WO2021044883A1 - 全固体電池用負極および全固体電池 - Google Patents
全固体電池用負極および全固体電池 Download PDFInfo
- Publication number
- WO2021044883A1 WO2021044883A1 PCT/JP2020/031758 JP2020031758W WO2021044883A1 WO 2021044883 A1 WO2021044883 A1 WO 2021044883A1 JP 2020031758 W JP2020031758 W JP 2020031758W WO 2021044883 A1 WO2021044883 A1 WO 2021044883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- solid
- state battery
- solid electrolyte
- titanium oxide
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
Definitions
- the present invention relates to an all-solid-state battery having excellent output characteristics and a negative electrode for an all-solid-state battery that can constitute the all-solid-state battery.
- lithium secondary batteries that can meet this demand, especially lithium ion secondary batteries, use lithium-containing composite oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2) as the positive electrode active material.
- Graphite or the like is used as the negative electrode active material, and an organic electrolytic solution containing an organic solvent and a lithium salt is used as the non-aqueous electrolyte.
- the ratio of the average particle size based on the electron microscope observation to the average particle size based on the cumulative particle size distribution based on the volume is a specific value. It is proposed to use the following lithium transition metal composite oxide having a layered structure containing nickel as the positive electrode active material.
- the organic electrolytic solution used in the lithium ion secondary battery contains an organic solvent which is a flammable substance, the organic electrolytic solution abnormally generates heat when an abnormal situation such as a short circuit occurs in the battery. there is a possibility. Further, with the recent increase in energy density of lithium ion secondary batteries and the increasing tendency of the amount of organic solvent in organic electrolytic solutions, the safety and reliability of lithium ion secondary batteries are further required.
- an all-solid-state lithium secondary battery (all-solid-state battery) that does not use an organic solvent is drawing attention.
- the all-solid-state battery uses a molded body of a solid electrolyte that does not use an organic solvent instead of the conventional organic solvent-based electrolyte, and has high safety without the risk of abnormal heat generation of the solid electrolyte.
- Patent Document 2 proposes a technique for increasing the capacity of an all-solid-state battery at the time of high-current discharge by using a positive electrode active material and a negative electrode active material having a specific surface area and an electric capacity satisfying a specific relationship.
- Patent Document 3 an electrode using lithium titanate as an active material, which has a specific specific surface area and whose average particle size is adjusted so as to have a specific relationship with the average particle size of solid electrolyte particles. Attempts have been made to improve the contact between the active material and the solid electrolyte particles and to improve the battery characteristics of the all-solid-state battery.
- JP-A-2017-188445 Japanese Unexamined Patent Publication No. 2003-187876 Japanese Unexamined Patent Publication No. 2012-243644
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an all-solid-state battery having excellent output characteristics and a negative electrode for an all-solid-state battery that can constitute the all-solid-state battery.
- the negative electrode for an all-solid-state battery of the present invention has a molded body of a negative electrode mixture containing a negative electrode active material, a solid electrolyte, and a conductive auxiliary agent, and the negative electrode active material includes a primary particle diameter D p and a particle diameter D. greater than the ratio D p / D 50 of 0.6 and 50, and a specific surface area of which is characterized by containing particles of lithium-titanium oxide is 2m 2 / g or more.
- the all-solid-state battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode, and has the negative electrode for the all-solid-state battery of the present invention as the negative electrode. It is a feature.
- an all-solid-state battery having excellent output characteristics and a negative electrode for an all-solid-state battery that can constitute the all-solid-state battery it is possible to provide an all-solid-state battery having excellent output characteristics and a negative electrode for an all-solid-state battery that can constitute the all-solid-state battery.
- FIG. 2 is a cross-sectional view taken along the line II of FIG.
- the negative electrode for an all-solid-state battery of the present invention (hereinafter, may be simply referred to as “negative electrode”) contains lithium titanium oxide as a negative electrode active material.
- Lithium-titanium oxide is known as a negative electrode active material for all-solid-state batteries having a solid electrolyte and lithium-ion secondary batteries having an organic electrolyte, but those currently in use have aggregated fine primary particles. It is a secondary particle.
- an active material for the electrodes (positive electrode and negative electrode) of an all-solid-state battery, an active material, a solid electrolyte, a conductive auxiliary agent, etc. are mixed without adding a solvent to form an electrode mixture (positive electrode mixture or negative electrode mixture), and this is added. It may be manufactured through a process of press forming into a molded body. When secondary particles of lithium titanium oxide are used as an active material, the secondary particles are often broken into primary particles when the electrode mixture (negative electrode mixture) is formed.
- the molded body can be formed while maintaining this state as much as possible, so that the inside of the negative electrode ( The electron conductivity and ionic conductivity in the molded body of the negative electrode mixture are improved, but the primary particles desorbed from the secondary particles during the above-mentioned molding maintain contact with the solid electrolyte and the conductive auxiliary agent. It is presumed that it is difficult to drip.
- lithium titanium oxide is a material having low conductivity, it is highly possible that the primary particles desorbed from the secondary particles are not involved in the charge / discharge reaction of the battery.
- the all-solid-state battery having the negative electrode used in the above has a large resistance value (DCR) and is inferior in output characteristics.
- lithium titanium having a ratio D p / D 50 between the primary particle diameter D p and the particle diameter D 50 is larger than 0.6 and a specific surface area of 2 m 2 / g or more.
- oxide particles which made it possible to construct an all-solid-state battery with excellent output characteristics.
- the particle size D 50 of the lithium titanium oxide particles is the particle size at a cumulative frequency of 50% on a volume basis, and when the lithium titanium oxide particles are present as secondary particles, it means the secondary particle size. ..
- the ratio D p / D 50 of the primary particle diameter D p and the particle diameter D 50 of the lithium titanium oxide particles is larger than 0.6, the degree of aggregation of the primary particles is small and the secondary particles are not formed. It means that the proportion of primary particles present in is high. That is, since most of the lithium titanium oxide particles satisfying D p / D 50 > 0.6 are primary particles, when the negative electrode mixture containing this is formed into a molded body by press molding or the like, as described above. By desorbing from the secondary particles, it is considered that particles that are not in contact with the solid electrolyte or the conductive auxiliary agent are unlikely to be generated.
- the primary particles of ordinary lithium titanium oxide have a relatively high surface smoothness, but the lithium titanium oxide particles according to the present invention have a specific surface area of 2 m 2 / g or more, and the surface is rough and solid. The contact state with the electrolyte and the conductive auxiliary agent is easily maintained.
- the negative electrode of the present invention can form an all-solid-state battery having excellent output characteristics by each of the above actions by lithium titanium oxide particles having a specific D p / D 50 and a specific surface area.
- the negative electrode of the present invention has a molded body of a negative electrode mixture containing particles of lithium titanium oxide which is a negative electrode active material, a solid electrolyte, a conductive auxiliary agent, and the like. Examples thereof include a negative electrode having a structure in which the molded body and the current collector are integrated.
- lithium titanium oxide examples include those represented by the following general composition formula (1).
- M 1 is at least one element selected from the group consisting of Na, Mg, K, Ca, Sr and Ba
- M 2 is Al, V, Cr, Fe
- It is at least one element selected from the group consisting of Co, Ni, Zn, Ym, Zr, Nb, Mo, Ta and W, and 0 ⁇ a ⁇ 1/3, 0 ⁇ b ⁇ 2/3.
- a part of Li site may be substituted with an element M 1.
- a representing the ratio of the element M 1 is preferably less than 1/3.
- Li does not have to be substituted with the element M 1 , so that a representing the ratio of the element M 1 may be 0.
- the element M 2 is a component for enhancing the electron conductivity of the lithium titanium oxide, and b representing the ratio of the element M 2 is 0.
- ⁇ b ⁇ 2/3 the effect of improving the electron conductivity can be satisfactorily ensured.
- the ratio D p / D 50 of the primary particle diameter D p and the particle diameter D 50 in the lithium titanium oxide particles is a viewpoint of increasing the ratio of the primary particles so that a battery having excellent output characteristics can be constructed. Therefore, it is preferably larger than 0.6 and preferably 0.8 or more. Since all the lithium titanium oxide particles may be primary particles, the preferable upper limit value of D p / D 50 is 1.
- the primary particle size (average particle size of the primary particles) Dp of the lithium titanium oxide particles is preferably large in order to reduce the number of contact points because the contact resistance between the lithium titanium oxide particles is large. .. Specifically, Dp is preferably 0.7 ⁇ m or more, and more preferably 1.2 ⁇ m or more. The upper limit of Dp of the lithium titanium oxide particles is about 10 ⁇ m.
- the particle size D 50 of the lithium titanium oxide particles may be in the range where D p / D 50 satisfies the above values.
- Particles the primary particle diameter D p of the particles of the lithium titanium oxide referred to herein using a scanning electron microscope (SEM), the image observed by the 10000-fold particles of lithium-titanium oxides, the contour can be confirmed Is a value obtained by selecting 50 particles, measuring the particle size on the major axis side of the selected particles, and calculating the average value of all the particles.
- SEM scanning electron microscope
- the particle size D 50 of the lithium titanium oxide particles referred to in the present specification is in a state of being dispersed in a medium in which the particles are not dissolved by using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA, Ltd.). It is a value obtained as a particle size at a cumulative frequency of 50% on a volume basis.
- D 50 and an average particle diameter of the various particles other than particles of the lithium titanium oxide described herein is also a value determined by this method.
- the specific surface area of the lithium-titanium oxide particles is 2 m 2 / g or more from the viewpoint of making it possible to maintain good contact with the solid electrolyte and the conductive auxiliary agent and to construct a battery having excellent output characteristics. is there.
- the upper limit of the specific surface area of the lithium titanium oxide is not particularly limited, but is usually about 20 m 2 / g.
- the specific surface area of the lithium titanium oxide particles referred to in the present specification is a surface area measured and calculated using the BET formula, which is a theoretical formula for adsorption of multiple molecular layers, and is the specific surface area of the surface of the active material and the fine pores. Is. Specifically, it is a value obtained as a BET specific surface area using a specific surface area measuring device by a nitrogen adsorption method (for example, "Macsorb HM model-1201" manufactured by Mountain Co., Ltd.).
- a 0.1 g sample is taken from the molded product of the negative electrode mixture, washed twice with 200 cc of water, left in 200 cc of water for 12 hours, and the supernatant is discarded leaving a portion that settles in the water. After repeating the series of operations from washing with water to discarding the supernatant 10 times, the obtained precipitate was dried at 120 ° C. for 2 hours and further dried at 60 ° C. for 12 hours to form a molded product of a negative electrode mixture. Obtain the lithium titanium oxide inside.
- the lithium titanium oxide particles having D p / D 50 and the specific surface area satisfying the above values can be obtained by crushing the secondary particles of the lithium titanium oxide into primary particles.
- a planetary ball mill can be used for crushing the lithium titanium oxide.
- the specific surface area of the titanium oxide particles can be adjusted to the above value.
- the particle size of the primary particles of lithium titanium oxide constituting the secondary particles does not change significantly even after the crushing treatment. Therefore, when adjusting D p / D 50 to the above value, the solution is used. it may be primarily adjusting the D 50 of the particles of the lithium titanium oxide by grinding process.
- a negative electrode active material other than lithium titanium oxide used in lithium ion secondary batteries and the like can also be used together with lithium titanium oxide.
- the proportion of the negative electrode active material other than the lithium titanium oxide in the total amount of the negative electrode active material is preferably 30% by mass or less.
- the solid electrolyte of the negative electrode is not particularly limited as long as it has lithium ion conductivity, and for example, a sulfide-based solid electrolyte, a hydride-based solid electrolyte, an oxide-based solid electrolyte, or the like can be used.
- the sulfide-based solid electrolyte such as Li 2 S-P 2 S 5 , Li 2 S-SiS 2, Li 2 S-P 2 S 5 -GeS 2, Li 2 S-B 2 S 3 based glass
- Li 10 GeP 2 S 12 (LGPS system) and Li 6 PS 5 Cl (algirodite system) which have been attracting attention in recent years as having high lithium ion conductivity, can also be used.
- an algyrodite-based material having particularly high lithium ion conductivity and high chemical stability is preferably used.
- Examples of the hydride-based solid electrolyte include a solid solution of LiBH 4 , LIBH 4 and the following alkali metal compound (for example, one having a molar ratio of LiBH 4 to the alkali metal compound of 1: 1 to 20: 1). Can be mentioned.
- Examples of the alkali metal compound in the solid solution include lithium halide (LiI, LiBr, LiF, LiCl, etc.), rubidium halide (RbI, RbBr, RbiF, RbCl, etc.), and cesium halide (CsI, CsBr, CsF, CsCl, etc.). , At least one selected from the group consisting of lithium amide, rubidium amide and cesium amide.
- oxide-based solid electrolyte examples include Li 7 La 3 Zr 2 O 12 , LiTi (PO 4 ) 3 , LiGe (PO 4 ) 3 , and LiLaTIO 3 .
- the solid electrolyte one or more of the above-exemplified ones can be used.
- the lithium ion conductivity is high and the negative electrode mixture has a function of enhancing the moldability. Therefore, it is more preferable to use a sulfide-based solid electrolyte.
- the D p value of the lithium titanium oxide is almost the same as that before pressing, but among the above-exemplified solid electrolytes, the sulfide-based solid electrolyte is used. Is particularly soft, so by using this for the negative electrode, cracking of the primary particles of lithium-titanium oxide can be better suppressed even during pressurization to form a molded body of the negative electrode mixture, and Dp. This is preferable because it makes it possible to suppress changes.
- a carbon material such as graphite or carbon black can be used.
- the negative electrode mixture may or may not contain a binder.
- a fluororesin such as polyvinylidene fluoride (PVDF) can be used as the binder.
- a current collector When a current collector is used for the negative electrode, copper, nickel, stainless steel, aluminum foil, punching metal, net, expanded metal, foam metal; carbon sheet; or the like can be used as the current collector. ..
- the negative electrode is prepared by mixing particles of lithium titanium oxide as an active material, a solid electrolyte, a conductive additive, etc. without using a solvent, for example, to prepare a negative electrode mixture, and molding this into pellets or the like. Can be manufactured. Further, the molded body of the negative electrode mixture obtained as described above may be bonded to the current collector to form a negative electrode.
- the negative electrode mixture and the solvent are mixed to prepare a negative electrode mixture-containing composition, which is applied onto a substrate such as a current collector or a solid electrolyte layer facing the negative electrode, dried, and then pressed.
- a molded body of the negative electrode mixture may be formed.
- sulfide-based solid electrolytes and hydride-based solid electrolytes cause a chemical reaction with a very small amount of water, and are therefore represented by hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene. It is preferable to use a non-polar aproton solvent. In particular, it is more preferable to use a super dehydration solvent having a water content of 0.001% by mass (10 ppm) or less.
- fluorosolvents such as “Bertrel (registered trademark)” manufactured by Mitsui Dupont Fluorochemical, “Zeorolla (registered trademark)” manufactured by Nippon Zeon, and “Novec (registered trademark)” manufactured by Sumitomo 3M , Dichloromethane, diethyl ether and other non-aqueous organic solvents can also be used.
- the content of the negative electrode active material is preferably 50 to 80% by mass
- the content of the solid electrolyte is preferably 20 to 50% by mass
- the content of the conductive auxiliary agent is preferable.
- the amount is preferably 0.1 to 10% by mass.
- the content thereof is preferably 0.1 to 10% by mass.
- the thickness of the molded body of the negative electrode mixture is preferably 50 to 1000 ⁇ m.
- the negative electrode mixture molded body has a density (mass per unit area of the negative electrode mixture molded body) by using particles of lithium titanium oxide having D p / D 50 and a specific surface area satisfying the above values. (Calculated from the thickness) can be increased to 2.0 g / cm 3 or more, which makes it possible to increase the capacity and energy density of the all-solid-state battery. Since the molded body of the negative electrode mixture does not need to be a porous body like the negative electrode of a battery having an organic electrolytic solution, the upper limit of the density is calculated from the density of each material constituting the negative electrode mixture. It becomes the value to be (theoretical density).
- the all-solid-state battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode, and the negative electrode is the negative electrode for the all-solid-state battery of the present invention.
- FIG. 1 shows a cross-sectional view schematically showing an example of the all-solid-state battery of the present invention.
- the all-solid-state battery 1 shown in FIG. 1 has a positive electrode 10, a negative electrode 20, and a positive electrode 10 and a negative electrode in an outer body formed of an outer can 40, a sealing can 50, and a resin gasket 60 interposed between them.
- a solid electrolyte layer 30 interposed between the 20 and 20 is enclosed.
- the sealing can 50 is fitted to the opening of the outer can 40 via a gasket 60, and the opening end of the outer can 40 is tightened inward, whereby the gasket 60 comes into contact with the sealing can 50.
- the opening of the outer can 40 is sealed, and the inside of the element has a sealed structure.
- Stainless steel can be used for the outer can and the sealing can.
- polypropylene, nylon, etc. can be used as the material of the gasket, and if heat resistance is required in relation to the application of the battery, tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), etc. can be used.
- PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
- a glass hermetic seal can be used for the sealing.
- FIGS. 2 and 3 show drawings schematically showing another example of the all-solid-state battery of the present invention.
- FIG. 2 is a plan view of the all-solid-state battery
- FIG. 3 is a sectional view taken along line II of FIG.
- an electrode body 200 composed of a positive electrode, a solid electrolyte layer, and a negative electrode of the present invention is housed in a laminated film exterior body 500 composed of two metal laminated films.
- the laminated film exterior body 500 is sealed at the outer peripheral portion thereof by heat-sealing the upper and lower metal laminated films.
- each layer constituting the laminated film exterior body 500, and the positive electrode, the negative electrode, and the separator constituting the electrode body are not shown separately.
- the positive electrode of the electrode body 200 is connected to the positive electrode external terminal 300 in the battery 100, and although not shown, the negative electrode of the electrode body 200 is also connected to the negative electrode external terminal 400 in the battery 100. There is. Then, one end side of the positive electrode external terminal 300 and the negative electrode external terminal 400 is pulled out to the outside of the laminated film exterior body 500 so that it can be connected to an external device or the like.
- the positive electrode of an all-solid-state battery contains a positive electrode active material and usually contains a solid electrolyte.
- the positive electrode active material is not particularly limited as long as it is a positive electrode active material used in a conventionally known lithium ion secondary battery, that is, an active material capable of storing and releasing Li ions.
- Specific examples of the positive electrode active material include LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al. , Sn, Sb, In, Nb, Mo, W, Y, Ru and Rh, which is at least one element selected from the group consisting of, and is represented by 0.01 ⁇ x ⁇ 0.5).
- manganese complex oxide Li x Mn (1-y -x) Ni y M z O (2-k) F l (although, M is, Co, Mg, Al, B , Ti, V, Cr, Fe, Cu , Zn, Zr, Mo, Sn, Ca, Sr and W, at least one element selected from the group consisting of 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ z.
- LiCo 1-x M x O 2 (where M is Al.
- Mg Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba, which is at least one element selected from the group consisting of 0 ⁇ x ⁇ 0.5.
- LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn. , Sb and Ba, at least one element selected from the group consisting of LiM 1-x N x PO 4 (where M is), a lithium nickel composite oxide represented by 0 ⁇ x ⁇ 0.5).
- N is Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba.
- solid electrolyte of the positive electrode one or more of the same solid electrolytes as those exemplified above can be used as the solid electrolyte that can be used for the negative electrode.
- a layer (positive electrode mixture layer) containing a positive electrode active material, a solid electrolyte, and a conductive additive or a binder added as needed is provided on one side of the current collector or.
- a structure formed on both sides or a molded body (positive electrode mixture molded body) obtained by pressure-molding the positive electrode mixture into pellets or the like can be used.
- binder for the positive electrode for example, a fluororesin such as polyvinylidene fluoride (PVDF) can be used.
- a carbon material such as carbon black can be used.
- a metal foil such as aluminum or stainless steel, punching metal, net, expanded metal, foam metal; carbon sheet; etc. can be used as the current collector.
- a positive electrode for example, in the case of a positive electrode having a current collector, the positive electrode active material, a solid electrolyte, and a conductive auxiliary agent and a binder added as needed are dispersed in a solvent such as xylene.
- the prepared positive electrode mixture-containing composition (paste, slurry, etc.) is applied to the current collector, dried, and if necessary, pressure-molded by calendering or the like to form a positive electrode on the surface of the current collector.
- a method of forming a layer of the agent (positive electrode mixture layer) can be adopted.
- the solvent used for the positive electrode mixture-containing composition it is desirable to select a solvent that does not easily deteriorate the solid electrolyte, as with the solvent used for the negative electrode mixture-containing composition, and as the solvent for the negative electrode mixture-containing composition. It is preferable to use various solvents exemplified above, and it is particularly preferable to use a super-dehydrated solvent having a water content of 0.001% by mass (10 ppm) or less.
- a positive electrode composed of a molded body of a positive electrode mixture a positive electrode mixture prepared by mixing a positive electrode active material, a solid electrolyte, a conductive auxiliary agent added as needed, a binder, and the like is used. It can be formed by compressing by pressure molding or the like.
- the content of the positive electrode active material is preferably 50 to 90% by mass
- the content of the solid electrolyte is preferably 10 to 50% by mass
- the content of the binder is preferable.
- the amount is preferably 0.1 to 10% by mass.
- the positive electrode mixture contains a conductive auxiliary agent, the content thereof is preferably 0.1 to 10% by mass.
- the thickness of the positive electrode mixture layer and the thickness of the positive electrode mixture molded body in the positive electrode having the current collector are preferably 50 to 1000 ⁇ m.
- Solid electrolyte layer As the solid electrolyte in the solid electrolyte layer of the all-solid-state battery, one or more of the same ones as those exemplified above can be used as the solid electrolyte of the negative electrode. However, in order to improve the battery characteristics, it is desirable to contain a sulfide-based solid electrolyte, and it is more desirable to contain the sulfide-based solid electrolyte in all of the positive electrode, the negative electrode, and the solid electrolyte layer.
- the solid electrolyte layer may have a porous body such as a resin non-woven fabric as a support.
- the solid electrolyte layer is a method of compressing the solid electrolyte by pressure molding or the like; a composition for forming a solid electrolyte layer prepared by dispersing the solid electrolyte in a solvent is applied onto a base material, a positive electrode, and a negative electrode, and dried. If necessary, it can be formed by a method of performing pressure molding such as press processing: or the like.
- the solvent used for the composition for forming the solid electrolyte layer it is desirable to select a solvent that does not easily deteriorate the solid electrolyte, like the solvent used for the composition containing the negative electrode mixture, and the solvent for the composition containing the negative electrode mixture. It is preferable to use various solvents exemplified above, and it is particularly preferable to use a super-dehydrating solvent having a water content of 0.001% by mass (10 ppm) or less.
- the thickness of the solid electrolyte layer is preferably 100 to 200 ⁇ m.
- the positive electrode and the negative electrode can be used in a battery in the form of a laminated electrode body laminated via a solid electrolyte layer or a wound electrode body in which the laminated electrode body is wound.
- the electrode body When forming the electrode body, it is preferable to perform pressure molding in a state where the positive electrode body, the negative electrode body, and the solid electrolyte layer are laminated from the viewpoint of increasing the mechanical strength of the electrode body.
- the all-solid-state battery has an outer body composed of an outer can, a sealing can, and a gasket as shown in FIG. 1, that is, a form generally called a coin-type battery or a button-type battery.
- an exterior body made of a resin film or a metal-resin laminate film as shown in FIGS. 2 and 3
- metal outer cans having a bottomed cylinder (cylindrical or square cylinder).
- an exterior body having a sealing structure for sealing the opening thereof.
- Example 1 (Formation of solid electrolyte layer) A sulfide-based solid electrolyte (Li 6 PS 5 Cl): 80 g was placed in a powder molding die having a diameter of 10 mm, and pressure molding was performed using a press to form a solid electrolyte layer.
- the lithium titanate particles, the sulfide-based solid electrolyte, and graphite powder as a conductive auxiliary agent are mixed at a mass ratio of 60: 8.5: 31.5 and kneaded well to prepare a negative electrode mixture.
- a negative electrode mixture was prepared.
- the negative electrode mixture 15 mg was put onto the solid electrolyte layer in the powder molding die, pressure molding was performed using a press machine, and the negative electrode mixture molded body was placed on the solid electrolyte layer. A negative electrode was formed.
- the Dp of lithium titanate in the negative electrode mixture molded body after the pressure molding was 1.3 ⁇ m, which was the same as that before the pressure molding.
- Laminate film A negative electrode current collector foil (SUS foil) and a counter electrode current collector foil (SUS foil) are placed laterally on the inner surface of the aluminum laminate film that constitutes the exterior body, with a certain distance between them. I pasted them side by side.
- Each of the current collector foils includes a main body portion facing the negative electrode side surface or the counter electrode side surface of the laminated electrode body, and a negative electrode external terminal 400 and a counter electrode external terminal 300 protruding from the main body portion toward the outside of the battery. The one cut into a shape having a portion was used.
- the laminated electrode body is placed on the negative electrode current collecting foil of the laminated film outer body, and the laminated electrode body is wrapped with the laminated film outer body so that the counter electrode current collecting foil is arranged on the counter electrode of the laminated electrode body.
- the remaining three sides of the laminated film exterior body were sealed by heat fusion under vacuum to obtain a model cell.
- Example 2 Except for changing the rotational speed of the planetary ball mill performs the disintegration process of the secondary particles of the lithium titanate in the same manner as in Example 1, D p: 1.3 ⁇ m, D 50: in 1.86 ⁇ m, D p / Lithium titanate for a negative electrode active material having a D 50 : 0.70 and a specific surface area of 4.19 m 2 / g was obtained. Then, a model cell was produced in the same manner as in Example 1 except that the lithium titanate particles were used. The Dp of lithium titanate in the negative electrode mixture molded body after the pressure molding was 1.3 ⁇ m, which was the same as that before the pressure molding.
- Example 3 Except for changing the rotational speed of the planetary ball mill performs the disintegration process of the secondary particles of the lithium titanate in the same manner as in Example 1, D p: 1.3 ⁇ m, D 50: in 2.02 ⁇ m, D p / Lithium titanate for a negative electrode active material having a D 50 : 0.64 and a specific surface area of 4.00 m 2 / g was obtained. Then, a model cell was produced in the same manner as in Example 1 except that the lithium titanate particles were used. The Dp of lithium titanate in the negative electrode mixture molded body after the pressure molding was 1.3 ⁇ m, which was the same as that before the pressure molding.
- Comparative Example 1 Except that D 50 is used as an anode active material without crushing the secondary particles of the lithium titanate of 7.3 ⁇ m was prepared model cells in the same manner as in Example 1.
- the secondary particles of lithium titanate used as the negative electrode active material had D p : 0.5 ⁇ m, D p / D 50 : 0.07, and a specific surface area of 10.90 m 2 / g. ..
- the Dp of lithium titanate in the negative electrode mixture molded body after the pressure molding was 0.5 ⁇ m, which was the same as that before the pressure molding.
- Comparative Example 2 Except that D 50 is used as an anode active material without crushing the secondary particles of the lithium titanate of 4.53 ⁇ m was prepared model cells in the same manner as in Example 1.
- the secondary particles of lithium titanate used as the negative electrode active material had D p : 0.8 ⁇ m, D p / D 50 : 0.18, and a specific surface area: 2.50 m 2 / g. ..
- the Dp of lithium titanate in the negative electrode mixture molded body after the pressure molding was 0.8 ⁇ m, which was the same as that before the pressure molding.
- Comparative Example 3 A model cell was prepared in the same manner as in Example 1 except that the secondary particles of lithium titanate having a D 50 of 5.53 ⁇ m were used as the negative electrode active material without being crushed.
- the secondary particles of lithium titanate used as the negative electrode active material had D p : 2.5 ⁇ m, D p / D 50 : 0.45, and a specific surface area: 2.20 m 2 / g. ..
- the Dp of lithium titanate in the negative electrode mixture molded body after the pressure molding was 2.5 ⁇ m, which was the same as that before the pressure molding.
- each model cell is charged with a constant current at a current value of 0.05 C until the voltage reaches 0.38 V in a pressurized state (1 t / cm 2), and then a current value at a voltage of 0.38 V. The voltage was charged at a constant voltage until the voltage became 0.01 C, and then discharged to 1.88 V at 0.05 C.
- each model cell is constantly charged with a current value of 0.05 C until the voltage reaches 0.38 V, and then charged with a voltage of 0.38 V until the current value reaches 0.01 C.
- the battery was discharged until the charging depth (SOC) reached 50% at a current value of 0.05 C, and then the battery was paused for 1 hour.
- SOC charging depth
- a voltage was obtained, and DCR was calculated from that value. The smaller the DCR obtained by this method, the better the output characteristics of the model cell (the capacity at the time of high current discharge is large), and the negative electrode of the model cell can form an all-solid-state battery with excellent output characteristics. I can say.
- Table 1 shows the values of D p / D 50 and the specific surface area of the lithium titanate particles used for the negative electrodes of Examples and Comparative Examples, and the above-mentioned evaluation results.
- the "DCR" of the model cell in Table 1 is represented by a relative value when the value of Example 2 is 100.
- the model cells having the negative electrodes of Examples 1 to 3 using the particles of lithium titanium oxide (lithium titanate) having an appropriate D p / D 50 and specific surface area value as the negative electrode active material are The DCR value was small and it had excellent output characteristics.
- the model cells having the negative electrodes of Comparative Examples 1 to 3 using lithium titanium oxide particles (secondary particles) having an inappropriate D p / D 50 as the negative electrode active material have a large DCR value and output.
- the characteristics were inferior.
- the specific surface area of the lithium titanium oxide particles used in Comparative Examples 1 to 3 is relatively large, but this is not due to the rough surface condition of the primary particles, but the secondary particles in which the primary particles are aggregated. This is because these large specific surface areas are due to the fact that lithium titanium oxide particles (primary particles contained in the secondary particles and primary particles desorbed from the secondary particles) and solid electrolytes and conductive aids are present. It is considered that it does not contribute to the improvement of contact with the agent.
- the present invention can be implemented in forms other than the above, as long as the gist of the present invention is not deviated.
- the embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments.
- the scope of the present invention shall be construed in preference to the description of the appended claims over the description of the specification above, and all modifications within the scope of the claims shall be within the scope of the claims. included.
- the all-solid-state battery of the present invention can be applied to the same applications as conventionally known secondary batteries, but has excellent heat resistance because it has a solid electrolyte instead of an organic electrolyte, and has a high temperature. It can be preferably used for applications that are exposed to.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
出力特性に優れた全固体電池、および前記全固体電池を構成し得る全固体電池用負極を提供する。 本発明の全固体電池用負極は、負極活物質、固体電解質および導電助剤を含有する負極合剤の成形体を有しており、前記負極活物質として、一次粒子径Dpと粒子径D50との比Dp/D50が0.6より大きく、かつ比表面積が2m2/g以上であるリチウムチタン酸化物の粒子を含有していることを特徴とするものである。また、本発明の全固体電池は、正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、前記負極として本発明の全固体電池用負極を有することを特徴とするものである。
Description
本発明は、出力特性に優れた全固体電池、および前記全固体電池を構成し得る全固体電池用負極に関するものである。
近年、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型・軽量で、かつ高容量・高エネルギー密度の二次電池が必要とされるようになってきている。
現在、この要求に応え得るリチウム二次電池、特にリチウムイオン二次電池では、正極活物質にコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)などのリチウム含有複合酸化物が用いられ、負極活物質に黒鉛などが用いられ、非水電解質として有機溶媒とリチウム塩とを含む有機電解液が用いられている。
そして、リチウムイオン二次電池の適用機器の更なる発達に伴って、リチウムイオン二次電池の更なる長寿命化・高容量化・高エネルギー密度化など、各種特性の向上が求められている。
リチウムイオン二次電池における特性向上にあたっては正極活物質の改良例などがあり、例えば特許文献1では、体積基準による累積粒度分布による平均粒子径に対する電子顕微鏡観察に基づく平均粒子径の比を特定値以下とした、ニッケルを含む層状構造のリチウム遷移金属複合酸化物を正極活物質に使用することを提案している。
また、リチウムイオン二次電池においては、安全性および信頼性も高く求められている。 しかし、リチウムイオン二次電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡などの異常事態が発生した際に、有機電解液が異常発熱する可能性がある。また、近年のリチウムイオン二次電池の高エネルギー密度化および有機電解液中の有機溶媒量の増加傾向に伴い、より一層リチウムイオン二次電池の安全性および信頼性が求められている。
以上のような状況において、有機溶媒を用いない全固体型のリチウム二次電池(全固体電池)が注目されている。全固体電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものであり、固体電解質の異常発熱の虞がなく、高い安全性を備えている。
全固体電池においても、活物質の改良は試みられている。例えば特許文献2には、正極活物質および負極活物質に、比表面積と電気容量とが特定の関係を満たすものを使用して、全固体電池の大電流放電時の容量を高める技術が提案されており、また、特許文献3には、特定の比表面積を有し、かつ平均粒径を固体電解質粒子の平均粒径と特定の関係を有するように調整したチタン酸リチウムを活物質とする電極を用いることで、活物質と固体電解質粒子との接触を良好にして、全固体電池の電池特性を高める試みがなされている。
現在、全固体電池においては、その適用分野が急速に拡大しており、例えば大きな電流値での放電が求められる用途への適用も考えられることから、これに応え得るように出力特性を高めることが求められる。
本発明は、前記事情に鑑みてなされたものであり、その目的は、出力特性に優れた全固体電池、および前記全固体電池を構成し得る全固体電池用負極を提供することにある。
本発明の全固体電池用負極は、負極活物質、固体電解質および導電助剤を含有する負極合剤の成形体を有しており、前記負極活物質として、一次粒子径Dpと粒子径D50との比Dp/D50が0.6より大きく、かつ比表面積が2m2/g以上であるリチウムチタン酸化物の粒子を含有していることを特徴とするものである。
また、本発明の全固体電池は、正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、前記負極として本発明の全固体電池用負極を有することを特徴とするものである。
本発明によれば、出力特性に優れた全固体電池、および前記全固体電池を構成し得る全固体電池用負極を提供するができる。
<全固体電池用負極>
本発明の全固体電池用負極(以下、単に「負極」という場合がある)は、負極活物質としてリチウムチタン酸化物を含有する。
本発明の全固体電池用負極(以下、単に「負極」という場合がある)は、負極活物質としてリチウムチタン酸化物を含有する。
リチウムチタン酸化物は、固体電解質を有する全固体電池や有機電解液を有するリチウムイオン二次電池の負極活物質として知られているが、現在使用されているものは、微細な一次粒子が凝集した二次粒子である。
全固体電池の電極(正極および負極)は、活物質や固体電解質、導電助剤などを、溶媒を添加せずに混合して電極合剤(正極合剤または負極合剤)とし、これを加圧成形して成形体とする工程を経て製造される場合がある。リチウムチタン酸化物の二次粒子を活物質として使用した場合、電極合剤(負極合剤)の成形時に二次粒子が壊れて一次粒子となることが多い。
電極合剤調製時にリチウムチタン酸化物の二次粒子と固体電解質や導電助剤とが良好に接触できていれば、この状態を可及的に維持したまま成形体とすることで、負極内(負極合剤の成形体内)の電子伝導性やイオン伝導性は良好となるが、前記の成形時の際に二次粒子から脱離した一次粒子は、固体電解質や導電助剤との接触が保たれ難いと推測される。特にリチウムチタン酸化物は導電性が低い材料であることから、二次粒子から脱離した一次粒子は、電池の充放電反応に関与しなくなる可能性が高い。そして、二次粒子から脱離した一次粒子の割合が多くなると、例えば電池の出力特性が損なわれてしまうと考えられ、後述する比較例において示す通り、リチウムチタン酸化物の二次粒子を活物質に使用した負極を有する全固体電池では、抵抗値(DCR)が大きく、出力特性が劣っている。
そこで、本発明の負極では、活物質として、一次粒子径Dpと粒子径D50との比Dp/D50が0.6より大きく、かつ比表面積が2m2/g以上であるリチウムチタン酸化物の粒子を使用することとし、これにより、出力特性に優れた全固体電池を構成し得るようにした。
リチウムチタン酸化物粒子の粒子径D50は、体積基準での累積頻度50%における粒径であり、リチウムチタン酸化物粒子が二次粒子として存在する場合は、二次粒子径を意味している。リチウムチタン酸化物粒子の一次粒子径Dpと粒子径D50との比Dp/D50が0.6より大きいということは、一次粒子の凝集の程度が小さく、二次粒子を構成せずに存在している一次粒子の割合が高いことを意味している。すなわち、Dp/D50>0.6を満たすリチウムチタン酸化物粒子は、多くが一次粒子であるため、これを含む負極合剤をプレス成形などによって成形体とする際に、前記のような二次粒子から脱離することで、固体電解質や導電助剤と接触していない粒子が生じ難いと考えられる。
また、通常のリチウムチタン酸化物の一次粒子は、表面の平滑性が比較的高いが、本発明に係るリチウムチタン酸化物粒子は、比表面積が2m2/g以上で、その表面が粗く、固体電解質や導電助剤との接触状態が維持されやすい。
本発明の負極は、特定のDp/D50と比表面積とを有するリチウムチタン酸化物粒子による前記の各作用によって、出力特性に優れた全固体電池を構成できると考えられる。
本発明の負極は、負極活物質であるリチウムチタン酸化物の粒子、固体電解質および導電助剤などを含む負極合剤の成形体を有するものであり、例えば、前記成形体のみからなる負極や、前記成形体と集電体とが一体化してなる構造の負極などが挙げられる。
リチウムチタン酸化物としては、例えば、下記一般組成式(1)で表されるものが挙げられる。
Li[Li1/3-aM1
aTi5/3-bM2
b]O4 (1)
前記一般組成式(1)中、M1は、Na、Mg、K、Ca、SrおよびBaよりなる群から選択される少なくとも1種の元素で、M2は、Al、V、Cr、Fe、Co、Ni、Zn、Ym、Zr、Nb、Mo、TaおよびWよりなる群から選択される少なくとも1種の元素であり、0≦a<1/3、0≦b≦2/3である。
すなわち、前記一般組成式(1)で表されるリチウムチタン酸化物においては、Liのサイトの一部が元素M1で置換されていてもよい。ただし、前記一般組成式(1)において、元素M1の比率を表すaは、1/3未満であることが好ましい。前記一般組成式(1)で表されるリチウムチタン酸化物において、Liは元素M1で置換されていなくてもよいため、元素M1の比率を表すaは0でもよい。
また、前記一般組成式(1)で表されるリチウムチタン酸化物において、元素M2はリチウムチタン酸化物の電子伝導性を高めるための成分であり、元素M2の比率を表すbが、0≦b≦2/3である場合には、その電子伝導性向上効果を良好に確保することができる。
リチウムチタン酸化物の粒子における一次粒子径Dpと粒子径D50との比Dp/D50は、一次粒子の割合をより多くして、出力特性に優れた電池を構成できるようにする観点から、0.6より大きく、0.8以上であることが好ましい。なお、リチウムチタン酸化物の粒子は全てが一次粒子でもよいため、Dp/D50の好適上限値は1である。
なお、リチウムチタン酸化物の粒子の一次粒子径(一次粒子の平均粒子径)Dpは、リチウムチタン酸化物の粒子同士の接触抵抗が大きいことから、その接触点数を減らすために大きい方が好ましい。具体的には、Dpは、0.7μm以上であることが好ましく、1.2μm以上であることがより好ましい。また、リチウムチタン酸化物の粒子のDpの上限値は、10μm程度である。
リチウムチタン酸化物の粒子の粒子径D50は、Dp/D50が前記の値を満たす範囲であればよい。
本明細書でいうリチウムチタン酸化物の粒子の一次粒子径Dpは、走査型電子顕微鏡(SEM)を用いて、リチウムチタン酸化物の粒子を10000倍で観察した画像において、輪郭が確認できる粒子を50個選択し、選択した粒子について長軸側粒径を測定し、全粒子の平均値を算出することで求められる値である。
また、本明細書でいうリチウムチタン酸化物の粒子の粒子径D50は、レーザー散乱粒度分布計(例えば、堀場製作所製「LA-920」)を用い、粒子を溶解しない媒体に分散させた状態で、体積基準での累積頻度50%における粒径として求めた値である。なお、本明細書で記載するリチウムチタン酸化物の粒子以外の各種粒子のD50や平均粒子径も、この方法によって求めた値である。
リチウムチタン酸化物の粒子の比表面積は、固体電解質や導電助剤との接触を良好に維持できるようにして、出力特性に優れた電池を構成できるようにする観点から、2m2/g以上である。また、リチウムチタン酸化物の比表面積の上限値については、特に制限はないが、通常は20m2/g程度である。
本明細書でいうリチウムチタン酸化物の粒子の比表面積は、多分子層吸着の理論式であるBET式を用いて、表面積を測定、計算したもので、活物質の表面と微細孔の比表面積である。具体的には、窒素吸着法による比表面積測定装置(例えば、Mountech社製 「Macsorb HM modele-1201」)を用いて、BET比表面積として得た値である。
なお、負極合剤の成形体から取り出したリチウムチタン酸化物についても、D50およびBET比表面積を求めることができる。
負極合剤の成形体からリチウムチタン酸化物を取り出す方法としては、例えば以下の方法が例示できる。
負極合剤の成形体から0.1gの試料を採取し、これを200ccの水で2回水洗した後に、200ccの水中に12時間放置し、水中に沈降する部分を残して上澄み液を捨てる。前記の水洗から上澄み液を捨てるまでの一連の操作を10回繰り返した後に、得られた沈降物を120℃で2時間乾燥させ、さらに60℃で12時間乾燥させて、負極合剤の成形体中のリチウムチタン酸化物を得る。
Dp/D50および比表面積が前記の値を満たすリチウムチタン酸化物の粒子は、リチウムチタン酸化物の二次粒子を解砕処理して一次粒子化することによって得ることができる。リチウムチタン酸化物の解砕は、例えば遊星ボールミルを使用することができる。
例えば、粒子径D50が30~35μm程度のリチウムチタン酸化物の二次粒子を、前記の方法・条件によって、Dp/D50が前記の値になるまで解砕することで、得られるリチウムチタン酸化物の粒子の比表面積を前記の値に調整することができる。通常は、前記解砕処理を経ても二次粒子を構成しているリチウムチタン酸化物の一次粒子の粒子径は大きく変化しないので、Dp/D50を前記の値に調整するにあたっては、解砕処理によって主にリチウムチタン酸化物の粒子のD50を調節すればよい。
負極活物質には、リチウムイオン二次電池などで使用されているリチウムチタン酸化物以外の負極活物質を、リチウムチタン酸化物とともに使用することもできる。ただし、負極活物質全量中のリチウムチタン酸化物以外の負極活物質の割合は、30質量%以下であることが好ましい。
負極の固体電解質としては、リチウムイオン伝導性を有していれば特に限定されず、例えば、硫化物系固体電解質、水素化物系固体電解質、酸化物系固体電解質などが使用できる。
硫化物系固体電解質としては、例えば、Li2S-P2S5、Li2S-SiS2、Li2S-P2S5-GeS2、Li2S-B2S3系ガラスなどが挙げられる他、近年、リチウムイオン伝導性が高いものとして注目されているLi10GeP2S12(LGPS系)やLi6PS5Cl(アルジロダイト系)も使用することができる。これらの中でも、特にリチウムイオン伝導性が高く、化学的に安定性の高いアルジロダイト系材料が好ましく用いられる。
水素化物系固体電解質としては、例えば、LiBH4、LIBH4と下記のアルカリ金属化合物との固溶体(例えば、LiBH4とアルカリ金属化合物とのモル比が1:1~20:1のもの)などが挙げられる。前記固溶体におけるアルカリ金属化合物としては、ハロゲン化リチウム(LiI、LiBr、LiF、LiClなど)、ハロゲン化ルビジウム(RbI、RbBr、RbiF、RbClなど)、ハロゲン化セシウム(CsI、CsBr、CsF、CsClなど)、リチウムアミド、ルビジウムアミドおよびセシウムアミドよりなる群から選択される少なくとも1種が挙げられる。
酸化物系固体電解質としては、例えば、Li7La3Zr2O12、LiTi(PO4)3、LiGe(PO4)3、LiLaTiO3などが挙げられる。
固体電解質は、先に例示したもののうちの1種または2種以上を使用することができる、前記例示の固体電解質の中でも、リチウムイオン伝導性が高く、また、負極合剤の成形性を高める機能を有していることから、硫化物系固体電解質を用いることがより好ましい。
なお、負極合剤をプレス成形などによって加圧成形した後であっても、リチウムチタン酸化物のプレス前とDpの値はほとんど変化しないが、前記例示の固体電解質の中でも硫化物系固体電解質は特に柔らかいため、これを負極に使用することで、負極合剤の成形体を形成するための加圧時においても、リチウムチタン酸化物の一次粒子の割れをより良好に抑制して、Dpの変化を抑えることが可能となることから、好ましい。
負極の導電助剤としては、例えば、黒鉛、カーボンブラックなどの炭素材料などが使用できる。
負極合剤には、バインダを含有させてもよく、含有させなくてもよい。負極合剤にバインダを含有させる場合には、そのバインダとしては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが使用できる。
負極に集電体を用いる場合、その集電体としては、銅製やニッケル製、ステンレス鋼製、アルミニウム製の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル;カーボンシート;などを用いることができる。
負極は、活物質であるリチウムチタン酸化物の粒子、固体電解質および導電助剤などを、例えば溶媒を使用せずに混合して負極合剤を調製し、これをペレット状などに成形することで製造できる。また、前記のようにして得られた負極合剤の成形体を集電体と貼り合わせて負極としてもよい。
また、前記の負極合剤と溶媒とを混合して負極合剤含有組成物を調製し、これを集電体や負極と対向させる固体電解質層といった基材上に塗布し、乾燥した後にプレス処理を行うことで、負極合剤の成形体を形成してもよい。
負極合剤含有組成物に使用する溶媒は、固体電解質を劣化させ難いものを選択することが好ましい。特に、硫化物系固体電解質や水素化物系固体電解質は、微少量の水分によって化学反応を起こすため、ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレンなどの炭化水素溶媒に代表される非極性非プロトン性溶媒を使用することが好ましい。特に、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することがより好ましい。また、三井・デュポンフロロケミカル社製の「バートレル(登録商標)」、日本ゼオン社製の「ゼオローラ(登録商標)」、住友3M社製の「ノベック(登録商標)」などのフッ素系溶媒、並びに、ジクロロメタン、ジエチルエーテルなどの非水系有機溶媒を使用することもできる。
負極合剤の組成としては、例えば、負極活物質の含有量が50~80質量%であることが好ましく、固体電解質の含有量が20~50質量%であることが好ましく、導電助剤の含有量が0.1~10質量%であることが好ましい。また、負極合剤にバインダを含有させる場合には、その含有量は0.1~10質量%であることが好ましい。さらに、負極合剤の成形体(負極が集電体を有しない場合、および集電体を有する場合の両者を含む)の厚みは、50~1000μmであることが好ましい。
負極合剤の成形体は、Dp/D50および比表面積が前記の値を満たすリチウムチタン酸化物の粒子を使用することによって、その密度(負極合剤の成形体の単位面積あたりの質量と厚みとから算出される)を、2.0g/cm3以上と高めることができ、これにより、全固体電池の高容量化・高エネルギー密度化を図ることが可能である。なお、負極合剤の成形体は、有機電解液を有する電池の負極のように多孔質体である必要がないため、その密度の上限値は、負極合剤を構成する各材料の密度から算出される値(理論密度)となる。
<全固体電池>
本発明の全固体電池は、正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、負極が本発明の全固体電池用負極である。
本発明の全固体電池は、正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、負極が本発明の全固体電池用負極である。
本発明の全固体電池の一例を模式的に表す断面図を図1に示す。図1に示す全固体電池1は、外装缶40と、封口缶50と、これらの間に介在する樹脂製のガスケット60で形成された外装体内に、正極10、負極20、および正極10と負極20との間に介在する固体電解質層30が封入されている。
封口缶50は、外装缶40の開口部にガスケット60を介して嵌合しており、外装缶40の開口端部が内方に締め付けられ、これによりガスケット60が封口缶50に当接することで、外装缶40の開口部が封口されて素子内部が密閉構造となっている。
外装缶および封口缶にはステンレス鋼製のものなどが使用できる。また、ガスケットの素材には、ポリプロピレン、ナイロンなどを使用できるほか、電池の用途との関係で耐熱性が要求される場合には、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、ポリフェニレンエーテル(PEE)、ポリスルフォン(PSF)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などの融点が240℃を超える耐熱樹脂を使用することもできる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
また、図2および図3に、本発明の全固体電池の他の例を模式的に表す図面を示す。図2は全固体電池の平面図であり、図3は図2のI-I線断面図である。
図2および図3に示す全固体電池100は、2枚の金属ラミネートフィルムで構成したラミネートフィルム外装体500内に、正極、固体電解質層および本発明の負極からなる電極体200を収容しており、ラミネートフィルム外装体500は、その外周部において、上下の金属ラミネートフィルムを熱融着することにより封止されている。なお、図3では、図面が煩雑になることを避けるために、ラミネートフィルム外装体500を構成している各層や、電極体を構成している正極、負極およびセパレータを区別して示していない。
電極体200の有する正極は、電池100内で正極外部端子300と接続しており、また、図示していないが、電極体200の有する負極も、電池100内で負極外部端子400と接続している。そして、正極外部端子300および負極外部端子400は、外部の機器などと接続可能なように、片端側をラミネートフィルム外装体500の外側に引き出されている。
(正極)
全固体電池の正極は、正極活物質を含み、また、通常、固体電解質を含有している。
全固体電池の正極は、正極活物質を含み、また、通常、固体電解質を含有している。
正極活物質は、従来から知られているリチウムイオン二次電池に用いられている正極活物質、すなわち、Liイオンを吸蔵・放出可能な活物質であれば特に制限はない。正極活物質の具体例としては、LiMxMn2-xO4(ただし、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LixMn(1-y-x)NiyMzO(2-k)Fl(ただし、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0.8≦x≦1.2、0<y<0.5、0≦z≦0.5、k+l<1、-0.1≦k≦0.2、0≦l≦0.1)で表される層状化合物、LiCo1-xMxO2(ただし、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1-xMxO2(ただし、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムニッケル複合酸化物、LiM1-xNxPO4(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるオリビン型複合酸化物、Li4Ti5O12で表されるリチウムチタン複合酸化物などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
正極の固体電解質には、負極に使用し得る固体電解質として先に例示したものと同じもののうちの1種または2種以上を使用することができる。電池特性をより優れたものとするためには、硫化物系固体電解質を含有させることが望ましい。
正極には、例えば、正極活物質および固体電解質、さらには必要に応じて添加される導電助剤やバインダを含有する正極合剤からなる層(正極合剤層)を、集電体の片面または両面に形成した構造のものや、前記正極合剤をペレット状などに加圧成形した成形体(正極合剤成形体)を使用することができる。
正極のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが使用できる。また、正極の導電助剤としては、例えば、カーボンブラックなどの炭素材料などが使用できる。
正極に集電体を使用する場合、その集電体としては、アルミニウムやステンレス鋼などの金属の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル;カーボンシート;などを用いることができる。
正極を製造するに際しては、例えば、集電体を有する正極の場合には、正極活物質、および固体電解質、さらには必要に応じて添加される導電助剤、バインダなどをキシレンなどの溶媒に分散させた正極合剤含有組成物(ペースト、スラリーなど)を、集電体に塗布し、乾燥した後、必要に応じてカレンダ処理などの加圧成形をして、集電体の表面に正極合剤の層(正極合剤層)を形成する方法が採用できる。
正極合剤含有組成物に使用する溶媒も、負極合剤含有組成物に使用する溶媒と同様に、固体電解質を劣化させ難いものを選択することが望ましく、負極合剤含有組成物用の溶媒として先に例示した各種溶媒を使用することが好ましく、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することが特に好ましい。
また、正極合剤の成形体からなる正極の場合には、正極活物質、および固体電解質、さらには必要に応じて添加される導電助剤、バインダなどを混合して調製した正極合剤を、加圧成形などによって圧縮することで形成することができる。
正極における正極合剤の組成としては、例えば、正極活物質の含有量が50~90質量%であることが好ましく、固体電解質の含有量が10~50質量%であることが好ましく、バインダの含有量が0.1~10質量%であることが好ましい。また、正極合剤に導電助剤を含有させる場合、その含有量は0.1~10質量%であることが好ましい。さらに、集電体を有する正極における正極合剤層の厚みや正極合剤成形体の厚みは、50~1000μmであることが好ましい。
(固体電解質層)
全固体電池の固体電解質層における固体電解質には、負極の固体電解質として先に例示したものと同じもののうちの1種または2種以上を使用することができる。ただし、電池特性をより優れたものとするためには、硫化物系固体電解質を含有させることが望ましく、正極、負極および固体電解質層の全てに硫化物系固体電解質を含有させることがより望ましい。
全固体電池の固体電解質層における固体電解質には、負極の固体電解質として先に例示したものと同じもののうちの1種または2種以上を使用することができる。ただし、電池特性をより優れたものとするためには、硫化物系固体電解質を含有させることが望ましく、正極、負極および固体電解質層の全てに硫化物系固体電解質を含有させることがより望ましい。
固体電解質層は、樹脂製の不織布などの多孔質体を支持体として有していてもよい。
固体電解質層は、固体電解質を加圧成形などによって圧縮する方法;固体電解質を溶媒に分散させて調製した固体電解質層形成用組成物を基材や正極、負極の上に塗布して乾燥し、必要に応じてプレス処理などの加圧成形を行う方法:などで形成することができる。
固体電解質層形成用組成物に使用する溶媒も、負極合剤含有組成物に使用する溶媒と同様に、固体電解質を劣化させ難いものを選択することが望ましく、負極合剤含有組成物用の溶媒として先に例示した各種溶媒を使用することが好ましく、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することが特に好ましい。
固体電解質層の厚みは、100~200μmであることが好ましい。
(電極体)
正極と負極とは、固体電解質層を介して積層した積層電極体や、さらにこの積層電極体を巻回した巻回電極体の形態で、電池に用いることができる。
正極と負極とは、固体電解質層を介して積層した積層電極体や、さらにこの積層電極体を巻回した巻回電極体の形態で、電池に用いることができる。
なお、電極体を形成するに際しては、正極と負極と固体電解質層とを積層した状態で加圧成形することが、電極体の機械的強度を高める観点から好ましい。
(電池の形態)
全固体電池の形態は、図1に示すような、外装缶と封口缶とガスケットとで構成された外装体を有するもの、すなわち、一般にコイン形電池やボタン形電池と称される形態のものや、図2および図3に示すような、樹脂フィルムや金属-樹脂ラミネートフィルムで構成された外装体を有するもの以外にも、金属製で有底筒形(円筒形や角筒形)の外装缶と、その開口部を封止する封止構造とを有する外装体を有するものであってもよい。
全固体電池の形態は、図1に示すような、外装缶と封口缶とガスケットとで構成された外装体を有するもの、すなわち、一般にコイン形電池やボタン形電池と称される形態のものや、図2および図3に示すような、樹脂フィルムや金属-樹脂ラミネートフィルムで構成された外装体を有するもの以外にも、金属製で有底筒形(円筒形や角筒形)の外装缶と、その開口部を封止する封止構造とを有する外装体を有するものであってもよい。
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。
実施例1
(固体電解質層の形成)
硫化物系固体電解質(Li6PS5Cl):80gを直径:10mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行いて固体電解質層を形成した。
(固体電解質層の形成)
硫化物系固体電解質(Li6PS5Cl):80gを直径:10mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行いて固体電解質層を形成した。
(負極の作製)
D50が33.6μmのチタン酸リチウム(Li4Ti5O12)の二次粒子について、遊星ボールミルを使用して解砕処理を行って、負極活物質として使用するチタン酸リチウムの粒子を得た。得られたチタン酸リチウムの粒子は、Dp:1.3μm、D50:2.14μmで、Dp/D50:0.61であり、比表面積:2.70m2/gであった。
D50が33.6μmのチタン酸リチウム(Li4Ti5O12)の二次粒子について、遊星ボールミルを使用して解砕処理を行って、負極活物質として使用するチタン酸リチウムの粒子を得た。得られたチタン酸リチウムの粒子は、Dp:1.3μm、D50:2.14μmで、Dp/D50:0.61であり、比表面積:2.70m2/gであった。
前記チタン酸リチウムの粒子と、前記硫化物系固体電解質と、導電助剤である黒鉛粉末とを質量比で60:8.5:31.5の割合で混合し、よく混練して負極合剤を調製した。次に、前記負極合剤:15mgを前記粉末成形金型内の前記固体電解質層の上に投入し、プレス機を用いて加圧成形を行い、前記固体電解質層の上に負極合剤成形体よりなる負極を形成した。なお、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず1.3μmであった。
(積層電極体の形成)
対極として、Li金属とIn金属とをそれぞれ円柱形状に成形して貼り合わせたものを使用した。この対極を、前記粉末成形金型内の固体電解質層の、負極とは反対側の面上に投入し、プレス機を用いて加圧成形を行い、積層電極体を作製した。
対極として、Li金属とIn金属とをそれぞれ円柱形状に成形して貼り合わせたものを使用した。この対極を、前記粉末成形金型内の固体電解質層の、負極とは反対側の面上に投入し、プレス機を用いて加圧成形を行い、積層電極体を作製した。
(モデルセルの組み立て)
前記の積層電極体を使用し、図2に示すものと同様の平面構造の全固体電池(モデルセル)を作製した。ラミネートフィルム外装体を構成するアルミニウムラミネートフィルムの、外装体の内側となる面に、負極集電箔(SUS箔)および対極集電箔(SUS箔)を、間にある程度の間隔を設けつつ横に並べて貼り付けた。前記各集電箔には、前記積層電極体の負極側表面または対極側表面と対向する本体部と、前記本体部から電池の外部に向けて突出する負極外部端子400および対極外部端子300となる部分とを備えた形状に切断したものを用いた。
前記の積層電極体を使用し、図2に示すものと同様の平面構造の全固体電池(モデルセル)を作製した。ラミネートフィルム外装体を構成するアルミニウムラミネートフィルムの、外装体の内側となる面に、負極集電箔(SUS箔)および対極集電箔(SUS箔)を、間にある程度の間隔を設けつつ横に並べて貼り付けた。前記各集電箔には、前記積層電極体の負極側表面または対極側表面と対向する本体部と、前記本体部から電池の外部に向けて突出する負極外部端子400および対極外部端子300となる部分とを備えた形状に切断したものを用いた。
前記ラミネートフィルム外装体の負極集電箔上に前記積層電極体を載せ、対極集電箔が前記積層電極体の対極上に配置されるように前記ラミネートフィルム外装体で前記積層電極体を包み、真空下で前記ラミネートフィルム外装体の残りの3辺を熱融着によって封止して、モデルセルを得た。
実施例2
遊星ボールミルの回転数を変更した以外は、実施例1と同様にしてチタン酸リチウムの二次粒子の解砕処理を行い、Dp:1.3μm、D50:1.86μmで、Dp/D50:0.70であり、比表面積:4.19m2/gの、負極活物質用チタン酸リチウムを得た。そして、このチタン酸リチウムの粒子を用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず1.3μmであった。
遊星ボールミルの回転数を変更した以外は、実施例1と同様にしてチタン酸リチウムの二次粒子の解砕処理を行い、Dp:1.3μm、D50:1.86μmで、Dp/D50:0.70であり、比表面積:4.19m2/gの、負極活物質用チタン酸リチウムを得た。そして、このチタン酸リチウムの粒子を用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず1.3μmであった。
実施例3
遊星ボールミルの回転数を変更した以外は、実施例1と同様にしてチタン酸リチウムの二次粒子の解砕処理を行い、Dp:1.3μm、D50:2.02μmで、Dp/D50:0.64であり、比表面積:4.00m2/gの、負極活物質用チタン酸リチウムを得た。そして、このチタン酸リチウムの粒子を用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず1.3μmであった。
遊星ボールミルの回転数を変更した以外は、実施例1と同様にしてチタン酸リチウムの二次粒子の解砕処理を行い、Dp:1.3μm、D50:2.02μmで、Dp/D50:0.64であり、比表面積:4.00m2/gの、負極活物質用チタン酸リチウムを得た。そして、このチタン酸リチウムの粒子を用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず1.3μmであった。
比較例1
D50が7.3μmのチタン酸リチウムの二次粒子を解砕せずに負極活物質として用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、負極活物質に使用した前記チタン酸リチウムの二次粒子は、Dp:0.5μmで、Dp/D50:0.07であり、比表面積:10.90m2/gであった。また、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず0.5μmであった。
D50が7.3μmのチタン酸リチウムの二次粒子を解砕せずに負極活物質として用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、負極活物質に使用した前記チタン酸リチウムの二次粒子は、Dp:0.5μmで、Dp/D50:0.07であり、比表面積:10.90m2/gであった。また、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず0.5μmであった。
比較例2
D50が4.53μmのチタン酸リチウムの二次粒子を解砕せずに負極活物質として用いた以外は、実施例1と同様にしてモデルセル作製した。なお、負極活物質に使用した前記チタン酸リチウムの二次粒子は、Dp:0.8μmで、Dp/D50:0.18であり、比表面積:2.50m2/gであった。また、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず0.8μmであった。
D50が4.53μmのチタン酸リチウムの二次粒子を解砕せずに負極活物質として用いた以外は、実施例1と同様にしてモデルセル作製した。なお、負極活物質に使用した前記チタン酸リチウムの二次粒子は、Dp:0.8μmで、Dp/D50:0.18であり、比表面積:2.50m2/gであった。また、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず0.8μmであった。
比較例3
D50が5.53μmのチタン酸リチウムの二次粒子を解砕せずに負極活物質として用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、負極活物質に使用した前記チタン酸リチウムの二次粒子は、Dp:2.5μmで、Dp/D50:0.45であり、比表面積:2.20m2/gであった。また、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず2.5μmであった。
D50が5.53μmのチタン酸リチウムの二次粒子を解砕せずに負極活物質として用いた以外は、実施例1と同様にしてモデルセルを作製した。なお、負極活物質に使用した前記チタン酸リチウムの二次粒子は、Dp:2.5μmで、Dp/D50:0.45であり、比表面積:2.20m2/gであった。また、加圧成形を行った後の負極合剤成形体中のチタン酸リチウムのDpは、加圧成形前と変わらず2.5μmであった。
実施例および比較例の負極を有するモデルセルについて、下記条件で出力特性を評価した。まず、各モデルセルについて、加圧(1t/cm2)した状態で、0.05Cの電流値で電圧が0.38Vになるまで定電流充電を行い、続いて0.38Vの電圧で電流値が0.01Cになるまで定電圧充電を行い、その後に0.05Cで1.88Vまで放電させた。次に、各モデルセルについて、0.05Cの電流値で電圧が0.38Vになるまで定電流充電し、続いて0.38Vの電圧で電流値が0.01Cになるまで定電圧充電し、その後に0.05Cの電流値で充電深度(SOC)が、50%になるまで放電させてから1時間休止させた。その後の各モデルセルについて、0.05Cの電流値で10secのパルス放電を行った後に電圧を求め、その値からDCRを算出した。この方法で求められるDCRが小さいほど、モデルセルの出力特性が優れており(大電流放電時の容量が大きい)、そのモデルセルが有する負極は、出力特性に優れた全固体電池を構成できるといえる。
実施例および比較例の負極に用いたチタン酸リチウムの粒子のDp/D50および比表面積の値と、前記の評価結果とを表1に示す。なお、表1におけるモデルセルの「DCR」は、実施例2の値を100としたときの相対値で表している。
表1に示す通り、Dp/D50および比表面積の値が適正なリチウムチタン酸化物(チタン酸リチウム)の粒子を負極活物質として用いた実施例1~3の負極を有するモデルセルは、DCRの値が小さく、優れた出力特性を有していた。
これに対し、Dp/D50が不適なリチウムチタン酸化物の粒子(二次粒子)を負極活物質として用いた比較例1~3の負極を有するモデルセルは、DCRの値が大きく、出力特性が劣っていた。なお、比較例1~3で使用したリチウムチタン酸化物の粒子は、比表面積は比較的大きいが、これは一次粒子の表面状態が粗いことによるのではなく、一次粒子が凝集した二次粒子であるためであり、これらの比表面積が大きいこと自体は、リチウムチタン酸化物の粒子(二次粒子に含まれている一次粒子や、二次粒子から脱離した一次粒子)と固体電解質や導電助剤との接触性の向上に寄与していないと考えられる。
本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
本発明の全固体電池は、従来から知られている二次電池と同様の用途に適用し得るが、有機電解液に代えて固体電解質を有していることから耐熱性に優れており、高温に曝されるような用途に好ましく使用することができる。
1、100 全固体電池
10 正極
20 負極
30 固体電解質層
40 外装缶
50 封口缶
60 ガスケット
200 電極体
300 正極外部端子
400 負極外部端子
500 ラミネートフィルム外装体
10 正極
20 負極
30 固体電解質層
40 外装缶
50 封口缶
60 ガスケット
200 電極体
300 正極外部端子
400 負極外部端子
500 ラミネートフィルム外装体
Claims (6)
- 全固体電池に使用される負極であって、
負極活物質、固体電解質および導電助剤を含有する負極合剤の成形体を有しており、
前記負極活物質として、一次粒子径Dpと粒子径D50との比Dp/D50が0.6より大きく、かつ比表面積が2m2/g以上であるリチウムチタン酸化物の粒子を含有していることを特徴とする全固体電池用負極。 - 前記リチウムチタン酸化物の粒子のDpは、0.7μm以上10μm以下である請求項1に記載の全固体電池用負極。
- 前記固体電解質は、硫化物系固体電解質である請求項1または2に記載の全固体電池用負極。
- 前記固体電解質は、アルジロダイト系の硫化物系固体電解質である請求項3に記載の全固体電池用負極。
- 前記リチウムチタン酸化物として、下記一般組成式(1)
Li[Li1/3-aM1 aTi5/3-bM2 b]O4 (1)
〔前記一般組成式(1)中、M1は、Na、Mg、K、Ca、SrおよびBaよりなる群から選択される少なくとも1種の元素で、M2は、Al、V、Cr、Fe、Co、Ni、Zn、Ym、Zr、Nb、Mo、TaおよびWよりなる群から選択される少なくとも1種の元素であり、0≦a<1/3、0≦b≦2/3である〕
で表されるものを含有する請求項1~4のいずれかに記載の全固体電池用負極。 - 正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、前記負極として請求項1~5のいずれかに記載の全固体電池用負極を有することを特徴とする全固体電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/637,297 US20220285674A1 (en) | 2019-09-02 | 2020-08-24 | Negative electrode for all-solid-state battery and all-solid-state battery |
CN202080060098.3A CN114342118B (zh) | 2019-09-02 | 2020-08-24 | 全固体电池用负极和全固体电池 |
EP20860294.6A EP4027407A4 (en) | 2019-09-02 | 2020-08-24 | NEGATIVE ELECTRODE OF A SOLID STATE BATTERY AND SOLID STATE BATTERY |
JP2021500476A JP6963866B2 (ja) | 2019-09-02 | 2020-08-24 | 全固体電池用負極および全固体電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-159369 | 2019-09-02 | ||
JP2019159369 | 2019-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021044883A1 true WO2021044883A1 (ja) | 2021-03-11 |
Family
ID=74852858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031758 WO2021044883A1 (ja) | 2019-09-02 | 2020-08-24 | 全固体電池用負極および全固体電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220285674A1 (ja) |
EP (1) | EP4027407A4 (ja) |
JP (1) | JP6963866B2 (ja) |
CN (1) | CN114342118B (ja) |
WO (1) | WO2021044883A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022259611A1 (ja) * | 2021-06-11 | 2022-12-15 | パナソニックIpマネジメント株式会社 | 電極材料および電池 |
JP7545429B2 (ja) | 2022-02-07 | 2024-09-04 | トヨタ自動車株式会社 | 負極層 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187876A (ja) | 2001-12-19 | 2003-07-04 | Fujitsu Ltd | リチウム二次電池 |
JP2005317512A (ja) * | 2004-03-31 | 2005-11-10 | Toshiba Corp | 非水電解質電池 |
JP2012243644A (ja) | 2011-05-20 | 2012-12-10 | Sumitomo Electric Ind Ltd | 電極、および全固体型非水電解質電池 |
JP2013206869A (ja) * | 2012-03-29 | 2013-10-07 | Taiyo Yuden Co Ltd | リチウムチタン複合酸化物、それを用いた電池用電極およびリチウムイオン二次電池 |
JP2017188445A (ja) | 2016-03-31 | 2017-10-12 | 本田技研工業株式会社 | 非水系電解質二次電池用正極活物質 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190044179A1 (en) * | 2016-02-29 | 2019-02-07 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery |
EP3483971A4 (en) * | 2016-12-26 | 2019-11-13 | Showa Denko K.K. | LITHIUM-ION BATTERY SOLID STATE |
-
2020
- 2020-08-24 CN CN202080060098.3A patent/CN114342118B/zh active Active
- 2020-08-24 WO PCT/JP2020/031758 patent/WO2021044883A1/ja unknown
- 2020-08-24 EP EP20860294.6A patent/EP4027407A4/en active Pending
- 2020-08-24 JP JP2021500476A patent/JP6963866B2/ja active Active
- 2020-08-24 US US17/637,297 patent/US20220285674A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187876A (ja) | 2001-12-19 | 2003-07-04 | Fujitsu Ltd | リチウム二次電池 |
JP2005317512A (ja) * | 2004-03-31 | 2005-11-10 | Toshiba Corp | 非水電解質電池 |
JP2012243644A (ja) | 2011-05-20 | 2012-12-10 | Sumitomo Electric Ind Ltd | 電極、および全固体型非水電解質電池 |
JP2013206869A (ja) * | 2012-03-29 | 2013-10-07 | Taiyo Yuden Co Ltd | リチウムチタン複合酸化物、それを用いた電池用電極およびリチウムイオン二次電池 |
JP2017188445A (ja) | 2016-03-31 | 2017-10-12 | 本田技研工業株式会社 | 非水系電解質二次電池用正極活物質 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4027407A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022259611A1 (ja) * | 2021-06-11 | 2022-12-15 | パナソニックIpマネジメント株式会社 | 電極材料および電池 |
JP7545429B2 (ja) | 2022-02-07 | 2024-09-04 | トヨタ自動車株式会社 | 負極層 |
Also Published As
Publication number | Publication date |
---|---|
US20220285674A1 (en) | 2022-09-08 |
JP6963866B2 (ja) | 2021-11-10 |
EP4027407A4 (en) | 2022-10-12 |
CN114342118A (zh) | 2022-04-12 |
EP4027407A1 (en) | 2022-07-13 |
JPWO2021044883A1 (ja) | 2021-09-30 |
CN114342118B (zh) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7345263B2 (ja) | 全固体リチウム二次電池の製造方法 | |
JP6963866B2 (ja) | 全固体電池用負極および全固体電池 | |
WO2022118928A1 (ja) | 全固体電池のシステム | |
JPWO2022118928A5 (ja) | ||
JP2020126790A (ja) | 全固体リチウム二次電池 | |
JP2022152275A (ja) | 全固体電池用電極および全固体電池 | |
JP7284666B2 (ja) | 全固体電池 | |
JP7267163B2 (ja) | 全固体電池用正極および全固体電池 | |
JP2021144906A (ja) | 全固体電池用正極および全固体電池 | |
JP2021034328A (ja) | 全固体電池および全固体電池のシステム | |
WO2021241423A1 (ja) | 全固体二次電池用負極、その製造方法および全固体二次電池 | |
US20160308193A1 (en) | Nonaqueous electrolyte secondary battery | |
JP7313236B2 (ja) | 全固体電池用負極および全固体電池 | |
JP7401359B2 (ja) | 全固体電池用電極および全固体電池 | |
JP2021163553A (ja) | 全固体電池 | |
JP2022048664A (ja) | 全固体電池用正極および全固体電池 | |
JP2021039887A (ja) | 全固体電池用電極、その製造方法、全固体電池およびその製造方法 | |
WO2022054665A1 (ja) | 非水電解質二次電池用負極および非水電解質二次電池 | |
JP7033697B2 (ja) | 全固体電池用電極および全固体電池 | |
JP7376393B2 (ja) | 全固体二次電池用正極および全固体二次電池 | |
WO2022092055A1 (ja) | 全固体二次電池用負極および全固体二次電池 | |
JP7328166B2 (ja) | 全固体二次電池 | |
WO2022138886A1 (ja) | 全固体電池用電極および全固体電池 | |
WO2024004877A1 (ja) | 電極積層体の製造方法、電気化学素子およびその製造方法 | |
WO2023238926A1 (ja) | 電極積層体、その製造方法および電気化学素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021500476 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20860294 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020860294 Country of ref document: EP Effective date: 20220404 |