CN109950555A - 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用 - Google Patents

钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用 Download PDF

Info

Publication number
CN109950555A
CN109950555A CN201910183335.4A CN201910183335A CN109950555A CN 109950555 A CN109950555 A CN 109950555A CN 201910183335 A CN201910183335 A CN 201910183335A CN 109950555 A CN109950555 A CN 109950555A
Authority
CN
China
Prior art keywords
nitrogen
preparation
cobalt
doped carbon
carbon nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910183335.4A
Other languages
English (en)
Inventor
耿竞
王晓丹
孙娜
耿保友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201910183335.4A priority Critical patent/CN109950555A/zh
Publication of CN109950555A publication Critical patent/CN109950555A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用,该制备方法包括:1)将钴源、P123、氮源和溶剂进行混合制得前驱体溶液,接着将前驱体溶液中溶剂去除以得到混合物;2)将混合物研磨得到粉状物,接着将粉状物在保护气的存在下进行煅烧以制得Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料;其中,氮源选自三聚氰胺、尿素和2‑甲基咪唑中的至少一者。该制备方法成本低廉、工艺简单、打破常规负载形式制得形貌均匀并且可控、颗粒分散度更高的Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料,进而使得该Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料能够作为燃料电池阴极催化剂使用。

Description

钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备 方法和应用
技术领域
本发明涉及掺杂碳纳米管材料,具体地,涉及一种钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用。
背景技术
在能源枯竭和环境污染的当今社会,发展燃料电池这一绿色能源技术是刻不容缓的。而阴极催化剂的使用被视为影响燃料电池电化学效果的主导因素。碳材料用于燃料电池催化剂载体的研究愈发成熟。非金属元素掺杂类催化剂随着人们的不断深入研究,已逐步发展成为可取代商业Pt/C的优异的ORR催化剂。近些年的深入研究中发现,氮等非金属杂原子掺杂或共掺杂的纳米管可以有效避免催化剂载体表面活性因子的流失从而有效提高ORR活性。其中碳纳米管形貌比较特殊,也有很好的力学性能,是优异的催化剂载体材料。进一步的研究发现金属掺杂会使其性能更加优越,大大提高ORR电催化活性。
氮等非金属杂原子掺杂或共掺杂的纳米管常用的制备方法是在通入惰性气体保护下,利用热解法制得金属粒子和非金属杂原子掺杂的碳材料。这种方法能够控制前驱体形貌,热解前驱体之后比表面积较大。但是,金属在载体表面存在分布不均和结合不牢靠问题。这些问题会导致材料在用于燃料电池催化剂领域中催化性能较差,也可能导致金属与载体脱离。
发明内容
本发明的目的是提供一种钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用,该制备方法成本低廉、工艺简单、打破常规负载形式制得形貌均匀并且可控、颗粒分散度更高的Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料,进而使得该Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料能够作为燃料电池阴极催化剂使用。
为了实现上述目的,本发明提供了一种Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料的制备方法,包括:
1)将钴源、P123(聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物)、氮源和溶剂进行混合制得前驱体溶液,接着将前驱体溶液中溶剂去除以得到混合物;
2)将混合物研磨得到粉状物,接着将粉状物在保护气的存在下进行煅烧以制得Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料;
其中,氮源选自三聚氰胺、尿素和2-甲基咪唑中的至少一者。
本发明还提供了一种Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料,该Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料通过上述的制备方法制备而得。
本发明进一步提供了一种如上述的Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料在ORR电催化中的应用。
在上述技术方案中,本发明以钴源、P123、氮源为原料制得Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料,此制备过程中无需特殊条件,对设备要求低,成本低廉,通过简单的原料和热解法,合成出了一种形貌均匀且可控的碳纳米管基金属类催化剂。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1a是实施例1中制得的产物PMC-700的SEM图;
图1b是实施例1中制得的产物PMC-700的TEM图;
图1c是实施例1中制得的产物PMC-700的TEM图;
图1d是实施例1中制得的产物PMC-700的TEM图;
图1e是实施例1中制得的产物PMC-700的TEM图;
图2a是对比例1中制得的产物PM-700的SEM图;
图2b是对比例2中制得的产物MC-700的SEM图;
图2c是实施例3中制得的产物PMC-600的SEM图;
图2d是实施例2中制得的产物PMC-800的SEM图;
图3a是对比例1中制得的产物PM-700的TEM图;
图3b是对比例2中制得的产物MC-700的TEM图;
图3c是实施例3中制得的产物PMC-600的TEM图;
图3d是实施例2中制得的产物PMC-800的TEM图;
图4是产物PMC-700的XRD谱图。
图5是实施例1-3,对比例1-2的产物的ORR性能测试的LSV曲线;以Ag/AgCl电极为参比电极,在O2充足的0.1M KOH溶液中进行测试,扫速5mV/s电极转速1600rpm,所有测试均在25℃中进行。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供了一种Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料的制备方法,包括:
1)将钴源、P123、氮源和溶剂进行混合制得前驱体溶液,接着将前驱体溶液中溶剂去除以得到混合物;
2)将混合物研磨得到粉状物,接着将粉状物在保护气的存在下进行煅烧以制得Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料;
其中,氮源选自三聚氰胺、尿素和2-甲基咪唑中的至少一者。
在本发明中,各原料的用量可以在宽的范围内选择,但是为了进一步提高金属与载体的结合程度进而提高Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料的催化性能,优选地,在前驱体溶液中相对于0.1mmol的钴源,所述P123的用量为0.15-0.3g,所述氮源的用量为0.25-0.4g;更优选地,在前驱体溶液中,相对于0.1mmol的钴源,溶剂的用量为2-5mL。
在本发明中,混合的方式可以在宽的范围内选择,但是为了使原料间能够充分地混合,优选地,在步骤1)中,混合通过在15-30℃下搅拌时间为0.5-2h完成。
在本发明中,溶剂去除的方式可以在宽的范围内选择,但是为了便于操作同时为了提高去除速率,优选地,在步骤1)中,溶剂去除采用干燥方式,其中,干燥满足以下条件:干燥温度为50-80℃,干燥时间为48-72h。
在本发明的步骤2)中,煅烧的具体条件可以在宽的范围内选择,但是为了进一步提高金属与载体的结合程度进而提高Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料的催化性能,优选地,在步骤2)中,煅烧满足以下条件:自15-25℃以4-6℃/min的速率升温至600-800℃(优选700-800℃)并保温1-2h,接着以4-6℃/min的速率降温至15-25℃。
在本发明中,钴源、保护气、溶剂的种类可以在宽的范围内选择,但是从成本上考虑,优选地,钴源选自六水合硝酸钴、草酸钴和氯化钴中的至少一者,溶剂选自去离子水、乙醇和甲醇中的至少一者,保护气选自氮气、氩气和氦气中的至少一者。
在本发明中,钴源、P123可以以纯净物的方式提供,也可以通过溶液的方式提供,为了便于操作,优选地,钴源由钴源水溶液提供,且钴源水溶液的浓度为0.08-0.15mol/L;P123由P123水溶液提供,且P123水溶液的浓度为0.1-0.15g/mL。
在前驱体溶液的形成过程中,为了进一步使得各原料之间能够充分混合,优选地,步骤1)的填料顺序如下:首先,将P123水溶液加入到钴源水溶液中制得混合溶液;然后向混合溶液中加入三聚氰胺,搅拌混合制得前驱体溶液。
在本发明的步骤2)中,为了进一步提高Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料的催化性能,优选地,在步骤2)之后,该制备方法还包括将煅烧产物进行研磨。
本发明还提供了一种Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料,该Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料通过上述的制备方法制备而得。
本发明进一步提供了一种如上述的Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料在ORR电催化中的应用。
以下将通过实施例对本发明进行详细描述。
实施例1
1)将5mL浓度为0.1g/mL的P123水溶液加入到3ml的0.1mol/L的Co(NO3)6H2O水溶液中,并搅拌一段时间至形成均匀溶液;
2)将0.7664g三聚氰胺加入到步骤1)中得到的溶液中,25℃下搅拌1h得到前驱体溶液;
3)将所得前驱体溶液转移至80℃烘箱中干燥72h,使溶剂蒸发完全;
4)研磨混合物,将其转移到管式炉中煅烧,具体地:在氮气保护的情况下进行,自20℃以5℃/min的速率升温至700℃并保温1h,接着以5℃/min的速率降温至20℃,即得到产物PMC-700。
产物PMC-700的SEM图如图1a所示。产物PMC-700的TEM图如图1b和图1c,图1d和1e所示。产物PMC-700的XRD图谱如图4所示。
实施例2
按照实施例1的方法进行,不同的是,步骤4)中煅烧自15℃以6℃/min,速率升温至800℃并保温1h,接着以6℃/min的速率降温至15℃,得到产物PMC-800。
产物PMC-800的SEM图如图2d所示。产物PMC-800的TEM图如图3d所示。
实施例3
按照实施例1的方法进行,不同的是,步骤4)中煅烧自25℃以4℃/min的速率升温至600℃并保温1h,接着以4℃/min的速率降温至25℃,得到产物PMC-600。
产物PMC-600的SEM图如图2c所示。产物PMC-600的TEM图如图3c所示。
实施例4
按照实施例1的方法进行,不同的是,P123水溶液的浓度为0.15g/mL,Co(NO3)6H2O水溶液的浓度为0.15mol/L,三聚氰胺的用量是1.8g。
实施例5
按照实施例1的方法进行,不同的是,P123水溶液的浓度为0.1g/mL,Co(NO3)6H2O水溶液的浓度为0.08mol/L,三聚氰胺的用量是0.6g。
实施例5
按照实施例1的方法进行,不同的是,将Co(NO3)6H2O水溶液换为草酸钴水溶液,三聚氰胺换为尿素。
实施例6
按照实施例1的方法进行,不同的是,将Co(NO3)6H2O水溶液换为氯化钴水溶液,三聚氰胺换为2-甲基咪唑。
对比例1
按照实施例1的方法进行,不同的是,将步骤1)中3ml的0.1mol/L的Co(NO3)6H2O水溶液替换为3ml去离子水,即得到产物PM-700。
产物PM-700的SEM图如图2a所示。产物PM-700的TEM图如图3a所示。
对比例2
按照实施例1的方法进行,不同的是,将步骤1)中5mL浓度为0.1g/mL的P123水溶液替换为5ml去离子水,即得到产物MC-700。
产物MC-700的SEM图如图2b所示。产物MC-700的TEM图如图3b所示。
由图1a、1b、1c、1d和1e可以看出,所得的产物PMC-700是均匀的纳米管,颗粒存在在纳米管的管中部和顶端部分。通过图1d和1e可金属颗粒是以核壳结构存在的,同时在核壳Co@Co3O4纳米粒子外有一层薄层碳可以避免钴粒子的团聚,也为后期用于催化反应中电子传递奠定基础。
由图2c和3c可以看出,煅烧温度为600℃时,只出现了片段管状结构,还有一部分存在形式为颗粒,而且颗粒一部分有大量的堆积。由图2d和图3d可以看出,煅烧温度800℃时产物形貌与700℃时的样品类似,呈现均匀的管状结构,可以看出温度越高,管径也越大。
由图2a和图3a可以得知,反应中不加入硝酸钴时,只观察到了片层结构,得不到本发明需要制得的纳米材料;这是因为金属颗粒能够在碳纳米管的生成中诱导碳原子的重新排列组合形成管状结构。
由图2b和图3b可以看出,反应中不加入P123时,得到的产物MC-700呈现出不均匀规整的管状,而且管径较粗大,结构较短,还观察到大块样品部分堆积,也根本得不到Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料。
图4对比标准PDF卡片可以看出其中的特征峰分别对应于Co3O4、钴单质和石墨碳。即得到的产物PMC-700为Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料。图5中比较分析易看出实施例1产物PMC-700与实施例2产物PMC-800的极限扩散电流密度最大,半波电位最正,ORR催化性能优异。
实施例4-6的产物的SEM和TEM形貌与实施例1的产物的SEM和TEM形貌基本一致。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

1.一种Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料的制备方法,其特征在于,包括:
1)将钴源、P123、氮源和溶剂进行混合制得前驱体溶液,接着将所述前驱体溶液中溶剂去除以得到混合物;
2)将所述混合物研磨得到粉状物,接着将所述粉状物在保护气的存在下进行煅烧以制得所述Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料;
其中,所述氮源选自三聚氰胺、尿素和2-甲基咪唑中的至少一者。
2.根据权利要求1所述的制备方法,其中,在所述前驱体溶液中,相对于0.1mmol的钴源,所述P123的用量为0.15-0.3g,所述氮源的用量为0.25-0.4g;
优选地,相对于0.1mmol的钴源,所述溶剂的用量为2-5mL。
3.根据权利要求1所述的制备方法,其中,在步骤1)中,所述混合通过在15-30℃下搅拌时间为0.5-2h完成。
4.根据权利要求1所述的制备方法,其中,在步骤1)中,所述溶剂去除采用干燥方式,其中,所述干燥满足以下条件:干燥温度为50-80℃,干燥时间为48-72h。
5.根据权利要求1所述的制备方法,其中,在步骤2)中,所述煅烧满足以下条件:自15-25℃以4-6℃/min的速率升温至600-800℃并保温1-2h,接着以4-6℃/min的速率降温至15-25℃。
6.根据权利要求1所述的制备方法,其中,所述钴源选自六水合硝酸钴、草酸钴和氯化钴中的至少一者,所述溶剂选自去离子水、乙醇和甲醇中的至少一者,所述保护气选自氮气、氩气和氦气中的至少一者。
7.根据权利要求1所述的制备方法,其中,所述钴源由钴源水溶液提供,且所述钴源水溶液的浓度为0.08-0.15mol/L;所述P123由P123水溶液提供,且所述P123水溶液的浓度为0.1-0.15g/mL。
8.根据权利要求7所述的制备方法,其中,步骤1)的填料顺序如下:首先,将P123水溶液加入到钴源水溶液中制得混合溶液;然后向所述混合溶液中加入三聚氰胺,搅拌混合制得前驱体溶液。
9.一种Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料,其特征在于,所述Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料通过权利要求1-8中任意一项所述的制备方法制备而得。
10.一种如权利要求9所述的Co@Co3O4纳米粒子嵌入氮掺杂碳纳米管材料在ORR电催化中的应用。
CN201910183335.4A 2019-03-12 2019-03-12 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用 Pending CN109950555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910183335.4A CN109950555A (zh) 2019-03-12 2019-03-12 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910183335.4A CN109950555A (zh) 2019-03-12 2019-03-12 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109950555A true CN109950555A (zh) 2019-06-28

Family

ID=67009500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910183335.4A Pending CN109950555A (zh) 2019-03-12 2019-03-12 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109950555A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649257A (zh) * 2019-09-10 2020-01-03 长沙学院 具有多孔中空纳米管结构的电极材料及其制备方法、负极和锂离子电池
CN111672454A (zh) * 2020-06-28 2020-09-18 华南农业大学 一种Co@CoO/NCNT核壳型吸附剂的制备方法及应用
CN111994894A (zh) * 2020-07-29 2020-11-27 广西大学 一种氮掺杂气凝胶碳微米管的制备方法
CN112538636A (zh) * 2019-09-20 2021-03-23 中国科学院宁波材料技术与工程研究所 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
CN114597427A (zh) * 2022-03-10 2022-06-07 合肥工业大学智能制造技术研究院 一种氮掺杂碳包覆四氧化三钴@钴非贵金属氧还原催化剂的制备方法与应用
CN114853567A (zh) * 2022-06-16 2022-08-05 南京工业大学 一种二氧化碳转化制备低碳醇催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN107275650A (zh) * 2017-05-31 2017-10-20 华南理工大学 一种钴氮碳纳米管氧还原催化剂的简便制备方法
CN107592782A (zh) * 2017-09-05 2018-01-16 吉林大学 碳纳米管封装钴和其氧化物纳米球吸波材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN107275650A (zh) * 2017-05-31 2017-10-20 华南理工大学 一种钴氮碳纳米管氧还原催化剂的简便制备方法
CN107592782A (zh) * 2017-09-05 2018-01-16 吉林大学 碳纳米管封装钴和其氧化物纳米球吸波材料及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARSHAD AIJAZ等: ""Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted NitrogenDoped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode"", 《ANGEW. CHEM. INT. ED.》 *
JUNWU XIAO等: ""Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction"", 《NANOSCALE》 *
WEI XIA等: ""A metal-organic framework route toin situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction"", 《ENERGY & ENVIRONMENTAL SCIENCE》 *
谢贵婷: ""氮掺杂碳材料支撑过渡金属复合物的构筑及其电催化性能研究"", 《中国优秀硕士学位论文全文数据库-工程科技Ⅰ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649257A (zh) * 2019-09-10 2020-01-03 长沙学院 具有多孔中空纳米管结构的电极材料及其制备方法、负极和锂离子电池
CN112538636A (zh) * 2019-09-20 2021-03-23 中国科学院宁波材料技术与工程研究所 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
CN112538636B (zh) * 2019-09-20 2021-12-14 中国科学院宁波材料技术与工程研究所 一种电催化5-羟甲基糠醛氧化制备2,5-呋喃二甲酸同时电解水制氢气的方法
US20220349070A1 (en) * 2019-09-20 2022-11-03 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Method for producing 2,5-furandicarboxylic acid (fdca) by electrocatalytic oxidation of 5-hydroxymethylfurfural (hmf) and simultaneously generating hydrogen by water electrolysis
US11859296B2 (en) * 2019-09-20 2024-01-02 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Method for producing 2,5-furandicarboxylic acid (FDCA) by electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) and simultaneously generating hydrogen by water electrolysis
CN111672454A (zh) * 2020-06-28 2020-09-18 华南农业大学 一种Co@CoO/NCNT核壳型吸附剂的制备方法及应用
CN111672454B (zh) * 2020-06-28 2021-07-20 华南农业大学 一种Co@CoO/NCNT核壳型吸附剂的制备方法及应用
CN111994894A (zh) * 2020-07-29 2020-11-27 广西大学 一种氮掺杂气凝胶碳微米管的制备方法
CN111994894B (zh) * 2020-07-29 2023-07-04 广西大学 一种氮掺杂气凝胶碳微米管的制备方法
CN114597427A (zh) * 2022-03-10 2022-06-07 合肥工业大学智能制造技术研究院 一种氮掺杂碳包覆四氧化三钴@钴非贵金属氧还原催化剂的制备方法与应用
CN114853567A (zh) * 2022-06-16 2022-08-05 南京工业大学 一种二氧化碳转化制备低碳醇催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109950555A (zh) 钴@四氧化三钴纳米粒子嵌入氮掺杂碳纳米管材料及其制备方法和应用
Ma et al. CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation
CN103495432B (zh) 一种高效稳定的燃料电池催化剂制备方法
CN108493461A (zh) 一种N掺杂多孔碳包覆Fe、Co双金属纳米粒子的催化剂及其制备方法
CN101733094B (zh) 一种Pt-CeO2/石墨烯电催化剂及其制备方法
Tan et al. Pd-around-CeO 2− x hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism
CN103560257B (zh) 一种含有四氧化三铁颗粒的氮掺杂碳氧还原催化剂及其制备方法
He et al. Fabrication of ultrafine ZnFe2O4 nanoparticles decorated on nitrogen doped carbon nanofibers composite for efficient adsorption/electrocatalysis effect of lithium-sulfur batteries
CN105261768B (zh) 一种二氧化锰/银催化剂、制备方法及其应用
CN107017398B (zh) 一种焦磷酸钒钠/碳复合正极材料、制备及其应用
Xu et al. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li–CO2 batteries
Yang et al. Effect of pretreatment atmosphere on the particle size and oxygen reduction activity of low-loading platinum impregnated titanium carbide powder electrocatalysts
CN101773828B (zh) 一种Pt-TiO2/CNTs催化剂及其制备方法
CN108172849A (zh) 基于钯单原子的二氧化锰-碳纳米管复合催化剂及其制备
CN104084214A (zh) 用于制备碳纳米管的催化剂及其制备方法、碳纳米管及其制备方法、和锂离子电池
Pan et al. A facile route to graphite-tungsten nitride and graphite-molybdenum nitride nanocomposites and their ORR performances
CN109243862A (zh) 一种双重修饰的碳空心球复合物及其制备方法和应用
CN111477891A (zh) 一种低铂载量氮掺杂多孔空心碳球复合物的制备方法及其产品和应用
Mahamad Yusoff et al. Electrochemical sodiation/desodiation into Mn3O4 nanoparticles
CN109718823A (zh) N-掺杂的TiO2/C复合材料及其制备方法与应用
Hu et al. NiCo2S4 Nanorod Arrays Supported on Carbon Textile as a Free‐Standing Electrode for Stable and Long‐Life Lithium‐Oxygen Batteries
CN109546167B (zh) 一种碳包覆碳掺杂球状硫化钴及其制备方法和应用
Cao et al. Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@ C–N) for methanol electro-oxidation
Li et al. Catalytic-conversion behavior of MoS2 for polysulfides by nickel introduction and phosphorous-doping in advanced lithium-sulfur batteries
Ertürk et al. Focused microwave-assisted synthesis of activated XC-72R supported PdBi nanocatalyst for the enhanced electrocatalytic performance in formic acid oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190628