WO2021035877A1 - 转子、电机、压缩机及制冷设备 - Google Patents

转子、电机、压缩机及制冷设备 Download PDF

Info

Publication number
WO2021035877A1
WO2021035877A1 PCT/CN2019/109874 CN2019109874W WO2021035877A1 WO 2021035877 A1 WO2021035877 A1 WO 2021035877A1 CN 2019109874 W CN2019109874 W CN 2019109874W WO 2021035877 A1 WO2021035877 A1 WO 2021035877A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
slit
motor
axis
stator
Prior art date
Application number
PCT/CN2019/109874
Other languages
English (en)
French (fr)
Inventor
徐飞
邱小华
江波
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Priority to EP19943336.8A priority Critical patent/EP3944466A4/en
Priority to JP2021564825A priority patent/JP2022531342A/ja
Publication of WO2021035877A1 publication Critical patent/WO2021035877A1/zh
Priority to US17/525,650 priority patent/US20220077735A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to the technical field of compressors, and specifically to a rotor, a motor, a compressor, and a refrigeration equipment.
  • the motors generally use built-in permanent magnet motors.
  • the stator armature response is stronger, so that the rotor structure of this motor has a larger armature iron loss .
  • motor core loss has attracted much attention.
  • the no-load core loss is mainly generated by the permanent magnet magnetic field, and the air gap magnetic field resonance is optimized.
  • Waves can be designed more specifically, but after the motor is energized, the armature iron loss generated comes from the time and space harmonics of the composite magnetic field generated by the action of the stator magnetic field and the rotor magnetic field, which will produce greater iron loss and Vibration and noise, this part of the loss is difficult to reduce through targeted design, so the suppression of the iron loss generated by this part of the current becomes the key to the success or failure of the design.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the first aspect of the present application provides a rotor.
  • the second aspect of the application also provides a motor.
  • the third aspect of the present application also provides a compressor.
  • the fourth aspect of the application also provides a refrigeration equipment.
  • the first aspect of the present application proposes a rotor.
  • the rotor is used in a motor.
  • the motor includes a stator.
  • the stator includes a stator core and teeth arranged along the circumference of the stator core.
  • the rotor is provided in the stator.
  • the rotor core is provided with a plurality of installation slots, the plurality of installation slots are distributed along the circumferential direction of the rotor core; permanent magnets are arranged in the installation slots to form magnetic poles, the permanent magnets include a first permanent magnet and a second permanent magnet Permanent magnet, the side wall of the first permanent magnet away from the rotation axis of the rotor and the extension line of the side wall of the second permanent magnet away from the rotation axis of the rotor do not overlap and intersect at one point; a plurality of slits are arranged on the rotor core, Located on the side of the installation slot away from the rotation axis of the rotor, in a section perpendicular to the rotation axis of the rotor, the line of the midpoint of the slit near the installation slot and the two ends away from the installation slot forms the direction line of the slit;
  • the slit includes a first slit and a second slit located on the same side of the
  • the direction line of the first slit and the extension line of the direction line of the second slit intersect at a point and the intersection is not on the d-axis; in either installation
  • the slot is on the side facing away from the rotation axis of the rotor and on the same side of the d-axis.
  • the angle between the direction line of the first slit and the side wall of the mounting slot towards the d-axis direction is ⁇ 1, and the direction line of the second slit is equal to ⁇ 1.
  • the angle between the side walls of the mounting groove toward the d-axis direction is ⁇ 2, and the sum of ⁇ 1 and ⁇ 2 is greater than 180°; in a section perpendicular to the rotation axis of the rotor, the extension lines of the two side walls of the tooth are configured to be suitable Separate the first slit and the second slit on the same side of the d-axis; on the side of any installation slot away from the rotation axis of the rotor, the area formed by the extension lines of the two side walls of the tooth is configured to be suitable for There are two complete slits; among them, the center line of any magnetic pole passing through the axis of the rotor core is set as the d-axis.
  • the rotor provided by the present application includes a rotor core and a plurality of slits arranged on the rotor core.
  • the rotor core is provided with a plurality of installation slots. Specifically, the installation slots are used to install permanent magnets to form magnetic poles, adjacent to each other.
  • the permanent magnets in the mounting slot form opposite magnetic poles.
  • the slot is located on the side of the mounting slot away from the axis of rotation of the rotor. In the section perpendicular to the axis of rotation of the rotor, the slot is close to the mounting slot and away from the mounting slot.
  • the line connecting the midpoints of the two ends of the slot forms the direction line of the slit, where the centerline of any magnetic pole passing through the axis of the rotor core is set as the d-axis, and any mounting slot is away from the rotation axis of the rotor
  • the slits on the side of the d-axis are symmetrically arranged along the d-axis to ensure that the back-EMF waveform of the motor is similar to a sine wave, reducing the distortion of the back-EMF waveform and reducing the increase in additional loss, and the slits on the same side of the d-axis include the first slit And the second slit, the direction line of the first slit and the extension line of the direction line of the second slit intersect at a point and the intersection point is not on the d-axis, so that by optimizing the setting direction of the slits, the rotor air gap magnetic resonance is weakened Wave, reduce the torque fluctuation of the motor, improve the
  • angles between the direction line of the first slit, the direction line of the second slit and the side wall of the installation groove toward the d-axis direction are respectively ⁇ 1 and ⁇ 2, and the sum of ⁇ 1 and ⁇ 2 is greater than 180°, that is, Any included angle among ⁇ 1 and ⁇ 2 is an obtuse angle, which is beneficial to improve the air gap magnetic field waveform and effectively reduce the iron loss of the armature.
  • the rotor is used in a motor, and the motor includes a stator.
  • the stator includes a stator core and teeth arranged in the circumferential direction of the stator core.
  • the rotor is arranged in the stator.
  • the teeth In a section perpendicular to the rotation axis of the rotor, the teeth
  • the extension lines of the two side walls are configured to be suitable for separating the first slit and the second slit located on the same side of the d-axis, thereby effectively reducing the armature iron loss, increasing the magnetic flux, and further improving the efficiency of the motor.
  • the area W formed by the extension lines of the two side walls of the stator teeth, W is configured to be suitable for having two complete slits, that is, a single magnetic pole has two slits with complete contours, thereby optimizing the air flow of the motor.
  • the gap magnetic density harmonics can effectively reduce the iron loss of the armature.
  • the number of slits affects the suppression effect on the stator armature magnetic field. Generally, the more slits, the better the suppression effect on the stator armature magnetic field. However, too many slits will reduce the back EMF, and at the same time The manufacturing difficulty is increased. Therefore, the number of slits is set to 4 or 6, which avoids the problems of reduced rotor core structure strength, reduced magnetic flux, and increased cogging torque caused by excessive number of slits in related technologies. At the same time, it avoids the problem that the small number of slits cannot effectively improve the radial force of the motor. By setting the number of slits within a reasonable range, the reliability of the rotor core can be guaranteed and the processing is convenient. Effectively ensure the good noise reduction effect and back EMF effect of the motor, and improve the cost-effectiveness of the motor.
  • the magnetic properties, size, and materials of the first permanent magnet and the second permanent magnet are the same.
  • any mounting slot is on the side facing away from the rotation axis of the rotor, and on the same side of the d-axis, the angle between the direction line of the first slit and the direction line of the second slit Greater than or equal to 3°, and less than or equal to 20°.
  • the direction line extensions of the first slit and the second slit form an acute angle ⁇ , specifically, 3° ⁇ 20°, thereby changing the overall shape of the magnetic flux and effectively increasing the output power of the motor.
  • specifically, 3° ⁇ 20°
  • the sub-installation groove includes a main groove portion and a gap portion communicating with the main groove portion.
  • the gap portion is provided at an end of the main groove portion close to the outer peripheral wall of the rotor core, wherein the first permanent magnet is formed by
  • the length from the end close to the second permanent magnet to the end far away from the second permanent magnet is L3, and the length of the main groove along the length direction of the first permanent magnet is L4; where L3 is greater than L4.
  • the main groove portion is connected to the gap portion, and the gap portion is used for magnetic isolation and limits the length L3 of the first permanent magnet from the end close to the second permanent magnet to the end far away from the second permanent magnet greater than that along the first permanent magnet.
  • the length L4 of the main groove in the longitudinal direction of the permanent magnet, and further, the ratio of (L3-L4)/L3 is between 0 and 0.5, which can improve the energy efficiency of the compressor and reduce the noise condition.
  • the minimum value of the distance between the wall surface of the gap and the outer peripheral wall of the rotor core is greater than the minimum value of the distance between the wall surface of the slit and the wall surface of the mounting groove.
  • the minimum value of the distance L5 between the wall surface of the gap and the outer peripheral wall of the rotor core is greater than the minimum value of the distance L6 between the wall surface of the slit and the wall surface of the mounting groove, which improves the magnetic flux guide of the slit The effect, and then at the same time weakening the rotor air gap magnetic density harmonics, ensuring the excitation application of the rotor permanent magnets.
  • the ratio of ⁇ 2 to ⁇ 1 is greater than 1, and less than or equal to 1.1.
  • the first slit is arranged close to the d-axis, and the second slit is arranged far away from the d-axis.
  • the ratio of ⁇ 2 to ⁇ 1 is greater than 1, and less than or equal to 1.1
  • the direction line of the first slit is relative to the second slit.
  • An acute angle is formed between the extension lines of the direction line of the slit, which intersect at a point and not on the d-axis, thereby weakening the rotor air gap magnetic density harmonics, reducing the torque fluctuation of the motor, and improving the vibration and noise.
  • ⁇ 1 is greater than 90° and less than or equal to 120°; and/or ⁇ 2 is greater than 90° and less than or equal to 130°.
  • ⁇ 1 is greater than 90° and less than or equal to 120°
  • ⁇ 2 is greater than 90° and less than or equal to 130°.
  • the width of the first slit is L1; along the direction perpendicular to the second slit, the width of the second slit is L2, L1 is not equal to L2; and/or along the direction of the slit, the width of any slit is not equal.
  • the circumferential widths of the first slit and the second slit are set to be different to realize the change of the slit width, which is more conducive to weakening Armature magnetic field.
  • the permanent magnet includes a first permanent magnet and a second permanent magnet
  • the mounting slot includes two sub-mounting slots
  • the two sub-mounting slots are arranged along the circumferential direction of the rotor core
  • the permanent magnets are respectively arranged in the two sub-installation grooves to form magnetic poles; wherein, in any installation groove, there is a first included angle between the two sub-installation grooves.
  • the permanent magnet includes a first permanent magnet and a second permanent magnet.
  • the magnetic field strength of the first permanent magnet and the second permanent magnet may be the same or different.
  • the first permanent magnet and the second permanent magnet are respectively arranged at In two different sub-installation grooves, in any one of the installation grooves, there is a first included angle between the two sub-installation grooves, that is, the first permanent magnet and the second permanent magnet are not parallel, which can improve the synthesis gas
  • the gap magnetic field waveform reduces the vibration and noise of the motor and improves the compressor's mid- and low-frequency energy efficiency.
  • the first included angle is greater than or equal to 110° and less than or equal to 150°.
  • the angle between the first permanent magnet and the second permanent magnet is set between 110° and 150°, which can maximize the back EMF of the permanent magnet, thereby ensuring the low-frequency energy efficiency of the compressor.
  • APF Automatic Energy Consumption Efficiency
  • any installation groove the two sub-installation grooves are communicated, and the connection point of the two sub-installation grooves is provided with a clamping convex point, and the clamping convex point protrudes into the installation groove.
  • the position of the permanent magnet is limited by the latching convex point between the connection points of the two sub-mounting slots, thereby improving the motor load flux density, optimizing the motor air gap flux density waveform, and improving the radial direction of the motor. Power and reduce the noise of the motor.
  • any installation groove in any installation groove, the two sub-installation grooves are connected by connecting ribs.
  • a connecting rib is provided between the two sub-mounting grooves.
  • the rotor core is on a cross-section perpendicular to the rotation axis of the rotor, and the contour of the slit includes a straight line and/or a curve; and/or a plurality of slits are arranged symmetrically with respect to the d-axis.
  • the contour of the slit can be composed of straight lines and/or curves, and the contour of each slit can be either a single straight line or a curve, or a combination of straight lines and curves, so as to realize the rationalization of this line.
  • the multiple slits are arranged symmetrically with respect to the d-axis to ensure that the back-EMF waveform of the motor is similar to a sine wave, which reduces the distortion of the back-EMF waveform and reduces the increase in additional loss.
  • the outer peripheral wall of the rotor core is cylindrical; and/or the rotor core includes: a plurality of punches, the plurality of punches are stacked in the direction of the axis of rotation of the rotor, between adjacent installation slots A riveting part is provided, and a plurality of punching pieces are connected by the riveting part.
  • the rotor core is formed by laminating a plurality of punching sheets, and a riveting part is provided between adjacent installation slots for fixing the magnets to ensure the reliability of the rotor core.
  • a motor is also proposed, including the rotor as proposed in any of the above technical solutions.
  • the motor provided in the second aspect of the present application includes the rotor proposed in any of the above technical solutions, and therefore has all the beneficial effects of the rotor.
  • the motor further includes: a stator, the stator includes a stator iron core, the stator iron core is arranged outside the rotor; a plurality of teeth are arranged on the side of the stator iron core facing the rotor iron core, and the multiple teeth Along the circumferential direction of the stator core, the stator slots are defined between adjacent teeth; the coils are wound on the teeth; wherein the number of stator slots is Z, and the number of pole pairs of the rotor is P, Z and The ratio of 2P is equal to 3/2 or 6/5 or 6/7.
  • the stator includes a stator core and teeth, a stator slot is defined between adjacent teeth, a coil is wound on the teeth, and the stator core is arranged outside the rotor, wherein the stator slot is defined
  • the number of pole pairs of the rotor is P
  • the number of poles of the rotor is 2P, that is, the motor can have 6 poles and 9 slots.
  • Motor, 4-pole 6-slot motor, 8-pole 12-slot motor, 10-pole 12-slot motor, the above types of motors can effectively reduce armature iron loss, increase magnetic flux, and then improve motor efficiency.
  • the inner diameter of the stator core is Di
  • the rated torque of the motor is T
  • the torque per unit volume of the rotor is TPV, which satisfies the following relationship: 5.18 ⁇ 10 -7 ⁇ T ⁇ Di -3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6 , 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 ;
  • the unit of the rated torque T of the motor is N ⁇ m
  • the inner diameter of the stator core Di is The unit is mm
  • the unit of torque TPV per unit volume of the rotor is kN ⁇ m ⁇ m -3 .
  • the rated torque of the motor is T
  • the inner diameter of the stator core is Di
  • the torque per unit volume of the rotor is TPV, and it satisfies 5.18 ⁇ 10 -7 ⁇ T ⁇ Di -3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6, the torque per unit volume in the range of TPV 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3, by defining the rated motor torque T, the inner diameter Di of the stator core and
  • the range of the combined variable of the torque per unit volume of the rotor TPV enables the motor to meet the power demand of the compressor.
  • it can effectively reduce the rotor leakage and increase the utilization of permanent magnets. , Improve motor efficiency.
  • the side of the plurality of teeth facing the rotor core encloses the inner side wall of the stator, and the ratio of the diameter of the inner side wall of the stator to the diameter of the outer side wall of the stator core is greater than 0.5 and less than or equal to 0.57 .
  • the ratio of the diameter of the inner side wall of the stator to the diameter of the outer side wall of the stator core is greater than 0.5 and less than or equal to 0.57, so that the motor has a higher cost performance.
  • a compressor is also proposed, including: the rotor as proposed in any of the technical solutions in the first aspect; or the motor as proposed in any of the technical solutions in the second aspect.
  • the compressor provided in the third aspect of the present application includes the rotor as proposed in any of the technical solutions of the first aspect; or the motor as proposed in any of the technical solutions in the second aspect, so it has all the beneficial effects of the rotor or the motor.
  • a refrigeration device including: the rotor as proposed in any of the technical solutions of the first aspect; or the motor as proposed in any of the technical solutions in the second aspect; or the third The compressor proposed by any technical solution in the aspect.
  • the refrigeration equipment provided by the fourth aspect of the present application includes the rotor as proposed in any of the above-mentioned technical solutions in the first aspect; or the motor as proposed in any of the above-mentioned second aspects; or as proposed in any of the above-mentioned third aspects.
  • the compressor therefore, has all the beneficial effects of a rotor or a motor or a compressor.
  • Figure 1 shows a schematic structural diagram of a rotor according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the structure of a stator and a rotor according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of the structure of a stator and a rotor according to another embodiment of the present application
  • FIG. 4 shows a schematic diagram of a part of the size of a rotor according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a part of the angle of the rotor of an embodiment of the present application
  • Fig. 6 shows a schematic diagram of another part of the angle of the rotor according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of another part of the size of the rotor according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of another part of the size of the rotor according to an embodiment of the present application.
  • FIG. 9 shows a partial structural schematic diagram of a rotor according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of another part of the structure of the rotor according to an embodiment of the present application.
  • FIG. 11 shows another structural schematic diagram of the rotor according to an embodiment of the present application.
  • FIG. 12 shows a comparison diagram of the harmonic amplitudes of the back EMF of the motor according to an embodiment of the present application and the motor in the related art
  • FIG. 13 shows a comparison diagram of air gap flux density harmonic distortion between a motor according to an embodiment of the present application and a motor in the related art
  • FIG. 14 shows a comparison diagram of torque fluctuations between a motor according to an embodiment of the present application and a motor in the related art
  • Fig. 15 shows a schematic structural diagram of a compressor according to an embodiment of the present application.
  • the present application proposes a rotor 1, which includes a rotor core 10, a mounting groove 12, and a plurality of slits.
  • the rotor 1 includes a rotor core 10, the rotor core 10 is provided with a plurality of mounting slots 12, the plurality of mounting slots 12 are distributed along the circumference of the rotor core 10; permanent magnets are arranged in the mounting slots 12 to form magnetic poles,
  • the permanent magnet includes a first permanent magnet and a second permanent magnet.
  • the side wall of the first permanent magnet away from the rotation axis of the rotor 1 and the extension line of the side wall of the second permanent magnet away from the rotation axis of the rotor 1 do not overlap and intersect each other.
  • One point; multiple slits are provided on the rotor core 10, located on the side of the mounting slot 12 away from the axis of rotation of the rotor 1.
  • the slots are close to the mounting slot 12 and away from the mounting slot
  • the line connecting the midpoints of the two ends of 12 forms the direction line of the slit; wherein the slit includes a first slit 14 and a second slit 16 located on the same side of the d axis, and the direction line of the first slit 14 It intersects the extension line of the direction line of the second slit 16 at a point and the intersection is not on the d-axis, and the center line of any magnetic pole passing through the axis of the rotor core 10 is set as the d-axis.
  • the rotor 1 provided in the present application includes a rotor core 10 and a plurality of slits provided on the rotor core 10, and a plurality of mounting slots 12 are provided on the rotor core 10, specifically, the mounting slots 12 are used for mounting permanent magnets To form magnetic poles, the magnetic poles formed by the permanent magnets in the adjacent installation slots 12 are opposite.
  • the slit is located on the side of the installation slot 12 away from the rotation axis of the rotor 1, and is perpendicular to the rotation axis of the rotor 1.
  • the line connecting the midpoints of the two ends of the slit close to the installation slot 12 and away from the installation slot 12 forms the direction line of the slit, wherein the center line of any magnetic pole passing through the axis of the rotor core 10 Set as the d-axis, the slits on the side of any installation slot 12 facing away from the rotation axis of the rotor 1 are symmetrically arranged along the d-axis to ensure that the back-EMF waveform of the motor is approximately sine wave, reduce back-EMF waveform distortion, and reduce additional loss
  • the slits on the same side of the d-axis include the first slit 14 and the second slit 16.
  • the extension line of the direction line of the first slit 14 and the direction line of the second slit 16 intersects at a point and the intersection is not On the d-axis, by optimizing the setting direction of the slits, the air gap magnetic density harmonics of the rotor 1 are weakened, the torque fluctuation of the motor is reduced, the vibration and noise are improved, the back EMF of the rotor 1 is increased, and the armature iron loss is effectively reduced , Improve the low-frequency energy efficiency of the compressor.
  • the extension lines of the two side walls of the tooth are configured to be suitable for separating the first slit 14 and the second slit 16 on the same side of the d-axis, thereby Effectively reduce the iron loss of the armature, increase the magnetic flux, and then improve the efficiency of the motor.
  • the area formed by the extension lines of the two side walls of the tooth is configured to be suitable for having two complete narrows. Sew.
  • the area W formed by the extension lines of the two side walls of the teeth of the stator 2 is configured to be suitable for having two complete slits, that is, a single magnetic pole has two slits with complete contours, thereby optimizing the air gap of the motor Magnetic density harmonics can effectively reduce the iron loss of the armature.
  • the direction line of the first slit 14 is different from the side wall of the mounting slot 12
  • the angle between the direction of the second slit 16 and the side wall of the mounting groove 12 is ⁇ 1
  • the angle between the direction line of the second slit 16 and the side wall of the installation groove 12 is ⁇ 2
  • the sum of ⁇ 1 and ⁇ 2 is greater than 180°, that is, ⁇ 1
  • Any included angle in ⁇ 2 is an obtuse angle, which is beneficial to improve the air gap magnetic field waveform and effectively reduce the armature iron loss.
  • the number of slits affects the effect of restraining the stator 2 armature magnetic field. Generally, the more slits, the better the restraining effect of the stator 2 armature magnetic field, but too many slits will reduce the back EMF. At the same time, the manufacturing difficulty is increased. Therefore, the number of slits is set to 4 or 6, which avoids the reduction of the structural strength of the rotor core 10, the decrease of the magnetic flux, and the increase of the cogging torque due to the excessive number of slits in the related technology. At the same time, it avoids the problem that the small number of slits cannot effectively improve the radial force of the motor.
  • the reliability of the rotor core 10 can be ensured and the processing is convenient. Under the circumstance, it can effectively ensure the good noise reduction effect and back EMF effect of the motor, and improve the cost performance of the motor.
  • the first slit 14 is arranged close to the d-axis, and the second slit 16 is arranged far away from the d-axis.
  • the ratio of ⁇ 2 to ⁇ 1 to be greater than 1, and less than or equal to 1.1
  • the direction line of the first slit 14 and The extension lines of the direction lines of the second slit 16 form an acute angle, which intersect at a point and not on the d-axis, thereby weakening the air gap magnetic density harmonics of the rotor 1, reducing the torque fluctuation of the motor, and improving the vibration and noise.
  • ⁇ 1 is greater than 90°
  • ⁇ 2 is greater than 90°
  • 130° is less than or equal to 130°.
  • the rotor core 10 is on a cross-section perpendicular to the axis of rotation of the rotor 1, and the contour of the slit includes a straight line and/or a curve; and/or multiple slits are relative to the d-axis Symmetrical arrangement, so as to realize the rationalization of this circuit.
  • multiple slits are arranged symmetrically with respect to the d-axis to ensure that the back-EMF waveform of the motor is similar to a sine wave, reducing back-EMF waveform distortion and reducing additional loss.
  • the magnetic properties, size, and materials of the first permanent magnet and the second permanent magnet are the same.
  • any mounting slot 12 is on the side facing away from the rotation axis of the rotor 1, and is on the d-axis In the same side, the angle between the direction line of the first slit 14 and the direction line of the second slit 16 is greater than or equal to 3° and less than or equal to 20°.
  • the extension lines of the direction lines of the first slit 14 and the second slit 16 form an acute angle ⁇ , specifically, 3° ⁇ 20°, thereby changing the overall shape of the magnetic flux and effectively increasing the output of the motor Power.
  • specifically, 3° ⁇ 20°
  • the width of the first slit 14 is L1;
  • the width of the second slit 16 is L2, and L1 is not equal to L2; and/or along the direction of the slit, the width of any slit is different.
  • the widths of the first slit 14 and the second slit 16 in the circumferential direction are set to be different to realize the change of the slit width. Conducive to weaken the armature magnetic field.
  • the permanent magnet includes a first permanent magnet and a second permanent magnet
  • the installation groove 12 includes two sub-installation grooves
  • two The sub-mounting slots are arranged along the circumferential direction of the rotor core 10.
  • the first permanent magnet and the second permanent magnet are respectively arranged in the two sub-mounting slots to form magnetic poles; wherein, in any of the mounting slots 12, between the two sub-mounting slots With the first included angle.
  • the permanent magnet includes a first permanent magnet and a second permanent magnet.
  • the magnetic field strength of the first permanent magnet and the second permanent magnet may be the same or different.
  • the first permanent magnet and the second permanent magnet are respectively arranged at In two different sub-mounting grooves, in any one of the mounting grooves 12, there is a first included angle between the two sub-mounting grooves, that is, the first permanent magnet and the second permanent magnet are not parallel, which can improve the synthesis
  • the air-gap magnetic field waveform reduces the vibration and noise of the motor and improves the compressor's low- and medium-frequency energy efficiency.
  • the permanent magnet has a V-shaped structure, and the magnetizing effect produced by the V-shaped magnetic pole formed by the V-shaped permanent magnet is beneficial to increase the back EMF of the motor, which in turn is beneficial to improve the low-frequency energy efficiency of compression.
  • the permanent magnet can also be Permanent magnets with other shapes that meet the requirements, such as permanent magnets, can also have a U-shaped structure.
  • the installation slot 12 has a V-shaped structure, which can ensure that the permanent magnet excitation on the rotor 1 side is not reduced while the outer diameter of the rotor 1 is reduced, that is, while increasing the motor line load, it ensures the maintenance of the motor's magnetic load. In turn, the power density of the motor is increased, and the material utilization rate is improved.
  • any installation groove 12 is symmetrically arranged with the d-axis as the line of symmetry.
  • setting the angle between the first permanent magnet and the second permanent magnet between 110° and 150° can maximize the back EMF of the permanent magnet, thereby ensuring the low-frequency energy efficiency of the compressor and improving the APF ( Annual energy consumption efficiency).
  • the sub-mounting groove includes a main groove portion and a gap portion communicating with the main groove portion, and the gap portion is provided At the end of the main slot close to the outer peripheral wall of the rotor core 10, the length of the first permanent magnet from the end close to the second permanent magnet to the end far away from the second permanent magnet is L3, along the length direction of the first permanent magnet The length of the main groove is L4; among them, L3 is greater than L4.
  • the main groove portion is connected to the gap portion, and the gap portion is used for magnetic isolation and limits the length L3 of the first permanent magnet from the end close to the second permanent magnet to the end far away from the second permanent magnet greater than that along the first permanent magnet.
  • the length of the main groove in the longitudinal direction of the permanent magnet is L4, specifically, the ratio of (L3-L4)/L3 is between 0 and 0.5, which can improve the energy efficiency of the compressor and reduce the noise condition.
  • the minimum value of the distance between the wall surface of the gap portion and the outer peripheral wall of the rotor core 10 is greater than the narrow The minimum distance between the wall surface of the slot and the wall surface of the installation groove 12.
  • the minimum value of the distance L5 between the wall surface of the gap and the outer peripheral wall of the rotor core 10 is greater than the minimum value of the distance L6 between the wall surface of the slit and the wall surface of the mounting groove 12, which improves the magnetic field of the slit.
  • any installation slot 12 two sub-installation slots are connected, and the connection point of the two sub-installation slots is provided with a locking protrusion 122, and the locking protrusion 122 is directed into the installation slot 12.
  • the protrusions define the position of the permanent magnets by the latching protrusions 122, thereby improving the motor load flux density, optimizing the motor's air gap flux density waveform, thereby improving the radial force of the motor and reducing the noise of the motor.
  • any installation groove 12 two sub-installation grooves are connected by connecting ribs 124.
  • the outer peripheral wall of the rotor core 10 is cylindrical; and/or the rotor core 10 includes: a plurality of punches, the plurality of punches are stacked in the direction of the axis of rotation of the rotor 1, and are arranged between adjacent mounting slots 12 There is a riveting part, and a plurality of punching pieces are connected by the riveting part to ensure the reliability of the rotor core 10.
  • the present application proposes a rotor 1.
  • the rotor core 10 is provided with a plurality of mounting slots 12 along the axial direction of the rotating shaft. 12 is distributed along the circumferential direction of the rotor 1; insert at least one pair of permanent magnets into the mounting slots 12 to form the magnetic poles of the rotor 1.
  • a pair of permanent magnets are respectively located on both sides of the rotor 1d axis, at any one perpendicular to the rotation axis of the motor In the plane, the extended lines of the long sides of a pair of permanent magnets do not overlap and are compared to one point; on the radial inner side of the magnetic pole portion of the rotor 1 is provided with a fastening hole that penetrates the rotor core 10 in the axial direction (the rotor 1 can be punched The pieces are connected as a whole).
  • the line between the center of one of the multiple mounting slots 12 and the center of the rotor 1 is defined as the d-axis, and multiple slits are located in the corresponding mounting slots 12 and the rotor core 10 Between the peripheral walls.
  • the slit includes a first slit 14 and a second slit 16, and the contour line of the slit is formed by a plurality of curves and/or straight lines enclosed end to end.
  • the midpoint of the short side or arc of each first slit 14 and the midpoint of the short side of the other end are connected to form a direction line of the slit.
  • Two extension lines radially inward from the two side walls of the stator tooth width separate the first slit 14 and the second slit 16.
  • a single magnetic pole has only two
  • the strip has a slit with a full profile.
  • the extension line of the direction line of the first slit 14 and the second slit 16 has an intersection, and the intersection is not on the d-axis.
  • the sum of the angles of the directional lines of the first slit 14 and the second slit 16 and the contour line of the mounting groove 12 that intersects them with the closest distance to the d-axis side is greater than 180°.
  • a motor is also proposed, including the rotor 1 as proposed in any of the above embodiments.
  • the motor provided in the second aspect of the present application includes the rotor 1 proposed in any of the above embodiments, and therefore has all the beneficial effects of the rotor 1.
  • FIG. 12 a comparison diagram of the amplitudes of the various sub-harmonics of the back EMF between an embodiment of the present application and the related art shows that the back EMF of the motor of the present application has been improved compared to the related technology.
  • the permanent magnet motor provided by the application has no-load magnetic density THD and
  • the load flux density THD is smaller than that of the related art permanent magnet motor. It can be seen that the rotor 1 of the present application has a significant improvement effect on the air gap magnetic field waveform.
  • FIG. 14 a comparison diagram of torque fluctuations between an embodiment of the present application and a motor in the related art, the torque fluctuation of the permanent magnet motor provided in the present application is smaller than the torque fluctuation of the permanent magnet motor in the related art It can be seen that the rotor 1 of the present application can effectively improve the perception of noise.
  • the motor further includes: a stator 2 including a stator iron core (not shown in the figure), the stator iron core is arranged outside the rotor 1; a plurality of teeth are arranged on the stator iron core facing the rotor iron core 10. On one side of the stator core, a plurality of teeth are arranged along the circumferential direction of the stator core, and the stator 2 slots are defined between adjacent teeth; the coils are wound on the teeth; wherein, the number of stator 2 slots is Z, The number of pole pairs of rotor 1 is P, and the ratio of Z to 2P is equal to 3/2 or 6/5 or 6/7.
  • the stator 2 includes a stator core and teeth.
  • a slot of the stator 2 is defined between adjacent teeth, a coil is wound on the teeth, and the stator core is arranged outside the rotor 1, wherein
  • the proportional relationship between the number of slots Z of the stator 2 and the number of pole pairs P of the rotor 1 further defines the pole-slot matching of the motor.
  • the number of pole pairs of the rotor 1 is P
  • the number of poles of the rotor 1 is 2P, that is
  • the motor can be a 6-pole 9-slot motor, a 4-pole 6-slot motor, an 8-pole 12-slot motor, a 10-pole 12-slot motor, the above types of motors can effectively reduce armature iron loss, increase magnetic flux, and improve motor efficiency.
  • the inner diameter of the stator core is Di
  • the rated torque of the motor is T
  • the torque per unit volume of the rotor 1 is TPV
  • the following relationship is satisfied: 5.18 ⁇ 10 -7 ⁇ T ⁇ Di -3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6 , 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 ;
  • the unit of the rated torque T of the motor is N ⁇ m
  • the unit of the inner diameter Di of the stator core is mm
  • the unit of the torque TPV per unit volume of the rotor 1 is kN ⁇ m ⁇ m -3 .
  • the rated torque of the motor is T
  • the inner diameter of the stator core is Di
  • the torque per unit volume of the rotor 1 is TPV
  • it satisfies 5.18 ⁇ 10 -7 ⁇ T ⁇ Di -3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6
  • the torque per unit volume in the range of TPV 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 by defining the rated motor torque T
  • the inner diameter Di of the stator core The value range of the variable combined with the torque per unit volume TPV of the rotor 1 enables the motor to meet the power demand of the compressor 100.
  • the magnetic flux leakage of the rotor 1 can be effectively reduced. , Increase the utilization of permanent magnets and improve the efficiency of the motor.
  • the side of the plurality of teeth facing the rotor core 10 encloses the inner side wall of the stator 2, and the ratio of the diameter of the inner side wall of the stator 2 to the diameter of the outer side wall of the stator core is greater than 0.5 and less than or equal to 0.58.
  • the ratio of the diameter of the inner side wall of the stator 2 to the diameter of the outer side wall of the stator core is greater than 0.5 and less than or equal to 0.57, so that the motor has a higher cost performance.
  • a compressor 100 is also proposed, including: the rotor 1 proposed in any embodiment of the above-mentioned first aspect; or as proposed in any embodiment of the above-mentioned second aspect Of the motor.
  • the compressor 100 provided in the third aspect of the present application includes the rotor 1 as proposed in any embodiment of the above first aspect; or the motor as proposed in any embodiment of the above second aspect, so it has all the benefits of the rotor 1 or the motor. effect.
  • the compressor 100 further includes: a crankshaft 3, a rotor core 10 that penetrates the rotor 1, and is connected to the rotor core 10; a power part, which is connected to the shaft, and the power part is configured to drive the shaft to rotate. .
  • the compressor 100 further includes a crankshaft 3 and a power part.
  • the crankshaft 3 penetrates the rotor core 10 of the rotor 1, and the crankshaft 3 is connected to the rotor core 10 and the power part, so as to drive the power part when the power part is working.
  • the crankshaft 3 rotates to drive the rotor core 10 to rotate.
  • the crankshaft 3 of the compressor 100 is connected to the rotor core 10 through the shaft hole of the rotor core 10.
  • the compressor 100 further includes a main bearing 4, a secondary bearing 7, a cylinder 5 and a piston 6.
  • One end of the crankshaft 3 passes through the rotor 1, and the other end passes through the main bearing 4, the cylinder 5, and the secondary bearing 7 in sequence.
  • a refrigeration device (not shown in the figure) is also proposed, including: the rotor 1 as proposed in any embodiment of the above-mentioned first aspect; or as proposed in any embodiment of the above-mentioned second aspect ⁇ motor; or the compressor 100 as proposed in any of the above-mentioned third aspect embodiments.
  • the refrigeration equipment provided in the fourth aspect of the present application includes the rotor 1 as proposed in any embodiment of the above-mentioned first aspect; or the motor as proposed in any embodiment of the above-mentioned second aspect; or as any embodiment of the above-mentioned third aspect
  • the proposed compressor 100 therefore has all the beneficial effects of the rotor 1 or the motor or the compressor 100.
  • the term “plurality” refers to two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be Directly connected, or indirectly connected through an intermediary.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子、电机、压缩机及制冷设备,转子(1)包括转子铁芯(10),转子铁芯(10)设置有多个安装槽(12),多个安装槽(12)沿转子铁芯(10)的周向分布;永磁体,设置在安装槽(12)内以形成磁极;多个狭缝,设置在转子铁芯(10)上,位于安装槽(12)背离转子(1)的旋转轴线的一侧,在垂直于转子(1)的旋转轴线的截面内,狭缝靠近安装槽(12)和远离安装槽(12)的两个端部的中点的连线形成狭缝的方向线,其中,狭缝包括位于d轴同一侧的第一狭缝(14)和第二狭缝(16),第一狭缝(14)的方向线和第二狭缝(16)的方向线的延长线相交于一点且交点不在d轴上,其中将经过转子铁芯(10)的轴心的任一磁极的中心线设为d轴。该转子(1),能够削弱转子(1)气隙磁密谐波,降低电机的转矩波动量,提高转子(1)的反电势,进而提升压缩机能效。

Description

转子、电机、压缩机及制冷设备
本申请要求于2019年8月26日提交中国专利局、申请号为“2019107920591”、发明名称为“转子、电机、压缩机及制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种转子、一种电机、一种压缩机及一种制冷设备。
背景技术
目前,在旋转式直流变频压缩机中,电机普遍采用内置式永磁电动机,对于该种电机而言,定子电枢反应的作用更强使得这种电机的转子结构具有较大的电枢铁损。为了提供具有更高性价比的电机,近年来行业趋向于更高功率密度的电机设计,因此电机铁芯损耗备受关注,其中,空载铁损主要由永磁体磁场产生,通过优化气隙磁场谐波,可以进行更有针对性的设计,但电机通电后,产生的电枢铁损来自于定子磁场与转子磁场作用后产生的合成磁场的时间和空间谐波,会产生更大的铁损和振动噪音,这部分损耗难以通过针对性的设计进行削减,因此针对这部分电流产生的铁损的抑制成为设计成败的关键。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提供了一种转子。
本申请的第二方面还提供了一种电机。
本申请的第三方面还提供了一种压缩机。
本申请的第四方面还提供了一种制冷设备。
有鉴于此,本申请的第一方面提出了一种转子,转子用于电机,电机包括定子,定子包括定子铁芯和沿定子铁芯的周向设置的齿部,转子设置在 定子内,转子包括转子铁芯,转子铁芯设置有多个安装槽,多个安装槽沿转子铁芯的周向分布;永磁体,设置在安装槽内以形成磁极,永磁体包括第一永磁体和第二永磁体,第一永磁体背离转子的旋转轴线的侧壁与第二永磁体背离转子的旋转轴线的侧壁的延长线不重合且相交于一点;多个狭缝,设置在转子铁芯上,位于安装槽背离转子的旋转轴线的一侧,在垂直于转子的旋转轴线的截面内,狭缝靠近安装槽和远离安装槽的两个端部的中点的连线形成狭缝的方向线;狭缝包括位于d轴同一侧的第一狭缝和第二狭缝,第一狭缝的方向线和第二狭缝的方向线的延长线相交于一点且交点不在d轴上;在任一安装槽背离转子的旋转轴线的一侧,且在d轴同一侧,第一狭缝的方向线与安装槽的侧壁之间朝向d轴方向的夹角为α1,第二狭缝的方向线与安装槽的侧壁之间朝向d轴方向的夹角为α2,α1与α2之和大于180°;在垂直于转子的旋转轴线的截面内,齿部的两侧壁的延长线配置为适于将位于d轴同一侧的第一狭缝和第二狭缝分隔开;在任一安装槽背离转子的旋转轴线的一侧,齿部的两侧壁的延长线构成的区域内配置为适于有两个完整的狭缝;其中将经过转子铁芯的轴心的任一磁极的中心线设为d轴。
本申请提供的转子,包括转子铁芯和设置在转子铁芯上的多个狭缝,转子铁芯上设置有多个安装槽,具体地,安装槽用于安装永磁体以形成磁极,相邻安装槽内的永磁体形成的磁极相反,在转子铁芯上,狭缝位于安装槽背离转子的旋转轴线的一侧,在垂直于转子的旋转轴线的截面内,狭缝靠近安装槽和远离安装槽的两个端部的中点的连线形成狭缝的方向线,其中,将经过转子铁芯的轴心的任一磁极的中心线设为d轴,任一安装槽背离转子的旋转轴线的一侧的狭缝沿d轴对称设置,确保了电机的反电势波形为近似正弦波,减少反电势波形畸变,减少附加损耗的增加,且位于d轴同一侧的狭缝包括第一狭缝和第二狭缝,第一狭缝的方向线和第二狭缝的方向线的延长线相交于一点且交点不在d轴上,从而通过优化狭缝的设置方向,削弱转子气隙磁密谐波,降低电机的转矩波动量,改善振动噪音,提高转子的反电势,进而有效减小电枢铁损,提升压缩机的中低频能效。
进一步地,第一狭缝的方向线、第二狭缝的方向线与安装槽的侧壁之间朝向d轴方向的夹角分别为α1、α2,并且α1与α2之和大于180°,即α1、α2之中任一夹角为钝角,有利于改善气隙磁场波形,有效减小电枢铁损。
具体地,转子用于电机,电机包括定子,定子包括定子铁芯和沿定子铁芯的周向设置的齿部,转子设置在定子内,在垂直于转子的旋转轴线的截面内,齿部的两侧壁的延长线配置为适于将位于d轴同一侧的第一狭缝和第二狭缝分隔开,从而有效减少电枢铁损,提升磁通量,进而提升电机效率。
进一步地,定子齿部两侧壁的延长线所构成的区域W,W内配置为适于有两个完整的狭缝,即单个磁极有两条具有完整轮廓的狭缝,从而优化电机的气隙磁密谐波,有效减少电枢铁损。
另外,狭缝的数量的多少影响着对定子电枢磁场的抑制效果,一般地,狭缝的数量越多,对定子电枢磁场的抑制效果越好,但数量过多会降低反电势,同时加大制造难度,因此,狭缝的数量设置为4个或6个,避免了相关技术中狭缝的数量过多引起转子铁芯结构强度降低、磁通量下降、齿槽转矩增大的问题,同时避免了狭缝的数量较少无法有效地改善电机的径向力的问题,通过将狭缝的数量设置在合理地范围内,能够在保证转子铁芯的可靠性、方便加工的情况下,有效地保证电机良好的降噪效果和反电势效果,提升电机的性价比。
具体地,第一永磁体和第二永磁体的磁性、尺寸和材料均相同。
根据本申请提供的上述的转子,还可以具有以下附加技术特征:
在上述任一技术方案中,任一安装槽背离转子的旋转轴线的一侧,且在d轴的同一侧内,第一狭缝的方向线与第二狭缝的方向线之间的夹角大于等于3°,且小于等于20°。
在该技术方案中,第一狭缝、第二狭缝的方向线延长线形成锐角δ,具体地,3°≤δ≤20°,从而改变磁通整体形状,有效的提升电机的输出功率,当电机应用于压缩机时,实现了压缩机的低噪声化即高效化。
在上述任一技术方案中,子安装槽包括主槽部和与主槽部相连通的间隙部,间隙部设置在主槽部靠近转子铁芯的外周壁的一端,其中,第一永 磁体由靠近第二永磁体的一端至远离第二永磁体的一端的长度为L3,沿第一永磁体的长度方向主槽部的长度为L4;其中,L3大于L4。
在该技术方案中,主槽部与间隙部相连,间隙部用于隔磁,并限定第一永磁体由靠近第二永磁体的一端至远离第二永磁体的一端的长度L3大于沿第一永磁体的长度方向主槽部的长度L4,进一步地,(L3-L4)/L3的比值在0至0.5之间,由此能够提升压缩机能效,降低噪音状况。
在上述任一技术方案中,间隙部的壁面与转子铁芯的外周壁之间的距离的最小值大于狭缝的壁面与安装槽的壁面之间距离的最小值。
在该技术方案中,间隙部的壁面与转子铁芯的外周壁之间的距离L5的最小值大于狭缝的壁面与安装槽的壁面之间距离L6的最小值,提升狭缝的磁通导向作用,进而在削弱转子气隙磁密谐波的同时,保证了转子永磁体的励磁应用。
在上述任一技术方案中,α2与α1的比值大于1,且小于等于1.1。
在该技术方案中,第一狭缝靠近d轴设置,第二狭缝远离d轴设置,通过限定α2与α1的比值大于1,且小于等于1.1,第一狭缝的方向线与第二狭缝的方向线的延长线之间形成锐角,相交于一点且交点不在d轴上,从而削弱转子气隙磁密谐波,降低电机的转矩波动量,改善振动噪音。
在上述任一技术方案中,α1大于90°,且小于等于120°;和/或α2大于90°,且小于等于130°。
在该技术方案中,将狭缝的设置角度限定在合理的范围内能够改善气隙磁场波形,有效减小电枢铁损,增大反电势,提升压缩机中低频能效,具体地,α1大于90°,且小于等于120°,α2大于90°,且小于等于130°。
在上述任一技术方案中,沿垂直于第一狭缝的方向线方向,第一狭缝的宽度为L1;沿垂直于第二狭缝的方向线方向,第二狭缝的宽度为L2,L1不等于L2;和/或沿狭缝的方向线方向,任一狭缝的宽度不等。
在该技术方案中,考虑到电枢磁场在转子表面的透入深度不同,因此设置第一狭缝与第二狭缝沿周向的宽度不等,实现狭缝宽度的变化,更有利于削弱电枢磁场。
在上述任一技术方案中,永磁体包括第一永磁体和第二永磁体,安装 槽包括两个子安装槽,两个子安装槽沿转子铁芯的周向方向设置,第一永磁体和第二永磁体分别设置在两个子安装槽内以形成磁极;其中,在任一安装槽内,两个子安装槽之间具有第一夹角。
在该技术方案中,永磁体包括第一永磁体和第二永磁体,第一永磁体和第二永磁体的磁场强度可以相同,也可以不同,第一永磁体和第二永磁体分别设置在两个不同的子安装槽内,其中,在任一安装槽内,两个子安装槽之间具有第一夹角,也即第一永磁体和第二永磁体之间不平行,进而可以改善合成气隙磁场波形,降低电机的振动噪音,提升压缩机的中低频能效。
在上述任一技术方案中,第一夹角大于等于110°,且小于等于150°。
在该技术方案中,将第一永磁体和第二永磁体之间的夹角设置在110°和150°之间,能够使得永磁体的反电势达到最大化,进而保证压缩机的低频能效,提升APF(全年能源消耗效率)。
在上述任一技术方案中,在任一安装槽内,两个子安装槽相连通,且在两个子安装槽的连接点设有卡位凸点,卡位凸点向安装槽内凸起。
在该技术方案中,通过两个子安装槽的连接点之间的卡位凸点,限定永磁体的位置,从而改善电机负载磁密,优化电机的气隙磁密波形,进而改善电机的径向力并降低电机的噪音。
在上述任一技术方案中,在任一安装槽内,两个子安装槽之间通过连接筋相连接。
在该技术方案中,在两个子安装槽之间设置有连接筋。
在上述任一技术方案中,转子铁芯在垂直于转子的旋转轴线的截面上,狭缝的轮廓包括直线和/或曲线;和/或多个狭缝相对于d轴对称设置。
在该技术方案中,狭缝的轮廓可以由直线和/或曲线构成,每条狭缝的轮廓既可以是单独的直线或曲线,还可以直线和曲线相结合,从而实现此线路的合理化,另外,多个狭缝相对于d轴对称设置,确保了电机的反电势波形为近似正弦波,减少反电势波形畸变,减少附加损耗的增加。
在上述任一技术方案中,转子铁芯的外周壁呈圆柱形;和/或转子铁芯包括:多个冲片,多个冲片沿转子的旋转轴线方向层叠设置,相邻安装槽 之间设置有铆扣部,多个冲片通过铆扣部相连接。
在该技术方案中,通过层叠多片冲片构成转子铁芯,相邻安装槽之间设置有铆扣部,用于固定磁铁,保证转子铁芯的可靠性。
根据本申请的第二方面,还提出了一种电机,包括:如上述任一技术方案提出的转子。
本申请第二方面提供的电机,因包括上述任一技术方案提出的转子,因此具有转子的全部有益效果。
在上述技术方案中,电机还包括:定子,定子包括定子铁芯,定子铁芯围设于转子的外部;多个齿部,设置在定子铁芯朝向转子铁芯的一侧,多个齿部沿定子铁芯的周向设置,相邻齿部之间限定出定子槽隙;线圈,绕设在齿部上;其中,定子槽隙的数量为Z,转子的极对数为P,Z与2P的比值等于3/2或6/5或6/7。
在该技术方案中,定子包括定子铁芯和齿部,相邻齿部之间限定出定子槽隙,齿部上绕设有线圈,定子铁芯围设于转子外部,其中,限定定子槽隙的数量Z和转子的极对数P的比例关系,进而限定电机的极槽配合,其中,当转子的极对数为P时,则转子的极数为2P,即电机可为6极9槽电机、4极6槽电机、8极12槽电机、10极12槽电机、上述类型的电机可有效减少电枢铁损,提升磁通量,进而提升电机效率。
在上述任一技术方案中,定子铁芯的内径为Di,电机的额定转矩为T,转子的单位体积转矩为TPV,满足以下关系式:5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3;其中,电机的额定转矩T的单位为N·m,定子铁芯的内径Di的单位为mm,转子的单位体积转矩TPV的单位为kN·m·m -3
在该技术方案中,电机的额定转矩为T,定子铁芯的内径为Di,转子的单位体积转矩为TPV,且满足5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,单位体积转矩TPV的取值范围为5kN·m·m -3≤TPV≤45kN·m·m -3,通过限定了电机的额定转矩T、定子铁芯的内径Di和转子的单位体积转矩TPV的组合变量的取值范围,使得该电机可以满足压缩机的动力需求,此外,对于采用该转子的电机及压缩机,可有效降低转子漏磁,增加永磁体利用 率,提升电机效率。
在上述任一技术方案中,多个齿部朝向转子铁芯的一侧合围成定子的内侧壁,定子的内侧壁的直径与定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.57。
在该技术方案中,定子的内侧壁的直径与定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.57使得电机具有较高的性价比。
根据本申请的第三方面,还提出了一种压缩机,包括:如上述第一方面任一技术方案提出的转子;或如上述第二方面任一技术方案提出的电机。
本申请第三方面提供的压缩机,因包括如上述第一方面任一技术方案提出的转子;或如上述第二方面任一技术方案提出的电机,因此具有转子或电机的全部有益效果。
根据本申请的第四方面,还提出了一种制冷设备,包括:如上述第一方面任一技术方案提出的转子;或如上述第二方面任一技术方案提出的电机;或如上述第三方面任一技术方案提出的压缩机。
本申请第四方面提供的制冷设备,因包括如上述第一方面任一技术方案提出的转子;或如上述第二方面任一技术方案提出的电机;或如上述第三方面任一技术方案提出的压缩机,因此具有转子或电机或压缩机的全部有益效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请一个实施例的转子的结构示意图;
图2示出了本申请一个实施例的定子和转子的结构示意图;
图3示出了本申请另一个实施例的定子和转子的结构示意图;
图4示出了本申请一个实施例的转子的部分尺寸示意图;
图5示出了本申请一个实施例的转子的一部分角度示意图;
图6示出了本申请一个实施例的转子的另一部分角度示意图;
图7示出了本申请一个实施例的转子的又一部分尺寸示意图;
图8示出了本申请一个实施例的转子的又一部分尺寸示意图;
图9示出了本申请一个实施例的转子的部分结构示意图;
图10示出了本申请一个实施例的转子的另一部分结构示意图;
图11示出了本申请一个实施例的转子的又一结构示意图;
图12示出了根据本申请的一个实施例的电机与相关技术中电机的反电势各次谐波幅值对比图;
图13示出了根据本申请的一个实施例的电机与相关技术中电机的气隙磁密谐波失真对比图;
图14示出了根据本申请的一个实施例的电机与相关技术中电机的转矩波动对比图;
图15示出了根据本申请的一个实施例中压缩机的结构示意图。
其中,图1至图15中附图标记与部件名称之间的对应关系为:
100压缩机,1转子,2定子,10转子铁芯,12安装槽,14第一狭缝,16第二狭缝,122卡位凸点,124连接筋,3曲轴,4主轴承,5气缸,6活塞,7副轴承。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图15描述根据本申请一些实施例的转子1、电机、压缩机100及制冷设备。
实施例一
如图1所示,根据本申请的第一方面的一个实施例,本申请提出了一种转 子1,包括转子铁芯10、安装槽12和多个狭缝。
具体地,转子1包括转子铁芯10,转子铁芯10设置有多个安装槽12,多个安装槽12沿转子铁芯10的周向分布;永磁体设置在安装槽12内以形成磁极,其中,永磁体包括第一永磁体和第二永磁体,第一永磁体背离转子1的旋转轴线的侧壁与第二永磁体背离转子1的旋转轴线的侧壁的延长线不重合且相交于一点;多个狭缝设置在转子铁芯10上,位于安装槽12背离转子1的旋转轴线的一侧,在垂直于转子1的旋转轴线的截面内,狭缝靠近安装槽12和远离安装槽12的两个端部的中点的连线形成狭缝的方向线;其中,狭缝包括位于d轴同一侧的第一狭缝14和第二狭缝16,第一狭缝14的方向线和第二狭缝16的方向线的延长线相交于一点且交点不在d轴上,其中将经过转子铁芯10的轴心的任一磁极的中心线设为d轴。
本申请提供的转子1,包括转子铁芯10和设置在转子铁芯10上的多个狭缝,转子铁芯10上设置有多个安装槽12,具体地,安装槽12用于安装永磁体以形成磁极,相邻安装槽12内的永磁体形成的磁极相反,在转子铁芯10上,狭缝位于安装槽12背离转子1的旋转轴线的一侧,在垂直于转子1的旋转轴线的截面内,狭缝靠近安装槽12和远离安装槽12的两个端部的中点的连线形成狭缝的方向线,其中,将经过转子铁芯10的轴心的任一磁极的中心线设为d轴,任一安装槽12背离转子1的旋转轴线的一侧的狭缝沿d轴对称设置,确保了电机的反电势波形为近似正弦波,减少反电势波形畸变,减少附加损耗的增加,且位于d轴同一侧的狭缝包括第一狭缝14和第二狭缝16,第一狭缝14的方向线和第二狭缝16的方向线的延长线相交于一点且交点不在d轴上,从而通过优化狭缝的设置方向,削弱转子1气隙磁密谐波,降低电机的转矩波动量,改善振动噪音,提高转子1的反电势,进而有效减小电枢铁损,提升压缩机的中低频能效。
其中,在垂直于转子1的旋转轴线的截面内,齿部的两侧壁的延长线配置为适于将位于d轴同一侧的第一狭缝14和第二狭缝16分隔开,从而有效减少电枢铁损,提升磁通量,进而提升电机效率。
进一步地,如图2和图3所示,在任一安装槽12背离转子1的旋转轴线的一侧,齿部的两侧壁的延长线构成的区域内配置为适于有两个完整的狭缝。 定子2的齿部两侧壁的延长线所构成区域W,区域W内配置为适于有两个完整的狭缝,即单个磁极有两条具有完整轮廓的狭缝,从而优化电机的气隙磁密谐波,有效减少电枢铁损。
具体地,如图1和图4所示,在任一安装槽12背离转子1的旋转轴线的一侧,且在d轴同一侧,第一狭缝14的方向线与安装槽12的侧壁之间朝向d轴方向的夹角为α1,第二狭缝16的方向线与安装槽12的侧壁之间朝向d轴方向的夹角为α2,α1与α2之和大于180°,即α1、α2之中任一夹角为钝角,有利于改善气隙磁场波形,有效减小电枢铁损。
另外,狭缝的数量的多少影响着对定子2电枢磁场的抑制效果,一般地,狭缝的数量越多,对定子2电枢磁场的抑制效果越好,但数量过多会降低反电势,同时加大制造难度,因此,狭缝的数量设置为4个或6个,避免了相关技术中狭缝的数量过多引起转子铁芯10结构强度降低、磁通量下降、齿槽转矩增大的问题,同时避免了狭缝的数量较少无法有效地改善电机的径向力的问题,通过将狭缝的数量设置在合理地范围内,能够在保证转子铁芯10的可靠性、方便加工的情况下,有效地保证电机良好的降噪效果和反电势效果,提升电机的性价比。
在该实施例中,第一狭缝14靠近d轴设置,第二狭缝16远离d轴设置,通过限定α2与α1的比值大于1,且小于等于1.1,第一狭缝14的方向线与第二狭缝16的方向线的延长线之间形成锐角,相交于一点且交点不在d轴上,从而削弱转子1气隙磁密谐波,降低电机的转矩波动量,改善振动噪音。
具体地,将狭缝的设置角度限定在合理的范围内能够改善气隙磁场波形,有效减小电枢铁损,增大反电势,提升压缩机中低频能效,具体地,α1大于90°,且小于等于120°,α2大于90°,且小于等于130°。
具体地,如图1和图11所示,转子铁芯10在垂直于转子1的旋转轴线的截面上,狭缝的轮廓包括直线和/或曲线;和/或多个狭缝相对于d轴对称设置,从而实现此线路的合理化,另外,多个狭缝相对于d轴对称设置,确保了电机的反电势波形为近似正弦波,减少反电势波形畸变,减少附加损耗的增加。
具体地,第一永磁体和第二永磁体的磁性、尺寸和材料均相同。
实施例二
如图5和图6所示,根据本申请的一个实施例,除上述实施例限定的特征之外,进一步地:任一安装槽12背离转子1的旋转轴线的一侧,且在d轴的同一侧内,第一狭缝14的方向线与第二狭缝16的方向线之间的夹角大于等于3°,且小于等于20°。
在该实施例中,第一狭缝14、第二狭缝16的方向线延长线形成锐角δ,具体地,3°≤δ≤20°,从而改变磁通整体形状,有效的提升电机的输出功率,当电机应用于压缩机时,实现了压缩机的低噪声化即高效化。
实施例三
如图8所示,根据本申请的一个实施例,除上述实施例限定的特征之外,进一步地:沿垂直于第一狭缝14的方向线方向,第一狭缝14的宽度为L1;沿垂直于第二狭缝16的方向线方向,第二狭缝16的宽度为L2,L1不等于L2;和/或沿狭缝的方向线方向,任一狭缝的宽度不等。
在该实施例中,考虑到电枢磁场在转子1表面的透入深度不同,因此设置第一狭缝14与第二狭缝16沿周向的宽度不等,实现狭缝宽度的变化,更有利于削弱电枢磁场。
实施例四
如图1所示,根据本申请的一个实施例,除上述实施例限定的特征之外,进一步地:永磁体包括第一永磁体和第二永磁体,安装槽12包括两个子安装槽,两个子安装槽沿转子铁芯10的周向方向设置,第一永磁体和第二永磁体分别设置在两个子安装槽内以形成磁极;其中,在任一安装槽12内,两个子安装槽之间具有第一夹角。
在该实施例中,永磁体包括第一永磁体和第二永磁体,第一永磁体和第二永磁体的磁场强度可以相同,也可以不同,第一永磁体和第二永磁体分别设置在两个不同的子安装槽内,其中,在任一安装槽12内,两个子安装槽之间具有第一夹角,也即第一永磁体和第二永磁体之间不平行,进而可以改善合成气隙磁场波形,降低电机的振动噪音,提升压缩机的中低频能效。
具体地,永磁体呈V型结构,V型永磁体形成的V型磁极产生的聚磁效果有利于提升电机反电势,进而有利于提升压缩的低频能效,可以理解的是,永磁体也可以为满足要求的其他形状的永磁体,比如永磁体还可以呈U形结 构。
具体地,安装槽12呈V型结构,可在转子1外径减小的同时,保证转子1侧永磁励磁不降低,即在增大电机线负荷的同时,确保了电机磁负荷的维持,进而使电机功率密度增大,材料利用率提高。
具体地,任一安装槽12以d轴为对称线呈对称设置。
具体地,将第一永磁体和第二永磁体之间的夹角设置在110°和150°之间,能够使得永磁体的反电势达到最大化,进而保证压缩机的低频能效,提升APF(全年能源消耗效率)。
实施例五
如图7所示,根据本申请的一个实施例,除上述任一实施例限定的特征之外,进一步地:子安装槽包括主槽部和与主槽部相连通的间隙部,间隙部设置在主槽部靠近转子铁芯10的外周壁的一端,其中,第一永磁体由靠近第二永磁体的一端至远离第二永磁体的一端的长度为L3,沿第一永磁体的长度方向主槽部的长度为L4;其中,L3大于L4。
在该实施例中,主槽部与间隙部相连,间隙部用于隔磁,并限定第一永磁体由靠近第二永磁体的一端至远离第二永磁体的一端的长度L3大于沿第一永磁体的长度方向主槽部的长度为L4,具体地,(L3-L4)/L3的比值在0至0.5之间,由此能够提升压缩机能效,降低噪音状况。
实施例六
如图8所示,根据本申请的一个实施例,除上述任一实施例限定的特征之外,进一步地:间隙部的壁面与转子铁芯10的外周壁之间的距离的最小值大于狭缝的壁面与安装槽12的壁面之间距离的最小值。
在该实施例中,间隙部的壁面与转子铁芯10的外周壁之间的距离L5的最小值大于狭缝的壁面与安装槽12的壁面之间距离L6的最小值,提升狭缝的磁通导向作用,进而在削弱转子1气隙磁密谐波的同时,保证了转子1永磁体的励磁应用。
具体地,如图9所示,在任一安装槽12内,两个子安装槽相连通,且在两个子安装槽的连接点设有卡位凸点122,卡位凸点122向安装槽12内凸起,通过卡位凸点122限定永磁体的位置,从而改善电机负载磁密,优化电机的气 隙磁密波形,进而改善电机的径向力并降低电机的噪音。
具体地,如图10所示,在任一安装槽12内,两个子安装槽之间通过连接筋124相连接。
具体地,转子铁芯10的外周壁呈圆柱形;和/或转子铁芯10包括:多个冲片,多个冲片沿转子1的旋转轴线方向层叠设置,相邻安装槽12之间设置有铆扣部,多个冲片通过铆扣部相连接,保证转子铁芯10的可靠性。
实施例七
如图1和图2所示,根据本申请的一个具体实施例,本申请提出了一种转子1,转子铁芯10上沿转轴的轴向方向上设置多个安装槽12,多个安装槽12沿转子1的周向分布;将至少一对永磁体分别插入到安装槽12中构成转子1的磁极,一对永磁体分别位于转子1d轴的两侧,在与电机旋转轴垂直的任一平面里,一对永磁体的长边的延长线不重合且相较于一点;在转子1磁极部的径向内侧设置有沿轴向贯通转子铁芯10的紧固孔(可将转子1冲片连接成一个整体)。以转子1的轴心为旋转中心,将多个安装槽12中的其中一个的中心与转子1的中心的连线定义为d轴,多个狭缝位于对应的安装槽12与转子铁芯10的外周壁之间。其中,狭缝包含第一狭缝14,第二狭缝16,狭缝的轮廓线由多条曲线和/或直线首尾围合而成。在径向外侧的磁极部垂直于旋转中心轴的截面上,每个第一狭缝14短边或弧线的中点与另一端的短边的中点之间连接构成狭缝的方向线。定子齿宽的两侧壁向径向内侧的两条延长线将第一狭缝14、第二狭缝16分隔开,在两条延长线构成的区域W内,单个磁极有且仅有两条具有完整轮廓的狭缝。第一狭缝14与第二狭缝16的方向线的延长线具有交点,且交点不在d轴上。第一狭缝14与第二狭缝16的方向线与和其相交的距离最近的安装槽12的轮廓线的朝向d轴一侧的角度的和大于180°。
实施例八
根据本申请的第二方面,还提出了一种电机,包括:如上述任一实施例提出的转子1。
本申请第二方面提供的电机,因包括上述任一实施例提出的转子1,因此具有转子1的全部有益效果。
具体地,如图12所示的本申请的一个实施例与相关技术中的反电势各 次谐波幅值对比图,可见,本申请的电机的反电势相比于相关技术得到了提升了。
具体地,如图13所示的本申请的一个实施例与相关技术中的电机的气隙磁密谐THD(谐波失真)对比图,本申请提供的永磁电机的空载磁密THD和负载磁密THD均小于相关技术的永磁电机,可见,本申请的转子1对气隙磁场波形的改善效果明显。
具体地,如图14所示的本申请的一个实施例与相关技术中的电机的转矩波动对比图,本申请提供的永磁电机的转矩波动小于相关技术的永磁电机的转矩波动,可见,本申请的转子1可以有效改善噪音听感。
具体地,电机还包括:定子2,定子2包括定子铁芯(图中未示出),定子铁芯围设于转子1的外部;多个齿部,设置在定子铁芯朝向转子铁芯10的一侧,多个齿部沿定子铁芯的周向设置,相邻齿部之间限定出定子2槽隙;线圈,绕设在齿部上;其中,定子2槽隙的数量为Z,转子1的极对数为P,Z与2P的比值等于3/2或6/5或6/7。
在该实施例中,定子2包括定子铁芯和齿部,相邻齿部之间限定出定子2槽隙,齿部上绕设有线圈,定子铁芯围设于转子1外部,其中,限定定子2槽隙的数量Z和转子1的极对数P的比例关系,进而限定电机的极槽配合,其中,当转子1的极对数为P时,则转子1的极数为2P,即电机可为6极9槽电机、4极6槽电机、8极12槽电机、10极12槽电机、上述类型的电机可有效减少电枢铁损,提升磁通量,进而提升电机效率。
具体地,定子铁芯的内径为Di,电机的额定转矩为T,转子1的单位体积转矩为TPV,满足以下关系式:5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3;其中,电机的额定转矩T的单位为N·m,定子铁芯的内径Di的单位为mm,转子1的单位体积转矩TPV的单位为kN·m·m -3
在该实施例中,电机的额定转矩为T,定子铁芯的内径为Di,转子1的单位体积转矩为TPV,且满足5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,单位体积转矩TPV的取值范围为5kN·m·m -3≤TPV≤45kN·m·m -3,通过限定了电机的额定转矩T、定子铁芯的内径Di和转子1的单位体积转矩 TPV的组合变量的取值范围,使得该电机可以满足压缩机100的动力需求,此外,对于采用该转子1的电机及压缩机100,可有效降低转子1漏磁,增加永磁体利用率,提升电机效率。
具体地,多个齿部朝向转子铁芯10的一侧合围成定子2的内侧壁,定子2的内侧壁的直径与定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.58。
在该实施例中,定子2的内侧壁的直径与定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.57使得电机具有较高的性价比。
实施例九
如图15所示,根据本申请的第三方面,还提出了一种压缩机100,包括:如上述第一方面任一实施例提出的转子1;或如上述第二方面任一实施例提出的电机。
本申请第三方面提供的压缩机100,因包括如上述第一方面任一实施例提出的转子1;或如上述第二方面任一实施例提出的电机,因此具有转子1或电机的全部有益效果。
具体地,压缩机100还包括:曲轴3,穿设于转子1的转子铁芯10,并与转子铁芯10相连接;动力部,与轴相连接,且动力部工作被配置为带动轴转动。
在该实施例中,压缩机100还包括曲轴3和动力部,曲轴3穿设于转子1的转子铁芯10,且曲轴3连接转子铁芯10和动力部,进而在动力部工作时能够带动曲轴3转动进而带动转子铁芯10转动。具体地,压缩机100的曲轴3通过转子铁芯10的轴孔与转子铁芯10相连接。
具体地,压缩机100还包括主轴承4、副轴承7、气缸5和活塞6,曲轴3一端穿设于转子1内,另一端依次穿过主轴承4、气缸5、副轴承7。
实施例十
根据本申请的第四方面,还提出了一种制冷设备(图中未示出),包括:如上述第一方面任一实施例提出的转子1;或如上述第二方面任一实施例提出的电机;或如上述第三方面任一实施例提出的压缩机100。
本申请第四方面提供的制冷设备,因包括如上述第一方面任一实施例提 出的转子1;或如上述第二方面任一实施例提出的电机;或如上述第三方面任一实施例提出的压缩机100,因此具有转子1或电机或压缩机100的全部有益效果。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种转子,所述转子用于电机,所述电机包括定子,所述定子包括定子铁芯和沿所述定子铁芯的周向设置的齿部,所述转子设置在所述定子内,其中,所述转子包括:
    转子铁芯,所述转子铁芯设置有多个安装槽,多个所述安装槽沿所述转子铁芯的周向分布;
    永磁体,设置在所述安装槽内以形成磁极,所述永磁体包括第一永磁体和第二永磁体,所述第一永磁体背离所述转子的旋转轴线的侧壁与所述第二永磁体背离所述转子的旋转轴线的侧壁的延长线不重合且相交于一点;
    多个狭缝,设置在所述转子铁芯上,位于所述安装槽背离所述转子的旋转轴线的一侧,在垂直于所述转子的旋转轴线的截面内,所述狭缝靠近所述安装槽和远离所述安装槽的两个端部的中点的连线形成所述狭缝的方向线;
    所述狭缝包括位于d轴同一侧的第一狭缝和第二狭缝,所述第一狭缝的方向线和所述第二狭缝的方向线的延长线相交于一点且交点不在所述d轴上;
    在任一所述安装槽背离所述转子的旋转轴线的一侧,且在所述d轴同一侧,所述第一狭缝的方向线与所述安装槽的侧壁之间朝向所述d轴方向的夹角为α1,所述第二狭缝的方向线与所述安装槽的侧壁之间朝向所述d轴方向的夹角为α2,所述α1与所述α2之和大于180°;
    在垂直于所述转子的旋转轴线的截面内,所述齿部的两侧壁的延长线配置为适于将位于所述d轴同一侧的所述第一狭缝和所述第二狭缝分隔开,在任一所述安装槽背离所述转子的旋转轴线的一侧,所述齿部的两侧壁的延长线构成的区域内配置为适于有两个完整的所述狭缝;
    其中,其中将经过所述转子铁芯的轴心的任一所述磁极的中心线设为所述d轴。
  2. 根据权利要求1所述的转子,其中,
    任一所述安装槽背离所述转子的旋转轴线的一侧,且在所述d轴的同一侧内,所述第一狭缝的方向线与所述第二狭缝的方向线之间的夹角大于等于3°,且小于等于20°。
  3. 根据权利要求1所述的转子,其中,
    所述安装槽包括主槽部和与所述主槽部相连通的间隙部,所述间隙部设置在所述主槽部靠近所述转子铁芯的外周壁的一端,其中,所述第一永磁体由靠近所述第二永磁体的一端至远离所述第二永磁体的一端的长度为L3,沿所述第一永磁体的长度方向所述主槽部的长度为L4;
    其中,所述L3大于所述L4。
  4. 根据权利要求3所述的转子,其中,
    所述间隙部的壁面与所述转子铁芯的外周壁之间的距离的最小值大于所述狭缝的壁面与所述安装槽的壁面之间距离的最小值。
  5. 根据权利要求4所述的转子,其中,所述α2与所述α1的比值大于1,且小于等于1.1。
  6. 根据权利要求5所述的转子,其中,
    所述α1大于90°,且小于等于120°;和/或
    所述α2大于90°,且小于等于130°。
  7. 根据权利要求1至6中任一项所述的转子,其中,
    沿垂直于所述第一狭缝的方向线方向,所述第一狭缝的宽度为L1;
    沿垂直于所述第二狭缝的方向线方向,所述第二狭缝的宽度为L2,L1不等于L2;和/或
    沿所述狭缝的方向线方向,任一所述狭缝的宽度不等。
  8. 根据权利要求1至7中任一项所述的转子,其中,
    所述安装槽包括两个子安装槽,两个所述子安装槽沿所述转子铁芯的周向方向设置,所述第一永磁体和所述第二永磁体分别设置在两个所述子安装槽内以形成所述磁极;
    其中,在任一所述安装槽内,两个所述子安装槽之间具有第一夹角。
  9. 根据权利要求8所述的转子,其中,
    所述第一夹角大于等于110°,且小于等于150°。
  10. 根据权利要求9所述的转子,其中,
    在任一所述安装槽内,两个所述子安装槽相连通,且在两个所述子安装槽的连接点设有卡位凸点,所述卡位凸点向所述安装槽内凸起。
  11. 根据权利要求9所述的转子,其中,
    在任一所述安装槽内,两个所述子安装槽之间通过连接筋相连接。
  12. 根据权利要求1至11中任一项所述的转子,其中,
    所述转子铁芯在垂直于所述转子的旋转轴线的截面上,所述狭缝的轮廓包括直线和/或曲线;和/或
    多个所述狭缝相对于所述d轴对称设置。
  13. 根据权利要求1至12中任一项所述的转子,其中,
    所述转子铁芯的外周壁呈圆柱形;和/或
    所述转子铁芯包括:
    多个冲片,多个所述冲片沿所述转子的旋转轴线方向层叠设置,相邻所述安装槽之间设置有铆扣部,多个所述冲片通过所述铆扣部相连接。
  14. 一种电机,其中,包括:
    如权利要求1至13中任一项所述的转子。
  15. 根据权利要求14所述的电机,其中,还包括:
    定子,所述定子包括定子铁芯,所述定子铁芯围设于所述转子的外部;
    多个齿部,设置在所述定子铁芯朝向所述转子铁芯的一侧,多个所述齿部沿所述定子铁芯的周向设置,相邻所述齿部之间限定出定子槽隙;
    线圈,绕设在所述齿部上;
    其中,所述定子槽隙的数量为Z,所述转子的极对数为P,所述Z与所述2P的比值等于3/2或6/5或6/7。
  16. 根据权利要求15所述的电机,其中,
    所述定子铁芯的内径为Di,所述电机的额定转矩为T,所述转子的单位体积转矩为TPV,满足以下关系式:5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3
    其中,所述电机的额定转矩T的单位为N·m,所述定子铁芯的内径Di的单位为mm,所述转子的单位体积转矩TPV的单位为kN·m·m -3
  17. 根据权利要求16所述的电机,其中,
    多个所述齿部朝向所述转子铁芯的一侧合围成所述定子的内侧壁,所述定子的内侧壁的直径与所述定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.57。
  18. 一种压缩机,其中,包括:
    如权利要求1至13中任一项所述的转子;或
    如权利要求14至17中任一项所述的电机。
  19. 一种制冷设备,其中,包括:
    如权利要求1至13中任一项所述的转子;或
    如权利要求14至17中任一项所述的电机;或
    如权利要求18所述的压缩机。
PCT/CN2019/109874 2019-08-26 2019-10-08 转子、电机、压缩机及制冷设备 WO2021035877A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19943336.8A EP3944466A4 (en) 2019-08-26 2019-10-08 ROTOR, MOTOR, COMPRESSOR AND REFRIGERATOR
JP2021564825A JP2022531342A (ja) 2019-08-26 2019-10-08 ローター、モーター、圧縮機及び冷却機器
US17/525,650 US20220077735A1 (en) 2019-08-26 2021-11-12 Rotor, motor, compressor, and refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910792059.1 2019-08-26
CN201910792059.1A CN112436624B (zh) 2019-08-26 2019-08-26 转子、电机、压缩机及制冷设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/525,650 Continuation US20220077735A1 (en) 2019-08-26 2021-11-12 Rotor, motor, compressor, and refrigeration apparatus

Publications (1)

Publication Number Publication Date
WO2021035877A1 true WO2021035877A1 (zh) 2021-03-04

Family

ID=74683985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109874 WO2021035877A1 (zh) 2019-08-26 2019-10-08 转子、电机、压缩机及制冷设备

Country Status (5)

Country Link
US (1) US20220077735A1 (zh)
EP (1) EP3944466A4 (zh)
JP (1) JP2022531342A (zh)
CN (4) CN114552824B (zh)
WO (1) WO2021035877A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078283A (ja) * 2009-10-01 2011-04-14 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子及び送風機及び圧縮機
JP5208084B2 (ja) * 2009-10-09 2013-06-12 三菱電機株式会社 永久磁石埋込型モータの回転子及び送風機及び圧縮機
CN103891102A (zh) * 2011-10-24 2014-06-25 三菱电机株式会社 永久磁铁嵌入式电动机的转子、压缩机和制冷空调装置
CN103999331A (zh) * 2011-12-22 2014-08-20 夏普株式会社 永磁电机
CN104269986A (zh) * 2014-10-13 2015-01-07 广东美芝制冷设备有限公司 永磁同步电机及具有其的压缩机
CN105958689A (zh) * 2016-06-08 2016-09-21 珠海格力节能环保制冷技术研究中心有限公司 铁心结构、转子组件及永磁电机
CN107819365A (zh) * 2016-09-13 2018-03-20 南京德朔实业有限公司 转子冲片

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747107B2 (ja) * 1996-12-18 2006-02-22 アイチエレック株式会社 電動機
KR200210795Y1 (ko) * 1998-03-20 2001-02-01 윤종용 영구자석 매립형 모터
JP2001025194A (ja) * 1999-07-06 2001-01-26 Meidensha Corp 永久磁石形同期回転電機
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
JP2005192263A (ja) * 2003-12-24 2005-07-14 Matsushita Electric Ind Co Ltd 永久磁石モータ
US8350435B2 (en) * 2006-04-14 2013-01-08 Emerson Electric Co. Interior magnet machine with reduced cogging
JP5259934B2 (ja) * 2006-07-20 2013-08-07 株式会社日立産機システム 永久磁石式回転電機及びそれを用いた圧縮機
EP2117102B1 (en) * 2007-02-26 2018-01-24 Mitsubishi Electric Corporation Permanent magnet motor, hermetic compressor, and fan motor
WO2008113082A1 (en) * 2007-03-15 2008-09-18 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP5264551B2 (ja) * 2009-02-21 2013-08-14 三菱電機株式会社 電動機及び送風機及び圧縮機
JP4964291B2 (ja) * 2009-12-01 2012-06-27 三菱電機株式会社 永久磁石埋込型モータの回転子及び送風機及び圧縮機
JP5462011B2 (ja) * 2010-01-28 2014-04-02 株式会社日立産機システム 永久磁石式回転電機及びそれを用いた圧縮機
JP2012060799A (ja) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP2013118748A (ja) * 2011-12-02 2013-06-13 Hitachi Industrial Equipment Systems Co Ltd 永久磁石式回転電機
JP2013132172A (ja) * 2011-12-22 2013-07-04 Sharp Corp 永久磁石モータ
JP5511921B2 (ja) * 2012-09-25 2014-06-04 三菱電機株式会社 電動機及び送風機及び圧縮機
CN103872819B (zh) * 2012-12-10 2017-02-15 艾默生环境优化技术(苏州)有限公司 转子组件和包括该转子组件的永磁体电机
WO2014139132A1 (en) * 2013-03-14 2014-09-18 Emerson Electric Co. Rotors and stators for dynamoelectric machines
JP2015208053A (ja) * 2014-04-17 2015-11-19 日立アプライアンス株式会社 永久磁石式回転電機及びそれを用いた圧縮機
CN104269987B (zh) * 2014-10-13 2016-06-29 广东美芝制冷设备有限公司 永磁同步电机及具有其的压缩机
JP2017050965A (ja) * 2015-09-01 2017-03-09 日産自動車株式会社 回転電機の回転子構造
WO2017203618A1 (ja) * 2016-05-25 2017-11-30 三菱電機株式会社 回転子、電動機、圧縮機、空気調和機、及び電動機の製造方法
JP6289694B2 (ja) * 2017-02-16 2018-03-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6768259B2 (ja) * 2017-04-20 2020-10-14 株式会社ミツバ ロータ及び電動モータ
EP3644476A4 (en) * 2017-08-31 2020-07-15 Guangdong Meizhi Compressor Co., Ltd. ENGINE AND COMPRESSOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078283A (ja) * 2009-10-01 2011-04-14 Mitsubishi Electric Corp 永久磁石埋込型モータの回転子及び送風機及び圧縮機
JP5208084B2 (ja) * 2009-10-09 2013-06-12 三菱電機株式会社 永久磁石埋込型モータの回転子及び送風機及び圧縮機
CN103891102A (zh) * 2011-10-24 2014-06-25 三菱电机株式会社 永久磁铁嵌入式电动机的转子、压缩机和制冷空调装置
CN103999331A (zh) * 2011-12-22 2014-08-20 夏普株式会社 永磁电机
CN104269986A (zh) * 2014-10-13 2015-01-07 广东美芝制冷设备有限公司 永磁同步电机及具有其的压缩机
CN105958689A (zh) * 2016-06-08 2016-09-21 珠海格力节能环保制冷技术研究中心有限公司 铁心结构、转子组件及永磁电机
CN107819365A (zh) * 2016-09-13 2018-03-20 南京德朔实业有限公司 转子冲片

Also Published As

Publication number Publication date
CN114552824A (zh) 2022-05-27
CN114421673A (zh) 2022-04-29
CN112436624B (zh) 2022-02-11
US20220077735A1 (en) 2022-03-10
CN114498984B (zh) 2023-08-04
CN112436624A (zh) 2021-03-02
CN114498984A (zh) 2022-05-13
CN114421673B (zh) 2023-09-05
EP3944466A4 (en) 2022-05-18
CN114552824B (zh) 2023-11-10
JP2022531342A (ja) 2022-07-06
EP3944466A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2023284219A1 (zh) 一种车用永磁电机转子冲片及其斜极结构
KR20230079451A (ko) 고정자 라미네이션, 고정자 스틸 코어, 모터, 압축기 및 냉동 기기
CN213521426U (zh) 电机、压缩机和制冷设备
CN112564317B (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN110932422B (zh) 电机、压缩机及制冷设备
CN210431052U (zh) 转子、电机、压缩机及制冷设备
WO2017202319A1 (zh) 永磁同步电机和电动汽车
CN210120439U (zh) 电机、压缩机及制冷设备
CN110875679A (zh) 永磁同步电机和压缩机
CN112583143B (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
WO2021035877A1 (zh) 转子、电机、压缩机及制冷设备
CN215772705U (zh) 一种车用永磁电机转子冲片及其斜极结构
CN112564318B (zh) 定子冲片、定子铁芯、电机、压缩机和制冷设备
CN210167872U (zh) 转子、电机、压缩机及制冷设备
CN112003399A (zh) 转子、电机、压缩机及空调器、车辆
JP5679695B2 (ja) 永久磁石式回転電機
CN213521442U (zh) 转子、永磁同步电机、压缩机和制冷设备
US20220085708A1 (en) Motor, compressor, and refrigeration device
WO2017202317A1 (zh) 两对极电机和电动汽车
CN112436629B (zh) 转子、电机、压缩机及制冷设备
CN210111726U (zh) 转子、电机、压缩机及制冷设备
CN112467907A (zh) 转子、永磁同步电机、压缩机和制冷设备
CN112467897A (zh) 电机、压缩机和制冷设备
CN117767611A (zh) 转子冲片、转子、电机、压缩机、及制冷设备
CN118264004A (zh) 转子冲片、转子及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019943336

Country of ref document: EP

Effective date: 20211022

ENP Entry into the national phase

Ref document number: 2021564825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE