve the same current density required voltage Lower, the curve is closer to the Y axis). Adding 10 mM BHMF to the electrolyte has no significant effect on its hydrogen production performance (the curve has no obvious deviation and basically overlaps), indicating that the catalyst of the present application has high selectivity for the hydrogen evolution reaction.
  • the sample hydrangea-like cobalt oxyhydroxide nanosphere catalyst prepared in Example 1 was used as a cathode catalyst and an anode catalyst to form a two-electrode symmetric electrolytic cell.
  • the electrocatalytic reaction was carried out in a BHMF-free electrolyte and a 10mMBHMF electrolyte.
  • the sample hydrangea-like cobalt oxyhydroxide nanosphere catalyst prepared in Example 1 was used as a cathode catalyst and an anode catalyst to assemble a two-electrode symmetric electrolytic cell, electrocatalytic oxidation of BHMF to prepare FDCA, the result is shown in Figure 11, the anode product includes HMF, FDCA, HMFCA, FFCA and DFF.
  • the concentration of HMF, HMFCA, FFCA and DFF at the end of the reaction is extremely low, indicating that the catalyst has high selectivity to FDCA.
  • the high selectivity of FDCA not only guarantees the high purity of the product , And make the product yield very high.
  • the FDCA Faraday efficiency is close to 100%, the energy utilization rate is high, and there is almost no energy waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本申请公开了一种2,5-呋喃二甲酸的制备方法,所述方法至少包括:在电解池中,以催化剂为阳极,对电解液进行催化氧化,反应得到2,5-呋喃二甲酸;催化剂包括载体和催化活性物质;载体为钴基基底材料;催化活性物质以载体为钴源,自源生长在载体表面;催化活性物质的形貌为绣球花状纳米球。本申请所提供的电催化氧化制备2,5-呋喃二甲酸的方法,电极体系中,自源生长的整体式绣球花状羟基氧化钴纳米球催化剂作为阳极催化剂,催化剂对FDCA具有非常高的选择性,保证了产物的高纯度,且产率也非常高;同时,FDCA法拉第效率接近100%,能量利用率高,几乎无能量浪费;并且具有较好的电解水产氢能力。

Description

一种2,5-呋喃二甲酸的制备方法 技术领域
本申请涉及一种2,5-呋喃二甲酸的制备方法。
背景技术
众多以对苯二甲酸(PTA)为主要原料合成的聚酯,如聚对苯二甲酸乙二醇酯(PET)等,凭借出色的性能在日常生产生活中得到了广泛的应用。但是,目前工业上的对苯二甲酸均为石油基化学品,其生产制备需要消耗大量不可再生的石油化石资源,不利于可持续发展。因此,人们积极寻求其他生物基化学品代替PTA为原料来合成生物基聚酯。2004年,美国能源部公布了十二种生物基平台化合物:2,5-呋喃二甲酸、1,4-二羧酸(琥珀酸、富马酸、苹果酸)、乙酰丙酸、3-羟基丙酸、天门冬氨酸、葡萄糖二酸、谷氨酸、衣康酸、(R)-3-羟基-γ-丁内酯、甘油、木糖醇、山梨醇,在这些可转化为高附加值生物化学品的平台化合物中,2,5-呋喃二甲酸(FDCA)尤为引人注目。
已知FDCA的合成路线有多种,(1)糠酸歧化路线,以糠酸钾盐反应原料,在高温、碱性条件下,通过催化剂作用进行歧化反应合成FDCA;(2)己糖二酸环化路线,140℃下,己糖二酸环化脱水合成FDCA;(3)呋喃酰基化路线,对呋喃进行乙酰化反应得到2,5-二乙酰基呋喃后,进一步通过碘仿反应得到FDCA;(4)二甘醇酸环化路线,在二氯亚砜溶剂中,二甘醇酸与甲醇通过酯化反应得到二甘醇酸二甲酯,再与二水合三聚乙二醛进行缩合反应生成FDCA;(5)HMF氧化路线,将HMF其结构上的羟甲基和醛基共同氧化为羧基,得到FDCA。
但是,糖酸歧化路线、己糖二酸环化路线、呋喃酰基化路线、二甘醇酸环化路线操作步骤多,设备要求高,副反应多,FDCA选择性低,三废排放量大,不利于规模化生产。HMF氧化路线则需要贵金属催化剂参与,为了提高产率,还需要化学氧化剂或者高温高氧压的条件。而且,由于HMF上带有活泼的醛基,常温常压条件下易自发 氧化变质,纯度不易保证,还会带来原料浪费及存储方面的问题。
发明内容
为了解决上述技术问题,本申请提供了一种2,5-呋喃二甲酸的制备方法,以绣球花状纳米球催化剂作为阳极催化剂,采用电催化氧化法,制备2,5-呋喃二甲酸,降低了能耗,提高了产品纯度。
为实现上述目的,本申请采用的技术方案如下:
本申请一方面,提出了一种2,5-呋喃二甲酸的制备方法,所述方法至少包括:
在电解池中,以催化剂为阳极,对电解液进行催化氧化,反应得到2,5-呋喃二甲酸;
催化剂包括载体和催化活性物质;
载体为钴基基底材料;
催化活性物质以载体为钴源,自源生长在载体表面;
催化活性物质的形貌为绣球花状纳米球。
可选地,钴基基底材料选自钴泡沫、钴片、钴箔、钴丝中的至少一种。
可选地,纳米球直径为100~500nm。
可选地,纳米球表面片层厚度为1~10nm。
可选地,催化活性物质为羟基氧化钴。
可选地,催化剂的制备方法至少包括:
S100、将载体和硫源在保护气体气氛中,加热反应,得到前驱体;
S200、将前驱体在电解液中,电活化,得到催化剂。
可选地,步骤S100为:
a、获得作为硫源的干燥粉末;
b、将载体浸没于洗液中,洗涤,干燥;
c、将干燥粉末与载体在保护气体的气氛中,加热反应,得到前驱体。
具体地,步骤a为:将硫源在一定温度下于一定流量的保护气体 的气氛中干燥一定时间。
其中一定温度是指20℃~40℃;
保护气体为氮气、氩气、氦气中的至少一种;
保护气体流量为:50mL/min~150mL/min;
优选地,将硫源在30℃下于100mL/min氮气气氛中干燥一定时间,去除所含水分。
本申请中,对于所选硫源的干燥时间没有特殊限定。为了制备出性能优异的整体式绣球花状羟基氧化钴纳米球催化剂,保证产品纯度,较佳地,干燥时间为1h~5h。
具体地,步骤b中,洗液选自无水乙醇、丙酮中的至少一种;
洗涤方式为:超声清洗5~30min;
干燥条件为:40℃~60℃下干燥2h~6h。
优选地,步骤b为:将载体浸没于无水乙醇中超声清洗10min,然后在60℃下干燥4h。
为了成功制备出整体式催化剂,载体应为钴基材料,较佳地,自身具有支撑性的钴泡沫、钴片、钴箔等载体满足上述要求。
具体地,步骤S100采用加热炉作为反应装置。本步骤通过硫化过程得到前驱体,其中,为方便保护气体的通入,加热炉优选为内置石英管或刚玉管的管式炉,保护气体优选为氮气、氩气和氦气中的一种或多种。保护气体的流量不宜过大,其流量优选为10mL/min~100mL/min。该流量下,既能防止干燥的硫源粉末被直接吹离,又能防止产物的烧蚀,提高了产物的质量,进而增强了产物的机械性能与化学性能。
可选地,在步骤S100中,硫源与载体的质量比为2~10:1;
优选地,硫源为升华硫、硫化钠和硫脲中的至少一种。
具体地,硫源与载体的质量比上限独立选自4:1、5:1、7:1、8:1、10:1;硫源与载体的质量比下限独立选自2:1、3:1、3.8:1、4.3:1、5.4:1。
可选地,在步骤S100中,所述加热反应的温度为300℃~400℃,反应时间为0.25h~2h;
为保证产物质量,加热速度不宜过快,优选地,所述加热反应的 升温速率为5℃/min~10℃/min。
具体地,加热反应温度的上限独立选自350℃、360℃、370℃、380℃、400℃;加热反应温度的下限独立选自300℃、310℃、320℃、330℃、340℃。
具体地,反应时间的上限独立选自1h、1.2h、1.5h、1.7h、2h;反应时间的下限独立选自0.25h、0.5h、0.75h、1h、1.25h。
具体地,升温速率的上限独立选自7.5℃/min、8℃/min、8.5℃/min、9℃/min、10℃/min;升温速率的下限独立选自5℃/min、5.5℃/min、6℃/min、6.5℃/min、7℃/min。
可选地,步骤S200为:
将前驱体作为阳极,在电解液中电活化,洗涤、干燥后,得到催化剂。
具体地,将前驱体作为阳极,与阴极、参比电极,组装成三电极电解池,在电解液中电活化,洗涤、干燥后,得到催化剂。
可选地,阴极为:石墨棒、铂丝、铂网、铂片中的至少一种;
参比电极为:汞/氧化汞电极、饱和甘汞电极、银/氯化银电极中的任意一种;
电解液为氢氧化钾溶液、氢氧化钠溶液中的至少一种;
电解液的浓度为0.01M~1M。
优选地,步骤S200为:前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的电解液中电活化,洗涤、干燥后得到整体式绣球花状羟基氧化钴纳米球催化剂。
本申请采用不易被还原的2,5-呋喃二甲醇作为制备2,5-呋喃二甲酸的原料,催化剂作为阳极对呋喃二甲醇选择氧化为呋喃二甲酸具有高选择性,作为阴极对电解水析氢具有高选择性,催化反应过程中氧化产物和还原产物没有相互干扰,因此电解池无需隔膜隔开各个电极,可以省去昂贵隔膜的费用。
具体地,电解液浓度的上限独立选自0.6M、0.7M、0.8M、0.9M、1M;电解液浓度的下限独立选自0.01M、0.05M、0.1M、0.3M、0.5M。
可选地,步骤S200中,电活化方法包括循环伏安法、线性伏安法、恒电流法、计时电位法等能够施加正电位氧化,将硫化钴前驱体转变为羟基氧化钴的方法。为保证产品催化性能和稳定性,电活化速度不宜过快、时间不宜过短或过长。
优选地,采用循环伏安法或线性伏安法,较佳地,电活化参数为:-0.3V vs.RHE~1.4V vs.RHE电压窗口下,活化0.5h~4h。
具体地,窗口电压的上限独立选自0.8V vs.RHE、0.9V vs.RHE、1.0V vs.RHE、1.2V vs.RHE、1.4V vs.RHE;窗口电压的下限独立选自-0.3V vs.RHE、-0.2V vs.RHE、-0.1V vs.RHE、0.5V vs.RHE、0.7V vs.RHE。
具体地,活化时间的上限独立选自2h、2.5h、3h、3.5h、4h;活化时间的下限独立选自0.5h、0.75h、1h、1.25h、1.5h。
优选地,恒电流法电活化的条件为:设定电流密度为0.1~100mA/cm 2,通入恒电流活化至电势稳定,活化1~60min。
具体地,电流密度的上限选自50mA/cm 2、60mA/cm 2、70mA/cm 2、80mA/cm 2、100mA/cm 2;电流密度的下限选自0.1mA/cm 2、1mA/cm 2、10mA/cm 2、20mA/cm 2、30mA/cm 2
具体地,活化时间的上限选自25min、30min、40min、50min、60min;活化时间的下限选自1min、5min、10min、15min、20min。
优选地,所述计时电位法电活化的条件为:在1~1.6V(相对于可逆氢电极)电位范围内,保持通入电流,并保持1~60min。
具体地,电位范围上限独立选自1.3V、1.35V、1.4V、1.5V、1.6V;电位范围下限独立选自1.0V、1.1V、1.15V、1.2V、1.25V。
具体地,活化时间的上限选自25min、30min、40min、50min、60min;活化时间的下限选自1min、5min、10min、15min、20min。
活化得到的催化剂表面浸有少量电解液,为去除电解液,需进行洗涤操作,较佳地,洗涤方法为:将催化剂使用去离子水冲洗2~3次。催化剂冲洗完后,为延长催化剂使用寿命,需进行烘干操作。
可选地,干燥条件为:40℃~60℃下干燥6h~12h。
具体地,干燥温度的上限独立选自51℃、53℃、55℃、57℃、 60℃;干燥温度的下限独立选自40℃、42℃、45℃、48℃、50℃。
具体地,干燥时间的上限独立选自9h、10h、10.5h、11h、12h;干燥时间的下限独立选自6h、6.5h、7h、7.5h、8h。
可选地,电解液为含有2,5-呋喃二甲醇的碱性水溶液。
可选地,电解液中2,5-呋喃二甲醇的浓度为0.01mM~500mM。
具体地,2,5-呋喃二甲醇的浓度上限独立选自200mM、250mM、300mM、350mM、400mM、450mM、500mM;2,5-呋喃二甲醇的浓度下限独立选自0.01mM、0.1mM、1mM、10mM、50mM、100mM、150mM。
可选地,碱性水溶液中碱的浓度为0.01M~2M。
具体地,碱的浓度上限独立选自1M、1.2M、1.5M、1.7M、2M;碱的浓度下限独立选自0.01M、0.05M、0.1M、0.2M、0.5M。
可选地,碱性水溶液为氢氧化钾水溶液、氢氧化钠水溶液、碳酸钾水溶液、碳酸钠水溶液、碳酸氢钾水溶液、碳酸氢钠水溶液中的至少一种。
可选地,电解池为三电极电解池或两电极电解池;
电解池的电压为1.0V~1.9V。
具体地,采用三电极电解池时,电压为相对于可逆氢电极的电势;采用两电极电解池时,电压为阴阳两电极的电势差。
可选地,三电极电解池的电压最低为1.0V;两电极电解池最低电压为1.2V。
具体地,电解池的电压上限独立选自1.5V、1.6V、1.7V、1.8V、1.9V;电解池的电压下限独立选自1.0V、1.1V、1.2V、1.3V、1.4V。
可选地,反应过程中,电解池的阴极同时电解水析出氢气。
本申请一方面,采用通过电催化氧化技术制备FDCA,电催化氧化技术能量耗散低,反应条件温和,可通过调节电位窗口精确控制反应深度;另一方面以熔点、沸点、稳定性均优于HMF的2,5-呋喃二甲醇(BHMF)为原料,催化氧化制备FDCA。同时,为了提高能量利用效率,将电催化氧化BHMF制备FDCA与析氢反应耦合,不仅 能生产高附加值的FDCA产物,还能制备高纯氢气。
因此,开发同时具有氧化BHMF和析氢性能的整体式双功能催化剂及应用方法,用低反应电势的BHMF氧化反应代替阳极析氧反应,同时耦合阴极析氢反应,这对开发利用清洁能源和生产高附加值化学品具有重要的理论和实际意义。此外,该方法还可拓展到其他生物基平台化合物,充分利用分布式的可再生电能进行电催化反应。
本申请中,“BHMF”是2,5-呋喃二甲醇的简写,“HMF”是5-羟甲基糠醛的简写,“FDCA”是2,5-呋喃二甲酸的简写,“FFCA”是5-甲酰基-2-呋喃甲酸的简写,“DFF”是2,5-呋喃二甲醛的简写,“HMFCA”是5-羟甲基-2-呋喃甲酸的简写。
本申请的有益效果在于:
1)本申请所提供的电催化氧化制备2,5-呋喃二甲酸的方法,电极体系中,自源生长的整体式绣球花状羟基氧化物纳米球催化剂作为阳极催化剂,电解水析氧性能较好,用于电催化氧化2,5-呋喃二甲酸(BHMF)制备2,5-呋喃二甲酸(FDCA),催化性能佳,催化效率高。
2)本申请所提供的电催化氧化制备2,5-呋喃二甲酸的方法,电极体系中,自源生长的整体式绣球花状羟基氧化物纳米球催化剂作为阳极催化剂,催化剂对FDCA具有非常高的选择性,保证了产物的高纯度,且产率也非常高。同时,法拉第效率接近100%,能量利用率高,几乎无能量浪费。
3)本申请所提供的电催化氧化制备2,5-呋喃二甲酸的方法,电极体系中,同时具有较好的电解水产氢能力,且BHMF加至电解液中并不会降低其产氢性能。
4)本申请所提供的电催化氧化制备2,5-呋喃二甲酸的方法,组装成两电极对称电解槽,同时进行电催化氧化BHMF制备FDCA、电解水产氢,所需过电位比电催化全分解水低279mV,表明仅需较低能量即可将BHMF高附加值化,具有更加优异的催化性能。
5)本申请所采用的自源生长的整体式钴催化剂,表面为纳米片组装而成的三维结构,比表面积高,能够充分暴露催化活性位点,提 升催化效率。同时,可以通过制备条件的调整来控制纳米球表面片层的数量以及厚度,为不同反应物提供有效传质通道以满足多种反应的需要。与纳米线状催化剂相比,带有粗糙表面的纳米球催化剂具有更好的自支撑性,不易在应用过程中发生集聚,具有更长的使用寿命。
6)本申请所提供的钴催化剂的制备方法,通过该方法制备出的催化剂催化性能强,活性组分不易在应用过程中发生集聚和脱落,催化剂用后易分离。
7)本申请所提供的钴催化剂的制备方法,通过硫化诱导纳米球状形貌的生成,通过硫化条件的改变控制纳米球数量、大小的改变,随后活化为绣球花状羟基氧化钴纳米球,无需额外模板的加入,节约了成本,具有创新性。
附图说明
图1为本申请实施例1中制得的自源生长的整体式绣球花状羟基氧化钴催化剂的扫描电镜图,比例尺为500μm;
图2为本申请实施例1中制得的自源生长的整体式绣球花状羟基氧化钴催化剂的扫描电镜图,比例尺为20μm;
图3为本申请实施例1中制得的自源生长的整体式绣球花状羟基氧化钴催化剂的扫描电镜图,比例尺为1μm;
图4为本申请实施例1中制得的自源生长的整体式绣球花状羟基氧化钴催化剂的EDX元素分布图;其中,(a)为钴元素,(b)为氧元素;
图5为本申请实施例1中制得的自源生长的整体式绣球花状羟基氧化钴催化剂的透射电镜图;其中,(a)为比例尺为50nm,(b)为比例尺为10nm;
图6为本申请实施例1中制得的自源生长的整体式绣球花状羟基氧化钴催化剂的选区电子衍射图;
图7为本申请实施例9中的装置结构示意图;
图8为本申请实施例1制得的样品1作为阳极催化剂三电极体系中不同电解液阳极电流密度-电压图;
图9为本申请实施例1制得的样品1作为阴极催化剂三电极体系中不同电解液阴极电流密度-电压图;
图10为本申请实施例1制得的样品1同时作为阴极催化剂和阳极催化剂两电极体系中不同电解液条件下电流密度-电压图;
图11为本申请实施例1制得的样品1同时作为阴极催化剂和阳极催化剂在两电极体系中原料BHMF和阳极产物浓度-电量图。
部件和附图标记列表:
1、电源;2、阳极;3、阴极;4、电解液;5、导气管;6、量筒;7、水槽;8、水。
具体实施方式
下面结合附图和具体实施例,进一步阐述本申请。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。下述实施例中所用的仪器,如无特殊说明,使用时采用的参数均在厂家推荐参数范围之内。
实施例中样品分析所采用的仪器和参数如下:
利用HITACHI S-4800扫描电子显微镜在8.0kV下进行SEM分析。
利用HITACHI S-4800扫描电子显微镜在20.0kV下进行EDX分析。
利用FEI F20透射电子显微镜在200kV下进行TEM分析。
利用FEI F20透射电子显微镜在200kV下进行选区电子衍射分析。
实施例1
(1)将1500mg升华硫粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥2h,去除所含水分。
(2)将280mg钴泡沫浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥升华硫粉末与步骤(2)中得到的钴泡沫共同置于管式炉的刚玉舟里,密封后通入高纯氮气作为全程保护气,其中氮气的流量为50mL/min;以5℃/min的速度升温至350℃,保温0.5h后,自然冷却至室温,得到前驱体。其中,升华硫粉末与钴泡沫质量比为5.4:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钾溶液中以循环伏安法在-0.3V vs.RHE~1.4V vs.RHE电压窗口下活化1h后,用去离子水冲洗2次,在60℃干燥10h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品1。
实施例2
(1)将1500mg升华硫粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥2h,去除所含水分。
(2)将500mg钴泡沫浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥升华硫粉末与步骤(2)中得到的钴泡沫共同置于管式炉的刚玉舟里,密封后通入高纯氮气作为全程保护气,其中氮气的流量为50mL/min;以5℃/min的速度升温至350℃,保温0.5h后,自然冷却至室温,得到前驱体。其中,升华硫粉末与钴泡沫质量比为3:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钾溶液中以循环伏安法在-0.3V vs.RHE~1.4V vs.RHE电压窗口下活化1h后,用去离子水冲洗2次,在60℃干燥10h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品2。
与实施例1相比,本实施例所使用的载体质量发生了变化,其余制备条件均未改变,随着载体质量的增加,最终得到的催化剂的羟基氧化钴纳米球数量变少。
实施例3
(1)将500mg升华硫粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥2h,去除所含水分。
(2)将280mg钴泡沫浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥升华硫粉末与步骤(2)中得到的钴泡沫共同置于管式炉的刚玉舟里,密封后通入高纯氮气作为全程保护气,其中氮气的流量为50mL/min;以5℃/min的速度升温至350℃,保温0.5h后,自然冷却至室温,得到前驱体。其中,升华硫粉末与钴泡沫质量比为1.8:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钾溶液中以循环伏安法在-0.3V vs.RHE~1.4V vs.RHE电压窗口下活化1h后,用去离子水冲洗2次,在60℃干燥10h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品3。
与实施例1相比,本实施例所使用的硫源质量发生了变化,其余制备条件均未改变,随着硫源质量的减少,最终得到的催化剂的羟基氧化钴纳米球数量变少。
实施例4
(1)将1500mg升华硫粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥4h,去除所含水分。
(2)将350mg钴泡沫浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥升华硫粉末与步骤(2)中得到的钴泡沫共同置于管式炉的刚玉舟里,密封后通入高纯氮气作为全程保护气,其中氮气的流量为100mL/min;以5℃/min的速度升温至350℃,保温1h后,自然冷却至室温,得到前驱体。其中,升华硫粉末与钴泡沫质量比为4.3:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞 /氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钾溶液中以循环伏安法在-0.3V vs.RHE~1.4V vs.RHE电压窗口下活化1.5h后,用去离子水冲洗2次,在60℃干燥12h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品4。
实施例5
(1)将1000mg硫化钠粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥5h,去除所含水分。
(2)将250mg钴泡沫浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥硫化钠粉末与步骤(2)中得到的钴泡沫共同置于管式炉的刚玉舟里,密封后通入高纯氩气作为全程保护气,其中氩气的流量为50mL/min;以5℃/min的速度升温至350℃,保温0.5h后,自然冷却至室温,得到前驱体。其中,硫化钠粉末与钴泡沫质量比为4:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钠溶液中以循环伏安法在-0.3V vs.RHE~1.4V vs.RHE电压窗口下活化1h后,用去离子水冲洗3次,在60℃干燥10h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品5。
实施例6
(1)将1500mg升华硫粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥3h,去除所含水分。
(2)将400mg钴片浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥升华硫粉末与步骤(2)中得到的钴片共同置于管式炉的刚玉舟里,密封后通入高纯氩气作为全程保护气,其中氩气的流量为80mL/min;以8℃/min的速度升温至400℃,保温0.5h后,自然冷却至室温,得到前驱体。其中,升华硫粉末与 钴片质量比为3.8:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钾溶液中以循环伏安法在-0.3V vs.RHE~1.4V vs.RHE电压窗口下活化2h后,用去离子水冲洗3次,在60℃干燥8h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品6。
实施例7
(1)将1200mg升华硫粉末置于管式炉的刚玉舟里,密封后在30℃下于100mL/min氮气气氛中干燥4h,去除所含水分。
(2)将400mg钴箔浸没于无水乙醇中超声清洗10min,然后再60℃下干燥4h。
(3)将步骤(1)得到的干燥升华硫粉末与步骤(2)中得到的钴箔共同置于管式炉的刚玉舟里,密封后通入高纯氩气作为全程保护气,其中氩气的流量为50mL/min;以7℃/min的速度升温至350℃,保温1h后,自然冷却至室温,得到前驱体。其中,升华硫粉末与钴箔质量比为3:1。
(4)将步骤(3)得到的前驱体作为阳极,石墨棒作为阴极,汞/氧化汞电极作为参比电极,共同组装成三电极电解池,在浓度为1M的氢氧化钾溶液中以恒电流的方式通入5mA/cm 2的电流密度活化至电势稳定并保持10min后,用去离子水冲洗2次,在50℃干燥12h后得到自源生长的整体式绣球花状羟基氧化钴纳米球催化剂,记为样品7。
实施例8
将样品1~样品7进行SEM、EDX和TEM测试。
图1~图3为样品1的扫描电镜图,从图中可以看出,催化剂的微观结构为绣球花状纳米球,且纳米球表面由纳米片组装的三维结构构成,有良好的机械性能。
图4为样品1的EDX测试的元素分布图,从图中可知,钴元素、 氧元素均匀分布。
图5为样品1的透射电镜图,从图中可以看出,催化剂的纳米球表面由纳米片组装的三维结构构成,表征结果与扫描电镜图结果一致。
图6为样品1的选区电子衍射图,图中电子衍射环分别对应羟基氧化钴标准卡片26-0480的(0 0 2)、(2 4 0)、(1 4 0)、(0 2 1)面,证明催化剂物相为羟基氧化钴。
样品2~样品7的SEM图、元素分布图、TEM图与样品1相似,仅有纳米球数量与纳米球大小的区别。
样品2~样品7的选区电子衍射图与样品1一致,证明催化剂物相均为羟基氧化钴。
实施例9
工作电极制备:分别将样品1~样品7和纯钴泡沫通过不锈钢电极夹固定制备成工作电极。
对电极:将石墨棒作为对电极。
三电极电解池:工作电极作为阳极,对电极作为阴极,汞/氧化汞电极作为参比电极,固定在聚四氟乙烯塞中,并固定在10mL反应池上。
两电极对称电解池:阴极和阳极是两个相同的工作电极,反应器体积10mL以上。
在常温、常压条件下,利用组装的两电极体系,控制电解池电压为1.7V,分别以氢氧化钾(1M)溶液、10mM BHMF的氢氧化钾(1M)溶液,进行电催化性能测试。
测试装置如图7所示,构建了包括电源1、电解液4、阳极2、阴极3和电流回路的电解池,电解液置于封闭的反应器中,阴极产生的气体通过导气管5导入气体收集装置,并用排水法获取气体体积。气体收集装置包括量筒6,量筒6充满水并倒立在盛有水8的水槽7中,导气管出口位于量筒6内。电解液为10mM BHMF的氢氧化钾(1M)溶液时,仅需较低电压即可驱动该耦合反应。
分别以样品1~样品7为阳极催化剂,进行电催化氧化2,5-呋喃二 甲醇(BHMF)制备2,5-呋喃二甲酸(FDCA)测试,各样品催化效果相似,均具有良好的催化效果。典型的以样品1为例,进行说明。
采用样品1作为阳极催化剂,测试结果如图8至图11所示。
图8表明,三电极体系中,自源生长的整体式绣球花状羟基氧化钴纳米球催化剂作为阳极催化剂,比纯泡沫钴作为阳极的电解水析氧性能更好(即达到相同电流密度所需电压更低,曲线更靠近Y轴),用于电催化氧化2,5-呋喃二甲醇(BHMF)制备2,5-呋喃二甲酸(FDCA),较低电压即可驱动反应,性能优越。
图9表明,三电极体系中,自源生长的整体式绣球花状羟基氧化钴纳米球催化剂同时还具有远优于纯泡沫钴作为阴极的电解水产氢的能力(即达到相同电流密度所需电压更低,曲线更靠近Y轴),电解液中添加10mM BHMF,对其产氢性能并无明显影响(曲线无明显偏移,基本重合),说明本申请催化剂具有高析氢反应选择性。
采用实施例1制备的样品绣球花状羟基氧化钴纳米球催化剂同时作为阴极催化剂和阳极催化剂组装成两电极对称电解池,分别在无BHMF电解液和10mMBHMF的电解液中进行电催化反应,结果如图10所示,同时进行电催化氧化BHMF制备FDCA、电解水产氢,所需过电位比其单纯分解水低279mV(曲线更靠近Y轴),表明仅需较低能量即可将BHMF氧化生成FDCA,将水还原为氢气,说明本申请催化剂具有更加优异的催化性能。
采用实施例1制备的样品绣球花状羟基氧化钴纳米球催化剂同时作为阴极催化剂和阳极催化剂组装成两电极对称电解池,电催化氧化BHMF制备FDCA,结果如图11所示,阳极产物包括HMF、FDCA、HMFCA、FFCA和DFF,相对于FDCA,反应终点处HMF、HMFCA、FFCA和DFF的浓度极低,说明催化剂对于FDCA具有很高的选择性,高的FDCA选择性不仅保证了产物的高纯度,而且使得产物的产率非常高。同时,FDCA法拉第效率接近100%,能量利用率高,几乎无能量浪费。
其它样品作为阳极催化剂,均能达到相似的催化效果。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (17)

  1. 一种2,5-呋喃二甲酸的制备方法,其特征在于,所述方法至少包括:
    在电解池中,以催化剂为阳极,对电解液进行催化氧化,反应得到2,5-呋喃二甲酸;
    所述催化剂包括载体和催化活性物质;
    所述载体为钴基基底材料;
    所述催化活性物质以载体为钴源,自源生长在所述载体表面;
    所述催化活性物质的形貌为绣球花状纳米球。
  2. 根据权利要求1所述的制备方法,其特征在于,所述钴基基底材料选自钴泡沫、钴片、钴箔、钴丝中的至少一种。
  3. 根据权利要求1所述的制备方法,其特征在于,所述纳米球直径为100~500nm。
  4. 根据权利要求1所述的制备方法,其特征在于,所述纳米球表面片层厚度为1~10nm。
  5. 根据权利要求1所述的制备方法,其特征在于,所述催化活性物质为羟基氧化钴。
  6. 根据权利要求1所述的制备方法,其特征在于,所述催化剂的制备方法至少包括:
    S100、将载体和硫源在保护气体气氛中,加热反应,得到前驱体;
    S200、将所述前驱体在电解液中,电活化,得到所述催化剂。
  7. 根据权利要求6所述的制备方法,其特征在于,在步骤S100中,
    所述硫源与所述载体的质量比为2~10:1;
    优选地,所述硫源为升华硫、硫化钠和硫脲中的至少一种。
  8. 根据权利要求6所述的制备方法,其特征在于,在步骤S100中,所述加热反应的温度为300℃~400℃,反应时间为0.25h~2h;
    优选地,所述加热反应的升温速率为5℃/min~10℃/min。
  9. 根据权利要求6所述的制备方法,其特征在于,所述步骤S200为:
    将所述前驱体作为阳极,在电解液中电活化,洗涤、干燥后,得到所述催化剂。
  10. 根据权利要求9所述的制备方法,其特征在于,所述电活化方法为循环伏安法、线性伏安法、恒电流法、计时电位法中的任意一种;
    优选地,所述循环伏安法或线性伏安法电活化的条件为:-0.3V vs.RHE~1.4V vs.RHE电压窗口下,活化0.5h~4h;
    优选地,所述恒电流法电活化的条件为:设定电流密度为0.1~100mA/cm2,通入恒电流活化至电势稳定,活化1~60min;
    优选地,所述计时电位法电活化的条件为:在1~1.6V电位范围内,保持通入电流,并保持1~60min。
  11. 根据权利要求1所述的制备方法,其特征在于,所述电解液为含有2,5-呋喃二甲醇的碱性水溶液。
  12. 根据权利要求11所述的制备方法,其特征在于,所述电解液中2,5-呋喃二甲醇的浓度为0.01mM~500mM。
  13. 根据权利要求11所述的制备方法,其特征在于,所述碱水溶液中碱的浓度为0.01M~2M。
  14. 根据权利要求11所述的制备方法,其特征在于,所述碱性水溶液为氢氧化钾水溶液、氢氧化钠水溶液、碳酸钾水溶液、碳酸钠水溶液、碳酸氢钾水溶液、碳酸氢钠水溶液中的至少一种。
  15. 根据权利要求1所述的制备方法,其特征在于,所述电解池为三电极电解池或两电极电解池;
    所述电解池的电压为1.0V~1.9V。
  16. 根据权利要求15所述的制备方法,其特征在于,所述三电极电解池的电压最低为1.0V;
    所述两电极电解池最低电压为1.2V。
  17. 根据权利要求1所述的制备方法,其特征在于,反应过程中,所述电解池的阴极同时电解水析出氢气。
PCT/CN2020/082405 2020-03-31 2020-03-31 一种2,5-呋喃二甲酸的制备方法 WO2021195953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082405 WO2021195953A1 (zh) 2020-03-31 2020-03-31 一种2,5-呋喃二甲酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082405 WO2021195953A1 (zh) 2020-03-31 2020-03-31 一种2,5-呋喃二甲酸的制备方法

Publications (1)

Publication Number Publication Date
WO2021195953A1 true WO2021195953A1 (zh) 2021-10-07

Family

ID=77927743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082405 WO2021195953A1 (zh) 2020-03-31 2020-03-31 一种2,5-呋喃二甲酸的制备方法

Country Status (1)

Country Link
WO (1) WO2021195953A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277388A (zh) * 2021-12-24 2022-04-05 浙江工业大学 一种通过电化学原位生成ch3cooi催化合成2,6-二氯苯甲腈的方法
CN114574881A (zh) * 2022-03-09 2022-06-03 厦门大学 一种电催化氧化醛醇类物质制备多元羧酸的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299358A (zh) * 2018-01-19 2018-07-20 中国科学技术大学 用于呋喃醇或醛类化合物的选择性氧化方法
CN108531936B (zh) * 2018-04-29 2019-11-05 浙江工业大学 一种生物质类化合物电催化氧化制取2,5-呋喃二甲酸的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299358A (zh) * 2018-01-19 2018-07-20 中国科学技术大学 用于呋喃醇或醛类化合物的选择性氧化方法
CN108531936B (zh) * 2018-04-29 2019-11-05 浙江工业大学 一种生物质类化合物电催化氧化制取2,5-呋喃二甲酸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN GUANQUN, JIN YAN-HUAN, BURGESS R. ALAN, DICKENSON NICHOLAS E., CAO XIAO-MING, SUN YUJIE: "Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 44, 8 November 2017 (2017-11-08), pages 15584 - 15587, XP055854911, ISSN: 0002-7863, DOI: 10.1021/jacs.7b08657 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277388A (zh) * 2021-12-24 2022-04-05 浙江工业大学 一种通过电化学原位生成ch3cooi催化合成2,6-二氯苯甲腈的方法
CN114277388B (zh) * 2021-12-24 2023-07-14 浙江工业大学 一种通过电化学原位生成ch3cooi催化合成2,6-二氯苯甲腈的方法
CN114574881A (zh) * 2022-03-09 2022-06-03 厦门大学 一种电催化氧化醛醇类物质制备多元羧酸的方法
CN114574881B (zh) * 2022-03-09 2024-04-09 厦门大学 一种电催化氧化醛醇类物质制备多元羧酸的方法

Similar Documents

Publication Publication Date Title
Huang et al. Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium
WO2021051897A1 (zh) 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
CN108411324A (zh) 一种硫氮共掺杂石墨烯负载硫化钴镍催化材料及制备与应用
Yin et al. Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells
WO2021195953A1 (zh) 一种2,5-呋喃二甲酸的制备方法
CN109650493B (zh) 一种具有层级结构的vs2纳米片阵列电极材料的合成方法
CN113457679A (zh) 一种羟基氧化钴催化剂制备方法和应用
Chang et al. Fabrication of bimetallic Co/Zn leaf blade structure template derived Co3O4-ZIF/Zn and its ORR catalytic performance for MFC
Mehdinia et al. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
Wang et al. F-decoration-induced partially amorphization of nickel iron layered double hydroxides for high efficiency urea oxidation reaction
Xin et al. Flower-like CuCoMoOx nanosheets decorated with CoCu nanoparticles as bifunctional electrocatalysts for hydrogen evolution reaction and water splitting
Chanda et al. Hydrothermally/electrochemically decorated FeSe on Ni-foam electrode: An efficient bifunctional electrocatalysts for overall water splitting in an alkaline medium
CN110117797B (zh) 一种电解池及其在电解水制氢中的应用
Dong et al. Selective phosphidation and reduction strategy to construct heterostructured porous nanorod of CoP coated on Mn3O4 as a bifunctional electrocatalyst for overall water splitting
Hao et al. Replacing oxygen evolution with sodium sulfide electro-oxidation toward energy-efficient electrochemical hydrogen production: Using cobalt phosphide nanoarray as a bifunctional catalyst
Guo et al. Electrochemically assisted synthesis of three-dimensional FeP nanosheets to achieve high electrocatalytic activity for hydrogen evolution reaction
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting
CN113136597A (zh) 一种铜锡复合材料及其制备方法和应用
CN114737215A (zh) 一种镍钨复合电极的制备方法及其在电催化氧化中的应用
WO2021195950A1 (zh) 一种羟基氧化钴催化剂制备方法和应用
CN113529113B (zh) 一种2,5-呋喃二甲酸的制备方法
CN113443610A (zh) 一种硒化钌纳米球电催化剂及其制备方法和应用
Wu et al. NiCo nitride/carbon nanoflakes as low-cost bifunctional electrocatalysts for carbohydrate-assisted electrolytic H2 generation
WO2021195957A1 (zh) 一种钴催化剂及其制备方法
CN111334818A (zh) 电解催化氧化的装置以及制备2,5呋喃二甲酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929370

Country of ref document: EP

Kind code of ref document: A1