WO2021039065A1 - モータ及びモータの製造方法 - Google Patents

モータ及びモータの製造方法 Download PDF

Info

Publication number
WO2021039065A1
WO2021039065A1 PCT/JP2020/024567 JP2020024567W WO2021039065A1 WO 2021039065 A1 WO2021039065 A1 WO 2021039065A1 JP 2020024567 W JP2020024567 W JP 2020024567W WO 2021039065 A1 WO2021039065 A1 WO 2021039065A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
rotor core
center position
motor
Prior art date
Application number
PCT/JP2020/024567
Other languages
English (en)
French (fr)
Inventor
竜 大堀
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN202080021835.9A priority Critical patent/CN113574770A/zh
Priority to EP20856103.5A priority patent/EP4024682B1/en
Priority to US17/601,716 priority patent/US11855497B2/en
Priority to EP24175906.7A priority patent/EP4391315A2/en
Publication of WO2021039065A1 publication Critical patent/WO2021039065A1/ja
Priority to US18/497,936 priority patent/US20240063697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to a motor and a method for manufacturing the motor.
  • the motors as a brushless motor, a so-called inner rotor type motor having a stator in which a winding is wound and a rotor rotatably provided inside the stator in the radial direction is known.
  • Permanent magnets (hereinafter referred to as magnets) are arranged on the outer peripheral portion of this type of rotor so that magnetic poles of opposite polarities are alternately arranged along the circumferential direction.
  • the stator includes a tubular stator core that surrounds the periphery of the rotor, a plurality of teeth that project radially inward from the stator core, and windings wound around the teeth.
  • a predetermined magnetic field is formed in the stator, and this magnetic field causes a magnetic attraction or repulsion between the magnetic field and the magnet, which causes the rotor. Rotates continuously.
  • the present invention provides a motor and a method for manufacturing the motor, which can suppress the dynamic imbalance of the rotor and further suppress the deterioration of the motor characteristics.
  • the motor according to the present invention includes a stator having a winding and a stator core around which the winding is wound, and a rotor attached to one end of a rotating shaft and rotating by receiving a magnetic field of the stator.
  • the rotor is provided with a rotor core that rotates integrally with the rotating shaft, magnets arranged on the outer peripheral portion of the rotor core, and both ends of the rotating shaft in the axial direction of the rotor core. It has two holders that regulate the movement in the axial direction, the central position in the axial direction of the stator core, the central position in the axial direction of the rotor core, and the central position in the front axial direction of the magnet.
  • the length between the inner wall surfaces of the two holders facing each other in the axial direction is L1, the axial length of the magnet is L2, and the central position of the stator core in the axial direction.
  • the respective lengths L1, L2, and L3 are L1-L2 ⁇ L3
  • the length between the end face of the rotor core and the inner wall surface of each holder is the same.
  • the motor according to the present invention includes a stator having a winding and a stator core around which the winding is wound, and a rotor attached to one end of a rotating shaft and rotating by receiving a magnetic field of the stator.
  • a rotor core that rotates integrally with the rotating shaft, a magnet arranged on the outer peripheral portion of the rotor core, and axially both ends of the rotating shaft in the rotor core are provided to regulate the axial movement of the magnet.
  • the rotor core has one holder, and the length between the end face of the rotor core and the end face of the rotor core in each holder and the inner wall surface facing the rotor core in the axial direction is the same, and the center of the stator core in the axial direction.
  • the position, the axial center position of the rotor core, and the front axial center position of the magnet are deviated from each other, and the axial center position of the stator core and the axial center position of the rotor core. It is characterized in that the center position of the magnet in the axial direction is located between the magnets.
  • the magnet may come into contact with the holder on the side opposite to the displacement direction of the rotor core with respect to the stator core.
  • the rotor core may have the center position in the axial direction closer to the other end of the rotation shaft than the center position in the axial direction of the magnet.
  • the specific gravity of the rotor core may be larger than the specific gravity of the magnet.
  • a magnet cover covering the outer peripheral surface of the magnet is press-fitted into the outer peripheral surface of the magnet, and one end of the magnet cover is pressed into the outer peripheral surface of the magnet. It is characterized by having a magnet cover press-fitting step of pressing against a holder, and a magnet cover fixing step of bringing the other end of the magnet cover into contact with the holder and crimping after the magnet cover press-fitting step.
  • the dynamic imbalance of the rotor can be suppressed, and further, the deterioration of the motor characteristics can be suppressed.
  • FIG. 5 is a cross-sectional view showing a motor with a speed reducer according to an embodiment of the present invention.
  • FIG. 5 is a sectional view showing a rotor according to an embodiment of the present invention.
  • the motor according to the embodiment of the present invention and the method for manufacturing the motor will be described with reference to the drawings.
  • the motor 1 with a speed reducer will be described as an example of the motor, but it may be applied to other motors.
  • FIG. 1 is a perspective view showing the appearance of the motor 1 with a speed reducer.
  • the motor 1 with a speed reducer is, for example, a drive source for electrical components (for example, wipers, power windows, sunroofs, electric seats, etc.) mounted on a vehicle.
  • the motor 1 with a speed reducer is provided with a housing 10 forming an outer shell of the motor 1 with a speed reducer, a motor unit 20 provided in the housing 10, and a motor unit 20 provided in the housing 10 to rotate the motor unit 20. It includes a speed reducer unit 30 that decelerates and outputs.
  • FIG. 2 is a cross-sectional view showing a motor 1 with a speed reducer.
  • the housing 10 is formed of a material having excellent heat dissipation such as aluminum die casting.
  • the housing 10 is composed of a housing body 11 that holds the motor unit 20 and the speed reducer unit 30, and a cover 12.
  • a speed reducer accommodating unit 13 accommodating the speed reducer unit 30 is formed on one surface side of the housing body 11.
  • the speed reducer accommodating portion 13 has a bottomed shape that is recessed from the top surface portion 11t of the housing body 11 toward the back surface portion 11b facing the top surface portion 11t.
  • the speed reducer accommodating portion 13 is surrounded by a bottom portion 13b formed on the back surface portion 11b side and a peripheral wall portion 13w rising from the outer peripheral portion of the bottom portion 13b to the top surface portion 11t side.
  • the speed reducer accommodating portion 13 is formed with a shaft accommodating groove 14 accommodating a worm shaft 31, which will be described later, and a wheel accommodating recess 15 accommodating a worm wheel 32.
  • bearing portions 16A and 16B that rotatably support the worm shaft 31 (rotating shaft 27) are formed at both ends of the shaft accommodating groove 14 in the axial direction.
  • a motor accommodating portion 17 extending outwardly from the peripheral wall portion 13w along the axial direction of the worm shaft 31 is integrally formed on the outer peripheral portion of the housing main body 11.
  • the motor accommodating unit 17 accommodates a part of the motor unit 20.
  • a shaft insertion hole (not shown) that penetrates the peripheral wall portion 13w and communicates with the bearing portion 16A is formed inside the motor accommodating portion 17, a shaft insertion hole (not shown) that penetrates the peripheral wall portion 13w and communicates with the bearing portion 16A is formed.
  • the housing main body 11 is integrally formed with a boss portion 19 projecting from the back surface portion 11b to the side opposite to the top surface portion 11t.
  • a through hole (not shown) communicating with the wheel accommodating recess 15 is formed through the boss portion 19.
  • a cover 12 is provided on the top surface portion 11t side of the housing body 11 so as to close the speed reducer accommodating portion 13.
  • the cover 12 is fastened to the housing body 11 by bolts (not shown) at a plurality of locations on the outer peripheral portion thereof.
  • a connector receiving portion 12c is formed adjacent to the motor accommodating portion 17 with the cover 12 attached to the housing main body 11.
  • the connector receiving unit 12c has a tubular shape, and an external power supply connector is connected to it.
  • FIG. 3 is a cross-sectional view showing the motor unit 20.
  • the motor unit 20 includes a motor cover 21 attached to the motor housing unit 17, a cylindrical stator 22 housed in the motor housing unit 17 and the motor cover 21, and a radial inside of the stator 22.
  • the rotor 23 is provided in the above and is rotatably provided with respect to the stator 22.
  • the motor cover 21 is a member made of a metal such as iron, and is formed into a bottomed cylindrical shape by, for example, press working with a deep drawing.
  • a flange 21a (see also FIG. 1) that projects outward in the radial direction is formed at the open end of the motor cover 21.
  • the motor cover 21 is connected to the motor accommodating portion 17 by a bolt 21b inserted through the flange 21a.
  • the stator 22 is arranged along the inner peripheral surface of the motor cover 21.
  • the stator 22 includes a stator core 24 formed in a substantially cylindrical shape, a plurality of teeth 25 protruding inward in the radial direction from the stator core 24, and a winding 26 wound around the stator core 24.
  • the stator core 24 is formed by laminating a plurality of steel plates 24p.
  • the stator core 24 is not limited to the case where a plurality of metal plates are laminated and formed, and may be formed, for example, by pressure molding soft magnetic powder.
  • the outer peripheral surface of the stator core 24 formed in this way is fitted to the inner peripheral surface of the motor cover 21.
  • the teeth 25 are formed at equal intervals in the circumferential direction along the radial inner side of the stator core 24.
  • the winding 26 is wound around the teeth 25.
  • the winding 26 generates a magnetic flux for rotating the rotor 23 by a current supplied from a controller board (not shown).
  • FIG. 4 is a cross-sectional view showing the rotor 23.
  • FIG. 5 is a perspective view of the rotor 23.
  • the rotor 23 has a rotating shaft 27 and a rotor main body 28 fitted and fixed to the rotating shaft 27.
  • the axial direction of the rotating shaft 27 is simply referred to as an axial direction.
  • the rotor body 28 has a rotor core 42 press-fitted into the rotating shaft 27, magnets (also referred to as "rotor magnets") 43A and 43B attached to the rotor core 42, and first and second magnets 43A and 43B for holding the magnets 43A and 43B.
  • a magnet holder (holder) 44A, 44B and a magnet cover 45 are provided.
  • the first and second magnet holders 44A and 44B are arranged so as to sandwich the magnets 43A and 43B in the axial direction. As a result, the first and second magnet holders 44A and 44B prevent the magnets 43A and 43B from falling off from the rotor core 42 in the axial direction.
  • FIG. 6 is an exploded perspective view of the rotor 23.
  • the rotating shaft 27 is integrally molded with the worm shaft 31 constituting the speed reducer unit 30 (see also FIG. 2).
  • a rotor core 42 is attached to an end (one end) 27b (see FIG. 3) on the end face 27a side of the rotating shaft 27.
  • the rotor core 42 rotates integrally with the rotating shaft 27 by being press-fitted into the outer circumference of the rotating shaft 27.
  • the rotor core 42 is formed by laminating a plurality of metal plates in the axial direction.
  • the rotor core 42 is not limited to the case where a plurality of steel plates 42p are laminated in the axial direction, and may be formed, for example, by pressure molding soft magnetic powder.
  • the rotor core 42 has a core base end portion 47 formed in a cylindrical shape, and a plurality of core projecting portions 48 projecting radially outward from the core base end portion 47.
  • a through hole 47a penetrating in the axial direction is formed at the center of the core base end portion 47 in the radial direction.
  • the rotating shaft 27 is press-fitted into the through hole 47a (see also FIG. 3).
  • the rotating shaft 27 may be inserted into the through hole 47a, and the rotor core 42 may be externally fitted and fixed to the rotating shaft 27 using an adhesive or the like.
  • four core protrusions 48 are projected at equal intervals at intervals of 90 ° in the circumferential direction.
  • FIG. 7 is a plan view of the magnets 43A and 43B of the rotor 23 and the rotor core 42 as viewed from the axial direction.
  • magnets 43A and 43B are arranged between the core protrusions 48 adjacent to each other in the circumferential direction.
  • the magnets 43A and 43B are segment-type magnets having a fan-shaped axial cross section.
  • Four magnets 43A and 43B are arranged in an annular shape on the outer peripheral surface (outer peripheral portion) 47b of the core base end portion 47 so as to be arranged in the circumferential direction.
  • the magnets 43A and 43B are made of, for example, ferrite magnets.
  • each of them is formed in a fan shape with a central angle ⁇ ⁇ 90 °.
  • the magnets 43A and 43B are both magnetized from the inner diameter surface (inner peripheral surface) 43c made of an arc surface toward the outer diameter surface (outer peripheral surface) 43d.
  • the magnetic poles of the outer diameter surface 43d are set so as to be arranged alternately in the circumferential direction with opposite polarities. That is, two types of magnets 43A and 43B magnetized in opposite polarities are prepared, and are arranged alternately on the outer peripheral surface 47b of the core base end portion 47 along the circumferential direction. Therefore, the rotor body 28 having the assembly of the magnets 43A and 43B has four pole poles.
  • the inner diameter surface 43c and the outer diameter surface 43d are formed as an arc surface.
  • both end surfaces 43t of the magnets 43A and 43B in the circumferential direction are brought into contact with the adjacent core protrusions 48. ..
  • the magnets 43A and 43B are overhanged on both sides in the axial direction with respect to the rotor core 42 and the stator core 24.
  • the overhang means a state in which both end faces in the axial direction of the magnets 43A and 43B are projected from the core end faces 42a and 42b on both sides in the axial direction of the rotor core 42.
  • the first and second magnet holders 44A and 44B include an annular magnet holding portion 44c and a core holding portion 44d integrally formed with the magnet holding portion 44c.
  • Examples of the materials of the first and second magnet holders 44A and 44B include non-magnetic resin materials.
  • the magnet holding portion 44c is formed in a flat annular shape by forming the opening edge 44e at the center in the radial direction and the outer peripheral edge 44f in an arc shape.
  • the core holding portion 44d is integrally formed on the inner wall surface 44i which is the surface on the magnet 43A and 43B sides.
  • the core holding portion 44d has an annular portion 44 g and a plurality of projecting portions 44h extending radially outward from the annular portion 44 g.
  • the annular portion 44g is formed in an annular shape on the inner wall surface 44i of the magnet holding portion 44c, following the opening edge 44e.
  • the plurality of projecting portions 44h extend radially outward from the annular portion 44g to the outer peripheral edge 44f along the inner wall surface 44i of the magnet holding portion 44c. For example, four of the plurality of projecting portions 44h are projected at equal intervals at intervals of 90 ° in the circumferential direction.
  • the end face of the core base end portion 47 of the rotor core 42 is brought into contact with the annular portion 44 g.
  • the end face of the core protruding portion 48 of the rotor core 42 is brought into contact with the protruding portion 44h.
  • the first magnet holder 44A is in contact with the core end face (end face) 42a on the opposite side of the end face 27a of the rotating shaft 27 among the core end faces 42a and 42b on both sides of the rotor core 42 (FIG. 4). See also).
  • the second magnet holder 44B is in contact with the core end face (end face) 42b on the end face 27a side of the rotating shaft 27 among the core end faces 42a and 42b on both sides of the rotor core 42.
  • first magnet holder 44A and the second magnet holder 44B are arranged on the core end faces 42a and 42b on both sides of the rotor core 42 so as to sandwich the rotor core 42 in the axial direction.
  • Magnets 43A and 43B are arranged between the first magnet holder 44A and the second magnet holder 44B. That is, the magnets 43A and 43B are held by the first and second magnet holders 44A and 44B so as to be movable in the axial direction and to be restricted from moving in the axial direction more than a predetermined value.
  • Magnetic cover> The outer periphery of the first magnet holder 44A, the second magnet holder 44B, the rotor core 42, and the magnets 43A and 43B is covered with the magnet cover 45. Further, the first and second magnet holders 44A and 44B are held by the magnet cover 45. Examples of the material of the magnet cover 45 include non-magnetic materials such as stainless steel.
  • the magnet cover 45 has a cylindrical portion 45a that covers the outer diameter surfaces 43d of the magnet holders 44A and 44B, and a first flange 45b and a second flange 45c that are integrally formed at both ends of the cylindrical portion 45a in the axial direction.
  • the cylindrical portion 45a is formed in a hollow cylindrical shape.
  • the inner peripheral surface of the cylindrical portion 45a is in contact with the outer diameter surface 43d of the magnets 43A and 43B.
  • the magnets 43A and 43B are held (fixed) and held by the cylindrical portion 45a in a state where both end faces 43t of the magnets 43A and 43B are in contact (close contact) with the core protruding portion 48 of the rotor core 42.
  • a first flange 45b (see also FIG. 4) of the cylindrical portion 45a projects radially inward from one end 45d on the opposite side of the end surface 27a of the rotating shaft 27.
  • the first flange 45b is in contact with the surface of the magnet holding portion 44c of the first magnet holder 44A.
  • a second flange 45c of the cylindrical portion 45a projects radially inward from the other end 45e on the end surface 27a side of the rotating shaft 27.
  • the second flange 45c is in contact with the surface of the magnet holding portion 44c of the second magnet holder 44B.
  • the first flange 45b is brought into contact with the surface of the magnet holding portion 44c of the first magnet holder 44A. Further, the second flange 45c is brought into contact with the surface of the magnet holding portion 44c of the second magnet holder 44B. As a result, the first magnet holder 44A and the second magnet holder 44B are held integrally with the rotor core 42 by the magnet cover 45.
  • the magnets 43A and 43B are fixed to the rotor core 42 by the cylindrical portion 45a of the magnet cover 45. Further, the first and second magnet holders 44A and 44B are fixed to the rotor core 42 by the first flange 45b and the second flange 45c of the magnet cover 45.
  • the rotor 23 is integrally assembled by the rotating shaft 27, the rotor core 42, the magnets 43A and 43B, the first and second magnet holders 44A and 44B, and the magnet cover 45.
  • an example of fixing the magnets 43A and 43B with the magnet cover 45 will be described, but the magnets 43A and 43B may be fixed with an adhesive.
  • the axial length of the holder space 46 that is, the length between the inner wall surfaces 44i of the magnet holders 44A and 44B facing each other in the axial direction is L1
  • the magnets 43A and 43B are magnets in the axial direction.
  • each length L1 and L2 is L1> L2 ... (1) Meet. Therefore, the magnets 43A and 43B can be held at arbitrary positions in the axial direction in the holder space 46 between the first magnet holder 44A and the second magnet holder 44B.
  • the magnet end surface 43e in the axial direction is in contact with the magnet holding portion 44c of the second magnet holder 44B.
  • the magnet end faces 43f in the axial direction are arranged at intervals in the axial direction with respect to the magnet holding portion 44c of the first magnet holder 44A. That is, a space having a space length of Lk is formed between the magnet end surface 43f and the magnet holding portion 44c.
  • the second holder length Lh between the magnet holding portion 44c and the inner wall surface 44i is the same length.
  • the magnet end face 43e is in contact with the magnet holding portion 44c, and a space having a space length Lk is formed between the magnet end face 43f and the magnet holding portion 44c. Therefore, in the magnets 43A and 43B, the magnet center position C2 is offset (offset) toward the end face 27a in the axial direction with respect to the rotor center position C1 in the axial direction. In other words, the rotor center position C1 is located closer to the center of the rotating shaft 27 than the magnet center position C2 (that is, closer to the other end on the opposite side of the end (one end) 27b of the rotating shaft 27 shown in FIG. 3). ing.
  • the specific gravity of the rotor core 42 is generally larger than the specific gravity of the magnets 43A and 43B.
  • the rotor center position C1 is offset (offset) from the stator center position C3 to the opposite side of the axial end surface 27a of the rotating shaft 27.
  • the offset length L3 between the rotor center position C1 and the stator center position C3 is larger than the space length Lk.
  • the space length Lk is set to be smaller than the offset length L3. Therefore, the offset length L3 is set to be larger than the offset length L4 of the magnet center position C2 with respect to the rotor center position C1.
  • the length L1 between the inner wall surfaces 44i of the magnet holders 44A and 44B facing each other in the axial direction, the magnet length L2 in the axial direction of the magnets 43A and 43B, and the offset length L3 are L1-L2 ⁇ L3 ... (3) Meet.
  • the magnet holding portion 44c on the side opposite to the offset direction of the rotor center position C1 with respect to the stator center position C3 and the magnet end surface 43e are in contact with each other.
  • the magnet center position C2 is arranged between the stator center position C3 and the rotor center position C1 in the axial direction. That is, the stator center position C3, the magnet center position C2, and the rotor center position C1 are arranged in this order in the direction away from the end surface 27a of the rotating shaft 27. In other words, there is a magnet center position C2 between the stator center position C3 and the rotor center position C1.
  • the rotor center position (that is, the center position of the rotor core 42) C1 is opposite to the stator center position C3 in the axial direction of the end surface 27a (that is, the rotation shaft 27 of the rotor 23).
  • the offset length L4 is shifted to the center position side of the. Therefore, the magnet center position C2 is arranged on the center position side of the rotating shaft 27 of the rotor 23, and the weight of the magnet center position C2 is brought closer to the center position side of the rotating shaft 27.
  • the specific gravity of the rotor core 42 is generally larger than the specific gravity of the magnets 43A and 43B.
  • the rotor center position C1 is arranged closer to the center of the rotation shaft 27 than the magnet center position C2. As a result, the dynamic imbalance of the rotor 23 can be suppressed more satisfactorily.
  • the length L1 between the inner wall surfaces 44i of the magnet holders 44A and 44B facing each other in the axial direction, the magnet length L2 in the axial direction of the magnets 43A and 43B, and the offset length L5 are given by the above equation (3).
  • the magnets 43A and 43B can be held at arbitrary positions in the axial direction in the holder space 46 between the first magnet holder 44A and the second magnet holder 44B. Therefore, the magnets 43A and 43B can be offset to the second magnet holder 44B side.
  • the stator center position C3, the magnet center position C2, and the rotor center position C1 are offset in the axial direction and arranged separately, and the respective center positions C3, C2, and C1 are set to the optimum positions. Therefore, both the dynamic balance by the rotor 23 and the motor characteristics can be achieved.
  • the speed reducer unit 30 is composed of a worm shaft 31 and a worm wheel 32 that is meshed with the worm shaft 31.
  • the worm shaft 31 is formed as a part of the rotating shaft 27 by forming a spirally continuous worm gear portion 31g on the outer peripheral surface of the rotating shaft 27 of the motor portion 20 in the intermediate portion between the bearing portions 16A and 16B. Has been done.
  • the worm gear portion 31g is formed so that its outer diameter is larger than the outer diameter of the worm shaft 31 (rotating shaft 27).
  • Such a worm gear portion 31g is formed by rolling.
  • the worm shaft 31 may be configured as a separate body from the rotating shaft 27 of the motor unit 20, and may be integrated by connecting the worm shaft 31 and the rotating shaft 27.
  • the worm wheel 32 has a disk shape, and has an outer peripheral gear portion 32g that meshes with the worm gear portion 31g of the worm shaft 31 on the outer peripheral surface thereof.
  • the worm wheel 32 is housed in the wheel housing recess 15 of the speed reducer housing portion 13 of the housing body 11.
  • an output shaft 33 protruding from the radial center of the worm wheel 32 is provided on the side of the speed reducer accommodating portion 13 facing the bottom portion 13b.
  • the output shaft 33 is arranged coaxially with the center of rotation of the worm wheel 32.
  • the tip of the output shaft 33 projects to the outside of the housing body 11 through the through hole of the boss portion 19 formed in the housing body 11.
  • a spline 33a connected to an electrical component (not shown) is formed at the tip of the output shaft 33.
  • FIG. 8 is a cross-sectional view illustrating the manufacturing process of the rotor 23, and FIGS. 8A to 8C show each process.
  • the first magnet holder 44A is in contact with the core end surface 42a of the rotor core 42 in a state where the rotor core 42 is fixed to the rotating shaft 27.
  • the second magnet holder 44B is in contact with the core end surface 42b of the rotor core 42.
  • magnets 43A and 43B are arranged between the first magnet holder 44A and the second magnet holder 44B. Further, the magnets 43A and 43B are arranged between the adjacent core protrusions 48 (see FIG. 7). In this state, the magnets 43A and 43B are arranged so as to be movable in the axial direction in the holder space 46 between the first magnet holder 44A and the second magnet holder 44B.
  • the rotating shaft 27, the rotor core 42, the first and second magnet holders 44A and 44B, and the magnets 43A and 43B assembled in this way are arranged on the mounting table 51.
  • one end 45d side of the magnet cover 45 is gripped by the grip portion 53 of the pressing machine 52.
  • the second flange 45c on the other end 45e side of the magnet cover 45 is spread outward in the radial direction in an inclined shape (spreading shape) in an uncrimped state.
  • the magnet cover 45 is lowered by the grip portion 53 of the pressing machine 52.
  • the second flange 45c of the magnet cover 45 is fitted into the outer diameter surfaces 43d of the magnets 43A and 43B in the direction of arrow A via the first magnet holder 44A.
  • the cylindrical portion 45a of the magnet cover 45 is fitted into the outer diameter surfaces 43d of the magnets 43A and 43B in a state of being press-fitted.
  • the magnets 43A and 43B move in the direction of arrow A together with the cylindrical portion 45a of the magnet cover 45.
  • the magnet end faces 43e of the magnets 43A and 43B come into contact with the magnet holding portion 44c of the second magnet holder 44B. That is, the magnets 43A and 43B move to positions offset in the axial direction toward the end face 27a of the rotating shaft 27 with respect to the rotor core 42.
  • the cylindrical portion 45a is press-fitted into the outer diameter surfaces 43d of the magnets 43A and 43B. Therefore, the first flange 45b of the magnet cover 45 is pressed (contacted) against the surface of the magnet holding portion 44c of the first magnet holder 44A / (magnet cover press-fitting step). In this state, the second flange 45c of the magnet cover 45 projects downward from the second magnet holder 44B.
  • the magnets 43A and 43B are formed in the holder space 46 between the first magnet holder 44A and the second magnet holder 44B. It is arranged so that it can be moved in the axial direction. Therefore, by press-fitting the cylindrical portion 45a of the magnet cover 45 into the outer diameter surfaces 43d of the magnets 43A and 43B, the magnets 43A and 43B can be offset with respect to the rotor core 42.
  • the magnet center position C2 of the magnets 43A and 43B can be fixed in a state of being offset (one-sided) by L5 toward the end face 27a in the axial direction with respect to the rotor center position C1 of the rotor core 42.
  • the rotor 23 in which the magnets 43A and 43B are offset can be easily manufactured.
  • the motor 1 with a speed reducer in which the magnet center position C2 is arranged between the stator center position C3 and the rotor center position C1 can be easily manufactured.
  • the present invention is not limited to the above-described embodiment, and includes various modifications of the above-described embodiment without departing from the spirit of the present invention.
  • the motor 1 with a speed reducer is a drive source for electrical components (for example, wipers, power windows, sunroofs, electric seats, etc.) mounted on a vehicle has been described.
  • the present invention is not limited to this, and the motor 1 with a speed reducer can be adopted for various electric devices. Further, it is also possible to adopt only the motor unit 20 for various electric devices.
  • Core base end, 47b Outer peripheral surface of core base end (outer circumference of rotor core), C1 ... Rotor center position (rotor core axial center position), C2 ... Magnet center position (magnet axial center position) , C3 ... Stator center position (center position in the axial direction of the stator core), L1 ... Holder space length, L2 ... Magnet length, L3 ... Offset length (center position in the axial direction of the stator core and center position in the axial direction of the rotor core) (Length between), Lk ... Space length, Lh ... First and second holder length (length between the end face of the rotor core and the inner wall surface of the holder)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

ロータの動的アンバランスを抑制でき、さらに、モータ特性の低下を抑制できるモータ及びモータの製造方法を提供する。モータ部20は、ロータ中心位置C1と、マグネット中心位置C2と、ステータ中心位置C3と、がずれており、各マグネットホルダ44A,44Bの軸方向で対向する内壁面44i同士の間の長さL1、マグネット43A,43Bの軸方向のマグネット長さL2、及びオフセット長さL3は、L1-L2<L3を満たし、かつ、第1、第2のホルダ長さLhが同一である。

Description

モータ及びモータの製造方法
 本発明は、モータ及びモータの製造方法に関するものである。
 例えばモータのなかには、ブラシレスモータとして、巻線が巻回されたステータと、ステータの径方向内側に回転自在に設けられたロータと、を有するいわゆるインナーロータ型のモータが知られている。この種のロータの外周部には、周方向に沿って逆極性の磁極が交互に並ぶように永久磁石(以下、マグネットという)が配置されている。一方、ステータは、ロータの周囲を取り囲む筒状のステータコアと、ステータコアから径方向内側に向かって突出する複数のティースと、ティースに巻回された巻線と、を備えている。
 モータは、巻線に電力が供給されると、ステータに所定の磁界が形成され、この磁界を受けて、磁界とマグネットとの間で磁気的な吸引力や反発力が生じ、これにより、ロータが継続的に回転する。
国際公開第2017/002869号
 ところで、従来のロータの構造では、マグネットが回転軸の端面側に寄ってしまうと重心が回転軸(ロータ)の中心位置から離れていまい、わずかな振れで大きな動的アンバランスになる等のデメリットが存在していた。
 また、マグネットの重心をロータの中心位置に寄せるようにした場合、ステータの軸中心位置に対してマグネットの中心位置がずれてしまい、マグネットの有効磁束が効果的にロータの回転トルクに寄与されず、モータ特性が低下してしまう可能性があった。
 そこで、本発明は、ロータの動的アンバランスを抑制でき、さらに、モータ特性の低下を抑制できるモータ及びモータの製造方法を提供するものである。
 上記の課題を解決するために、本発明に係るモータは、巻線及び前記巻線が巻回されるステータコアを有するステータと、回転軸の一端に取り付けられ前記ステータの磁界を受けて回転するロータと、を備え、前記ロータは、前記回転軸と一体に回転するロータコアと、前記ロータコアの外周部に配置されるマグネットと、前記ロータコアにおける前記回転軸の軸方向の両端に設けられ、前記マグネットにおける前記軸方向の移動を規制する2つのホルダと、を有し、前記ステータコアの前記軸方向の中心位置と、前記ロータコアの前記軸方向の中心位置と、前記マグネットの前軸方向の中心位置と、がずれており、前記2つのホルダの前記軸方向で対向する内壁面同士の間の長さをL1とし、前記マグネットの前記軸方向の長さをL2とし、前記ステータコアの前記軸方向の中心位置と前記ロータコアの前記軸方向の中心位置との間の長さをL3としたとき、各前記長さL1,L2,L3は、
 L1-L2<L3
を満たし、かつ、前記ロータコアの端面と各前記ホルダの前記内壁面との間の長さが同一であることを特徴とする。
 本発明に係るモータは、巻線及び前記巻線が巻回されるステータコアを有するステータと、回転軸の一端に取り付けられ前記ステータの磁界を受けて回転するロータと、を備え、前記ロータは、前記回転軸と一体に回転するロータコアと、前記ロータコアの外周部に配置されるマグネットと、前記ロータコアにおける前記回転軸の軸方向の両端に設けられ、前記マグネットにおける前記軸方向の移動を規制する2つのホルダと、を有し、前記ロータコアの端面と各前記ホルダにおける前記ロータコアの前記端面と前記軸方向で対向する内壁面との間の長さが同一であり、前記ステータコアの前記軸方向の中心位置と、前記ロータコアの前記軸方向の中心位置と、前記マグネットの前軸方向の中心位置と、がずれており、前記ステータコアの前記軸方向の中心位置と前記ロータコアの前記軸方向の中心位置との間に、前記マグネットの前記軸方向の中心位置があることを特徴とする。
 上記構成において、前記マグネットは、前記ステータコアに対する前記ロータコアのずれ方向とは反対側の前記ホルダと当接してもよい。
 上記構成において、前記ロータコアは、前記軸方向における中心位置が、前記マグネットの前記軸方向における中心位置よりも前記回転軸の他端寄りに有してもよい。
 上記構成において、さらに前記マグネットの外周面を覆い、内周面が前記マグネットの前記外周面に当接されたマグネットカバーを有してもよい。
 上記構成において、前記ロータコアの比重は前記マグネットの比重より大きくてもよい。
 上記構成のモータの製造方法は、前記ロータコアの外周部に前記マグネットを配置した状態で、前記マグネットの外周面に、前記マグネットの外周面を覆うマグネットカバーを圧入し、前記マグネットカバーの一端を前記ホルダに押し当てるマグネットカバー圧入工程と、前記マグネットカバー圧入工程の後、前記マグネットカバーの他端を前記ホルダに当接させてかしめるマグネットカバー固定工程と、を有することを特徴とする。
 本発明によれば、ロータの動的アンバランスを抑制でき、さらに、モータ特性の低下を抑制できる。
本発明の実施形態における減速機付モータの外観を示す斜視図。 本発明の実施形態における減速機付モータを示す断面図。 本発明の実施形態におけるモータ部を示す断面図。 本発明の実施形態におけるロータを示す断面図。 本発明の実施形態におけるロータの斜視図。 本発明の実施形態におけるロータの分解斜視図。 本発明の実施形態におけるロータのマグネット及びロータコアを回転軸の軸方向から見た平面図。 本発明の実施形態におけるロータの製造工程を説明する断面図であり、(a)から(c)は、各工程を示す。
 次に、本発明の実施形態のモータ及びモータの製造方法について図面を参照して説明をする。なお、実施形態においては、モータとして減速機付モータ1を例に説明するが、その他のモータに適用してもよい。
<減速機付モータ>
 図1は、減速機付モータ1の外観を示す斜視図である。
 図1に示すように、減速機付モータ1は、例えば車両に搭載される電装品(例えば、ワイパ、パワーウインドウ、サンルーフ、電動シート等)の駆動源となるものである。具体的には、減速機付モータ1は、減速機付モータ1の外殻をなすハウジング10と、ハウジング10に設けられたモータ部20と、ハウジング10内に設けられ、モータ部20の回転を減速して出力する減速機部30と、を備えている。
 図2は、減速機付モータ1を示す断面図である。
 図1、図2に示すように、ハウジング10は、例えばアルミダイキャスト等の放熱性の優れた材料に形成されている。ハウジング10は、モータ部20及び減速機部30を保持するハウジング本体11と、カバー12と、から構成されている。
 ハウジング本体11の一面側には、減速機部30を収容する減速機収容部13が形成されている。減速機収容部13は、ハウジング本体11の天面部11tから天面部11tに対向する背面部11bに向かって窪んだ有底状である。減速機収容部13は、背面部11b側に形成された底部13bと、底部13bの外周部から天面部11t側に立ち上がる周壁部13wと、に囲まれている。
 減速機収容部13には、後述するウォーム軸31を収容する軸収容溝14と、ウォームホイール32を収容するホイール収容凹部15と、が形成されている。減速機収容部13内には、軸収容溝14の軸線方向の両端部に、ウォーム軸31(回転軸27)を回転自在に支持する軸受部16A,16Bが形成されている。
 ハウジング本体11の外周部には、周壁部13wから外方に向かってウォーム軸31の軸線方向に沿って筒状に延びるモータ収容部17が一体に形成されている。モータ収容部17は、モータ部20の一部を収容する。モータ収容部17の内側には、周壁部13wを貫通し、前記の軸受部16Aに連通する軸挿通孔(図示無し)が形成されている。
 また、ハウジング本体11には、背面部11bから、天面部11tとは反対側に突出するボス部19が一体に形成されている。ボス部19には、ホイール収容凹部15に連通する貫通孔(図示無し)が貫通形成されている。
 ハウジング本体11の天面部11t側において、減速機収容部13を塞ぐようにカバー12が設けられている。カバー12は、その外周部の複数個所において、不図示のボルトによってハウジング本体11に締結されている。カバー12には、このカバー12をハウジング本体11に取り付けた状態で、モータ収容部17に隣接してコネクタ受容部12cが形成されている。コネクタ受容部12cは筒状をなし、外部の電源供給コネクタが接続される。
<モータ部>
 図3は、モータ部20を示す断面図である。
 図3に示すように、モータ部20は、モータ収容部17に取り付けられるモータカバー21と、モータ収容部17及びモータカバー21内に収納された円筒状のステータ22と、ステータ22の径方向内側に設けられ、ステータ22に対して回転自在に設けられたロータ23と、を備えている。
 モータカバー21は、鉄等の金属からなる部材であって、例えば深絞りによるプレス加工等により有底円筒状に成形されている。モータカバー21の開口端には、径方向外側に張り出すフランジ21a(図1も参照)が形成されている。フランジ21aに挿通されたボルト21bにより、モータ収容部17にモータカバー21が連結されている。
 ステータ22は、モータカバー21の内周面に沿って配置される。ステータ22は、略円筒状に形成されたステータコア24と、ステータコア24から径方向内側に向かって突出する複数のティース25と、ステータコア24に巻回される巻線26と、を備える。
 ステータコア24は、複数の鋼板24pを積層して形成される。なお、ステータコア24は、複数の金属板を積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成してもよい。このように形成されたステータコア24の外周面が、モータカバー21の内周面に嵌合される。
 ティース25は、ステータコア24の径方向内側に沿って周方向に等間隔で形成されている。ティース25に、巻線26が巻回される。巻線26は、不図示のコントローラ基板から供給される電流によって、ロータ23を回転させるための磁束を発生する。
 図4は、ロータ23を示す断面図である。図5は、ロータ23の斜視図である。
 図4、図5に示すように、ロータ23は、回転軸27と、回転軸27に嵌合固定されたロータ本体28と、を有する。なお、以下の説明では、回転軸27の軸方向を単に軸方向と称する。
 ロータ本体28は、回転軸27に圧入されるロータコア42と、ロータコア42に取り付けられるマグネット(「ロータマグネット」ともいう)43A,43Bと、マグネット43A,43Bを保持するための第1、第2のマグネットホルダ(ホルダ)44A,44B及びマグネットカバー45と、を備える。
 第1、第2のマグネットホルダ44A,44Bは、マグネット43A,43Bを軸方向に挟むように配置されている。これにより、第1、第2のマグネットホルダ44A,44Bは、マグネット43A,43Bのロータコア42からの軸方向の脱落を防止する。
<ロータコア>
 図6は、ロータ23の分解斜視図である。
 図5、図6に示すように、回転軸27は、減速機部30を構成するウォーム軸31と一体成形されている(図2も参照)。回転軸27のうち端面27a側の端部(一端)27b(図3参照)に、ロータコア42が取り付けられている。ロータコア42は、回転軸27の外周に圧入されることにより回転軸27と一体に回転する。ロータコア42は、複数の金属板を軸方向に積層することにより形成されている。なお、ロータコア42は、複数の鋼板42pを軸方向に積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成してもよい。
 ロータコア42は、円筒状に形成されたコア基端部47と、コア基端部47から径方向外側に向けて放射状に突出する複数のコア突出部48と、を有する。コア基端部47の径方向中央には軸方向に貫通する貫通孔47aが形成されている。貫通孔47aに、回転軸27が圧入されている(図3も参照)。なお、貫通孔47aに対して回転軸27を挿入とし、接着剤等を用いて回転軸27にロータコア42を外嵌固定してもよい。複数のコア突出部48は、例えば、周方向に90°の間隔をおいて等間隔に4個突出されている。
<マグネット>
 図7は、ロータ23のマグネット43A,43B及びロータコア42を軸方向から見た平面図である。
 図6、図7に示すように、周方向で隣接するコア突出部48の間に、マグネット43A,43Bが配置されている。マグネット43A,43Bは、軸方向断面が扇状のセグメント型のマグネットである。マグネット43A,43Bは、コア基端部47の外周面(外周部)47bに周方向に並べて円環状に4個配置されている。マグネット43A,43Bは、例えばフェライト磁石からなる。ここでは、マグネット43A,43Bは4個であるから、それぞれが中心角θ<90°の扇形に形成されている。
 マグネット43A,43Bは、共に円弧面よりなる内径面(内周面)43cから外径面(外周面)43dに向けて着磁されている。マグネット43A,43Bは、ロータコア42の外周面に円環状に並べて配置したとき、外径面43dの磁極が周方向に交互に逆極性で並ぶように設定されている。つまり、マグネット43A,43Bは、逆極性に着磁されたものが2種類用意されており、コア基端部47の外周面47bに周方向に沿って交互に配置されている。従って、マグネット43A,43Bの組立体を有するロータ本体28は、4極の磁極を持つ。
 マグネット43A,43Bは、内径面43cと外径面43dとが円弧面として形成されている。セグメント型のマグネット43A,43Bは、周方向で隣接するコア突出部48の間に配置された状態において、隣接するコア突出部48にマグネット43A,43Bの周方向の両端面43tが当接される。これにより、ロータ23の回転方向に対するマグネット43A,43Bの位置ずれを防ぐことができる。
 また、マグネット43A,43Bは、ロータコア42及びステータコア24に対して軸方向の両側にオーバハングされている。オーバハングとは、ロータコア42の軸方向両側のコア端面42a,42bからマグネット43A,43Bの軸方向両端面が突出された状態をいう。
<マグネットホルダ>
 第1、第2のマグネットホルダ44A,44Bは、環状のマグネット保持部44cと、マグネット保持部44cに一体に形成されたコア保持部44dと、を備えている。第1、第2のマグネットホルダ44A,44Bの材料としては、例えば非磁性の樹脂材料が挙げられる。
 マグネット保持部44cは、径方向中央の開口縁44eと外周縁44fとが円弧状に形成されることにより、平坦な環状に形成されている。マグネット保持部44cには、マグネット43A,43B側の面となる内壁面44iに、コア保持部44dが一体に形成されている。コア保持部44dは、環状部44gと、環状部44gから径方向外側に延びる複数の突出部44hと、を有する。
 環状部44gは、マグネット保持部44cの内壁面44iにおいて、開口縁44eに倣って環状に形成されている。
 複数の突出部44hは、環状部44gからマグネット保持部44cの内壁面44iに沿って外周縁44fまで径方向外側へ放射状に延びている。複数の突出部44hは、例えば、周方向に90°の間隔をおいて等間隔に4個突出されている。
 環状部44gには、ロータコア42のコア基端部47の端面が当接される。突出部44hには、ロータコア42のコア突出部48の端面が当接される。具体的には、第1のマグネットホルダ44Aは、ロータコア42の両側のコア端面42a,42bのうち、回転軸27の端面27aの反対側のコア端面(端面)42aに当接している(図4も参照)。また、第2のマグネットホルダ44Bは、ロータコア42の両側のコア端面42a,42bのうち、回転軸27の端面27a側のコア端面(端面)42bに当接している。
 すなわち、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bは、ロータコア42を軸方向において挟持するように、ロータコア42の両側のコア端面42a,42bに配置されている。第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間に、マグネット43A,43Bが配置される。すなわち、マグネット43A,43Bは、第1、第2のマグネットホルダ44A,44Bによって軸方向に移動できるように、かつ所定以上の軸方向への移動が規制されるように保持されている。
<マグネットカバー>
 第1のマグネットホルダ44A、第2のマグネットホルダ44B、ロータコア42、及びマグネット43A,43Bの外周は、マグネットカバー45で覆われている。さらに、第1、第2のマグネットホルダ44A,44Bは、マグネットカバー45で保持されている。マグネットカバー45の材料としては、例えば、ステンレス等の非磁性材料が挙げられる。
 マグネットカバー45は、マグネットホルダ44A,44Bの外径面43dを覆う円筒部45aと、円筒部45aの軸方向両端に一体形成された第1のフランジ45b及び第2のフランジ45cと、を有する。円筒部45aは、中空の円筒状に形成されている。円筒部45aの内周面は、マグネット43A,43Bの外径面43dに当接されている。これにより、マグネット43A,43Bの両端面43tがロータコア42のコア突出部48に当接(密着)された状態において、マグネット43A,43Bが円筒部45aで保持(固定)保持される。
 円筒部45aのうち、回転軸27の端面27aの反対側の一端45dから径方向内側に第1のフランジ45b(図4も参照)が張り出されている。第1のフランジ45bは、第1のマグネットホルダ44Aのマグネット保持部44cの表面に当接されている。
 円筒部45aのうち、回転軸27の端面27a側の他端45eから径方向内側に第2のフランジ45cが張り出されている。第2のフランジ45cは、第2のマグネットホルダ44Bのマグネット保持部44cの表面に当接されている。
 このように、第1のマグネットホルダ44Aのマグネット保持部44cの表面に、第1のフランジ45bが当接される。また、第2のマグネットホルダ44Bのマグネット保持部44cの表面に、第2のフランジ45cが当接される。これにより、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bが、マグネットカバー45によりロータコア42と一体に保持されている。
 すなわち、ロータ23は、例えば、回転軸27にロータコア42が固定された状態において、ロータコア42にマグネット43A,43Bがマグネットカバー45の円筒部45aにより固定されている。また、ロータコア42に第1、第2のマグネットホルダ44A,44Bがマグネットカバー45の第1のフランジ45b及び第2のフランジ45cにより固定されている。これにより、回転軸27、ロータコア42、マグネット43A,43B、第1、第2のマグネットホルダ44A,44B、及びマグネットカバー45により、ロータ23が一体に組み付けられている。
 なお、実施形態においては、マグネット43A,43Bをマグネットカバー45で固定する例について説明するが、マグネット43A,43Bを接着剤で固定してもよい。
<ロータコア、マグネット、及びステータコアの軸方向における位置関係>
 以下、図3、図4に基づいて、ロータコア42、マグネット43A,43B、及びステータコア24の軸方向における位置関係を説明する。
 図4に示すように、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間にホルダ空間部46が形成されている。
 ここで、ホルダ空間部46の軸方向の長さ、つまり、各マグネットホルダ44A,44Bの軸方向で対向する内壁面44i同士の間の長さをL1とし、マグネット43A,43Bの軸方向のマグネット長さをL2としたとき、各長さL1,L2は、
 L1>L2 ・・・(1)
を満たしている。このため、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間のホルダ空間部46においてマグネット43A,43Bを軸方向の任意の位置に保持することが可能である。
 実施形態においては、例えば、マグネット43A,43Bは、軸方向のマグネット端面43eが第2のマグネットホルダ44Bのマグネット保持部44cに当接されている。また、マグネット43A,43Bは、軸方向のマグネット端面43fが第1のマグネットホルダ44Aのマグネット保持部44cに対して軸方向に間隔をおいて配置されている。すなわち、マグネット端面43fとマグネット保持部44cとの間に空間長さLkの空間が形成される。空間長さLkは、
 L1-L2=Lk ・・・(2)
を満たす。
 実施形態においては、マグネット保持部44cにマグネット端面43eを当接させる例について説明するが、マグネット保持部44c寄りにマグネット端面43eを配置してもよい。
 また、ロータコア42のコア端面42aと第1のマグネットホルダ44Aにおけるマグネット保持部44cの内壁面44iとの間の第1ホルダ長さLhと、ロータコア42のコア端面42bと第2のマグネットホルダ44Bにおけるマグネット保持部44cの内壁面44iとの間の第2ホルダ長さLhとは、同一長さである。
 ここで、マグネット保持部44cにマグネット端面43eが当接され、マグネット端面43fとマグネット保持部44cとの間に空間長さLkの空間が形成されている。このため、マグネット43A,43Bは、軸方向においてマグネット中心位置C2がロータ中心位置C1に対して軸方向の端面27a側にずれている(オフセットされている)。換言すれば、ロータ中心位置C1が、マグネット中心位置C2よりも回転軸27の中心寄り(すなわち、図3に示す回転軸27の端部(一端)27bの反対側の他端寄り)に配置されている。ここで、ロータコア42の比重は、一般的にマグネット43A,43Bの比重より大きい。
 図3に示すように、ステータ中心位置C3に対してロータ中心位置C1が回転軸27の軸方向の端面27aの反対側にずれている(オフセットされている)。ロータ中心位置C1とステータ中心位置C3との間のオフセット長さL3は、空間長さLkより大きい。換言すれば、空間長さLkが、オフセット長さL3より小さく設定されている。よって、オフセット長さL3は、ロータ中心位置C1に対するマグネット中心位置C2のオフセット長さL4より大きく設定されている。すなわち、各マグネットホルダ44A,44Bの軸方向で対向する内壁面44i同士の間の長さL1、マグネット43A,43Bの軸方向のマグネット長さL2、及びオフセット長さL3は、
 L1-L2<L3 ・・・(3)
を満たす。
 また、マグネット43A,43Bは、ステータ中心位置C3に対するロータ中心位置C1のオフセット方向とは反対側のマグネット保持部44cとマグネット端面43eが当接している。これにより、マグネット中心位置C2は、軸方向においてステータ中心位置C3とロータ中心位置C1との間に配置されている。すなわち、回転軸27の端面27aから離れる方向にステータ中心位置C3、マグネット中心位置C2、及びロータ中心位置C1の順に配置されている。換言すれば、ステータ中心位置C3とロータ中心位置C1との間に、マグネット中心位置C2がある。
 このように、上述のモータ部20は、ロータ中心位置(すなわち、ロータコア42の中心位置)C1が、ステータ中心位置C3に対して軸方向の端面27aの反対側(すなわち、ロータ23の回転軸27の中心位置側)にオフセット長さL4だけずらされている。このため、マグネット中心位置C2がロータ23の回転軸27の中心位置側に配置され、マグネット中心位置C2の重量が回転軸27の中心位置側に近づけられている。これにより、ロータ23の回転による振れが発生した場合に、ロータ23の動的アンバランスを抑制できる。
 さらに、ロータコア42の比重は、一般的にマグネット43A,43Bの比重より大きい。加えて、ロータ中心位置C1がマグネット中心位置C2よりも回転軸27の中心寄りに配置されている。これにより、ロータ23の動的アンバランスを一層良好に抑制できる。
 また、各マグネットホルダ44A,44Bの軸方向で対向する内壁面44i同士の間の長さL1、マグネット43A,43Bの軸方向のマグネット長さL2、及びオフセット長さL5は、上記式(3)を満たす。換言すれば、ステータ中心位置C3とロータ中心位置C1との間に、マグネット中心位置C2がある。このため、マグネット中心位置C2の重量をロータ23の回転軸27の中心位置側に近づけることができ、かつ、マグネット中心位置C2をステータ中心位置C3に近づけることができる。これにより、マグネット中心位置C2とステータ中心位置C3との不一致による磁束漏れを抑制でき、マグネット43A,43Bの有効磁束を効果的にロータ23の回転トルクに寄与させることができる。よって、モータ部20モータ特性が低下してしまうことを抑制できる。
 このように、減速機付モータ1では、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間のホルダ空間部46においてマグネット43A,43Bを軸方向の任意の位置に保持できるようにした。よって、マグネット43A,43Bを第2のマグネットホルダ44B側に片寄せできる。これにより、ステータ中心位置C3、マグネット中心位置C2、ロータ中心位置C1を軸方向にオフセットさせて別々に配置し、各中心位置C3,C2,C1を最適位置に設定した。したがって、ロータ23による動的バランスと、モータ特性の両立を達成できる。
<減速機部>
 図2に示すように、減速機部30は、ウォーム軸31と、ウォーム軸31に噛合されるウォームホイール32と、により構成されている。
 ウォーム軸31は、軸受部16A,16Bの中間部において、モータ部20の回転軸27の外周面に、螺旋状に連続するウォームギア部31gが形成されることで、回転軸27の一部として形成されている。
 ウォームギア部31gは、その外径が、ウォーム軸31(回転軸27)の外径よりも大きくなるよう形成されている。このようなウォームギア部31gは、転造により形成されている。
 なお、ウォーム軸31は、モータ部20の回転軸27とは別体として構成し、ウォーム軸31と回転軸27とを連結することで一体化してもよい。
 ウォームホイール32は、円盤状で、その外周面にウォーム軸31のウォームギア部31gに噛み合う外周ギア部32gを有している。ウォームホイール32は、ハウジング本体11の減速機収容部13のホイール収容凹部15に収容されている。
 ウォームホイール32において、減速機収容部13の底部13bに対向する側には、このウォームホイール32の径方向中央から突出する出力軸33が設けられている。出力軸33は、ウォームホイール32の回転中心と同軸上に配置されている。出力軸33の先端部は、ハウジング本体11に形成されたボス部19の貫通孔を介してハウジング本体11の外部に突出している。出力軸33の先端部には、不図示の電装品と接続されるスプライン33aが形成されている。
<減速機付モータの動作>
 次に、減速機付モータ1の動作について説明する。
 減速機付モータ1は、不図示のコントローラ部からモータ部20の各巻線26に電力が供給されると、ステータ22(ティース25)に所定の磁界が形成される。この磁界を受けて、磁界とロータ23のマグネット43A,43Bとの間で磁気的な吸引力や反発力が生じる。これにより、ロータ23が継続的に回転する。ロータ23が回転すると、回転軸27と一体化されたウォーム軸31が回転し、さらにウォーム軸31に噛合されているウォームホイール32が回転する。そして、ウォームホイール32に連結された出力軸33が回転し、所望の電装品が駆動される。
<モータの製造方法>
 次に、図3、図4、図8(a)から図8(c)に基づいて、ロータ23の製造方法、具体的にはロータ23の製造工程を説明する。図8は、ロータ23の製造工程を説明する断面図であり、(a)から(c)は、各工程を示す。
 図8(a)に示すように、回転軸27にロータコア42が固定された状態において、ロータコア42のコア端面42aに第1のマグネットホルダ44Aが当接されている。また、ロータコア42のコア端面42bに第2のマグネットホルダ44Bが当接されている。さらに、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間にマグネット43A,43Bが配置されている。さらに、マグネット43A,43Bは隣接するコア突出部48(図7参照)の間に配置されている。
 この状態において、マグネット43A,43Bは、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間のホルダ空間部46において、軸方向に移動自在に配置されている。
 このように組み付けられた回転軸27、ロータコア42、第1、第2のマグネットホルダ44A,44B、及びマグネット43A,43Bを載置台51に配置する。組み付けられた回転軸27、ロータコア42、第1、第2のマグネットホルダ44A,44B、及びマグネット43A,43Bの上方において、マグネットカバー45の一端45d側を押圧機52の把持部53に把持する。マグネットカバー45の他端45e側の第2のフランジ45cは、かしめられていない状態で径方向外側に傾斜状(末広がり状)に広げられている。
 図8(b)に示すように、押圧機52の把持部53でマグネットカバー45を下降する。マグネットカバー45を下降することにより、マグネットカバー45の第2のフランジ45cが第1のマグネットホルダ44Aを経てマグネット43A,43Bの外径面43dに矢印A方向へ嵌合する。これにより、マグネットカバー45の円筒部45aがマグネット43A,43Bの外径面43dに圧入した状態で嵌合する。
 マグネット43A,43Bがマグネットカバー45の円筒部45aとともに、矢印A方向に移動する。これにより、マグネット43A,43Bのマグネット端面43eが第2のマグネットホルダ44Bのマグネット保持部44cに当接する。
 すなわち、マグネット43A,43Bは、ロータコア42に対して回転軸27の端面27a側に軸方向へオフセットされた位置に移動する。
 図8(c)に示すように、マグネット43A,43Bの外径面43dに円筒部45aを圧入した状態に嵌合する。よって、マグネットカバー45の第1のフランジ45bを第1のマグネットホルダ44Aのマグネット保持部44cの表面に押し当てる(当接する)/(マグネットカバー圧入工程)。この状態において、マグネットカバー45の第2のフランジ45cが第2のマグネットホルダ44Bの下方に突出する。
 図4に示すように、突出したマグネットカバー45の第2のフランジ45cを径方向内側にかしめることにより、第2のフランジ45cが第2のマグネットホルダ44Bのマグネット保持部44cの表面に当接する(マグネットカバー固定工程)。これにより、図3に示すように、回転軸27、ロータコア42、マグネット43A,43B、第1、第2のマグネットホルダ44A,44B、及びマグネットカバー45がロータ23に一体に組み付けられ、ロータ23の製造工程が完了する。
 以上説明したように、ロータ23の製造方法(すなわち、ロータ23の製造工程)によれば、第1のマグネットホルダ44A及び第2のマグネットホルダ44Bの間のホルダ空間部46においてマグネット43A,43Bが軸方向に移動自在に配置されている。よって、マグネットカバー45の円筒部45aをマグネット43A,43Bの外径面43dに圧入することにより、マグネット43A,43Bをロータコア42に対して片寄せできる。
 具体的には、マグネット43A,43Bのマグネット中心位置C2を、ロータコア42のロータ中心位置C1に対して軸方向の端面27a側にL5だけオフセット(片寄せ)させた状態に固定できる。これにより、マグネット43A,43Bを片寄せさせたロータ23を簡単に製造できる。さらに、マグネット中心位置C2がステータ中心位置C3とロータ中心位置C1との間に配置された減速機付モータ1を容易に製造できる。
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、減速機付モータ1は、車両に搭載される電装品(例えば、ワイパ、パワーウインドウ、サンルーフ、電動シート等)の駆動源となるものである場合について説明した。しかしながら、これに限られるものではなく、さまざまな電気機器に減速機付モータ1を採用できる。また、さまざまな電気機器にモータ部20のみを採用することもできる。
1…減速機付モータ(モータ)、20…モータ部(モータ)、22…ステータ、23…ロータ、24…ステータコア、27…回転軸、27a…回転軸の端面(一端)、27b…回転軸の端面側の端部(一端)、42…ロータコア、42a,42b…コア端面(ロータコアの端面)、43A,43B…マグネット、43d…マグネットの外径面(マグネットの外周面)、44A,44B…第1、第2のマグネットホルダ(ホルダ)、44c…マグネット保持部、44i…内壁面、45…マグネットカバー、45d…マグネットカバーの一端、45e…マグネットカバーの他端、46…ホルダ空間部、47…コア基端部、47b…コア基端部の外周面(ロータコアの外周部)、C1…ロータ中心位置(ロータコアの軸方向の中心位置)、C2…マグネット中心位置(マグネットの軸方向の中心位置)、C3…ステータ中心位置(ステータコアの軸方向の中心位置)、L1…ホルダ空間長さ、L2…マグネット長さ、L3…オフセット長さ(ステータコアの軸方向の中心位置とロータコアの軸方向の中心位置との間の長さ)、Lk…空間長さ、Lh…第1、第2のホルダ長さ(ロータコアの端面とホルダの内壁面との間の長さ)
 

Claims (7)

  1.  巻線及び前記巻線が巻回されるステータコアを有するステータと、
     回転軸の一端に取り付けられ前記ステータの磁界を受けて回転するロータと、
    を備え、
     前記ロータは、
      前記回転軸と一体に回転するロータコアと、
      前記ロータコアの外周部に配置されるマグネットと、
      前記ロータコアにおける前記回転軸の軸方向の両端に設けられ、前記マグネットにおける前記軸方向の移動を規制する2つのホルダと、
     を有し、
     前記ステータコアの前記軸方向の中心位置と、前記ロータコアの前記軸方向の中心位置と、前記マグネットの前軸方向の中心位置と、がずれており、
     前記2つのホルダの前記軸方向で対向する内壁面同士の間の長さをL1とし、前記マグネットの前記軸方向の長さをL2とし、前記ステータコアの前記軸方向の中心位置と前記ロータコアの前記軸方向の中心位置との間の長さをL3としたとき、
     各前記長さL1,L2,L3は、
     L1-L2<L3
    を満たし、
     かつ、前記ロータコアの端面と各前記ホルダの前記内壁面との間の長さが同一である
    ことを特徴とするモータ。
  2.  巻線及び前記巻線が巻回されるステータコアを有するステータと、
     回転軸の一端に取り付けられ前記ステータの磁界を受けて回転するロータと、
    を備え、
     前記ロータは、
      前記回転軸と一体に回転するロータコアと、
      前記ロータコアの外周部に配置されるマグネットと、
      前記ロータコアにおける前記回転軸の軸方向の両端に設けられ、前記マグネットにおける前記軸方向の移動を規制する2つのホルダと、
     を有し、
     前記ロータコアの端面と各前記ホルダにおける前記ロータコアの前記端面と前記軸方向で対向する内壁面との間の長さが同一であり、
     前記ステータコアの前記軸方向の中心位置と、前記ロータコアの前記軸方向の中心位置と、前記マグネットの前軸方向の中心位置と、がずれており、
     前記ステータコアの前記軸方向の中心位置と前記ロータコアの前記軸方向の中心位置との間に、前記マグネットの前記軸方向の中心位置がある
    ことを特徴とするモータ。
  3.  前記マグネットは、
     前記ステータコアに対する前記ロータコアのずれ方向とは反対側の前記ホルダと当接している
    ことを特徴とする請求項1又は請求項2に記載のモータ。
  4.  前記ロータコアは、前記軸方向における中心位置が、前記マグネットの前記軸方向における中心位置よりも前記回転軸の他端寄りに有する
    ことを特徴とする請求項1から請求項3のいずれか1項に記載のモータ。
  5.  請求項1から請求項4のいずれか1項に記載のモータにおいて、さらに前記マグネットの外周面を覆い、内周面が前記マグネットの前記外周面に当接されたマグネットカバーを有する
    ことを特徴とするモータ。
  6.  前記ロータコアの比重は前記マグネットの比重より大きい
    ことを特徴とする請求項1から請求項5のいずれか1項に記載のモータ。
  7.  請求項1から請求項6のいずれか1項に記載のモータの製造方法において、
     前記ロータコアの外周部に前記マグネットを配置した状態で、前記マグネットの外周面に、前記マグネットの外周面を覆うマグネットカバーを圧入し、前記マグネットカバーの一端を前記ホルダに押し当てるマグネットカバー圧入工程と、
     前記マグネットカバー圧入工程の後、前記マグネットカバーの他端を前記ホルダに当接させてかしめるマグネットカバー固定工程と、
    を有することを特徴とするモータの製造方法。
     
PCT/JP2020/024567 2019-08-26 2020-06-23 モータ及びモータの製造方法 WO2021039065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080021835.9A CN113574770A (zh) 2019-08-26 2020-06-23 马达及马达的制造方法
EP20856103.5A EP4024682B1 (en) 2019-08-26 2020-06-23 Motor
US17/601,716 US11855497B2 (en) 2019-08-26 2020-06-23 Motor, and method for manufacturing motor
EP24175906.7A EP4391315A2 (en) 2019-08-26 2020-06-23 Motor, and method for manufacturing motor
US18/497,936 US20240063697A1 (en) 2019-08-26 2023-10-30 Motor, and method for manufacturing motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153841 2019-08-26
JP2019153841A JP7227876B2 (ja) 2019-08-26 2019-08-26 モータ及びモータの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/601,716 A-371-Of-International US11855497B2 (en) 2019-08-26 2020-06-23 Motor, and method for manufacturing motor
US18/497,936 Division US20240063697A1 (en) 2019-08-26 2023-10-30 Motor, and method for manufacturing motor

Publications (1)

Publication Number Publication Date
WO2021039065A1 true WO2021039065A1 (ja) 2021-03-04

Family

ID=74676743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024567 WO2021039065A1 (ja) 2019-08-26 2020-06-23 モータ及びモータの製造方法

Country Status (5)

Country Link
US (2) US11855497B2 (ja)
EP (2) EP4024682B1 (ja)
JP (2) JP7227876B2 (ja)
CN (1) CN113574770A (ja)
WO (1) WO2021039065A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116724476A (zh) * 2021-03-09 2023-09-08 株式会社美姿把 转子和电动机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204734A (ja) * 2014-04-16 2015-11-16 アスモ株式会社 ロータ及び液体ポンプ
WO2017002869A1 (ja) 2015-06-29 2017-01-05 株式会社ミツバ ブラシレスモータ
JP2018026935A (ja) * 2016-08-09 2018-02-15 株式会社ミツバ ロータおよびモータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105505B2 (ja) 1987-08-05 1994-12-21 株式会社ケンウッド 光学的再生装置
JPH06105505A (ja) * 1992-09-17 1994-04-15 Aichi Emerson Electric Co Ltd 磁石回転子の製造方法
JP2002315279A (ja) 2001-04-18 2002-10-25 Mitsubishi Electric Corp 同期電動機の回転子及び同期電動機の回転子の製造方法及び同期電動機及び送風機用電動機及び空気調和機
JP4874474B2 (ja) * 2001-08-23 2012-02-15 日本電産コパル株式会社 ステッピングモータ
JP4557654B2 (ja) 2004-09-17 2010-10-06 アスモ株式会社 ブラシレスモータ、及び電動パワーステアリング装置用モータ
JP4989067B2 (ja) 2005-12-14 2012-08-01 日本電産テクノモータ株式会社 ブラシレスdcモータ
US10644552B2 (en) 2015-06-29 2020-05-05 Mitsuba Corporation Brushless motor
CN110100375A (zh) * 2016-12-28 2019-08-06 日本电产株式会社 转子和马达
JP7105624B2 (ja) 2017-07-20 2022-07-25 株式会社ミツバ モータ及びブラシレスワイパーモータ
CN109546832B (zh) 2017-09-21 2021-08-10 德昌电机(深圳)有限公司 无刷直流电机及其双离合变速器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204734A (ja) * 2014-04-16 2015-11-16 アスモ株式会社 ロータ及び液体ポンプ
WO2017002869A1 (ja) 2015-06-29 2017-01-05 株式会社ミツバ ブラシレスモータ
JP2018026935A (ja) * 2016-08-09 2018-02-15 株式会社ミツバ ロータおよびモータ

Also Published As

Publication number Publication date
US20220173642A1 (en) 2022-06-02
US20240063697A1 (en) 2024-02-22
JP2021035187A (ja) 2021-03-01
EP4024682B1 (en) 2024-06-05
US11855497B2 (en) 2023-12-26
EP4391315A2 (en) 2024-06-26
EP4024682A4 (en) 2022-10-05
CN113574770A (zh) 2021-10-29
JP7440675B2 (ja) 2024-02-28
JP2023053043A (ja) 2023-04-12
EP4024682A1 (en) 2022-07-06
JP7227876B2 (ja) 2023-02-22

Similar Documents

Publication Publication Date Title
EP2157678B1 (en) Small motor of polygonal external shape
EP2157677B1 (en) Small motor of quadrangular external shape
JPH09182397A (ja) 永久磁石式同期電動機
US20240063697A1 (en) Motor, and method for manufacturing motor
JP2015104180A (ja) 回転電機の回転子
JP2003018810A (ja) 外部回転子を備えた電機
US20010013732A1 (en) Anti-vibration electric motor having outer rotor stably supported at two ends
WO2018179736A1 (ja) ロータ及びロータを備えたモータ
KR20160040788A (ko) Bldc 모터 및 bldc 모터의 스테이터 하우징 고정방법
JP3790214B2 (ja) コアレスモータ
JP2021029071A (ja) モータ
JP2012105367A (ja) 電動モータ、および駆動装置
JP2006087190A (ja) 非円筒形状のギャップを有するモータ
JP4396227B2 (ja) インホイールモータ
JP3011597B2 (ja) アウターロータ型ブラシレスdcモータ
JPH0559663B2 (ja)
JP7484303B2 (ja) モータ
US11962199B2 (en) Rotor and speed reducer including the rotor
WO2021149753A1 (ja) 磁気ギアード回転電機、及びステータの製造方法
JP4482900B2 (ja) アキシャルギャップ型モータ
JP2008295152A (ja) 電動モータ
JP3709726B2 (ja) モータ
KR20070044082A (ko) 브러시리스직류모터
JP2023060598A (ja) ロータ、及び、モータ
TWM630650U (zh) 轉子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020856103

Country of ref document: EP

Effective date: 20220328