WO2021045537A1 - 고무 조성물 및 이로부터 제조된 성형품 - Google Patents

고무 조성물 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2021045537A1
WO2021045537A1 PCT/KR2020/011876 KR2020011876W WO2021045537A1 WO 2021045537 A1 WO2021045537 A1 WO 2021045537A1 KR 2020011876 W KR2020011876 W KR 2020011876W WO 2021045537 A1 WO2021045537 A1 WO 2021045537A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
synthetic rubber
weight
carbon atoms
neodymium
Prior art date
Application number
PCT/KR2020/011876
Other languages
English (en)
French (fr)
Inventor
나육열
김진영
최재선
김노마
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20861674.8A priority Critical patent/EP3851485B1/en
Priority to CN202080005799.7A priority patent/CN112912433B/zh
Priority to JP2021532977A priority patent/JP7322147B2/ja
Priority to US17/287,790 priority patent/US20210395408A1/en
Publication of WO2021045537A1 publication Critical patent/WO2021045537A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • C08F4/545Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof rare earths being present, e.g. triethylaluminium + neodymium octanoate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • C08F4/56Alkali metals being the only metals present, e.g. Alfin catalysts
    • C08F4/565Lithium being present, e.g. butyllithium + sodiumphenoxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition having improved viscoelastic properties while having excellent abrasion resistance by controlling compatibility between rubber components, and a tire manufactured using the same.
  • conjugated diene-based polymers or copolymers such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) are manufactured by emulsion polymerization or solution polymerization, and are used as rubber for tires. .
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • the greatest advantage of solution polymerization compared to emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily adjusted, and molecular weight and physical properties can be adjusted by coupling or modification. Is that it can be adjusted. Therefore, it is easy to change the structure of the final manufactured SBR or BR, reduce the movement of the chain ends by bonding or denaturation of the chain ends, and increase the bonding strength with fillers such as silica or carbon black, so that SBR by solution polymerization is not suitable for tires. It is widely used as a rubber material.
  • the glass transition temperature of the rubber can be increased by increasing the vinyl content in the SBR, so that the required properties of the tire such as running resistance and braking force can be adjusted, as well as the glass transition temperature. Fuel consumption can be reduced by appropriate control.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and the chain ends of the formed polymer are bonded or modified using various modifiers.
  • carbon black and silica are used as reinforcing fillers for tire treads.
  • silica is used as a reinforcing filler, low hysteresis loss and resistance to wet road surfaces are improved.
  • silica on the hydrophilic surface has low affinity with the rubber component and has high cohesiveness between silicas, so that a separate silane coupling agent is used to improve dispersibility or to impart a silica-rubber bond. Need to be used. Accordingly, a method of introducing a functional group having affinity or reactivity with silica at the end of the rubber molecule has been made, but the effect is not sufficient.
  • Patent Document 1 KR 2015-0110668 A
  • the present invention has been conceived to solve the problems of the prior art, and an object of the present invention is to provide a rubber composition having excellent abrasion resistance and improved viscoelastic properties by controlling compatibility between rubber components.
  • an object of the present invention is to provide a tire manufactured using the rubber composition.
  • the present invention is a first synthetic rubber; And a second synthetic rubber, wherein the first synthetic rubber is a solution polymerization modified conjugated diene-based rubber having a 1,2-vinyl bond content of 50% by weight or more and a functional group being bonded to at least one end thereof, and the second Synthetic rubber is a conjugated diene-based rubber having a 1,2-vinyl bond content of less than 50% by weight, and a compatibility parameter ( ⁇ blend ) defined by the following equation (1) at room temperature is 2.0 ⁇ 10 -3 or more.
  • K is YX(1- ⁇ S )
  • ⁇ s is the volume ratio of styrene bonds in the first synthetic rubber
  • X is the volume ratio of 1,2-vinyl bonds in the first synthetic rubber
  • Y is the 1,2-vinyl bonds in the second synthetic rubber.
  • -Vinyl bond volume ratio X VS is 0.05650+5.65T -1
  • X BS is 0.00843+10.2T -1
  • X VB is 0.00269+1.87T -1 .
  • the present invention provides a molded article manufactured using the rubber composition.
  • the rubber composition according to the present invention includes heterogeneous rubber components of the first synthetic rubber and the second synthetic rubber, but by selecting and including the first synthetic rubber and the second synthetic rubber so that the compatibility parameter between each other is within a specific range, Compatibility can be adjusted, and thus, abrasion resistance can be excellent and viscoelastic properties can be improved.
  • the rubber composition may have more excellent affinity with a filler by including a solution polymerization modified conjugated diene rubber in which a functional group is bonded to at least one end of the first synthetic rubber, so that the dispersibility of the filler in the rubber composition may be further improved. And thus the viscoelastic properties can be greatly improved.
  • Example 1 is a graph showing a change in dynamic loss modulus (G") according to temperature for the rubber compositions of Example 1 and Comparative Example 1 according to an embodiment of the present invention.
  • the term'interaction parameter ( ⁇ blend )' used in the present invention is a characteristic value that is a measure of the phase equilibrium between rubbers, and a known compatibility parameter calculation formula (Journal of Applied Polymer Science, Vol. 51, No. 6, refer to pp1053-1062), which is calculated according to Equation 1.
  • K is YX(1- ⁇ S ), ⁇ s is the volume ratio of styrene bonds in the first synthetic rubber, X is the volume ratio of 1,2-vinyl bonds in the first synthetic rubber, and Y is the 1,2-vinyl bonds in the second synthetic rubber.
  • -Vinyl bond volume ratio X VS is 0.05650+5.65T -1
  • X BS is 0.00843+10.2T -1
  • X VB is 0.00269+1.87T -1
  • T means unit (unit) It is the absolute temperature unit (K).
  • the volume ratio of styrene bonds and the volume ratio of 1,2-vinyl bonds in the rubber may be values obtained by measurement and analysis using Varian VNMR 500 MHz NMR. Specifically, in the measurement, 1,1,2,2-tetrachloroethane was used as the solvent, and the solvent peak was calculated as 5.97 ppm, 7.2 to 6.9 ppm was random styrene, 6.9 to 6.2 ppm was block styrene, and 5.8 to 5.1. The ratio of styrene bonds and 1,2-vinyl bonds were calculated using ppm as the peak of 1,4-vinyl bonds and 5.1 to 4.5 ppm as the peaks of 1,2-vinyl bonds.
  • room temperature' used in the present invention refers to a temperature as it is in its natural state without heating or cooling, and is, for example, a temperature of 20 ⁇ 5°C.
  • a repeating unit derived from a conjugated diene-based monomer refers to a repeating unit formed when the conjugated diene-based monomer is polymerized. It can mean.
  • the present invention provides a rubber composition having improved viscoelastic properties while having excellent abrasion resistance.
  • the rubber composition according to an embodiment of the present invention comprises a first synthetic rubber; And a second synthetic rubber, wherein the first synthetic rubber is a solution polymerization modified conjugated diene-based rubber having a 1,2-vinyl bond content of 50% by weight or more and a functional group being bonded to at least one end thereof, and the second The synthetic rubber is a conjugated diene-based rubber having a 1,2-vinyl bond content of less than 50% by weight, and a compatibility parameter ( ⁇ blend ) defined by Equation 1 is 2.0 ⁇ 10 ⁇ 3 or more.
  • the rubber composition may further include a filler, and specifically, the rubber composition includes 30 parts by weight to 90 parts by weight of the first synthetic rubber based on 100 parts by weight of the rubber component including the first synthetic rubber and the second synthetic rubber. It may be included in parts by weight, 10 parts by weight to 90 parts by weight of the second synthetic rubber, and 30 parts by weight to 200 parts by weight of the filler.
  • the rubber composition according to an embodiment of the present invention includes heterogeneous rubber components of the first synthetic rubber and the second synthetic rubber, but the first synthetic rubber and the second synthetic rubber so that the compatibility parameter between each other is in a specific range as described above.
  • the compatibility between the rubber components can be controlled, thereby simultaneously expressing the physical properties of each of the first synthetic rubber and the second synthetic rubber, and as a result, excellent abrasion resistance and improved viscoelastic properties. have.
  • the rubber composition according to an embodiment of the present invention includes a solution polymerization modified conjugated diene-based rubber in which a functional group is bonded to at least one end of the first synthetic rubber, so that the affinity with the filler may be more excellent, and thus viscoelasticity The properties can be further improved.
  • the rubber composition may have an interaction parameter defined by Equation 1 of 2.0 ⁇ 10 -3 or more, more specifically 2.5 ⁇ 10 -3 or more, and even more specifically 3.0 ⁇ 10 -3 or more.
  • the compatibility parameter may be greater than or equal to the above value, and the upper limit value is not largely limited as long as it does not adversely affect the purpose of the invention, but may be, for example, 10.0 ⁇ 10 -3 or less, or 8.0 ⁇ 10 -3 or less. If the compatibility parameter of the first synthetic rubber and the second synthetic rubber is within the above range, the compatibility of the rubber properties is adjusted so that the physical properties of each of the first synthetic rubber and the second synthetic rubber are not deteriorated, but are simultaneously expressed. It may be, and the tensile properties and viscoelastic properties of the rubber composition including the same may be excellent.
  • the interaction parameter is a parameter that is an interaction measure determined according to the microstructure (1,2-vinyl bond and styrene bond) in the rubber, and the first synthetic rubber and the second synthetic rubber included in the rubber composition It can be controlled by the ratio and the microstructure in each synthetic rubber.
  • the first synthetic rubber may be a solution polymerization modified conjugated diene rubber having a functional group bonded to at least one end having a 1,2-vinyl bond content of 50% by weight or more.
  • the solution polymerization-modified conjugated diene-based rubber may have no styrene bond, that is, a styrene bond content of 0% by weight, and in this case, the solution polymerization-modified conjugated diene-based rubber is an aromatic vinyl-based monomer. It may be polymerized without.
  • the first synthetic rubber may be a solution polymerization modified conjugated diene-based rubber, and the modified conjugated diene-based rubber does not have a styrene bond and has a 1,2-vinyl bond content of 50% to 90% by weight, Alternatively, it may be greater than or equal to 60% by weight to less than 90% by weight, and in this case, there is an excellent effect of abrasion resistance, wet road surface resistance, and low fuel economy.
  • the first synthetic rubber may be a solution polymerization modified conjugated diene rubber, and a glass transition temperature of -60°C to -10°C.
  • the glass transition temperature may be influenced by the microstructure of the rubber, such as 1,2-vinyl bond content, cis-1,4 bond content, trans-1,4 bond content, and styrene bond content.
  • the glass transition temperature may increase as the styrene bond content and 1,2-vinyl bond content in the rubber increase, but may not be absolutely increased with the increase of the styrene bond content and 1,2-vinyl bond content.
  • the first synthetic rubber is a solution polymerization modified conjugated diene rubber, does not have a styrene bond, and has a 1,2-vinyl bond content of 50 wt% to 90 wt%, or 60 wt% or more to 90 wt% It may be less than or may have a glass transition temperature of -60°C to -10°C, and in this case, abrasion resistance, wet road surface resistance, and rolling resistance are more excellent.
  • the 1,2-vinyl bond content may mean the content of the 1,2-added conjugated diene-based monomer in the solution polymerization modified conjugated diene-based rubber.
  • the first synthetic rubber may contain an extender oil depending on the viscosity of the rubber composition including the same, and in this case, the processability of the rubber composition may be further improved.
  • the solution polymerization-modified conjugated diene-based rubber according to an embodiment of the present invention may have a functional group bonded to at least one end, and the functional group may be any one or more selected from an amine group and an aminoalkoxysilane group.
  • the first synthetic rubber according to an embodiment of the present invention may be a solution polymerization modified conjugated diene-based rubber in which a functional group is bonded at one end or both ends, and the first synthetic rubber has a functional group at one end.
  • one or more of an amine group and an aminoalkoxysilane group may be bonded at one end, and the first synthetic rubber is a solution polymerization in which a functional group is bonded at both ends.
  • an amine group and an aminoalkoxysilane group may be bonded at both ends, or an amine group may be bonded at one end and an aminoalkoxysilane group bonded at the other end.
  • the first synthetic rubber may have a number average molecular weight (Mn) of 20,000 g/mol to 800,000 g/mol, 100,000 g/mol to 550,000 g/mol, or 150,000 g/mol to 500,000 g/mol, and the weight
  • the average molecular weight (Mw) may be 40,000 g/mol to 2,000,000 g/mol, 150,000 g/mol to 900,000 g/mol, or 200,000 g/mol to 800,000 g/mol, and rolling resistance and wet road surface resistance within this range This has an excellent effect.
  • the solution polymerization conjugated diene-based rubber may have a molecular weight distribution (Mw/Mn) of 1.0 to 4.0, 1.1 to 3.5, or 1.3 to 3.0, and within this range, the physical property balance between physical properties is excellent.
  • Mw/Mn molecular weight distribution
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are respectively molecular weights in terms of polystyrene analyzed by gel permeation chromatography (GPC), and the molecular weight distribution (Mw/Mn) is also called polydispersity, It was calculated as the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn).
  • the first synthetic rubber may have a Mooney viscosity of 40 to 120, or 50 to 100 at 100°C, and has excellent processability and productivity within this range.
  • the first synthetic rubber may not contain extender oil.
  • the Mooney viscosity was measured under conditions of 100°C and 140°C, Rotor Speed 2 ⁇ 0.02 rpm using a Mooney viscometer, for example, a Large Rotor of MV2000E (ALPHA Technologies). Specifically, after allowing the polymer to stand at room temperature (23 ⁇ 5°C) for 30 minutes or more, 27 ⁇ 3 g was collected, filled in the die cavity, and measured while applying a torque by operating a platen.
  • a conjugated diene-based monomer is polymerized to prepare an active polymer in which the functional group and organometal derived from the modification initiator are combined.
  • It may be prepared by reacting the prepared active polymer with a denaturant.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene, and xylene.
  • the conjugated diene-based monomer is not particularly limited, but, for example, 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl -1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene or 2,4-hexadiene, and the like, Specifically, it may be 1,3-butadiene.
  • the polymerization initiator may be an organometallic compound or a modified initiator, and when a modified initiator is used as the polymerization initiator, the prepared first synthetic rubber may have a functional group bonded to both ends thereof.
  • the organometallic compound is, for example, methyl lithium, ethyl lithium, propyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, hexyl lithium, n-decyl lithium, t-octyl lithium, phenyl lithium, 1-naph Tilithium, n-eicosyllithium, 4-butylphenyllithium, 4-tolyllithium, cyclohexyllithium, 3,5-di-n-heptylcyclohexyllithium, 4-cyclopentyllithium, naphthyl sodium, naphthyl potassium , Lithium alkoxide, sodium alkoxide, potassium alkoxide, lithium sulfonate, sodium sulfonate, potassium sulfonate, lithium amide, sodium amide, potassium amide, and lithium isopropylamide.
  • the modification initiator may be a compound prepared by reacting the organometallic compound and an amine group-containing compound, and the amine group-containing compound may be, for example, a compound represented by Formula 1 below.
  • R 1 to R 3 are each independently hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A C1-C30 heteroalkyl group, a C2-C30 heteroalkenyl group; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 3 to 30 carbon atoms; Aryl group having 6 to 30 carbon atoms; Or a heterocyclic group having 3 to 30 carbon atoms, and R 4 is a single bond; An alkylene group having 1 to 20 carbon atoms substituted or unsubstituted with a substituent; A cycloalkylene group having 3 to 20 carbon atoms substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10
  • R 6 is an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a substituent; A cycloalkylene group having 3 to 20 carbon atoms substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, R 7 and R 8 is each independently an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 9 is hydrogen; An alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2
  • R 10 is an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a substituent; A cycloalkylene group having 3 to 20 carbon atoms substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 11 and R 12 are each independently an alkyl group having 1 to 30 carbon atoms; An alkenyl group having 2 to 30 carbon atoms; An alkynyl group having 2 to 30 carbon atoms; A heteroalkyl group having 1 to 30 carbon atoms; A heteroalkenyl group having 2 to 30 carbon atoms; A heteroalkynyl group having 2 to 30 carbon atoms; A cycloalkyl group having 3 to 30 carbon atoms; Aryl group having 6 to 30 carbon atoms; It is a C3-C30 heterocyclic group.
  • the amine group-containing compound may be a compound represented by Formula 2 below.
  • the amine group-containing compound may be a compound represented by Formula 3 below.
  • R 11a and R 11b are each independently an alkyl group having 1 to 20 carbon atoms; An alkenyl group having 2 to 20 carbon atoms; An alkynyl group having 2 to 20 carbon atoms; A heteroalkyl group having 1 to 20 carbon atoms; A heteroalkenyl group having 2 to 20 carbon atoms; A heteroalkynyl group having 2 to 20 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; Aryl group having 6 to 20 carbon atoms; A heterocyclic group having 3 to 20 carbon atoms; Or a functional group represented by the following formula 4a,
  • R 11c is an alkyl group having 1 to 20 carbon atoms; An alkenyl group having 2 to 20 carbon atoms; An alkynyl group having 2 to 20 carbon atoms; A heteroalkyl group having 1 to 20 carbon atoms; A heteroalkenyl group having 2 to 20 carbon atoms; A heteroalkynyl group having 2 to 20 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; Aryl group having 6 to 20 carbon atoms; A heterocyclic group having 3 to 20 carbon atoms; Vinyl group; Or a functional group represented by the following formula 3a,
  • At least one of R 11a , R 11b and R 11c is a functional group represented by Formula 3a,
  • R 11d is a single bond or an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 11e and R 11f are each independently an alkyl group having 1 to 20 carbon atoms; An alkenyl group having 2 to 20 carbon atoms; An alkynyl group having 2 to 20 carbon atoms; A heteroalkyl group having 1 to 20 carbon atoms; A heteroalkenyl group having 2 to 20 carbon atoms; A heteroalkynyl group having 2 to 20 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; Aryl group having 6 to 20 carbon atoms; A heterocyclic group having 3 to 20 carbon atoms; Or a mono-, di- or tri-substituted alkylsilyl group substituted with an alkyl group having 1 to 10 carbon atoms.
  • the amine group-containing compound may be a compound represented by Formula 4 below.
  • R 12a is a single bond or an alkylene group having 1 to 20 carbon atoms unsubstituted or substituted with a substituent; A cycloalkylene group having 5 to 20 carbon atoms substituted or unsubstituted with a substituent; Or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 12b and R 12c are each independently an alkyl group having 1 to 20 carbon atoms; An alkenyl group having 2 to 20 carbon atoms; An alkynyl group having 2 to 20 carbon atoms; A heteroalkyl group having 1 to 20 carbon atoms; A heteroalkenyl group having 2 to 20 carbon atoms; A heteroalkynyl group having 2 to 20 carbon atoms; A cycloalkyl group having 5 to 20 carbon atoms; Aryl group having 6 to 20 carbon atoms; A heterocyclic group having 3 to 20 carbon atoms; Or a mono-, di- or tri-substituted alkylsilyl group substituted with an alkyl group having 1 to 10 carbon atoms.
  • the polymerization may be performed using a polar additive, and the content of 1,2-vinyl bonds in the polymer prepared according to the amount of the polar additive may be more easily adjusted. That is, the polar additive may be used as a means of controlling the microstructure of the polymer to be produced, for example, the content of 1,2-vinyl bonds.
  • the polar additive may be used in a ratio of 0.001g to 50g, 0.001g to 10g, or 0.005g to 0.1g based on a total of 100g of monomers.
  • the polar additive may be used in a ratio of 0.001g to 10g, 0.005g to 5g, and 0.005g to 4g based on a total of 1 mmol of the polymerization initiator.
  • the polar additive is, for example, tetrahydrofuran, 2,2-di (2-tetrahydrofuryl) propane, diethyl ether, cyclopentyl ether, dipropyl ether, ethylene methyl ether, ethylene dimethyl ether, diethyl glycol, Dimethyl ether, tertiary-butoxyethoxyethane, bis(3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, N,N,N',N' -Tetramethylethylenediamine, sodium mentholate (sodium mentholate) and 2-ethyl tetrahydrofurfuryl ether (2-ethyl tetrahydrofurfuryl ether) may be one or more selected from the group consisting of, preferably 2,2-di (2 -Tetrahydrofuryl)
  • the denaturant may be a compound represented by the following formula (5), for example.
  • a 1 and A 2 are each independently an alkylene group having 1 to 20 carbon atoms
  • R 25 to R 28 are each independently an alkyl group having 1 to 20 carbon atoms
  • L 1 and L 2 and L 3 and L 4 is connected to each other to form a ring having 1 to 5 carbon atoms, wherein the ring formed by connecting L 1 and L 2 and L 3 and L 4 to each other is at least one selected from the group consisting of N, O, and S. It contains 1 to 3 heteroatoms.
  • the denaturant may be a compound represented by the following formula (6) as another ele.
  • R 31 to R 33 are each independently an alkylene group having 1 to 10 carbon atoms
  • R 34 to R 37 are each independently an alkyl group having 1 to 10 carbon atoms
  • R 38 is hydrogen or a C 1 to C 10 alkyl group.
  • An alkyl group, a and b are each independently an integer of 0 to 3, but a+b ⁇ 1, and A is or And, wherein R 39 to R 42 are each independently hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the second synthetic rubber may be a conjugated diene-based rubber catalyzed by a rare earth metal catalyst, a transition metal catalyst, or an alkali metal catalyst, and specifically, a neodymium-catalyzed conjugated diene-based rubber, nickel It may be a catalyzed conjugated diene-based rubber, a cobalt-catalyzed conjugated diene-based rubber, or a lithium-catalyzed conjugated diene-based rubber, and is included in the rubber composition together with the first synthetic rubber to satisfy the compatibility parameter of the rubber composition within the aforementioned range. As long as it is not limited, it may be manufactured and used or a commercially available one may be used.
  • the catalyst-catalyzed may refer to a conjugated diene-based rubber including an organometallic moiety activated from the catalyst, wherein the conjugated diene-based rubber is a butadiene homopolymer such as polybutadiene or a butadiene-isoprene copolymer. It may be a butadiene copolymer.
  • the butadiene homopolymer may be prepared by polymerizing a 1,3-butadiene-based monomer, and the 1,3-butadiene-based monomer is 1,3-butadiene , 2,3-dimethyl-1,3-butadiene or 2-ethyl-1,3-butadiene, and when the conjugated diene-based rubber is a butadiene copolymer, other than 1,3-butadiene-based monomer and copolymerizable therewith It may be prepared by copolymerizing a conjugated diene-based monomer, and the conjugated diene-based monomer other than the copolymerizable is 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-penta Diene, 4-methyl-1,3-pentadiene, 1,3-hexadiene or 2,4-hexa
  • the second synthetic rubber may have a 1,2-vinyl bond content of less than 50% by weight, specifically 40% by weight or less.
  • the second synthetic rubber may be a neodymium-catalyzed conjugated diene-based rubber or a lithium-catalyzed conjugated diene-based rubber, and more specifically, the second synthetic rubber has a cis 1,4-bond content of 96% by weight or more.
  • a neodymium-catalyzed conjugated diene-based rubber having a 1,2-vinyl bond content of 5% by weight or less, or a cis 1,4-bond content of 10% to 30% by weight, and a 1,2-vinyl bond content of 15% by weight % Or less may be a lithium-catalyzed conjugated diene-based rubber.
  • the second synthetic rubber may be a modified conjugated diene-based rubber having a functional group bonded to at least one end, wherein the functional group may be any one or more selected from an amine group and an aminoalkoxysilane group, and the functional group is from a modifier. It may be of origin.
  • the denaturant may be as defined above.
  • the second synthetic rubber may have a number average molecular weight (Mn) of 20,000 g/mol to 800,000 g/mol, 100,000 g/mol to 550,000 g/mol, or 150,000 g/mol to 500,000 g/mol, and the weight
  • Mn number average molecular weight
  • the average molecular weight (Mw) may be 40,000 g/mol to 2,000,000 g/mol, 150,000 g/mol to 900,000 g/mol, or 200,000 g/mol to 800,000 g/mol, and within this range, the physical property balance between physical properties is excellent. It works.
  • weight average molecular weight (Mw) and number average molecular weight (Mn) were measured in the same manner as described above.
  • the second synthetic rubber according to an embodiment of the present invention has a microstructure, such as 1,2-vinyl, capable of satisfying the compatibility parameter defined by Equation 1 above in relation to the first synthetic rubber. If it is possible to have a binding content, it can be prepared using a known conventional method for preparing a conjugated diene-based polymer.
  • the second synthetic rubber may be prepared by polymerizing a 1,3-butadiene-based monomer or a 1,3-butadiene-based monomer and a conjugated diene-based monomer copolymerizable therewith in the presence of a catalyst composition containing a main catalyst compound. , If necessary, a denaturing reaction or a coupling reaction with a denaturing agent may be further performed after the polymerization.
  • the main catalyst compound may be a rare earth metal-containing compound, a transition metal-containing compound, or an alkyl-metal-containing compound, and specifically, a neodymium-containing compound, a nickel-containing compound, a cobalt-containing compound, or a lithium-containing compound, and more Specifically, it may be a neodymium-containing compound or a lithium-containing compound.
  • the neodymium compound is a carboxylate of neodymium (e.g., neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, neodymium maleate, neodymium oxalate , Neodymium 2-ethylhexanoate, neodymium neodecanoate, etc.); Organophosphates (e.g., neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, neodymium dioctyl phosphate, neodymium bis(1-methylheptyl)
  • the neodymium compound may include a neodymium compound represented by Formula 7 below.
  • R a to R c are each independently hydrogen or an alkyl group having 1 to 12 carbon atoms, provided that all of R a to R c are not hydrogen at the same time.
  • the neodymium compound is Nd (2-ethylhexanoate) 3 , Nd (2,2-dimethyl decanoate) 3 , Nd (2,2-diethyl decanoate) 3 , Nd (2, 2-dipropyl decanoate) 3 , Nd (2,2-dibutyl decanoate) 3 , Nd (2,2-dihexyl decanoate) 3 , Nd (2,2-dioctyl decanoate) 3 , Nd (2-ethyl-2-propyl decanoate) 3 , Nd (2-ethyl-2-butyl decanoate) 3 , Nd (2-ethyl-2-hexyl decanoate) 3 , Nd (2 -Propyl-2-butyl decanoate) 3 , Nd (2-propyl-2-hexyl decanoate) 3 , Nd (2-propyl-2-iso
  • the neodymium compound is more specifically represented by R a in Formula 4 It is an alkyl group having 4 to 12 carbon atoms, and R b and R c are each independently hydrogen or an alkyl group having 2 to 8 carbon atoms, provided that R b and R c are not hydrogen at the same time, but may be a neodymium compound.
  • R a is an alkyl group having 6 to 8 carbon atoms
  • R b and R c may each independently be hydrogen or an alkyl group having 2 to 6 carbon atoms, wherein R b and R c are It may not be hydrogen at the same time, and specific examples thereof include Nd (2,2-diethyl decanoate) 3 , Nd (2,2-dipropyl decanoate) 3 , Nd (2,2-dibutyl decanoate) ) 3 , Nd (2,2-dihexyl decanoate) 3 , Nd (2,2-dioctyl decanoate) 3 , Nd (2-ethyl-2-propyl decanoate) 3 , Nd (2- Ethyl-2-butyl decanoate) 3 , Nd (2-ethyl-2-hexyl decanoate) 3 , Nd (2-propyl-2-butyl decanoate) 3 , Nd (2-prop
  • R a is an alkyl group having 6 to 8 carbon atoms
  • R b and R c may each independently be an alkyl group having 2 to 6 carbon atoms.
  • the neodymium compound represented by Chemical Formula 7 includes a carboxylate ligand containing an alkyl group of various lengths of 2 or more carbon atoms as a substituent at the ⁇ (alpha) position, thereby inducing a three-dimensional change around the neodymium-centered metal. It is possible to block agglomeration phenomenon, and accordingly, there is an effect of suppressing oligomerization.
  • such a neodymium compound has a high solubility in a solvent and a reduction in the proportion of neodymium located at a central portion where conversion to the catalytically active species is difficult, thereby increasing the conversion rate to the catalytically active species.
  • solubility of the neodymium compound according to an embodiment of the present invention may be about 4 g or more per 6 g of the non-polar solvent at room temperature (25° C.).
  • the solubility of a neodymium compound refers to a degree of clear dissolution without a cloudy phenomenon, and excellent catalytic activity may be exhibited by exhibiting such high solubility.
  • the neodymium compound according to an embodiment of the present invention may be used in the form of a reactant with a Lewis base.
  • This reaction product has the effect of improving the solubility of the neodymium compound in a solvent by Lewis base and allowing it to be stored in a stable state for a long period of time.
  • the Lewis base may be used in a ratio of 30 moles or less, or 1 to 10 moles per 1 mole of neodymium, for example.
  • the Lewis base may be, for example, acetylacetone, tetrahydrofuran, pyridine, N,N-dimethylformamide, thiophene, diphenyl ether, triethylamine, an organophosphorus compound, or a monohydric or dihydric alcohol.
  • the lithium-containing compound is activated by an alkylating agent to form catalytically active species, such as methyllithium, ethyllithium, propyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, n- Decyllithium, t-octyllithium, phenyllithium, 1-naphthyllithium, n-eicosyllithium, 4-butylphenyllithium, 4-tolyllithium, cyclohexyllithium, 3,5-di-n-heptylcyclohexyllithium , 4-cyclopentyllithium, lithium alkoxide or lithium amide.
  • catalytically active species such as methyllithium, ethyllithium, propyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hex
  • the catalyst composition may include a main catalyst compound; Alkylating agents; And a halogen compound.
  • the alkylating agent serves as a cocatalyst capable of transferring a hydrocarbyl group to another metal, and may be, for example, any one or more selected from the group consisting of an organic aluminum compound, an organic magnesium compound, and an organic lithium compound.
  • organic aluminum compound trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, triisopropyl aluminum, tri-n-butyl aluminum, triisobutyl aluminum, tri-t-butyl aluminum, tripentyl Alkyl aluminum, such as aluminum, trihexyl aluminum, tricyclohexyl aluminum, and trioctyl aluminum; Diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride (DIBAH), di-n-octylaluminum hydride, Diphenylaluminum hydride, di-p-tolylaluminum hydride, dibenzylaluminum hydride, phenylethylaluminum hydride, phenyl-n-propylaluminum hydride, phenyl-n-
  • organic magnesium compound examples include diethyl magnesium, di-n-propyl magnesium, diisopropyl magnesium, dibutyl magnesium, dihexyl magnesium, diphenyl magnesium, or alkyl magnesium compounds such as dibenzyl magnesium, and the like.
  • organolithium compound examples include alkyl lithium compounds such as n-butyllithium.
  • the organic aluminum compound may be aluminoxane, such as methylaluminoxane (MAO), modified methylaluminoxane (MMAO), ethylaluminoxane, n-propylaluminoxane, isopropylaluminoxane, butylaluminoxane, isobutyl Aluminoxane, n-pentyl aluminoxane, neopentyl aluminoxane, n-hexyl aluminoxane, n-octyl aluminoxane, 2-ethylhexyl aluminoxane, cyclohexyl aluminoxane, 1-methylcyclopentyl aluminoxane, phenylaluminoxane or 2,6-dimethylphenylaluminoxane, and the like.
  • aluminoxane such as methylaluminoxane (MA
  • the halogen compound is not particularly limited, for example, a halogen alone, an interhalogen compound, a hydrogen halide, an organic halide, a non-metal halide, a metal halide, or an organometallic halide, and any of these One or a mixture of two or more may be used.
  • a halogen alone, an interhalogen compound, a hydrogen halide, an organic halide, a non-metal halide, a metal halide, or an organometallic halide any one or a mixture of two or more selected from the group consisting of an organic halide, a metal halide, and an organometallic halide may be used as the halide.
  • halogen examples include fluorine, chlorine, bromine or iodine.
  • interhalogen compound examples include iodine monochloride, iodine monobromide, iodine trichloride, iodine pentafluoride, iodine monofluoride or iodine trifluoride.
  • the hydrogen halide may include hydrogen fluoride, hydrogen chloride, hydrogen bromide, or hydrogen iodide.
  • t-butyl chloride t-BuCl
  • t-butyl bromide t-butyl bromide
  • allyl chloride allyl bromide
  • benzyl chloride benzyl bromide
  • chloro-di-phenylmethane bromo-di-phenylmethane
  • tri Phenylmethyl chloride triphenylmethyl bromide
  • benzylidene chloride benzylidene bromide
  • methyltrichlorosilane phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane (TMSCl)
  • benzoyl chloride benzoyl bromide
  • propi Onyl chloride propionyl bromide
  • methyl chloroformate methyl bromoformate
  • iodomethane diiodomethane
  • metal halide tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium trifluoride, indium trichloride, Indium tribromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc dibromide, zinc difluoride, aluminum triiodide, gallium triiodide, indium triiodide, titanium tetraiodide, zinc iodide, tetraiodide Germanium, tin sayodine, tin iodide, antimony triiodide, or magnesium iodide.
  • the organometallic halide includes dimethyl aluminum chloride, diethyl aluminum chloride, dimethyl aluminum bromide, diethyl aluminum bromide, dimethyl aluminum fluoride, diethyl aluminum fluoride, methyl aluminum dichloride, ethyl aluminum dichloride, methyl aluminum dichloride.
  • the second synthetic rubber when the second synthetic rubber is a conjugated diene-based rubber catalyzed by an alkali metal catalyst, the second synthetic rubber is a 1,3-butadiene-based monomer in the presence of a polar additive in a hydrocarbon solvent containing an alkali metal.
  • a polar additive in a hydrocarbon solvent containing an alkali metal.
  • it may be prepared by polymerizing a 1,3-butadiene monomer and a conjugated diene-based monomer copolymerizable therewith, and if necessary, a denaturing reaction or a coupling reaction with a denaturant may be further performed after the polymerization.
  • the microstructure of the second synthetic rubber for example, the content of 1,2-vinyl bonds may be adjusted according to the amount of the polar additive used.
  • the modifier may be, for example, a compound represented by Chemical Formula 5 or Chemical Formula 6 described above, and may be used by mixing one or two or more substances. That is, the modifier may be Chemical Formula 5, Chemical Formula 6, or a combination thereof.
  • the microstructures in each rubber such as 1,2-vinyl bond content, styrene bond content, cis 1,4-bond content, and trans-bond content, are NMR or Fourier. It can be measured using a measuring device such as transformed infrared spectroscopy (FT-IR).
  • FT-IR transformed infrared spectroscopy
  • 1,1,2,2-tetrachloroethane is used as a solvent using Varian VNMR 500 MHz NMR
  • the solvent peak is calculated as 5.97 ppm
  • 7.2 to 6.9 ppm is random styrene
  • 6.9-6.2 ppm is block styrene
  • 5.8-5.1 ppm is 1,4-vinyl bond
  • 5.1-4.5 ppm is the peak of 1,2-vinyl bond
  • the content of styrene bonds and 1,2-vinyl bonds is calculated. Can be analyzed.
  • the filler is mixed with a rubber component to improve the physical properties of the rubber composition, and specifically, may be silica.
  • the silica may be wet silica (hydrous silicic acid), dry silica (hydrous silicic acid), calcium silicate, aluminum silicate or colloidal silica. May be the best wet silica.
  • the rubber composition according to an embodiment of the present invention may further include other rubber components as necessary in addition to the above-described rubber component, wherein the other rubber component is 90% by weight or less based on the total weight of the rubber composition. Can be included as.
  • the other rubber component may be, for example, natural rubber or synthetic rubber, and specific examples include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubber such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), hydrogenated natural rubber, etc.
  • NR natural rubber
  • EMR epoxidized natural rubber
  • DPNR deproteinized natural rubber
  • hydrogenated natural rubber etc.
  • Styrene-butadiene copolymer SBR
  • polybutadiene BR
  • polyisoprene IR
  • butyl rubber IIR
  • ethylene-propylene copolymer polyisobutylene-co-isoprene, poly(ethylene-co- Propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), poly(styrene-co-isoprene-co-butadiene), poly(isoprene-co-butadiene), poly(ethylene-co-propylene -Co-diene), polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, halogenated butyl rubber, and the like, and any one or a mixture of two or more of them may be used.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and thus may further include a vulcanizing agent.
  • the vulcanizing agent may specifically be a sulfur powder, and may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component, within this range, while securing the required elastic modulus and strength of the vulcanized rubber composition, and at the same time having low fuel economy. It has an excellent effect.
  • silane coupling agent for improving reinforcement and low heat generation properties
  • the silane coupling agent is bis(3- Triethoxysilylpropyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(2-triethoxysilylethyl) tetrasulfide , Bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2 -Mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxy
  • it when considering the effect of improving reinforcing properties, it may be bis(3-triethoxysilylpropyl)polysulfide or 3-trimethoxysilylpropylbenzothiazyltetrasulfide.
  • the rubber composition according to an embodiment of the present invention includes various additives commonly used in the rubber industry, specifically, a vulcanization accelerator, a process oil, a plasticizer, an anti-aging agent, an anti-scorch agent, a zinc white, It may further include stearic acid, a thermosetting resin, or a thermoplastic resin.
  • the vulcanization accelerator is, for example, a thiazole compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG
  • a thiazole compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG
  • a guanidine-based compound such as (diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, and may be, for example, a paraffinic, naphthenic, or aromatic compound, and when considering tensile strength and abrasion resistance, when considering aromatic process oil price, hysteresis loss, and low-temperature characteristics Naphthenic or paraffinic process oil may be used.
  • the process oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component, and within this range, there is an effect of preventing a decrease in tensile strength and low heat generation (low fuel economy) of the vulcanized rubber.
  • the anti-aging agent is, for example, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, 6-ethoxy-2 ,2,4-trimethyl-1,2-dihydroquinoline, or a high-temperature condensation product of diphenylamine and acetone, and the like, and may be used in an amount of 0.1 to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention can be obtained by kneading using a kneader such as a Banbury mixer, a roll, or an internal mixer according to the formulation, and has low heat generation and abrasion resistance by a vulcanization process after molding processing. This excellent rubber composition can be obtained.
  • a kneader such as a Banbury mixer, a roll, or an internal mixer according to the formulation
  • the rubber composition is a tire tread, under tread, side wall, carcass coated rubber, belt coated rubber, bead filler, pancreas, or bead coated rubber, and other tire members, anti-vibration rubber, belt conveyor, hose, etc. It may be useful in the manufacture of various industrial rubber products.
  • the present invention provides a tire manufactured using the rubber composition.
  • the tire may include a tire or a tire tread.
  • the styrene content and 1,2-vinyl content of the modified butadiene polymer are values obtained by measurement and analysis using Varian VNMR 500 MHz NMR. It was used as a solvent, and the solvent peak was calculated as 5.97 ppm, 7.2 to 6.9 ppm of random styrene, 6.9 to 6.2 ppm of block styrene, 5.8 to 5.1 ppm of 1,4-vinyl bond, 5.1 to 4.5 ppm of 1,2 -The content of styrene bonds and 1,2-vinyl bonds were calculated as the peaks of vinyl bonds.
  • the glass transition temperature is differential scanning calorimeter (Differential Scanning Calorimetry, DSCQ100, TA company) in accordance with ISO 22768:2006, while increasing the temperature from -100°C to 10°C/min under the flow of nitrogen 50 ml/min.
  • the calorific value curve (DSC curve) was recorded, and the peak top (Inflection point) of the DSC differential curve was taken as the glass transition degree.
  • DTHFP 2,2-di(tetrahydrofuryl)propane
  • [DTHFP]:[act. Li] a modified butadiene polymer having a styrene content of 0% by weight, a 1,2-vinyl content of 50% by weight, and a glass transition temperature of -54°C was carried out in the same manner as in Preparation Example 1 except that it was added in a molar ratio of 2: It was prepared, and was named HVBR-B in the following examples.
  • styrene content, 1,2-vinyl content, and glass transition temperature were measured in the same manner as in Preparation Example 1.
  • the same material was used for other components except for the rubber component, the coupling agent was bis(3-triethoxysilylpropyl) tetrasulfide (TESPT), the process oil was TDAE oil, and the vulcanization accelerator was CZ (N-cyclohexyl-2-benzothiazylsulfenamide) and DPG (diphenylguanidine) were used.
  • TESPT bis(3-triethoxysilylpropyl) tetrasulfide
  • the process oil was TDAE oil
  • the vulcanization accelerator was CZ (N-cyclohexyl-2-benzothiazylsulfenamide) and DPG (diphenylguanidine) were used.
  • Solution polymerization modified butadiene rubber prepared in Preparation Example 1 (styrene content 0% by weight, 1,2-vinyl content 80% by weight, glass transition temperature -25°C) (HVBR-A) 65 parts by weight, unmodified neodymium catalyzed butadiene Rubber (cis 1,4-bond content 96% by weight, glass transition temperature -105°C) (GND45, LG Chemical) 35 parts by weight, silica 95 parts by weight, coupling agent 7.6 parts by weight, process oil 40 parts by weight, zinc oxide 3
  • a first blend was prepared by blending parts by weight and 2 parts by weight of stearic acid, and 1.5 parts by weight of sulfur powder and 2.8 parts by weight of a vulcanization accelerator were added thereto to prepare a rubber composition.
  • the compatibility parameter of the solution polymerization modified butadiene rubber and the unmodified neodymium catalyzed butadiene rubber was 5.6216 ⁇ 10 -3 .
  • Solution polymerization modified butadiene rubber prepared in Preparation Example 2 (styrene content 0% by weight, 1,2-vinyl content 50% by weight, glass transition temperature -54°C) (HVBR-B) 55 parts by weight, unmodified neodymium catalyzed butadiene Rubber (cis 1,4-bond content 96% by weight, glass transition temperature -105°C) (GND45, LG Chemical) 45 parts by weight, silica 120 parts by weight, coupling agent 6.5 parts by weight, process oil 45 parts by weight, zinc oxide 3
  • a first blend was prepared by blending parts by weight and 2 parts by weight of stearic acid, and 1.1 parts by weight of sulfur powder and 4.8 parts by weight of a vulcanization accelerator were added thereto to prepare a rubber composition.
  • the compatibility parameter of the solution polymerization modified butadiene rubber and the unmodified neodymium catalyzed butadiene rubber was 2.1627 ⁇ 10 -3 .
  • Solution polymerization modified butadiene rubber prepared in Preparation Example 1 (styrene content 0% by weight, 1,2-vinyl content 80% by weight, glass transition temperature -25°C) (HVBR-A) 10 parts by weight, modified lithium catalyzed butadiene rubber (Styrene content 0 wt%, 1,2-vinyl bond content 10 wt%, glass transition temperature -88°C) (LiBR-C) 90 parts by weight, silica 120 parts by weight, coupling agent 6.5 parts by weight, process oil 45 parts by weight , 3 parts by weight of zinc oxide and 2 parts by weight of stearic acid were mixed to prepare a first blend, and 1.1 parts by weight of sulfur powder and 4.8 parts by weight of a vulcanization accelerator were added thereto to prepare a rubber composition.
  • the compatibility parameter of the solution polymerization modified butadiene rubber and the modified lithium catalyzed butadiene rubber was 4.4137 ⁇ 10 -3 .
  • Example 1 instead of the solution polymerization modified butadiene rubber (HVBR-A) prepared in Preparation Example 1, the solution polymerization terminal modified styrene-butadiene rubber (styrene content 21% by weight, 1,2-vinyl bond content 50% by weight) , Glass transition temperature -26 °C) (F2150, LG Chem) was prepared in the same manner as in Example 1, except that the rubber composition was used. At this time, the compatibility parameter of the modified styrene-butadiene rubber at the end of the solution polymerization and the unmodified neodymium catalyzed butadiene rubber was 1.5561 ⁇ 10 -3 .
  • Example 1 instead of the solution polymerization modified butadiene rubber (HVBR-A) prepared in Preparation Example 1, the solution polymerization both ends modified styrene-butadiene rubber (styrene content 39% by weight, 1,2-vinyl bond content 25% by weight) , Glass transition temperature -23°C) (M3925, LG Chem) was used to prepare a rubber composition in the same manner as in Example 1. At this time, the compatibility parameter of the modified styrene-butadiene rubber at both ends of the solution polymerization and the unmodified neodymium catalyzed butadiene rubber was 3.8231 ⁇ 10 -3 .
  • Example 2 instead of the solution polymerization modified butadiene rubber (HVBR-B) prepared in Preparation Example 2, the solution polymerization both ends modified styrene-butadiene rubber prepared in Comparative Preparation Example (styrene content 15% by weight, 1,2- A rubber composition was prepared in the same manner as in Example 2, except that a vinyl bond content of 25% by weight, a glass transition temperature of -60°C) (SSBR-D) was used. At this time, the compatibility parameter of the modified styrene-butadiene rubber at both ends of the solution polymerization and the unmodified neodymium catalyzed butadiene rubber was 0.0519 ⁇ 10 -3 .
  • the abrasion resistance of the rubber specimen prepared in the same manner as in the above tensile properties was measured using a DIN abrasion tester, a load of 10 N was applied to a rotating drum attached with abrasion paper, and the rubber specimen was placed in a direction perpendicular to the rotation direction of the drum. After moving, the worn weight loss was measured, and expressed as an index based on the weight loss of Comparative Example 1 or Comparative Example 3.
  • the rotational speed of the drum is 40 rpm, and the total travel distance of the specimen at the completion of the test is 40 m. The larger the index value of the weight loss is, the better the wear resistance is.
  • the viscoelastic properties are determined by using a dynamic mechanical analyzer (TA's ARES G2) to change the strain at a frequency of 10 Hz and each measurement temperature (-100°C ⁇ 80°C) in a torsion mode to determine G" (dynamic loss modulus, E") and tan. ⁇ was measured.
  • TA's ARES G2 dynamic mechanical analyzer
  • E dynamic loss modulus
  • Example 1 results of physical properties of Example 1 and Comparative Example 2 are indexed based on the measured values of Comparative Example 1.
  • Example 2 results of physical properties of Example 2 and Example 3 are indexed based on the measured value of Comparative Example 3. As shown in Tables 1 and 2, it was confirmed that Examples 1 to 3 according to an embodiment of the present invention have improved wear resistance and viscoelastic properties compared to Comparative Examples 1 to 3.
  • Example 1 improved abrasion resistance by 3% or more compared to Comparative Example 1, and at the same time, tan ⁇ at 70°C was significantly improved by 7% or more, and tan ⁇ at 0°C was decreased compared to Comparative Example 2, but the abrasion resistance was At about 17%, tan ⁇ at 70°C was significantly improved to about 11%, which significantly improved the abrasion resistance and viscoelastic properties and overall physical properties.
  • Examples 2 and 3 showed an overall improvement in wear resistance and viscoelastic properties compared to Comparative Example 3, in particular Example 2 showed a great improvement in abrasion resistance, and Example 3 in viscoelastic properties.
  • Comparative Example 1 includes heterogeneous synthetic rubber, but the compatibility parameter between synthetic rubbers is out of the range suggested by the present invention, and in Comparative Examples 2 and 3, the compatibility parameter is within the scope of the present invention, but the first It was a synthetic rubber that did not contain the first synthetic rubber proposed in the present invention.
  • Example 1 in the case of Example 1, there are two inflection points, but it can be confirmed that in Comparative Example 1, there is one inflection point.
  • the inflection point is usually judged as a glass transition temperature, and therefore, having two inflection points indicates the existence of two glass transition temperatures. That is, in the case of Example 1, the compatibility parameter between the two synthetic rubbers was adjusted to a specific range, so that the compatibility of each rubber component in the rubber composition was not mixed in a completely uniform state. In the case of Comparative Example 1, the difference in the compatibility parameter constant between the two synthetic rubbers is small, and each rubber component in the rubber composition is mixed in a completely uniform state, thereby having one phase, thereby indicating one glass transition temperature. Can be seen.
  • Examples 1 to 3 included two synthetic rubbers limited to specific physical properties, but each rubber component in the rubber composition was completely uniform by adjusting the compatibility parameter between the two synthetic rubbers beyond a specific range.
  • the compatibility so as not to be mixed in a state, the effect expressed in each of the synthetic rubbers is maintained due to the phase separation between the two synthetic rubbers, so that the abrasion resistance and viscoelastic properties are excellent in a balance, whereas in the case of Comparative Example 1, the compatibility between the two synthetic rubbers Because the parameters are small and each rubber component in the rubber composition is mixed in a completely uniform state, the effect expressed in each of the synthetic rubbers cannot be maintained.
  • Comparative Examples 2 and 3 the physical properties of the synthetic rubber are proposed in the present invention. It can be seen that the combination between the two synthetic rubbers is not suitable in terms of physical properties, so even if the compatibility is adjusted, excellent abrasion resistance and viscoelastic properties are not uniformly expressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

본 발명은 고무성분 간의 상용성을 조절하여 내마모성이 우수하면서도 점탄성 특성이 개선된 고무 조성물 및 이를 이용하여 제조된 타이어에 관한 것으로, 제1 합성고무 및 제2 합성고무를 포함하고, 상기 제1 합성고무는 1,2-비닐 결합 함량이 50 중량% 이상이고, 적어도 일 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무이고, 상기 제2 합성고무는 1,2-비닐 결합 함량이 50 중량% 미만인 공액디엔계 고무이며, 상온에서 수학식 1로 정의되는 상용성 파라미터(Xblend)가 2.0×10-3이상인 것인 고무 조성물을 제공한다.

Description

고무 조성물 및 이로부터 제조된 성형품
[관련출원과의 상호인용]
본 출원은 2019. 09. 03.자 한국 특허 출원 제10-2019-0108952호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기분술야]
본 발명은 고무성분 간의 상용성을 조절하여 내마모성이 우수하면서도 점탄성 특성이 개선된 고무 조성물 및 이를 이용하여 제조된 타이어에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어의 구름 저항을 저감하는 것이 요구되고 있고, 안전성의 측면에서 내마모성, 인장특성이 우수하며, 젖은 노면 저항성으로 대표되는 조정 안정성도 겸비한 타이어가 요구되어 있다. 이에, 타이어, 특히 타이어 트레드부를 구성하는 고무성분에 실리카 등 충진제를 배합하여 저구름 저항성과 조정 안정성을 양립하는 방법이 알려져 있다.
예를 들어, 타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 젖은 노면 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 중합체 또는 공중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액중합에 의한 SBR이 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우, 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로서 연료소모를 줄일 수 있다. 상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다.
또한, 타이어 트레드의 보강성 충진제로서 카본블랙 및 실리카 등이 사용되고 있는데, 보강성 충진제로서 실리카를 이용하는 경우 저히스테리시스 손실성 및 젖은 노면 저항성이 향상된다는 장점이 있다. 그러나, 소수성 표면의 카본블랙 대비 친수성 표면의 실리카는 고무성분과의 친화성이 낮고, 실리카끼리의 응집성이 높아 분산성을 개선시키거나 실리카-고무 간의 결합 부여를 행하기 위해 별도의 실란 커플링제를 사용할 필요가 있다. 이에, 고무 분자 말단부에 실리카와의 친화성이나 반응성을 갖는 관능기를 도입하는 방안이 이루어지고 있으나, 그 효과가 충분하지 않은 실정이다.
[선행기술분헌]
(특허문헌 1) KR 2015-0110668 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 고무성분 간의 상용성을 조절하여 내마모성이 우수하면서도 점탄성 특성이 개선된 고무 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여, 본 발명은 제1 합성고무; 및 제2 합성고무를 포함하고, 상기 제1 합성고무는 1,2-비닐 결합 함량이 50 중량% 이상이고, 적어도 일 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무이고, 상기 제2 합성고무는 1,2-비닐 결합 함량이 50 중량% 미만인 공액디엔계 고무이며, 상온에서 하기 수학식 1로 정의되는 상용성 파라미터(χblend)가 2.0×10-3 이상인 것인 고무 조성물을 제공한다:
[수학식 1]
Figure PCTKR2020011876-appb-I000001
상기 수학식 1에서,
K는 Y-X(1-φS)이고, φs는 제1 합성고무 내 스티렌 결합 부피비이고, X는 제1 합성고무 내 1,2-비닐 결합 부피비이고, Y는 제2 합성고무 내 1,2-비닐 결합 부피비이고, XVS는 0.05650+5.65T-1이고, XBS는 0.00843+10.2T-1이며, XVB는 0.00269+1.87T-1이다.
또한, 본 발명은 상기 고무 조성물을 이용하여 제조된 성형품을 제공한다.
본 발명에 따른 고무 조성물은 제1 합성고무 및 제2 합성고무의 이종 고무성분을 포함하되, 서로 간에 상용성 파라미터가 특정범위가 되도록 제1 합성고무와 제2 합성고무를 선택하여 포함함으로써 고무간 상용성을 조절할 수 있고, 이에 내마모성이 우수하면서 점탄성 특성이 개선될 수 있다.
또한, 상기 고무 조성물은 제1 합성고무로 적어도 일 말단에 관능기가 결합된 용액중합 변성 공액디엔계 고무를 포함함으로써 충진제와의 친화성이 더욱 우수할 수 있어 고무 조성물 내 충진제 분산성이 더 개선될 수 있고 이에 점탄성 특성이 크게 향상될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 실시예 1 및 비교예 1의 고무 조성물에 대한 온도에 따른 G"(dynamic loss modulus) 변화 그래프를 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용하는 용어 '상용성 파라미터(interaction parameter, χblend)'는 고무간 상평형의 척도가 되는 특성값으로서, 공지된 상용성 파라미터 계산식(Journal of Applied Polymer Science, Vol. 51, No. 6, pp1053-1062 참고)인 하기 수학식 1에 의하여 계산하였다 .
[수학식 1]
Figure PCTKR2020011876-appb-I000002
상기 수학식 1에서,
K는 Y-X(1-φS)이고, φs는 제1 합성고무 내 스티렌 결합 부피비이고, X는 제1 합성고무 내 1,2-비닐 결합 부피비이고, Y는 제2 합성고무 내 1,2-비닐 결합 부피비이고, XVS는 0.05650+5.65T-1이고, XBS는 0.00843+10.2T-1이며, XVB는 0.00269+1.87T-1이며, 여기에서 T는 유닛(단위)을 의미하는 것으로 절대온도 단위(K)이다.
여기에서, 상기 고무 내 스티렌 결합 부피비, 1,2-비닐 결합 부피비는 Varian VNMR 500 MHz NMR을 이용하여 측정 및 분석하여 얻어진 값일 수 있다. 구체적으로, 측정 시 용매는 1,1,2,2-테트라클로로에탄을 사용하였으며, solvent peak은 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐 결합, 5.1~4.5 ppm은 1,2- 비닐 결합의 피크로 하여 스티렌 결합 및 1,2-비닐 결합 비율을 계산하였다.
본 발명에서 사용하는 용어 '상온'은 가열하거나 냉각하지 않은 자연상태 그대로의 온도를 의미하는 것으로, 예컨대 20±5℃의 온도이다.
본 발명에서 사용하는 용어 '유래 반복단위'는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있으며, 예컨대 공액디엔계 단량체 유래 반복단위는 공액디엔계 단량체가 중합 시 이루는 반복 단위를 의미할 수 있다.
본 발명은 내마모성이 우수하면서도 점탄성 특성이 개선된 고무 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 제1 합성고무; 및 제2 합성고무를 포함하고, 상기 제1 합성고무는 1,2-비닐 결합 함량이 50 중량% 이상이고, 적어도 일 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무이고, 상기 제2 합성고무는 1,2-비닐 결합 함량이 50 중량% 미만인 공액디엔계 고무이며, 상기 수학식 1로 정의되는 상용성 파라미터(χblend)가 2.0×10-3 이상인 것을 특징으로 한다.
또한, 상기 고무 조성물은 충진제를 더 포함할 수 있고, 구체적으로 상기 고무 조성물은 제1 합성고무와 제2 합성고무를 포함하는 고무성분 100 중량부에 대하여, 제1 합성고무를 30 중량부 내지 90 중량부, 제2 합성고무를 10 중량부 내지 90 중량부 및 충진제를 30 중량부 내지 200 중량부로 포함하는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 제1 합성고무 및 제2 합성고무의 이종 고무성분을 포함하되, 서로 간에 상용성 파라미터가 전술한 바와 같이 특정범위가 되도록 제1 합성고무와 제2 합성고무를 선택하여 포함함으로써 상기 고무성분 간 상용성을 조절할 수 있고 이에 제1 합성고무와 제2 합성고무 각각이 갖는 물성을 동시에 발현할 수 있으며, 결과적으로 내마모성이 우수하면서 점탄성 특성이 개선될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은 제1 합성고무로 적어도 일 말단에 관능기가 결합된 용액중합 변성 공액디엔계 고무를 포함함으로써 충진제와의 친화성이 더욱 우수할 수 있고 이에 점탄성 특성이 더욱 개선될 수 있다.
구체적으로, 상기 고무 조성물은 수학식 1로 정의되는 상호작용 파라미터가 2.0×10-3 이상일 수 있고, 더 구체적으로는 2.5×10-3 이상, 보다 더 구체적으로는 3.0×10-3 이상일 수 있다. 여기에서, 상기 상용성 파라미터는 상기 수치 이상이면 되는 것으로 상한 값은 발명의 목적에 악영향을 미치지 않는 한 크게 한정하지 않으나, 예컨대 10.0×10-3 이하, 또는 8.0×10-3 이하일 수 있다. 만약, 상기 제1 합성고무와 제2 합성고무의 상용성 파라미터가 상기 범위인 경우에는 고무성분간 상용성을 조절하여 제1 합성고무와 제2 합성고무 각각이 갖는 물성이 저하되지 않으면서 동시에 발현될 수 있고, 이에 이를 포함하는 고무 조성물의 인장특성 및 점탄성 특성이 우수할 수 있다.
여기에서, 상기 상호작용 파라미터는 고무 내 미세구조(1,2-비닐 결합 및 스티렌 결합)에 따라 결정되는 상호작용 척도가 되는 파라미터로, 고무 조성물에 포함되는 제1 합성고무 및 제2 합성고무의 비율 및 각 합성고무 내 미세구조에 의해 조절될 수 있다.
이하, 본 발명의 일 실시예에 따른 상기 고무 조성물에 포함되는 각 성분 별로 나누어 구체적으로 설명한다.
제1 합성고무
본 발명의 일 실시예에 있어서, 상기 제1 합성고무는 1,2-비닐 결합 함량이 50 중량% 이상인 적어도 일 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무일 수 있다.
구체적으로, 상기 용액중합 변성 공액디엔계 고무는 스티렌 결합이 존재하지 않는 것, 즉 스티렌 결합 함량이 0 중량%인 것일 수 있고, 이 경우 상기 용액중합 변성 공액디엔계 고무는 방향족 비닐계 단량체를 적용하지 않고 중합된 것일 수 있다.
더 구체적으로, 상기 제1 합성고무는 용액중합 변성 공액디엔계 고무일 수 있고, 상기 변성 공액디엔계 고무는 스티렌 결합이 존재하지 않으며 1,2-비닐 결합 함량이 50 중량% 내지 90 중량%, 또는 60 중량% 이상 내지 90 중량% 이하일 수 있으며, 이 경우 내마모성, 젖은 노면 저항성 및 저연비성이 우수한 효과가 있다.
다른 예로, 상기 제1 합성고무는 용액중합 변성 공액디엔계 고무이고, 유리전이온도가 -60℃ 내지 -10℃인 것일 수 있다. 한편, 상기 유리전이온도는 통상 고무의 미세구조, 예컨대 1,2-비닐 결합 함량, 시스-1,4 결합 함량, 트랜스-1,4 결합 함량 및 스티렌 결합 함량에 의해 영향을 받을 수 있으며, 예컨대 고무 내 스티렌 결합 함량 및 1,2-비닐 결합 함량이 증가할수록 유리전이온도는 상승할 수는 있으나, 스티렌 결합 함량 및 1,2-비닐 결합 함량 증가에 절대적으로 상승하는 것은 아닐 수 있다.
또 다른 예로, 상기 제1 합성고무는 용액중합 변성 공액디엔계 고무이고, 스티렌 결합이 존재하지 않으며 1,2-비닐 결합 함량이 50 중량% 내지 90 중량%, 또는 60 중량% 이상 내지 90 중량% 이하일 수 있고, 유리전이온도가 -60℃ 내지 -10℃인 것일 수 있으며, 이 경우 내마모성, 젖은 노면 저항성 및 회전저항성이 보다 더 우수한 효과가 있다.
여기에서, 1,2-비닐 결합 함량은 상기 용액중합 변성 공액디엔계 고무 내 1,2-첨가된 공액디엔계 단량체의 함량을 의미할 수 있다.
또한, 상기 제1 합성고무는 이를 포함하는 고무 조성물의 점도에 따라 신전유를 포함하는 것일 수 있고, 이 경우 상기 고무 조성물의 가공성을 보다 개선시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 용액중합 변성 공액디엔계 고무는 적어도 일 말단에 관능기가 결합되어 있는 것일 수 있으며, 이때 상기 관능기는 아민기 및 아미노알콕시실란기에서 선택된 어느 하나 이상일 수 있다. 구체적으로, 본 발명의 일 실시예에 따른 상기 제1 합성고무는 일 말단 혹은 양말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무일 수 있고, 상기 제1 합성고무가 일 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무일 경우 일 말단에 아민기 및 아미노알콕시실란기 중 어느 하나 이상이 결합되어 있는 것일 수 있고, 상기 제1 합성고무가 양 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무일 경우 양말단에 각각에 아민기 및 아미노알콕시실란기가 결합되어 있는 것이거나, 일 말단에 아민기가 결합되어 있고 다른 일 말단에는 아미노알콕시실란기가 결합되어 있는 것일 수 있다.
또한, 상기 제1 합성고무는 수평균 분자량(Mn)이 20,000 g/mol 내지 800,000 g/mol, 100,000 g/mol 내지 550,000 g/mol, 또는 150,000 g/mol 내지 500,000 g/mol일 수 있고, 중량평균 분자량(Mw)이 40,000 g/mol 내지 2,000,000 g/mol, 150,000 g/mol 내지 900,000 g/mol, 또는 200,000 g/mol 내지 800,000 g/mol일 수 있고, 이 범위 내에서 구름 저항 및 젖은 노면 저항성이 우수한 효과가 있다. 또 다른 예로, 상기 용액중합 공액디엔계 고무는 분자량 분포(Mw/Mn)가 1.0 내지 4.0, 1.1 내지 3.5 또는 1.3 내지 3.0일 수 있고, 이 범위 내에서 물성 간의 물성 밸런스가 우수한 효과가 있다.
여기에서, 상기 중량평균 분자량(Mw) 및 수평균 분자량(Mn)은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이며, 분자량 분포(Mw/Mn)는 다분산성(polydispersity)이라고도 불리며, 중량평균 분자량(Mw)과 수평균 분자량(Mn)과의 비(Mw/Mn)로 계산하였다.
또 다른 예로, 상기 제1 합성고무는 무니점도(Mooney viscosity)가 100℃에서 40 내지 120, 또는 50 내지 100일 수 있고, 이 범위 내에서 가공성 및 생산성이 우수한 효과가 있다. 이때, 상기 제1 합성고무는 신전유를 포함하지 않는 것일 수 있다.
여기에서, 상기 무니점도는 무니점도계, 예컨대 MV2000E(ALPHA Technologies 社)의 Large Rotor를 사용하여 100℃ 및 140℃, Rotor Speed 2±0.02 rpm의 조건에서 측정하였다. 구체적으로 중합체를 실온(23±5℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(platen)을 작동시켜 토크를 인가하면서 측정하였다.
한편, 본 발명의 일 실시예에 따른 상기 제1 합성고무는 일례로 중합 개시제를 포함하는 탄화수소 용매 중에서, 공액디엔계 단량체를 중합하여 상기 변성 개시제 유래 관능기 및 유기금속이 결합된 활성 중합체를 제조하고, 제조된 활성 중합체와 변성제를 반응시켜 제조되는 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 이소프렌, 1,3-펜타디엔, 1,3-헥사디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔 또는 2,4-헥사디엔 등일 수 있으며, 구체적으로는 1,3-부타디엔일 수 있다.
상기 중합 개시제는 유기금속 화합물 또는 변성 개시제일 수 있고, 상기 중합 개시제로 변성 개시제를 사용하는 경우에는 제조되는 제1 합성고무는 양 말단에 관능기가 결합되어 있는 것일 수 있다.
상기 유기금속 화합물은 일례로 메틸리튬, 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 사이클로헥실리튬, 3,5-디-n-헵틸사이클로헥실리튬, 4-사이클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드 및 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 상기 변성 개시제는 상기 유기금속 화합물과 아민기 함유 화합물을 반응시켜 제조된 화합물일 수 있고, 상기 아민기 함유 화합물은 일례로 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2020011876-appb-I000003
상기 화학식 1에서,
R1 내지 R3는 서로 독립적으로 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기, 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 3 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 또는 탄소수 3 내지 30의 헤테로고리기이며, R4는 단일결합; 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R5는 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 3 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기; 또는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n은 1 내지 5의 정수이고, R5 중 적어도 하나는 하기 화학식 1a 또는 화학식 1b로 표시되는 작용기이며, n이 2 내지 5의 정수인 경우 복수 개의 R5는 서로 동일하거나 상이할 수 있고,
[화학식 1a]
Figure PCTKR2020011876-appb-I000004
상기 화학식 1a에서, R6은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고, R7 및 R8은 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기이며, R9는 수소; 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 3 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이고, X는 N, O 또는 S 원자이며, X가 O 또는 S인 경우 R9는 존재하지 않으며,
[화학식 1b]
Figure PCTKR2020011876-appb-I000005
상기 화학식 1b에서,
R10은 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,
R11 및 R12는 서로 독립적으로 탄소수 1 내지 30의 알킬기; 탄소수 2 내지 30의 알케닐기; 탄소수 2 내지 30의 알카이닐기; 탄소수 1 내지 30의 헤테로알킬기; 탄소수 2 내지 30의 헤테로알케닐기; 탄소수 2 내지 30의 헤테로알카이닐기; 탄소수 3 내지 30의 시클로알킬기; 탄소수 6 내지 30의 아릴기; 탄소수 3 내지 30의 헤테로고리기이다.
또 다른 예로, 상기 아민기 함유 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
Figure PCTKR2020011876-appb-I000006
상기 화학식 2에서,
X1-X2는 CH2-CH2 또는 CH=CH이고,
X3-X4는 CH2-CH2, CH=N 또는 N=N이다.
또 다른 예로, 상기 아민기 함유 화합물은 하기 화학식 3으로 표시되는 화합물일 수 있다.
[화학식 3]
Figure PCTKR2020011876-appb-I000007
상기 화학식 3에서,
R11a 및 R11b는 서로 독립적으로 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알카이닐기; 탄소수 1 내지 20의 헤테로알킬기; 탄소수 2 내지 20의 헤테로알케닐기; 탄소수 2 내지 20의 헤테로알카이닐기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 3 내지 20의 헤테로고리기; 또는 하기 화학식 4a로 표시되는 작용기이고,
R11c는 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알카이닐기; 탄소수 1 내지 20의 헤테로알킬기; 탄소수 2 내지 20의 헤테로알케닐기; 탄소수 2 내지 20의 헤테로알카이닐기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 3 내지 20의 헤테로고리기; 비닐기; 또는 하기 화학식 3a로 표시되는 작용기이되,
상기 R11a, R11b 및 R11c 중 적어도 하나는 화학식 3a로 표시되는 작용기이며,
[화학식 3a]
Figure PCTKR2020011876-appb-I000008
상기 화학식 3a에서,
R11d는 단일결합 또는 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,
R11e 및 R11f는 서로 독립적으로 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알카이닐기; 탄소수 1 내지 20의 헤테로알킬기; 탄소수 2 내지 20의 헤테로알케닐기; 탄소수 2 내지 20의 헤테로알카이닐기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 3 내지 20의 헤테로고리기; 또는 탄소수 1 내지 10의 알킬기로 치환된 1치환, 2치환 또는 3치환의 알킬실릴기이다.
또 다른 예로, 상기 아민기 함유 화합물은 하기 화학식 4로 표시되는 화합물일 수 있다.
[화학식 4]
Figure PCTKR2020011876-appb-I000009
상기 화학식 4에서,
R12a는 단일결합 또는 치환기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환기로 치환 또는 비치환된 탄소수 5 내지 20의 시클로알킬렌기; 또는 치환기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고, 여기에서 상기 치환기는 탄소수 1 내지 10의 알킬기, 탄소수 5 내지 10의 시클로알킬기, 또는 탄소수 6 내지 20의 아릴기이고,
R12b 및 R12c는 서로 독립적으로 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알카이닐기; 탄소수 1 내지 20의 헤테로알킬기; 탄소수 2 내지 20의 헤테로알케닐기; 탄소수 2 내지 20의 헤테로알카이닐기; 탄소수 5 내지 20의 시클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 3 내지 20의 헤테로고리기; 또는 탄소수 1 내지 10의 알킬기로 치환된 1치환, 2치환 또는 3치환의 알킬실릴기이다.
한편, 상기 중합은 극성첨가제를 사용하여 수행할 수 있고, 상기 극성 첨가제의 사용량에 따라 제조되는 중합체 내 1,2-비닐 결합 함량을 보다 용이하게 조절할 수 있다. 즉, 상기 극성 첨가제는 제조되는 중합체의 미세구조, 예컨대 1,2-비닐결합 함량 조절의 일 수단으로서 사용될 수 있다.
상기 극성 첨가제는 단량체 총 100g을 기준으로 0.001g 내지 50g, 0.001g 내지 10g, 또는 0.005g 내지 0.1g의 비율로 사용할 수 있다. 또 다른 예로, 상기 극성첨가제는 중합 개시제 총 1 mmol을 기준으로 0.001g 내지 10g, 0.005g 내지 5g, 0.005g 내지 4g의 비율로 사용할 수 있다.
또한, 상기 극성 첨가제는 일례로 테트라하이드로퓨란, 2,2-디(2-테트라하이드로퓨릴)프로판, 디에틸에테르, 시클로펜틸에테르, 디프로필에테르, 에틸렌메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 터셔리-부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민, N,N,N',N'-테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 및 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether) 로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 2,2-디(2-테트라하이드로퓨릴)프로판, 트리에틸아민, 테트라메틸에틸렌디아민, 소듐멘톨레이트(sodium mentholate) 또는 2-에틸테트라하이드로퍼푸릴 에테르(2-ethyl tetrahydrofurfuryl ether)일 수 있으며, 상기 극성 첨가제를 포함하는 경우 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도하는 효과가 있다.
또한, 상기 변성제는 일례로 하기 화학식 5로 표시되는 화합물일 수 있다.
[화학식 5]
Figure PCTKR2020011876-appb-I000010
상기 화학식 5에서, A1 및 A2는 서로 독립적으로 탄소수 1 내지 20의 알킬렌기이고, R25 내지 R28은 서로 독립적으로 탄소수 1 내지 20의 알킬기이고, L1 및 L2와, L3 및 L4는 서로 연결되어 탄소수 1 내지 5의 고리를 형성하는 것이고, 이때 L1 및 L2와, L3 및 L4가 서로 연결되어 형성된 고리는 N, O 및 S로 이루어진 군으로부터 선택된 1종 이상의 헤테로원자를 1개 내지 3개 포함한다.
또한, 상기 변성제는 다른 일레로 하기 화학식 6으로 표시되는 화합물일 수 있다.
[화학식 6]
Figure PCTKR2020011876-appb-I000011
상기 화학식 6에서, R31 내지 R33은 서로 독립적으로 탄소수 1 내지 10의 알킬렌기이고, R34 내지 R37은 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, R38은 수소 또는 탄소수 1 내지 10의 알킬기이고, a 및 b는 서로 독립적으로 0 내지 3의 정수이되, a+b≥1이며, A는
Figure PCTKR2020011876-appb-I000012
또는
Figure PCTKR2020011876-appb-I000013
이고, 여기에서 R39 내지 R42는 서로 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기이다.
제2 합성고무
본 발명의 일 실시예에 있어서, 상기 제2 합성고무는 희토류 금속 촉매, 전이금속 촉매 또는 알칼리금속 촉매로 촉매화된 공액디엔계 고무인 것일 수 있고, 구체적으로는 네오디뮴 촉매화 공액디엔계 고무, 니켈 촉매화 공액디엔계 고무, 코발트 촉매화 공액디엔계 고무 또는 리튬 촉매화 공액디엔계 고무인 것일 수 있으며, 제1 합성고무와 함께 고무 조성물에 포함되어 고무 조성물의 상용성 파라미터를 전술한 범위 내를 만족하게 하는 것이면 한정하지 않고 제조하여 사용하거나 시판되는 것을 사용할 수 있다.
여기에서 촉매로 촉매화되었다는 것은 촉매로부터 활성화된 유기금속 부위를 포함하는 공액디엔계 고무를 나타내는 것일 수 있고, 이때 상기 공액디엔계 고무는 폴리부타디엔과 같은 부타디엔 단독 중합체이거나 부타디엔-이소프렌 공중합체와 같은 부타디엔 공중합체일 수 있다.
여기에서, 상기 공액디엔계 고무가 부타디엔 단독 중합체인 경우, 상기 부타디엔 단독 중합체는 1,3-부타디엔계 단량체를 중합하여 제조된 것일 수 있고, 상기 1,3-부타디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔 또는 2-에틸-1,3-부타디엔일 수 있으며, 상기 공액디엔계 고무가 부타디엔 공중합체인 경우에는 1,3-부타디엔계 단량체와 이와 공중합 가능한 이외의 공액디엔계 단량체를 공중합하여 제조된 것일 수 있으며, 상기 공중합 가능한 이외의 공액디엔계 단량체는 2-메틸-1,3-펜타디엔, 1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔, 1,3-헥사디엔 또는 2,4-헥사디엔일 수 있다.
여기에서, 상기 제2 합성고무는 1,2-비닐 결합 함량이 50 중량% 미만, 구체적으로는 40 중량% 이하일 수 있다.
구체적으로, 상기 제2 합성고무는 네오디뮴 촉매화 공액디엔계 고무 또는 리튬 촉매화 공액디엔계 고무일 수 있고, 보다 구체적으로 상기 제2 합성고무는 시스 1,4-결합 함량이 96 중량% 이상이고, 1,2-비닐 결합 함량이 5 중량% 이하인 네오디뮴 촉매화 공액디엔계 고무이거나, 또는 시스 1,4-결합 함량이 10 중량% 내지 30 중량%이고, 1,2-비닐 결합 함량이 15 중량% 이하인 리튬 촉매화 공액디엔계 고무일 수 있다.
한편, 상기 제2 합성고무는 적어도 일 말단에 관능기가 결합되어 있는 변성 공액디엔계 고무일 수 있고, 이때 상기 관능기는 아민기 및 아미노알콕시실란기에서 선택된 어느 하나 이상일 수 있으며, 상기 관능기는 변성제로부터 유래된 것일 수 있다. 여기에서, 상기 변성제는 앞서 정의한 바와 같을 수 있다.
또한, 상기 제2 합성고무는 수평균 분자량(Mn)이 20,000 g/mol 내지 800,000 g/mol, 100,000 g/mol 내지 550,000 g/mol, 또는 150,000 g/mol 내지 500,000 g/mol일 수 있고, 중량평균 분자량(Mw)이 40,000 g/mol 내지 2,000,000 g/mol, 150,000 g/mol 내지 900,000 g/mol, 또는 200,000 g/mol 내지 800,000 g/mol일 수 있고, 이 범위 내에서 물성 간의 물성 밸런스가 우수한 효과가 있다.
여기에서, 상기 중량평균 분자량(Mw) 및 수평균 분자량(Mn)은 앞서 설명한 바와 같은 방법으로 측정하였다.
한편, 본 발명의 일 실시예에 따른 상기 제2 합성고무는 제1 합성고무와의 관계에서 상기의 수학식 1로 정의되는 상용성 파라미터를 충족할 수 있게 하는 미세구조, 예컨대 1,2-비닐 결합 함량을 가질 수 있게 하는 것이면 공지의 통상의 공액디엔계 중합체 제조방법을 이용하여 제조할 수 있다.
일례로, 상기 제2 합성고무는 주촉매 화합물 포함하는 촉매 조성물 존재하에서, 1,3-부타디엔계 단량체 또는 1,3-부타디엔계 단량체와 이와 공중합 가능한 공액디엔계 단량체를 중합하여 제조되는 것일 수 있고, 필요에 따라 상기 중합 이후 변성제와 변성반응 또는 커플링반응을 더 수행할 수도 있다. 여기에서, 상기 주촉매 화합물은 희토류 금속 함유 화합물, 전이금속 함유 화합물 또는 알킬리금속 함유 화합물일 수 있고, 구체적으로는 네오디뮴 함유 화합물, 니켈 함유 화합물, 코발트 함유 화합물 또는 리튬 함유 화합물일 수 있으며, 보다 구체적으로는 네오디뮴 함유 화합물 또는 리튬 함유 화합물일 수 있다. 상기 네노디뮴 화합물은 네오디뮴의 카르복실산염 (예를 들면, 네오디뮴 초산염, 네오디뮴 아크릴산염, 네오디뮴 메타크릴산염, 네오디뮴 글루콘산염, 네오디뮴 구연산염, 네오디뮴 푸마르산염, 네오디뮴 유산염, 네오디뮴 말레산염, 네오디뮴 옥살산염, 네오디뮴 2-에틸헥사노에이트, 네오디뮴 네오 데카노에이트 등); 유기인산염(예를 들면, 네오디뮴 디부틸 인산염, 네오디뮴 디펜틸 인산염, 네오디뮴 디헥실 인산염, 네오디뮴 디헵틸 인산염, 네오디뮴 디옥틸 인산염, 네오디뮴 비스(1-메틸 헵틸) 인산염, 네오디뮴 비스(2-에틸헥실) 인산염, 또는 네오디뮴 디데실 인산염 등); 유기 포스폰산염(예를 들면, 네오디뮴 부틸 포스폰산염, 네오디뮴 펜틸 포스폰산염, 네오디뮴 헥실 포스폰산염, 네오디뮴 헵틸 포스폰산염, 네오디뮴 옥틸 포스폰산염, 네오디뮴(1-메틸 헵틸) 포스폰산염, 네오디뮴(2-에틸헥실) 포스폰산염, 네오디뮴 디실 포스폰산염, 네오디뮴 도데실 포스폰산염 또는 네오디뮴 옥타데실 포스폰산염 등); 유기 포스핀산염(예를 들면, 네오디뮴 부틸포스핀산염, 네오디뮴 펜틸포스핀산염, 네오디뮴 헥실 포스핀산염, 네오디뮴 헵틸 포스핀산염, 네오디뮴 옥틸 포스핀산염, 네오디뮴(1-메틸 헵틸) 포스핀산염 또는 네오디뮴(2-에틸헥실) 포스핀산염 등); 카르밤산염(예를 들면, 네오디뮴 디메틸 카르밤산염, 네오디뮴 디에틸 카르밤산염, 네오디뮴 디이소프로필 카르밤산염, 네오디뮴 디부틸 카르밤산염 또는 네오디뮴 디벤질 카르밤산염 등); 디티오 카르밤산염(예를 들면, 네오디뮴 디메틸디티오카르바민산염, 네오디뮴 디에틸디티오카르바민산염, 네오디뮴 디이소프로필 디티오 카르밤산염 또는 네오디뮴 디부틸디티오카르바민산염 등); 크산토겐산염(예를 들면, 네오디뮴 메틸 크산토겐산염, 네오디뮴 에틸 크산토겐산염, 네오디뮴 이소프로필 크산토겐산염, 네오디뮴 부틸 크산토겐산염, 또는 네오디뮴 벤질 크산토겐산염 등); β-디케토네이트(예를 들면, 네오디뮴 아세틸아세토네이트, 네오디뮴 트리플루오로아세틸 아세토네이트, 네오디뮴 헥사플루오로아세틸 아세토네이트 또는 네오디뮴 벤조일 아세토네이트 등); 알콕시드 또는 알릴옥시드(예를 들면, 네오디뮴 메톡사이드, 네오디뮴 에톡시드, 네오디뮴 이소프로폭사이드, 네오디뮴 페녹사이드 또는 네오디뮴 노닐 페녹사이드 등); 할로겐화물 또는 의사 할로겐화물(네오디뮴 불화물, 네오디뮴 염화물, 네오디뮴 브롬화물, 네오디뮴 요오드화물, 네오디뮴 시안화물, 네오디뮴 시안산염, 네오디뮴 티오시안산염, 또는 네오디뮴 아지드 등); 옥시할라이드(예를 들면, 네오디뮴 옥시플루오라이드, 네오디뮴 옥시 클로라이드, 또는 네오디뮴 옥시 브로마이드 등); 또는 1 이상의 네오디뮴-탄소 결합을 포함하는 유기 네오디뮴 함유 화합물(예를 들면, Cp3Nd, Cp2NdR, Cp2NdCl, CpNdCl2, CpNd(사이클로옥타테트라엔), (C5Me5)2NdR, NdR3, Nd(알릴)3, 또는 Nd(알릴)2Cl 등, 상기 식중 R은 하이드로카르빌기이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
구체적으로, 상기 네오디뮴 화합물은 하기 화학식 7로 표시되는 네오디뮴 화합물을 포함하는 것일 수 있다.
[화학식 7]
Figure PCTKR2020011876-appb-I000014
상기 화학식 7에서, Ra 내지 Rc는 서로 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기이고, 단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
더 구체적으로, 상기 네오디뮴 화합물은 Nd(2-에틸헥사노에이트)3, Nd(2,2-디메틸 데카노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
또한, 다른 예로, 올리고머화에 대한 우려 없이 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 네오디뮴 화합물은 보다 구체적으로 상기 화학식 4에서 Ra가 탄소수 4 내지 12의 알킬기이고, Rb 및 Rc는 서로 독립적으로 수소 또는 탄소수 2 내지 8의 알킬기이되, 단 Rb 및 Rc가 동시에 수소가 아닌 네오디뮴 화합물일 수 있다.
보다 구체적인 예로, 상기 화학식 7에서 상기 Ra는 탄소수 6 내지 8의 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소, 또는 탄소수 2 내지 6의 알킬기일 수 있으며, 이때 상기 Rb 및 Rc는 동시에 수소가 아닐 수 있고, 그 구체적인 예로는 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 중에서도 상기 네오디뮴계 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
보다 더 구체적으로, 상기 화학식 7에서, 상기 Ra는 탄소수 6 내지 8의 알킬기이고, Rb 및 Rc는 각각 독립적으로 탄소수 2 내지 6의 알킬기일 수 있다.
이와 같이, 상기 화학식 7로 표시되는 네오디뮴 화합물은 α(알파) 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함함으로써, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있고, 이에 따라, 올리고머화를 억제할 수 있는 효과가 있다. 또한, 이와 같은 네오디뮴 화합물은 용매에 대한 용해도가 높고, 촉매 활성종으로의 전환에 어려움이 있는 중심 부분에 위치하는 네오디뮴 비율이 감소되어 촉매 활성종으로의 전환율이 높은 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 네오디뮴 화합물의 용해도는 상온(25℃)에서 비극성 용매 6 g 당 약 4 g 이상일 수 있다.
본 발명에 있어서, 네오디뮴 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것으로, 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 네오디뮴 화합물은 루이스 염기와의 반응물의 형태로 사용될 수도 있다. 이 반응물은 루이스 염기에 의해, 네오디뮴 화합물의 용매에 대한 용해성을 향상시키고, 장기간 안정한 상태로 저장할 수 있는 효과가 있다. 상기 루이스 염기는 일례로 네오디뮴 1 몰 당 30 몰 이하, 또는 1 내지 10 몰의 비율로 사용될 수 있다. 상기 루이스 염기는 일례로 아세틸아세톤, 테트라히드로푸란, 피리딘, N,N-디메틸포름아미드, 티오펜, 디페닐에테르, 트리에틸아민, 유기인 화합물 또는 1가 또는 2가의 알코올 등일 수 있다.
또한, 상기 리튬 함유 화합물은 알킬화제에 의해 활성화되어 촉매활성종을 형헝사는 것으로, 예컨대 메틸리튬, 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 시클로헥실리튬, 3,5-디-n-헵틸시클로헥실리튬, 4-시클로펜틸리튬, 리튬알콕사이드 또는 리튬 아미드일 수 있다.
상기 촉매 조성물은 주촉매 화합물; 알킬화제; 및 할로겐 화합물을 포함하는 것일 수 있다. 상기 알킬화제는 히드로카르빌기를 다른 금속으로 전달할 수 있는, 조촉매 역할을 하는 것으로, 예컨대 유기 알루미늄 화합물, 유기 마그네슘 화합물 및 유기 리튬 화합물로 이루어진 군에서 선택되는 어느 하나 이상인 것일 수 있다.
구체적으로는, 상기 유기 알루미늄 화합물로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디히드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드 또는 n-옥틸알루미늄 디하이드라이드 등과 같은 히드로카르빌알루미늄 디하이드라이드 등을 들 수 있다. 상기 유기 마그네슘 화합물로는 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등을 들 수 있고, 또 상기 유기 리튬 화합물로는 n-부틸리튬 등과 같은 알킬 리튬 화합물 등을 들 수 있다.
또한, 상기 유기 알루미늄 화합물은 알루미녹산일 수 있고, 예컨대 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐알루미녹산 등일 수 있다.
상기 할로겐 화합물은 특별히 제한하는 것은 아니나, 예컨대 할로겐 단체(單體), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐화물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 할로겐 단체로는 불소, 염소, 브롬 또는 요오드를 들 수 있다.
또한, 상기 할로겐간 화합물로는 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다.
또한, 상기 할로겐화수소로는 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.
또한, 상기 유기 할라이드로는 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리 에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.
또한, 상기 비금속 할라이드로는 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.
또한, 상기 금속 할라이드로는 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.
또한, 상기 유기금속 할라이드로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸 알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.
다른 일례로, 상기 제2 합성고무가 알칼리금속 촉매로 촉매화된 공액디엔계 고무인 경우, 상기 제2 합성고무는 알칼리금속을 포함하는 탄화수소 용매 중에서, 극성 첨가제의 존재 하에 1,3-부타디엔계 단량체 또는 1,3-부타디엔 단량체와 이와 공중합 가능한 공액디엔계 단량체를 중합하여 제조되는 것일 수 있고, 필요에 따라 상기 중합 이후 변성제와 변성반응 또는 커플링반응을 더 수행할 수도 있다. 이때, 상기 제2 합성고무의 미세구조, 예컨대 1,2-비닐 결합 함량은 상기 극성 첨가제의 사용량에 따라 조절될 수 있다.
상기 변성제는 예컨대 앞서 설명한 화학식 5 또는 화학식 6로 표시되는 화합물일 수 있으며, 하나 혹은 둘 이상의 물질을 혼합하여 사용할 수 있다. 즉, 상기 변성제는 화학식 5, 화학식 6 또는 이들 조합일 수 있다.
한편, 상기 제1 합성고무 및 제2 합성고무에 있어서, 각 고무 내 미세구조, 예컨대 1,2-비닐 결합 함량, 스티렌 결합 함량, 시스 1,4-결합 함량 및 트랜스-결합 함량은 NMR 또는 푸리에 변환 적외 분광법(FT-IR)과 같은 측정장치를 이용하여 측정할 수 있다.
일례로, NMR을 이용하는 경우, Varian VNMR 500 MHz NMR을 이용하여 1,1,2,2-테트라클로로에탄을 용매로 사용하고, solvent peak는 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐 결합, 5.1~4.5 ppm은 1,2-비닐 결합의 피크로하여 스티렌 결합 및 1,2-비닐 결합 함량을 계산하여 미세구조를 분석할 수 있다.
다른 일례로, FT-IR을 이용하는 경우 동일 셀의 이황화탄소를 블랭크로 하여 5 mg/mL의 농도로 조제한 고무의 이황화탄소 용액의 FT-IR 투과율 스펙트럼을 측정한 후, 측정 스펙트럼의 1130 cm-1부근의 최대 피크값(a, 베이스라인), 트랜스-1,4 결합을 나타내는 967 cm-1 부근의 최소 피크값(b), 1,2-비닐결합을 나타내는 911 cm-1 부근의 최소 피크값(c), 그리고 시스-1,4 결합을 나타내는 736 cm-1 부근의 최소 피크값(d)을 이용하여 각각의 함량을 구하여 미세구조를 분석할 수 있다.
충진제
본 발명의 일 실시예에 있어서, 상기 충진제는 고무성분과 혼합되어 고무 조성물의 물성을 개선시키는 역할을 하는 것으로, 구체적으로는 실리카일 수 있다.
예컨대, 상기 실리카는 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있으며, 구체적으로는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 뛰어난 습식 실리카일 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 고무 조성물은 전술한 고무성분 이외에 필요에 따라 다른 고무성분을 더 포함할 수 있으며, 이때 상기 다른 고무성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다.
상기 다른 고무성분은 일례로 천연고무 또는 합성고무일 수 있으며, 구체적인 예로 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황 분말일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있으며, 이 범위 내에서 가황 고무 조성물의 필요한 탄성률 및 강도를 확보함과 동시에 저연비성이 뛰어난 효과가 있다.
또한, 본 발명의 일 실시예에 따른 고무 조성물은 상기 충진제로 실리카가 사용되는 경우 보강성 및 저발열성 개선을 위한 실란 커플링제가 함께 사용될 수 있고, 구체적인 예로 상기 실란 커플링제는 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 바람직하게는 보강성 개선 효과를 고려할 때 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 일례로 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
상기 공정유는 고무 조성물 내에서 연화제로서 작용하는 것으로, 일례로 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있고, 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 일례로 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있고, 이 범위 내에서 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지하는 효과가 있다.
상기 노화방지제는 일례로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있고, 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예 1
20 L 오토클레이브 반응기에 n-헥산 3 kg 및 1,3-부타디엔 860 g을 투입한 뒤, n-부틸리튬 3.2 g(10 wt% in n-헥산)을 투입하고, 2,2-디(테트라하이드로퓨릴)프로판(DTHFP)을 투입하고([DTHFP]:[act. Li]=4:1 몰비) 반응기 내부온도를 60℃로 맞추고 단열승온 반응을 진행하였다. 30여분 경과 후, 1,3-부타디엔 39 g을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하고 10여분 경과 후 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)-3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)propan-1-amine)을 투입하여 15분 동안 반응시켰다([변성제]:[act. Li]=1:1몰비). 이후 에탄올을 이용하여 반응을 정지시키고, 산화방지제인 Wingstay K가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 스티렌 함량 0 중량%, 1,2-비닐 함량 80 중량%, 유리전이온도 -25℃인 용액중합 변성 부타디엔 중합체를 제조하였으며, 이후 실시예에서 시료명 HVBR-A로 명명하였다.
한편, 상기 변성 부타디엔 중합체의 스티렌 함량 및 1,2-비닐 함량은 Varian VNMR 500 MHz NMR을 이용하여 측정 및 분석하여 얻어진 값으로, 구체적으로는 측정시 1,1,2,2-테트라클로로에탄을 용매로 사용하였고, solvent peak는 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐 결합, 5.1~4.5 ppm은 1,2-비닐 결합의 피크로하여 스티렌 결합 및 1,2-비닐 결합 함량을 계산하였다.
또한, 유리전이온도는 ISO 22768:2006에 준하여 시차 주사 열량계(Differential Scanning Calorimetry, DSCQ100, TA社)를 사용하여, 질소 50 ml/min의 유통하에 -100℃에서부터 10 ℃/min으로 승온시키면서 시차 주사 열량 곡선(DSC 곡선)을 기록하고, DSC 미분 곡선의 피크톱(Inflection point)를 유리전이온도로 하였다.
제조예 2
제조예 1에 있어서, 2,2-디(테트라하이드로퓨릴)프로판(DTHFP)을 [DTHFP]:[act. Li]=2:1 몰비가 되도록 투입한 것을 제외하고는 제조예 1과 동일하게 실시하여 스티렌 함량 0 중량%, 1,2-비닐 함량 50 중량%, 유리전이온도 -54℃인 변성 부타디엔 중합체를 제조하였으며, 이후 실시예에서 시료명 HVBR-B로 명명하였다. 또한, 스티렌 함량, 1,2-비닐 함량 및 유리전이온도는 제조예 1과 동일한 방법으로 측정하였다.
제조예 3
20 L 오토클레이브 반응기에 n-헥산 3 kg 및 1,3-부타디엔 860 g을 투입한 뒤, n-부틸리튬 3.2 g(10 wt% in n-헥산)을 투입하고, 2,2-디(테트라하이드로퓨릴)프로판(DTHFP)을 투입하고(1,3-부타디엔 100 중량부 대비 0.001 중량부), 반응기 내부온도를 60℃로 맞추고 단열승온 반응을 진행하였다. 30여분 경과 후, 1,3-부타디엔 39 g을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하고 10여분 경과 후 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)-3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)propan-1-amine)을 투입하여 15분 동안 반응시켰다([변성제]:[act. Li]=1:1몰비). 이후 에탄올을 이용하여 반응을 정지시키고, 산화방지제인 Wingstay K가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 스티렌 함량 0 중량%, 1,2-비닐 결합 함량 10 중량%, 유리전이온도 -88℃인 변성 리튬 촉매화 중합체를 제조하였으며, 이후 실시예에서 시료명 LiBR-C로 명명하였다. 또한, 스티렌 함량, 1,2-비닐 함량 및 유리전이온도는 제조예 1과 동일한 방법으로 측정하였다.
비교 제조예
20 L 오토클레이브 반응기에 n-헥산 4.2 kg, 스티렌 124 g 및 1,3-부타디엔 676 g을 투입한 뒤, n-부틸리튬 4.6 g(10 wt% in n-헥산)을 투입하고, 2,2-디(테트라하이드로퓨릴)프로판(DTHFP)을 투입하고([DTHFP]:[act. Li]=0.3:1 몰비), 반응기 내부온도를 60℃로 맞추고 단열승온 반응을 진행하였다. 30여분 경과 후, 1,3-부타디엔 40 g을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하고 10여분 경과 후 변성제로 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)-3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)propan-1-amine)을 투입하여 15분 동안 반응시켰다([변성제]:[act. Li]=1:1몰비). 이후 에탄올을 이용하여 반응을 정지시키고, 산화방지제인 Wingstay K가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 스티렌 함량 15 중량%, 1,2-비닐 결합 함량 25 중량%, 유리전이온도 -63℃인 용액중합 변성 스티렌-부타디엔 공중합체를 제조하였으며, 이후 실시예에서 시료명 SSBR-D로 명명하였다. 또한, 스티렌 함량, 1,2-비닐 함량 및 유리전이온도는 제조예 1과 동일한 방법으로 측정하였다.
이하, 실시예 및 비교예에서 고무성분을 제외한 다른 성분들의 중량부는 각 실시예 및 비교예에서 사용된 고무성분 100 중량부를 기준으로하여 나타내었으며, 여기에서 고무성분은 실시예 및 비교예에서 사용된 각 고무 내 오일을 제외한 순수 고무만을 나타내는 것이다.
또한, 실시예 및 비교예에서 고무성분을 제외한 다른 성분들은 동일 물질을 사용하였으며, 커플링제는 비스(3-트리에톡시실릴프로필)테트라술피드(TESPT), 공정유는 TDAE oil, 가황촉진제는 CZ(N-시클로헥실-2-벤조티아질술펜아미드) 및 DPG(디페닐구아니딘)를 사용하였다.
실시예 1
제조예 1에서 제조된 용액중합 변성 부타디엔 고무(스티렌 함량 0 중량%, 1,2-비닐 함량 80 중량%, 유리전이온도 -25℃)(HVBR-A) 65 중량부, 미변성 네오디뮴 촉매화 부타디엔 고무(시스 1,4-결합 함량 96 중량%, 유리전이온도 -105℃)(GND45, LG 화학) 35 중량부, 실리카 95 중량부, 커플링제 7.6 중량부, 공정유 40 중량부, 산화아연 3 중량부, 스테아린산 2 중량부를 배합하여 1차 배합물을 제조하고, 여기에 황분말 1.5 중량부, 가황촉진제 2.8 중량부를 배합하여 고무 조성물을 제조하였다. 이때, 용액중합 변성 부타디엔 고무와 미변성 네오디뮴 촉매화 부타디엔 고무의 상용성 파라미터는 5.6216×10-3이었다.
실시예 2
제조예 2에서 제조된 용액중합 변성 부타디엔 고무(스티렌 함량 0 중량%, 1,2-비닐 함량 50 중량%, 유리전이온도 -54℃)(HVBR-B) 55 중량부, 미변성 네오디뮴 촉매화 부타디엔 고무(시스 1,4-결합 함량 96 중량%, 유리전이온도 -105℃)(GND45, LG 화학) 45 중량부, 실리카 120 중량부, 커플링제 6.5 중량부, 공정유 45 중량부, 산화아연 3 중량부, 스테아린산 2 중량부를 배합하여 1차 배합물을 제조하고, 여기에 황분말 1.1 중량부, 가황촉진제 4.8 중량부를 배합하여 고무 조성물을 제조하였다. 이때, 용액중합 변성 부타디엔 고무와 미변성 네오디뮴 촉매화 부타디엔 고무의 상용성 파라미터는 2.1627×10-3이었다.
실시예 3
제조예 1에서 제조된 용액중합 변성 부타디엔 고무(스티렌 함량 0 중량%, 1,2-비닐 함량 80 중량%, 유리전이온도 -25℃)(HVBR-A) 10 중량부, 변성 리튬 촉매화 부타디엔 고무(스티렌 함량 0 중량%, 1,2-비닐 결합 함량 10 중량%, 유리전이온도 -88℃)(LiBR-C) 90 중량부, 실리카 120 중량부, 커플링제 6.5 중량부, 공정유 45 중량부, 산화아연 3 중량부, 스테아린산 2 중량부를 배합하여 1차 배합물을 제조하고, 여기에 황분말 1.1 중량부, 가황촉진제 4.8 중량부를 배합하여 고무 조성물을 제조하였다. 이때, 용액중합 변성 부타디엔 고무와 변성 리튬 촉매화 부타디엔 고무의 상용성 파라미터는 4.4137×10-3이었다.
비교예 1
실시예 1에 있어서, 제조예 1에서 제조된 용액중합 변성 부타디엔 고무 (HVBR-A) 대신에 용액중합 단말단 변성 스티렌-부타디엔 고무(스티렌 함량 21 중량%, 1,2-비닐 결합 함량 50 중량%, 유리전이온도 -26℃)(F2150, LG 화학)를 사용한 것을 제외하고는 실시예 1과 동일한 방법을 통하여 고무 조성물을 제조하였다. 이때, 용액중합 단말단 변성 스티렌-부타디엔 고무와 미변성 네오디뮴 촉매화 부타디엔 고무의 상용성 파라미터 는 1.5561×10-3이었다.
비교예 2
실시예 1에 있어서, 제조예 1에서 제조된 용액중합 변성 부타디엔 고무 (HVBR-A) 대신에 용액중합 양말단 변성 스티렌-부타디엔 고무(스티렌 함량 39 중량%, 1,2-비닐 결합 함량 25 중량%, 유리전이온도 -23℃)(M3925, LG 화학)를 사용한 것을 제외하고는 실시예 1과 동일한 방법을 통하여 고무 조성물을 제조하였다. 이때, 용액중합 양말단 변성 스티렌-부타디엔 고무와 미변성 네오디뮴 촉매화 부타디엔 고무의 상용성 파라미터 는 3.8231×10-3이었다.
비교예 3
실시예 2에 있어서, 제조예 2에서 제조된 용액중합 변성 부타디엔 고무 (HVBR-B) 대신에 비교 제조예에서 제조된 용액중합 양말단 변성 스티렌-부타디엔 고무(스티렌 함량 15 중량%, 1,2-비닐 결합 함량 25 중량%, 유리전이온도 -60℃)(SSBR-D)를 사용한 것을 제외하고는 실시예 2와 동일한 방법을 통하여 고무 조성물을 제조하였다. 이때, 용액중합 양말단 변성 스티렌-부타디엔 고무와 미변성 네오디뮴 촉매화 부타디엔 고무의 상용성 파라미터 는 0.0519×10-3이었다.
실험예
상기 실시예 및 비교예에서 제조된 각 고무 조성물 및 이로부터 제조된 성형품의 물성을 비교분석하기 위하여, 내마모성 및 점탄성 특성을 각각 측정하여 그 결과를 하기 표 1 및 표 2에 나타내었다. 또한, 상기 실시예 및 비교예의 각 고무 조성물의 제조에 사용된 고무성분 및 기타성분과 각 함량도 표 1 및 표 2에 함께 나타내었다.
1) 내마모성
상기 인장특성에서와 같은 방법으로 제조된 고무시편의 내마모성을 DIN 마모 시험기를 이용하여, 마모지가 붙여진 회전 드럼(Drum)에 10 N의 하중을 부가하고, 고무 시편을 드럼의 회전 방향의 직각 방향으로 이동시킨 후, 마모된 손실무게량을 측정하였고, 비교예 1 또는 비교예 3의 손실무게량을 기준으로 지수화하여 나타내었다. 드럼의 회전 속도는 40 rpm이고, 시험 완료 시 시편의 총 이동 거리는 40 m이다. 손실무게량의 지수값이 클수록 내마모성이 우수한 것을 나타낸다.
2) 점탄성 특성
점탄성 특성은 동적 기계 분석기(TA 社 ARES G2)를 이용하여 비틀림 모드로 주파수 10 Hz, 각 측정온도(-100℃~80℃)에서 변형을 변화시켜 G"(dynamic loss modulus, E")와 tan δ를 측정하였다. 저온 0℃ tan δ의 지수값이 높은 것일수록 젖은 노면저항성(제동성능)이 우수하고, 고온 70℃ tan δ의 지수값이 높을수록 히스테리시스 손실이 적고, 회전저항성(연비성능)이 우수함을 나타낸다.
또한, 상기 동적 기계 분석기를 통하여 Temperature Sweep 시험을 진행하여 G" 변화를 측정하였으며, 이를 통하여 고무 간 상용성 차이에 의한 상분리 현상을 확인하였으며, 결과를 도 1에 나타내었다.
Figure PCTKR2020011876-appb-T000001
상기 표 1에서, 실시예 1 및 비교예 2의 물성 결과값은 비교예 1의 측정값을 기준으로 지수화하여 나타낸 것이다.
Figure PCTKR2020011876-appb-T000002
상기 표 2에서, 실시예 2 및 실시예 3의 물성 결과값은 비교예 3의 측정값을 기준으로 지수화하여 나타낸 것이다. 상기 표 1 및 표 2에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 3은 비교예 1 내지 3 대비 내마모성 및 점탄성 특성이 개선되는 것을 확인하였다.
구체적으로, 실시예 1은 비교예 1 대비 내마모성이 3% 이상 향상됨과 동시에 70℃에서의 tan δ가 7% 이상 현저하게 개선되었으며, 비교예 2 대비 0℃에서의 tan δ가 저하되긴 하였으나 내마모성은 약 17%로, 70℃에서의 tan δ은 약 11%로 큰폭으로 향상되어 내마모성과 점탄성 특성 전반적인 물성이 크게 개선되었다.
또한, 실시예 2 및 실시예 3은 비교예 3 대비 내마모성 및 점탄성 특성이 전반적으로 향상되었으며, 특히 실시예 2는 내마모성이, 실시예 3은 점탄성 특성에서 큰 개선효과를 나타내었다.
이때, 비교예 1은 이종의 합성고무를 포함하되 합성고무 간 상용성 파라미터가 본 발명에서 제시하는 범위를 벗어난 것이고, 비교예 2 및 비교예 3은 상용성 파라미터는 본 발명 제시범위 내이나 제1 합성고무로 본 발명에서 제시하는 제1 합성고무를 포함하지 않는 것이었다.
또한, 도 1에 나타난 바와 같이, 실시예 1의 경우 변곡점이 두개이나, 비교예 1은 변곡점이 1개인 것을 확인할 수 있다. 여기에서, 변곡점은 통상 유리전이온도로 판단되고, 따라서 변곡점이 두개인 것은 두개의 유리전이온도가 존재함을 나타내는 것이다. 즉, 실시예 1의 경우 두 합성고무 간 상용성 파라미터를 특정범위로 조절하여 고무 조성물 내 각 고무성분이 완전히 균일한 상태로 혼합되지 않도록 상용성을 조절함으로써 두 합성고무 간 상분리로 인하여 두개의 유리전이온도를 나타낼 수 있고, 비교예 1의 경우에는 두 합성고무 간 상용성 파라미터 상수 차가 작아 고무 조성물 내 각 고무성분이 완전히 균일한 상태로 혼합됨으로써 하나의 상을 가짐으로써 하나의 유리전이온도를 나타냄을 알 수 있다.
상기의 결과를 통하여, 실시예 1 내지 실시예 3의 경우 특정물성으로 한정된 두 합성고무를 포함하되, 두 합성고무 간 상용성 파라미터를 특정범위 이상으로 조절하여 고무 조성물 내 각 고무성분이 완전히 균일한 상태로 혼합되지 않도록 상용성을 조절함으로써 상기 두 합성고무 간 상분리로 인하여 합성고무 각각에서 발현되는 효과가 유지되어 내마모성 및 점탄성 특성이 균형 있게 우수한 반면, 비교예 1의 경우에는 두 합성고무 간 상용성 파라미터가 작아 고무 조성물 내 각 고무성분이 완전히 균일한 상태로 혼합됨으로써 상기 각 합성고무에서 발현되는 효과가 유지되지 못하는 것이고, 비교예 2 및 비교예 3은 합성고무의 물성이 본 발명에서 제시하는 물성을 충족하지 못함으로 두 합성고무간 조합이 물성 측면에서 적합하지 않아 상용성이 조절되더라도 균일하게 우수한 내마모성 및 점탄성 특성을 발현하지 못함을 확인할 수 있다.

Claims (15)

  1. 제1 합성고무; 및
    제2 합성고무를 포함하고,
    상기 제1 합성고무는 1,2-비닐 결합 함량이 50 중량% 이상이고, 적어도 일 말단에 관능기가 결합되어 있는 용액중합 변성 공액디엔계 고무이고,
    상기 제2 합성고무는 1,2-비닐 결합 함량이 50 중량% 미만인 공액디엔계 고무이며,
    상온에서 하기 수학식 1로 정의되는 상용성 파라미터(χblend)가 2.0×10-3 이상인 고무 조성물:
    [수학식 1]
    Figure PCTKR2020011876-appb-I000015
    상기 수학식 1에서,
    K는 Y-X(1-φS)이고, φs는 제1 합성고무 내 스티렌 결합 부피비이고, X는 제1 합성고무 내 1,2-비닐 결합 부피비이고, Y는 제2 합성고무 내 1,2-비닐 결합 부피비이고, XVS는 0.05650+5.65T-1이고, XBS는 0.00843+10.2T-1이며, XVB는 0.00269+1.87T-1이다.
  2. 제1항에 있어서,
    상온에서 상기 수학식 1로 정의되는 상용성 파라미터가 2.5×10-3이상인 것인 고무 조성물.
  3. 제1항에 있어서,
    상기 제1 합성고무는 스티렌 결합 함량이 0 중량%인 것인 고무 조성물.
  4. 제1항에 있어서,
    상기 제1 합성고무의 유리전이온도는 제2 합성고무의 유리전이온도 보다 높은 것인 고무 조성물.
  5. 제1항에 있어서,
    상기 제1 합성고무의 유리전이온도는 -60℃ 내지 -10℃이고, 제2 합성고무의 유리전이온도는 -110℃ 내지 -70℃인 것인 고무 조성물.
  6. 제1항에 있어서,
    상기 제2 합성고무는 희토류 금속 촉매, 전이금속 촉매 또는 알칼리금속 촉매로 촉매화된 공액디엔계 고무인 것인 고무 조성물.
  7. 제1항에 있어서,
    상기 제2 합성고무는 네오디뮴 촉매화 공액디엔계 고무 또는 리튬 촉매화 공액디엔계 고무인 것인 고무 조성물.
  8. 제1항에 있어서,
    상기 제2 합성고무는 시스 1,4-결함 함량이 96 중량% 이상이고, 1,2-비닐 결합 함량이 5 중량% 이하인 네오디뮴 촉매화 공액디엔계 고무인 것인 고무 조성물.
  9. 제1항에 있어서,
    상기 제2 합성고무는 시스 1,4-결합 함량이 10 중량% 내지 30 중량%이고, 1,2-비닐 결함 함량 15 중량% 이하인 리튬 촉매화 공액디엔계 고무인 것인 고무 조성물.
  10. 제1항에 있어서,
    상기 제2 합성고무는 적어도 일 말단에 관능기가 결합되어 있는 변성 공액디엔계 고무인 것인 고무 조성물.
  11. 제1항에 있어서,
    충진제를 더 포함하는 것인 고무 조성물.
  12. 제11항에 있어서,
    제1 합성고무 및 제2 합성고무를 포함하는 고무성분 100 중량부에 대하여 제1 합성고무를 30 중량부 내지 90 중량부; 제2 합성고무를 10 중량부 내지 90 중량부; 및 충진제를 30 중량부 내지 200 중량부로 포함하는 것인 고무 조성물.
  13. 제1항에 있어서,
    가황제를 더 포함하는 것인 고무 조성물.
  14. 제1항에 있어서,
    가황촉진제, 공정유 및 노화방지제 중에서 선택된 하나 이상의 첨가제를 더 포함하는 것인 고무 조성물.
  15. 제1항의 고무 조성물을 이용하여 제조된 성형품.
PCT/KR2020/011876 2019-09-03 2020-09-03 고무 조성물 및 이로부터 제조된 성형품 WO2021045537A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20861674.8A EP3851485B1 (en) 2019-09-03 2020-09-03 Rubber composition and molded article manufactured therefrom
CN202080005799.7A CN112912433B (zh) 2019-09-03 2020-09-03 橡胶组合物和由该橡胶组合物制造的模制品
JP2021532977A JP7322147B2 (ja) 2019-09-03 2020-09-03 ゴム組成物およびそれから製造された成形品
US17/287,790 US20210395408A1 (en) 2019-09-03 2020-09-03 Rubber Composition and Molded Article Manufactured Therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0108952 2019-09-03
KR20190108952 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021045537A1 true WO2021045537A1 (ko) 2021-03-11

Family

ID=74852136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011876 WO2021045537A1 (ko) 2019-09-03 2020-09-03 고무 조성물 및 이로부터 제조된 성형품

Country Status (6)

Country Link
US (1) US20210395408A1 (ko)
EP (1) EP3851485B1 (ko)
JP (1) JP7322147B2 (ko)
KR (1) KR102503042B1 (ko)
CN (1) CN112912433B (ko)
WO (1) WO2021045537A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880700015A (ko) * 1986-01-10 1988-02-15 아사히가세이고오교 가부시끼가이샤 고무상 폴리부타디엔 또는 부타디엔-스티렌 공중합체의 제조법
US20080289740A1 (en) * 2005-03-04 2008-11-27 Bridgestone Corporation Rubber Composition and Pneumatic Tire Using Same
KR20130071620A (ko) * 2011-12-21 2013-07-01 한국타이어 주식회사 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어
KR20150012063A (ko) * 2013-07-24 2015-02-03 주식회사 엘지화학 고무 조성물용 개질제, 이의 제조방법 및 상기 개질제를 포함하는 고무 조성물
KR20180038146A (ko) * 2016-10-06 2018-04-16 주식회사 엘지화학 고무 조성물 및 이를 포함하는 타이어

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992561A (en) * 1975-07-07 1976-11-16 The General Tire & Rubber Company Preparation of solution polymers
US5017636A (en) * 1987-10-09 1991-05-21 Japan Synthetic Rubber Co., Ltd. Rubber compositions from modified trans-polybutadiene and rubber for tires
JPH07118446A (ja) * 1993-10-22 1995-05-09 Japan Synthetic Rubber Co Ltd 熱可塑性エラストマー組成物
US6084022A (en) * 1997-09-22 2000-07-04 The Goodyear Tire & Rubber Company Tire tread compositions containing asymmetrically tin-coupled polybutadiene rubber
US6390163B1 (en) * 1998-10-09 2002-05-21 The Goodyear Tire & Rubber Company Tread rubber for high traction tires
US20090306269A1 (en) * 2006-07-06 2009-12-10 Bridgestone Corporation Rubber composition and pneumatic tire using the same
JP2010254852A (ja) * 2009-04-27 2010-11-11 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
EP2712890B1 (en) 2011-05-30 2016-06-29 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, and pneumatic tire
JP5153961B1 (ja) * 2011-11-29 2013-02-27 住友ゴム工業株式会社 空気入りタイヤの製造方法および空気入りタイヤ
EP2960288B1 (en) 2013-02-25 2019-10-30 The Yokohama Rubber Co., Ltd. Rubber composition for tire tread, and pneumatic tire
KR101508465B1 (ko) * 2013-10-17 2015-04-14 주식회사 엘지화학 말단 기능성 공액 디엔계 중합체 및 이의 제조방법
JP2015189970A (ja) 2014-03-31 2015-11-02 宇部興産株式会社 ゴム組成物
KR101635382B1 (ko) * 2014-04-22 2016-07-04 한국타이어 주식회사 런플랫 타이어용 사이드월 인서트 고무 조성물 및 이를 이용하여 제조한 타이어
JP6030697B1 (ja) * 2015-04-21 2016-11-24 住友ゴム工業株式会社 タイヤ外層用ゴム組成物及び空気入りタイヤ
US9441098B1 (en) 2015-11-18 2016-09-13 The Goodyear Tire & Rubber Company Tire with tread for low temperature performance and wet traction
KR102034811B1 (ko) * 2016-11-23 2019-10-21 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법
JP7428463B2 (ja) * 2017-05-09 2024-02-06 住友ゴム工業株式会社 タイヤトレッドおよびタイヤ
CN110869433A (zh) 2017-07-19 2020-03-06 住友橡胶工业株式会社 胎面用橡胶组合物和充气轮胎
JP6969336B2 (ja) 2017-12-06 2021-11-24 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7147272B2 (ja) * 2018-05-29 2022-10-05 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880700015A (ko) * 1986-01-10 1988-02-15 아사히가세이고오교 가부시끼가이샤 고무상 폴리부타디엔 또는 부타디엔-스티렌 공중합체의 제조법
US20080289740A1 (en) * 2005-03-04 2008-11-27 Bridgestone Corporation Rubber Composition and Pneumatic Tire Using Same
KR20130071620A (ko) * 2011-12-21 2013-07-01 한국타이어 주식회사 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어
KR20150012063A (ko) * 2013-07-24 2015-02-03 주식회사 엘지화학 고무 조성물용 개질제, 이의 제조방법 및 상기 개질제를 포함하는 고무 조성물
KR20180038146A (ko) * 2016-10-06 2018-04-16 주식회사 엘지화학 고무 조성물 및 이를 포함하는 타이어

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED POLYMER SCIENCE, vol. 51, no. 6, pages 1053 - 1062
See also references of EP3851485A4

Also Published As

Publication number Publication date
CN112912433B (zh) 2023-05-26
EP3851485B1 (en) 2023-06-28
US20210395408A1 (en) 2021-12-23
JP2022511924A (ja) 2022-02-01
EP3851485A4 (en) 2022-01-05
KR102503042B1 (ko) 2023-02-23
CN112912433A (zh) 2021-06-04
EP3851485A1 (en) 2021-07-21
JP7322147B2 (ja) 2023-08-07
KR20210028133A (ko) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019078459A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2019103383A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2019088634A1 (ko) 공액디엔 중합용 촉매의 제조방법, 촉매 및 이를 이용한 공액디엔계 중합체의 제조방법
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021086039A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이의 제조방법
WO2019066396A2 (ko) 고무 조성물
WO2019083173A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019083092A1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
WO2018008911A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021010718A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2016209046A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2016209042A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2021045537A1 (ko) 고무 조성물 및 이로부터 제조된 성형품
WO2019156418A1 (ko) 고무 조성물
WO2019221391A1 (ko) 고무 조성물
KR20170074681A (ko) 고무 조성물 및 이로부터 제조된 타이어
WO2021054785A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2018008912A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2022065902A1 (ko) 네오디뮴 촉매화 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020130741A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2019093579A1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
WO2018105920A1 (ko) 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
WO2021060942A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2016209043A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020861674

Country of ref document: EP

Effective date: 20210416

ENP Entry into the national phase

Ref document number: 2021532977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE