WO2021033824A1 - Test socket with replaceable portion - Google Patents

Test socket with replaceable portion Download PDF

Info

Publication number
WO2021033824A1
WO2021033824A1 PCT/KR2019/011908 KR2019011908W WO2021033824A1 WO 2021033824 A1 WO2021033824 A1 WO 2021033824A1 KR 2019011908 W KR2019011908 W KR 2019011908W WO 2021033824 A1 WO2021033824 A1 WO 2021033824A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
socket
socket module
insulating body
contact portion
Prior art date
Application number
PCT/KR2019/011908
Other languages
French (fr)
Korean (ko)
Inventor
문해중
이은주
정주연
김장중
Original Assignee
주식회사 이노글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노글로벌 filed Critical 주식회사 이노글로벌
Publication of WO2021033824A1 publication Critical patent/WO2021033824A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • the present invention relates to a test socket that can be partially replaced, and more particularly, it is possible to perform a stable test even at a low pressure in a repetitive test process, but only partially cover an upper area where there is a high risk of damage due to contact with an upper device such as a semiconductor device. It relates to a test socket that can be replaced.
  • a device such as a semiconductor device undergoes a manufacturing process and then performs an inspection to determine whether the electrical performance is defective.
  • the test of a semiconductor device is performed in a state in which a test socket (or a contactor or a connector) formed to be electrically contacted with a terminal of the semiconductor device is inserted between the semiconductor device and the test circuit board.
  • the test socket is used in the burn-in test process during the manufacturing process of the semiconductor device in addition to the final pass/fail inspection of the semiconductor device.
  • the proposed technology to meet the integration of such semiconductor devices is to form a perforated pattern in a vertical direction on a silicon body made of a silicon material made of elastic material, and then fill a conductive powder inside the perforated pattern to form a conductive pattern.
  • PCR socket type or rubber type, hereinafter the same is widely used.
  • a conventional semiconductor test apparatus 1 includes a support plate 30 and a PCR socket type test socket 10.
  • the support plate 30 supports the test socket 10 when the test socket 10 is positioned between the semiconductor element 3 and the inspection circuit board 5.
  • a main through-hole (not shown) for advancing and retreating guide is formed in the center of the support plate 30, and through-holes for coupling are formed to be spaced apart from each other along the edge forming the main through-hole.
  • the test socket 10 is fixed to the support plate 30 by a peripheral support portion 50 bonded to the upper and lower surfaces of the support plate 30.
  • a perforated pattern is formed on an insulating silicon body, and conductive patterns are formed in the vertical direction by conductive powder 11 filled in the perforated pattern.
  • the number of terminals of semiconductor devices that is, package balls
  • the number of terminals of semiconductor devices is gradually increasing, and as many as 20,000 pins are manufactured in one package.
  • the reason for this is to put several types of packages in one package and operate them as easily as one chip.
  • a test socket with 20,000 conductive patterns must be manufactured.
  • the semiconductor device needs a force to press the test socket. If the force that must be applied to one conductive pattern is 20g, it is arithmetically 200,000 In the test socket having a conductive pattern, a semiconductor device must press the test socket with a force of 400,000 g.
  • test socket manufacturers are continuing research to reduce the force of the test socket, but in the case of the existing test socket that uses silicon as the body, the conductive pattern is wrapped with silicon, There was a limit to reducing Force). This means that if the force of the body made of silicon is used as a weak material, the repulsive force or restoring force is weakened and the body is not restored when the body is pressed, which adversely affects the life of the test socket. Since the test socket must be pressed with a large force, there is a problem that the semiconductor device may be damaged.
  • test socket capable of reducing a force than a conventional test socket while manufacturing a PCR type test socket having a conductive pattern composed of a silicon body and a conductive powder.
  • the semiconductor element is pressed while contacting from the upper side, and the test is performed through electrical connection.
  • the test of a semiconductor device using a single test socket tens of thousands of tests are performed, and the upper side of the test socket is in contact with the semiconductor device tens of thousands of times, resulting in a relatively high probability of damage.
  • test socket If any one of the 20,000 conductive patterns constituting the test socket is damaged, the entire test socket must be replaced, and thus, a test socket having a short lifespan acts as a factor that increases the cost.
  • the present invention was conceived to solve the above problems, and it is possible to perform a stable test even at a low pressure in the repetitive test process, and partially cover only the upper region where there is a high risk of damage due to contact with the upper device such as a semiconductor device. Its purpose is to provide a test socket that can be replaced with a replaceable part.
  • the above object is, according to the present invention, in a test socket that can be partially replaced, a first insulating body made of an insulating material, and a plurality of first insulating bodies formed to be spaced apart from each other on the first insulating body to form a conductive line in the vertical direction, respectively.
  • first socket module including a conductive pattern, a second insulating body made of an insulating material, and a plurality of second conductive patterns each forming a conductive line in a vertical direction, and seated on an upper portion of the first socket module And a second socket module in which the first conductive pattern and the second conductive pattern are in contact with each other to be electrically connected to the first conductive pattern and the second conductive pattern;
  • Each of the first conductive patterns includes an upper contact portion protruding upward toward the second socket module to contact the second conductive pattern; It is achieved by a partially replaceable test socket, characterized in that it is formed in an empty space between the first insulating body and the second insulating body by the upper contact portion protruding upward toward the second socket module.
  • Each of the first conductive patterns further includes an inner conductive portion formed by curing a liquid material including conductive powder having conductivity in the first through hole;
  • the upper contact portion may be formed on the inner conductive portion to protrude upward toward the second socket module.
  • a diameter of the upper contact portion may be provided smaller than a diameter of the inner conductive portion, and the upper contact portion may be pushed into the inner conductive portion when pressed downward by the second socket module.
  • a lower contact portion formed under the inner conductive portion and protruding toward a lower portion of the first insulating body may be further included.
  • the diameter of the lower contact portion is provided smaller than the diameter of the inner conductive portion, and when the first socket module is pressed downward by the second socket module, the lower contact portion may be pushed into the inner conductive portion. .
  • the upper contact portion and the lower contact portion may be formed by curing a liquid material including conductive powder.
  • an elastic spring provided inside the first insulating body to surround the inner conductive portion may be further included.
  • a plurality of second through holes penetrating in the vertical direction may be formed in the second insulating body, and the second conductive patterns may be formed inside each of the second through holes.
  • the second socket module further includes a support ring interposed between the inner surface of each of the second through holes and the circumference of the second conductive pattern to support the second conductive pattern so as to be located inside the second through hole.
  • the support ring may be made of an insulating material having elasticity, and may elastically support movement of the second conductive pattern in a downward direction when the second conductive pattern is pressed downward.
  • the second insulating body is provided with an FR4 film or a PI film;
  • the second insulating body may have a thickness thinner than that of the first insulating body.
  • the first socket module further includes an upper insulating ring surrounding the outer circumferential surface of each of the upper contact parts, and surrounding the upper contact part so that the upper part of the upper contact part protrudes upward;
  • the upper insulating rings adjacent to each other may be spaced apart from each other to form a space therebetween.
  • the first socket module further includes a lower insulating ring surrounding the outer circumferential surface of each of the lower contact portions, and surrounding the lower contact portion so that the lower portion of the lower contact portion protrudes downward;
  • the lower insulating rings adjacent to each other may be spaced apart from each other to form a space therebetween.
  • an empty space is formed between the first socket module and the second socket module, so that the upper device such as a semiconductor device is lowered.
  • a test socket is provided to reduce the force that blocks it when pressed in the direction.
  • test socket can be separated into a first socket module and a second socket module, and only the second socket module on the upper side can be replaced with a relatively damaged possibility.
  • Partially replaceable test sockets are provided that can significantly reduce replacement costs due to damage.
  • FIG. 1 is a diagram showing a cross section of a conventional semiconductor test apparatus of a PCR socket type
  • FIG. 2 is a perspective view of a test socket according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2,
  • FIG. 4 is a cross-sectional view of a test socket according to a second embodiment of the present invention.
  • FIG. 5 is a view for explaining the operation process of the test socket according to the first embodiment of the present invention.
  • FIG. 6 is a view for explaining embodiments of the second socket module of the test socket according to an embodiment of the present invention.
  • FIG. 7 and 8 are views for explaining a method of manufacturing a test socket according to a first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a test socket according to a third embodiment of the present invention.
  • FIG. 10 is a view showing another example of the second socket module of the test socket according to an embodiment of the present invention.
  • the present invention relates to a test socket that can be partially replaced, and includes a first insulating body made of an insulating material, and a plurality of first conductive patterns formed to be spaced apart from each other on the first insulating body to form conductive lines in the vertical direction, respectively.
  • a first socket module that includes a first socket module, a second insulating body made of an insulating material, and a plurality of second conductive patterns each forming a conductive line in a vertical direction, and positions corresponding to each other when seated on an upper portion of the first socket module And a second socket module in which the first conductive pattern and the second conductive pattern are in contact with each other to electrically connect the first conductive pattern and the second conductive pattern;
  • Each of the first conductive patterns includes an upper contact portion protruding upward toward the second socket module to contact the second conductive pattern; It is characterized in that it is formed in an empty space between the first insulating body and the second insulating body by the upper contact portion protruding upward toward the second socket module.
  • test socket 100 is a perspective view of the test socket 100 according to the first embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
  • the test socket 100 according to the first embodiment of the present invention includes a first socket module 110 and a second socket module 130.
  • the first socket module 110 is disposed under the second socket module 130 and is electrically connected to the inspection circuit board side.
  • the first socket module 110 includes a first insulating body 111 and a plurality of first conductive patterns 112, 113, and 114.
  • the first insulating body 111 is made of an insulating material, and is made of a silicon material having elasticity.
  • the first insulating body 111 is formed with a plurality of first through holes 111a (see Fig. 7 (a)) penetrating in the vertical direction, and each of the first conductive patterns 112, 113 and 114 It is formed in the through hole 111a to form a plurality of conductive lines in the vertical direction.
  • Each of the first conductive patterns 112, 113, and 114 may include an upper contact part 113 and an inner conductive part 112. In addition, each of the first conductive patterns 112, 113, and 114 may further include a lower contact portion 114.
  • the upper contact portions 113 protrude upward toward the first socket module 110 and contact each of the second conductive patterns 132 to be described later of the first socket module 110.
  • the upper contact part 113 protrudes upward from the inner conductive part 112 and is in contact with the second conductive pattern 132, so that the second conductive pattern 132, the upper contact part 113, and the inner conductive part 112 is to form a conductive line in the vertical direction.
  • the inner conductive part 112 is formed in the first through hole 111a, and is formed by curing a liquid material including conductive powder having conductivity in the first through hole 111a. That is, when conductive powder and liquid silicon are mixed and injected into the first through hole 111a to cure it, the inner conductive portion 112 having conductivity can be formed.
  • the upper contact part 113 is also formed by curing a liquid material including a conductive powder having conductivity, for example, liquid silicon.
  • a liquid material including a conductive powder having conductivity for example, liquid silicon.
  • the composition of the conductive powder and liquid silicon for forming the inner conductive part 112 and the upper contact part 113 may be different from each other.
  • the upper contact part 113 may have a higher composition of the conductive powder so that the conductive powder is more densely disposed. In this case, the hardness of the upper contact part 113 is larger than that of the inner conductive part 112. do.
  • the diameter of the upper contact part 113 is provided smaller than the diameter of the inner conductive part 112.
  • the upper contact portion 113 which is smaller than 112 and having a hardness greater than that of the inner conductive portion 112, may have a shape that is pushed into the inner conductive portion 112, and a detailed description will be described later.
  • the lower contact portion 114 is formed under the inner conductive portion 112 and protrudes downward of the first insulating body 111. Like the upper contact part 113, it may be formed by curing a liquid material including a conductive powder having conductivity, for example, liquid silicone. In addition, the composition of the conductive powder and liquid silicon for forming the inner conductive part 112 and the lower contact part 114 may be different from each other. For example, the lower contact portion 114 may have a more dense composition of the conductive powder, so that the lower contact portion 114 has a hardness larger than that of the inner conductive portion 112. do.
  • the diameter of the lower contact portion 114 is provided smaller than the diameter of the inner conductive portion 112.
  • the diameter is smaller than the inner conductive portion 112, and the hardness is
  • the lower contact portion 114 that is larger than the inner conductive portion 112 may have a shape that is pushed into the inner conductive portion 112, and a detailed description will be provided later.
  • the second socket module 130 includes a second insulating body 131 and a plurality of second conductive patterns 132.
  • the second insulating body 131 is made of an insulating material, and in the present invention, it is assumed that it is made of an FR4 film or a PI film.
  • the thickness of the second insulating body 131 manufactured in the form of a film is provided to be thinner than that of the first insulating body 111, and the first insulating body 111 forms the entire structure of the test socket 100, and 2
  • the second socket module 130 including the insulating body 131 is mounted on the first socket module 110.
  • a plurality of second through holes 131a penetrated in the vertical direction are formed in the second insulating body 131, and the second conductive patterns 132 are formed in each of the second through holes 131a.
  • the second conductive pattern 132 is formed by curing a liquid material including a conductive powder having conductivity, for example, liquid silicon, and a method of manufacturing the second conductive pattern 132 will be described later.
  • the second socket module 130 may further include a support ring 133.
  • the support ring 133 is interposed between the inner surface of each second through hole 131a and the circumference of the second conductive pattern 132 so that the second conductive pattern 132 is inside the second through hole 131a. Supported to be positioned.
  • the support ring 133 is made of a material having elasticity, and in the present invention, it is assumed that liquid silicone is cured and formed. Through this, when the second conductive pattern 132 is pressed in the downward direction, the movement of the second conductive pattern 132 in the downward direction is elastically supported.
  • This support structure supports the second conductive pattern 132 in a structure similar to a trampoline.
  • FIG. 4 is a cross-sectional view of a test socket 100a according to a second embodiment of the present invention.
  • the test socket 100a according to the second embodiment shown in FIG. 4 corresponds to the configuration of the first embodiment, and further includes an elastic spring 115.
  • the elastic spring 115 is provided inside the first insulating body 111 to surround each inner conductive portion 112. In addition, the elastic spring 115 provides a restoring force in the upper direction when the second socket module 130 is pressed downward during the test process.
  • each terminal or ball of the semiconductor device moves each of the second conductive patterns 132 and the first conductive patterns 112, 113, and 114 downward.
  • the force acting in the upper direction decreases the force applied in the upper direction by the empty space between the first insulating body 111 and the second insulating body 131.
  • the semiconductor device is pressed with a relatively small force, so that damage to the semiconductor device or the test sockets 100 and 100a can be prevented.
  • the semiconductor device is pressed in the direction of the test sockets 100 and 100a with a greater force to compensate for the height deviation between the two edges.
  • the force applied to the upper direction of the test sockets 100 and 100a in the test process is reduced, the test is possible even if the semiconductor device is pressed with a relatively small force, so that damage to the semiconductor device can be prevented.
  • the elastic spring 115 compensates for the restoring force that may be lost due to the empty space. That is, the force acting in the upper direction does not have a large influence by the elastic modulus of the spring, but due to the characteristic of the elastic spring 115, the restoring force increases, thereby increasing the life of the test socket 100a according to the present invention. You can make it.
  • the second socket module 130 which is easily damaged by contact with the semiconductor element, is removed from the first socket module 110. Since it can be separated, it is possible to replace only the second socket module 130 when the second socket module 130 is damaged, thereby reducing the replacement cost according to the damage. Similarly, even when the first socket module 110 is damaged, only the first socket module 110 can be replaced, and thus test sockets 100 and 100a capable of partial replacement are provided.
  • FIG. 5 is a diagram for explaining an operation process of the test socket 100 according to the first embodiment of the present invention. Referring to FIG. 5, an operation process of the test socket 100 according to the first embodiment of the present invention will be described. As shown in FIG. 5A, when the semiconductor device descends, each of the semiconductor devices The ball comes into contact with the second conductive pattern 132.
  • FIG. 5 An example of the operation shown in FIG. 5 is shown on the assumption that the test socket 100 according to the present invention is pressed in an extremely downward direction, and is transformed into a shape as shown in FIG. 5 in all test processes. Does not mean.
  • the lower contact portion 114 is first pushed in and the upper contact portion 113 is pushed in later, the order is not limited thereto, and may be pushed together or in the opposite order.
  • each of the components constituting the test socket 100 according to the present invention elastically supports the pressure in the upward direction, the order of which is not limited to the above-described example, regardless of the order of the present invention. It is natural to be included in the technical matters.
  • FIG. 6B shows the second socket module 130a when the terminal of the semiconductor device is in the LGA (Land Grid Array) form instead of the BGA (Ball Grid Array) form shown in FIG. 6A.
  • 2 is a view showing an example in which the protruding contact portion 134 protruding from the upper surface of the conductive pattern 132 is formed.
  • test socket 100 According to the first embodiment of the present invention, a method of manufacturing the test socket 100 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 7 and 8.
  • FIG. 7 is a view for explaining a method of manufacturing the first socket module 110 of the test socket 100 according to the first embodiment of the present invention.
  • a first insulating body 111 in which a plurality of first through holes 111a are formed is provided.
  • the first through hole 111a may be formed through a laser.
  • first mold rods (not shown, hereinafter the same) are injected into a first mold (not shown, hereinafter the same) that protrudes upward and then cured, thereby forming a first through hole 111a.
  • Insulation body 111 can be manufactured.
  • silicone is injected and then cured, each of the first through holes 111a ) It is possible to manufacture the first insulating body 111 in which the elastic spring 115 is disposed around.
  • liquid silicon including conductive powder is injected into each of the first through holes 111a and then cured.
  • the inner conductive portion 112 is formed in the first insulating body 111.
  • a first mold sheet having a first mold hole 310a having an inner diameter smaller than that of the first through hole 111a is formed on the first insulating body 111 ( After mounting 310), when liquid silicon including conductive powder is injected into each of the first mold holes 310a and then cured, the upper contact part 113 is formed on the inner conductive part 112. In this case, when the lower contact portion 114 is formed in the same manner, the first socket module 110 as shown in FIG. 7D can be manufactured.
  • a second insulating body 131 having a plurality of second through holes 131a formed thereon is formed with a second mold rod ( The second mold 321 is mounted on the formed second mold 320. At this time, each second mold rod 321 is inserted into the second through hole 131a, and as shown in Fig. 8A, the diameter of the second mold rod 321 is the second through hole A space is formed between the second mold rod 321 and the second through hole 131a by providing smaller than the inner diameter of (131a).
  • test socket 100b is a cross-sectional view of a test socket 100b according to a third embodiment of the present invention.
  • the test socket 100b according to the third embodiment shown in FIG. 9 is a modified example of the test socket 100 according to the first embodiment, and further includes an upper insulating ring 116.
  • the upper insulating ring 116 is formed to surround the outer circumferential surface of each of the upper contact parts 113, and surrounds the outside of the upper contact part 113 so that the upper part of the upper contact part 113 protrudes upward.
  • the upper insulating rings 116 adjacent to each other are spaced apart from each other to form a space therebetween, as shown in FIG. 9, thereby providing the same effect as in the first embodiment, and the adjacent upper contact portions 113 It is possible to prevent a short that may occur between the liver.
  • the test socket 100b may further include a lower insulating ring 117.
  • the lower insulating ring 117 is formed to surround the outer circumferential surface of each of the lower contact portions 114, and surround the outside of the lower contact portion 114 so that the lower portion of the lower contact portion 114 protrudes downward.
  • the lower insulating rings 117 adjacent to each other are spaced apart from each other to form a space therebetween, as shown in FIG. 9, thereby providing the same effect as in the first embodiment, and the adjacent lower contact portions 114 It is possible to prevent a short that may occur between the liver.
  • the upper insulating ring 116 and the lower insulating ring 117 are formed with the upper contact part 113 and the lower contact part 114 as shown in (c) and (d) of FIG. 7. 113) and a mold sheet (not shown) having a mold hole (not shown) having an inner diameter larger than the diameter of the lower contact portion 114 to be manufactured through the method shown in FIGS. 8A and 8B. I can.
  • FIG. 10 is a diagram showing another example of the second socket module 130b of the test socket 100 according to an embodiment of the present invention.
  • a plurality of operation holes 135 vertically penetrating between the second conductive patterns 132 are formed in the second insulating sheet of the second socket module 130b.
  • the plurality of operation holes 135 may be formed randomly in the second insulating sheet or may be formed with a certain rule.
  • the plurality of operation holes 135 are formed between the second conductive patterns 132, so that the second conductive patterns 132 of the second insulating body 131 can independently move in the vertical direction.
  • each of the second conductive patterns 132 can independently and stably contact the first conductive patterns 112, 113, and 114.
  • first socket module 111 first insulating body
  • first through hole 112 inner conductive part
  • protruding contact part 135 operation hole
  • first mold sheet 310a first mold hole
  • the present invention is disposed between an electronic component such as a semiconductor device and an inspection circuit board and applied to electrically connect it.

Abstract

The present invention relates to a test socket with a replaceable portion, comprising: a first socket module comprising a first insulating main body made of an insulation material, and a plurality of first conductive patterns formed to be spaced apart from each other on the first insulating main body so as to form a conductive line in the vertical direction; and a second socket module comprising a second insulating main body made of an insulation material, and a plurality of second conductive patterns forming a conductive line in the vertical direction, wherein, when the second socket module is mounted on the first socket module, the first conductive patterns and the second conductive patterns at mutually corresponding locations make contact so that the first conductive patterns are electrically connected to the second conductive patterns, each of the first conductive patterns comprises an upper contact part protruding upward toward the second socket module so as to make contact with the second conductive pattern, and an empty space is formed between the first insulating main body and the second insulating main body by means of the upper contact part protruding upward toward the second socket module. Therefore, while providing a PCR-type test socket capable of implementing a fine pitch, an empty space is formed between the first socket module and the second socket module so that, when an upper device such as a semiconductor device is pushed downward, force for stopping same can be reduced.

Description

부분 교체가 가능한 테스트 소켓Partly replaceable test socket
본 발명은 부분 교체가 가능한 테스트 소켓에 관한 것으로서, 보다 상세하게는 반복적인 테스트 과정에서 적은 압력에서도 안정적인 테스트가 가능하면서도, 반도체 소자와 같은 상부 디바이스와 접촉으로 인한 파손 우려가 많은 상부 영역 만을 부분적으로 교체할 수 있는 부분 교체가 가능한 테스트 소켓에 관한 것이다.The present invention relates to a test socket that can be partially replaced, and more particularly, it is possible to perform a stable test even at a low pressure in a repetitive test process, but only partially cover an upper area where there is a high risk of damage due to contact with an upper device such as a semiconductor device. It relates to a test socket that can be replaced.
반도체 소자와 같은 디바이스(이하, '반도체 소자'라 함)는 제조 과정을 거친 후 전기적 성능의 불량 여부를 판단하기 위한 검사를 수행하게 된다. 반도체 소자의 양불 검사는 반도체 소자의 단자와 전기적으로 접촉될 수 있도록 형성된 테스트 소켓(또는 콘텍터 또는 커넥터)을 반도체 소자와 검사회로기판 사이에 삽입한 상태에서 검사가 수행된다. 그리고, 테스트 소켓은 반도체 소자의 최종 양불 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.A device such as a semiconductor device (hereinafter referred to as a'semiconductor device') undergoes a manufacturing process and then performs an inspection to determine whether the electrical performance is defective. The test of a semiconductor device is performed in a state in which a test socket (or a contactor or a connector) formed to be electrically contacted with a terminal of the semiconductor device is inserted between the semiconductor device and the test circuit board. In addition, the test socket is used in the burn-in test process during the manufacturing process of the semiconductor device in addition to the final pass/fail inspection of the semiconductor device.
반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 피치도 미세화되는 추세이고, 그에 따라 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다. 따라서, 기존의 포고-핀(Pogo-pin) 타입의 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하기 위한 테스트 소켓을 제작하는데 한계가 있었다.According to the development and miniaturization of semiconductor device integration technology, the size and pitch of the terminals of semiconductor devices, that is, leads, are also being reduced, and accordingly, a method of forming minute gaps between conductive patterns of test sockets is required. Therefore, there is a limitation in manufacturing a test socket for testing integrated semiconductor devices with the existing Pogo-pin type test socket.
이와 같은 반도체 소자의 집적화에 부합하도록 제안된 기술이, 탄성 재질의 실리콘 소재로 제작되는 실리콘 본체 상에 수직 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 분말을 충진하여 도전 패턴을 형성하는 PCR 소켓 타입(또는 러버 타입, 이하 동일)이 널리 사용되고 있다.The proposed technology to meet the integration of such semiconductor devices is to form a perforated pattern in a vertical direction on a silicon body made of a silicon material made of elastic material, and then fill a conductive powder inside the perforated pattern to form a conductive pattern. PCR socket type (or rubber type, hereinafter the same) is widely used.
도 1은 PCR 소켓 타입의 종래의 반도체 테스트 장치(1)의 단면을 도시한 도면이다. 도 1을 참조하여 설명하면, 종래의 반도체 테스트 장치(1)는 지지 플레이트(30) 및 PCR 소켓 타입의 테스트 소켓(10)을 포함한다.1 is a diagram showing a cross section of a conventional semiconductor test apparatus 1 of a PCR socket type. Referring to FIG. 1, a conventional semiconductor test apparatus 1 includes a support plate 30 and a PCR socket type test socket 10.
지지 플레이트(30)는 테스트 소켓(10)이 반도체 소자(3) 및 검사회로기판(5) 사이에서 위치할 때 테스트 소켓(10)을 지지한다. 여기서, 지지 플레이트(30)의 중앙에는 진퇴 가이드용 메인 관통홀(미도시)이 형성되어 있고, 메인 관통홀을 형성하는 가장자리를 따라 가장자리로부터 이격되는 위치에 결합용 관통홀이 상호 이격되게 형성된다. 그리고, 테스트 소켓(10)은 지지 플레이트(30)의 상면 및 하면에 접합되는 주변 지지부(50)에 의해 지지 플레이트(30)에 고정된다.The support plate 30 supports the test socket 10 when the test socket 10 is positioned between the semiconductor element 3 and the inspection circuit board 5. Here, a main through-hole (not shown) for advancing and retreating guide is formed in the center of the support plate 30, and through-holes for coupling are formed to be spaced apart from each other along the edge forming the main through-hole. . In addition, the test socket 10 is fixed to the support plate 30 by a peripheral support portion 50 bonded to the upper and lower surfaces of the support plate 30.
PCR 소켓 타입의 테스트 소켓(10)은 절연성의 실리콘 본체에 타공 패턴이 형성되고, 해당 타공 패턴 내에 충진되는 도전성 파우더(11)에 의해 상하 방향으로 도전 패턴들이 형성된다.In the PCR socket type test socket 10, a perforated pattern is formed on an insulating silicon body, and conductive patterns are formed in the vertical direction by conductive powder 11 filled in the perforated pattern.
한편, 반도체 소자의 단자, 즉 패키지 볼의 수가 점점 증가하여 많게는 한 패키지에 2만 핀까지 제조되고 있다. 이러한 이유는 한 패키지 내에 여러 종류의 패키지를 넣고 하나의 칩과 같이 간편하게 동작시키기 위해서이다. 이와 같은 패키지를 테스트하기 위해서는 2만개의 도전 패턴이 있는 테스트 소켓이 제작되어야 한다.Meanwhile, the number of terminals of semiconductor devices, that is, package balls, is gradually increasing, and as many as 20,000 pins are manufactured in one package. The reason for this is to put several types of packages in one package and operate them as easily as one chip. To test such a package, a test socket with 20,000 conductive patterns must be manufactured.
그런데, 2만개의 도전 패턴을 가지는 테스트 소켓을 이용하여 반도체 소자를 테스트하는 과정에서는 반도체 소자가 테스트 소켓을 가압하는 힘이 필요한데, 하나의 도전 패턴에 가해져야하는 힘이 20g이면 산술적으로 20만개의 도전 패턴을 갖는 테스트 소켓에는 40만g의 힘으로 반도체 소자가 테스트 소켓을 가압하여야 한다.However, in the process of testing a semiconductor device using a test socket having 20,000 conductive patterns, the semiconductor device needs a force to press the test socket. If the force that must be applied to one conductive pattern is 20g, it is arithmetically 200,000 In the test socket having a conductive pattern, a semiconductor device must press the test socket with a force of 400,000 g.
상기와 같은 상황으로 인해, 테스트 소켓의 제조사에서는 테스트 소켓의 포스(Force)을 줄이기 위한 연구가 지속되고 있으나, 실리콘 재질을 본체로 사용하는 기존의 테스트 소켓의 경우 도전 패턴을 실리콘이 감싸고 있어 포스(Force)을 줄이는데 한계가 있었다. 이는 실리콘 재질의 본체의 포스(Force)을 약한 재질로 사용하게 되면 반발력이나 복원력이 약해져 본체가 눌린 상태에서 복원되지 않아 테스트 소켓의 수명에 악영향을 미치게 되고, 반대로 포스(Force)를 강하게 하면 반도체 소자가 큰 힘으로 테스트 소켓을 눌려야 하기 때문에 자칫 반도체 소자의 손상이 발생할 수 있는 문제점이 있다.Due to the above circumstances, test socket manufacturers are continuing research to reduce the force of the test socket, but in the case of the existing test socket that uses silicon as the body, the conductive pattern is wrapped with silicon, There was a limit to reducing Force). This means that if the force of the body made of silicon is used as a weak material, the repulsive force or restoring force is weakened and the body is not restored when the body is pressed, which adversely affects the life of the test socket. Since the test socket must be pressed with a large force, there is a problem that the semiconductor device may be damaged.
따라서, 실리콘 본체와 도전성 파우더로 구성된 도전 패턴을 갖는 PCR 타입의 테스트 소켓을 제조하면서도 기존의 테스트 소켓보다 포스(Force)를 줄일 수 있는 테스트 소켓의 수요가 요구되고 있는 실정이다.Accordingly, there is a demand for a test socket capable of reducing a force than a conventional test socket while manufacturing a PCR type test socket having a conductive pattern composed of a silicon body and a conductive powder.
한편, 테스트 소켓은 그 하부가 검사회로기판 측에 고정된 상태에서, 반도체 소자가 상부 측에서 접촉되면서 가압되어 전기적인 연결을 통해 테스트가 수행된다. 하나의 테스트 소켓을 이용한 반도체 소자의 테스트의 경우 수 만회의 테스트를 거치게 되는데, 테스트 소켓의 상부 측은 반도체 소자와의 수 만회의 접촉이 이루어져 상대적으로 손상이 발생할 확률이 높다.Meanwhile, in a state in which the lower portion of the test socket is fixed to the inspection circuit board, the semiconductor element is pressed while contacting from the upper side, and the test is performed through electrical connection. In the case of a test of a semiconductor device using a single test socket, tens of thousands of tests are performed, and the upper side of the test socket is in contact with the semiconductor device tens of thousands of times, resulting in a relatively high probability of damage.
테스트 소켓을 구성하는 2만개의 도전 패턴 중 어느 하나라도 손상되는 경우, 테스트 소켓 전체를 교체하여야 하므로, 수명이 짧은 테스트 소켓의 경우 비용을 증가시키는 요인으로 작용하게 된다.If any one of the 20,000 conductive patterns constituting the test socket is damaged, the entire test socket must be replaced, and thus, a test socket having a short lifespan acts as a factor that increases the cost.
이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 반복적인 테스트 과정에서 적은 압력에서도 안정적인 테스트가 가능하면서도, 반도체 소자와 같은 상부 디바이스와 접촉으로 인한 파손 우려가 많은 상부 영역 만을 부분적으로 교체할 수 있는 부분 교체가 가능한 테스트 소켓을 제공하는데 그 목적이 있다.Accordingly, the present invention was conceived to solve the above problems, and it is possible to perform a stable test even at a low pressure in the repetitive test process, and partially cover only the upper region where there is a high risk of damage due to contact with the upper device such as a semiconductor device. Its purpose is to provide a test socket that can be replaced with a replaceable part.
상기 목적은 본 발명에 따라, 부분 교체가 가능한 테스트 소켓에 있어서, 절연성 재질의 제1 절연 본체와, 상기 제1 절연 본체에 상호 이격되게 형성되어 각각 상하 방향으로 도전 라인을 형성하는 복수의 제1 도전 패턴을 포함하는 제1 소켓 모듈과, 절연성 재질의 제2 절연 본체와, 각각 상하 방향으로 도전 라인을 형성하는 복수의 제2 도전 패턴을 포함하고, 상기 제1 소켓 모듈의 상부에 안착될 때 상호 대응하는 위치의 상기 제1 도전 패턴과 상기 제2 도전 패턴이 접촉되어 상기 제1 도전 패턴과 상기 제2 도전 패턴이 전기적으로 연결되는 제2 소켓 모듈을 포함하고; 각각의 상기 제1 도전 패턴은 상기 제2 소켓 모듈을 향해 상향 돌출되어 상기 제2 도전 패턴과 접촉되는 상부 접촉부를 포함하며; 상기 제2 소켓 모듈을 향해 상향 돌출된 상기 상부 접촉부에 의해 상기 제1 절연 본체와 상기 제2 절연 본체 사이에 빈 공간에 형성되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓에 의해서 달성된다.The above object is, according to the present invention, in a test socket that can be partially replaced, a first insulating body made of an insulating material, and a plurality of first insulating bodies formed to be spaced apart from each other on the first insulating body to form a conductive line in the vertical direction, respectively. When a first socket module including a conductive pattern, a second insulating body made of an insulating material, and a plurality of second conductive patterns each forming a conductive line in a vertical direction, and seated on an upper portion of the first socket module And a second socket module in which the first conductive pattern and the second conductive pattern are in contact with each other to be electrically connected to the first conductive pattern and the second conductive pattern; Each of the first conductive patterns includes an upper contact portion protruding upward toward the second socket module to contact the second conductive pattern; It is achieved by a partially replaceable test socket, characterized in that it is formed in an empty space between the first insulating body and the second insulating body by the upper contact portion protruding upward toward the second socket module.
여기서, 상기 제1 절연 본체에는 상하 방향으로 관통된 복수의 제1 관통홀이 형성되고; 각각의 상기 제1 도전 패턴은 상기 제1 관통홀 내부에 도전성을 갖는 도전성 파우더를 포함하는 액상 재질이 경화되어 형성된 내측 도전부를 더 포함하며; 상기 상부 접촉부는 상기 내측 도전부의 상부에 형성되어 상기 제2 소켓 모듈을 향해 상향 돌출될 수 있다.Here, a plurality of first through holes penetrating in the vertical direction are formed in the first insulating body; Each of the first conductive patterns further includes an inner conductive portion formed by curing a liquid material including conductive powder having conductivity in the first through hole; The upper contact portion may be formed on the inner conductive portion to protrude upward toward the second socket module.
또한, 상기 상부 접촉부의 직경은 상기 내측 도전부의 직경보다 작게 마련되어, 상기 제2 소켓 모듈에 의해 하부 방향으로 가압될 때 상기 상부 접촉부가 상기 내측 도전부 내부로 밀려 들어갈 수 있다.In addition, a diameter of the upper contact portion may be provided smaller than a diameter of the inner conductive portion, and the upper contact portion may be pushed into the inner conductive portion when pressed downward by the second socket module.
그리고, 상기 내측 도전부의 하부에 형성되어 상기 제1 절연 본체 하부 방향으로 돌출되는 하부 접촉부를 더 포함할 수 있다.Further, a lower contact portion formed under the inner conductive portion and protruding toward a lower portion of the first insulating body may be further included.
그리고, 상기 하부 접촉부의 직경은 상기 내측 도전부의 직경보다 작게 마련되어, 상기 제2 소켓 모듈에 의해 상기 제1 소켓 모듈이 하부 방향으로 가압될 때 상기 하부 접촉부가 상기 내측 도전부 내부로 밀려 들어갈 수 있다.Further, the diameter of the lower contact portion is provided smaller than the diameter of the inner conductive portion, and when the first socket module is pressed downward by the second socket module, the lower contact portion may be pushed into the inner conductive portion. .
그리고, 상기 상부 접촉부 및 상기 하부 접촉부는 도전성 파우더를 포함하는 액상 재질이 경화되어 형성될 수 있다.In addition, the upper contact portion and the lower contact portion may be formed by curing a liquid material including conductive powder.
그리고, 상기 내측 도전부를 감싸도록 상기 제1 절연 본체의 내부에 마련되는 탄성 스프링을 더 포함할 수 있다.In addition, an elastic spring provided inside the first insulating body to surround the inner conductive portion may be further included.
그리고, 상기 제2 절연 본체에는 상하 방향으로 관통된 복수의 제2 관통홀이 형성되고, 상기 제2 도전 패턴은 각각의 상기 제2 관통홀 내부에 형성될 수 있다.In addition, a plurality of second through holes penetrating in the vertical direction may be formed in the second insulating body, and the second conductive patterns may be formed inside each of the second through holes.
그리고, 상기 제2 소켓 모듈은 각각의 상기 제2 관통홀의 내측 표면과 상기 제2 도전 패턴의 둘레 사이에 개제되어 상기 제2 도전 패턴이 상기 제2 관통홀의 내부에 위치하도록 지지하는 지지링을 더 포함하며; 상기 지지링은 탄성을 갖는 절연성 재질로 마련되어, 상기 제2 도전 패턴이 하부 방향으로 가압될 때 상기 제2 도전 패턴의 하부 방향으로의 이동을 탄성적으로 지지할 수 있다.Further, the second socket module further includes a support ring interposed between the inner surface of each of the second through holes and the circumference of the second conductive pattern to support the second conductive pattern so as to be located inside the second through hole. Includes; The support ring may be made of an insulating material having elasticity, and may elastically support movement of the second conductive pattern in a downward direction when the second conductive pattern is pressed downward.
그리고, 상기 제2 절연 본체는 FR4 필름 또는 PI 필름으로 마련되며; 상기 제2 절연 본체의 두께는 상기 제1 절연 본체의 두께보다 얇게 마련될 수 있다.In addition, the second insulating body is provided with an FR4 film or a PI film; The second insulating body may have a thickness thinner than that of the first insulating body.
또한, 상기 제1 소켓 모듈은 각각의 상기 상부 접촉부의 외주면을 감싸되, 상기 상부 접촉부의 상부가 상부 방향으로 돌출되도록 상기 상부 접촉부를 감싸는 상부 절연링을 더 포함하며; 상호 인접한 상기 상부 절연링은 상호 이격되어 사이에 공간이 형성될 수 있다.In addition, the first socket module further includes an upper insulating ring surrounding the outer circumferential surface of each of the upper contact parts, and surrounding the upper contact part so that the upper part of the upper contact part protrudes upward; The upper insulating rings adjacent to each other may be spaced apart from each other to form a space therebetween.
그리고, 상기 제1 소켓 모듈은 각각의 상기 하부 접촉부의 외주면을 감싸되, 상기 하부 접촉부의 하부가 하부 방향으로 돌출되도록 상기 하부 접촉부를 감싸는 하부 절연링을 더 포함하며; 상호 인접한 상기 하부 절연링은 상호 이격되어 사이에 공간이 형성될 수 있다.In addition, the first socket module further includes a lower insulating ring surrounding the outer circumferential surface of each of the lower contact portions, and surrounding the lower contact portion so that the lower portion of the lower contact portion protrudes downward; The lower insulating rings adjacent to each other may be spaced apart from each other to form a space therebetween.
상기와 같은 구성에 따라 본 발명에 따르면, 미세피치의 구현이 가능한 PCR 타입의 테스트 소켓을 제공하면서도 제1 소켓 모듈과 제2 소켓 모듈의 사이에 빈 공간이 형성되어 반도체 소자와 같은 상부 디바이스가 하부 방향으로 누를 때 이를 저지하는 포스(Force)를 줄일 수 있는 테스트 소켓이 제공된다.According to the above configuration, according to the present invention, while providing a PCR-type test socket capable of implementing a fine pitch, an empty space is formed between the first socket module and the second socket module, so that the upper device such as a semiconductor device is lowered. A test socket is provided to reduce the force that blocks it when pressed in the direction.
또한, 본 발명에 따르면, 테스트 소켓이 제1 소켓 모듈과 제2 소켓 모듈로 분리 가능하고, 상대적으로 손상 가능성이 상부 측의 제2 소켓 모듈 만의 교체가 가능하도록 함으로써, 반도체 소자와의 접촉 부위의 손상으로 인한 교체 비용을 현저하게 줄일 수 있는 부분 교체가 가능한 테스트 소켓이 제공된다.In addition, according to the present invention, the test socket can be separated into a first socket module and a second socket module, and only the second socket module on the upper side can be replaced with a relatively damaged possibility. Partially replaceable test sockets are provided that can significantly reduce replacement costs due to damage.
도 1은 PCR 소켓 타입의 종래의 반도체 테스트 장치의 단면을 도시한 도면이고,1 is a diagram showing a cross section of a conventional semiconductor test apparatus of a PCR socket type,
도 2는 본 발명의 제1 실시예에 따른 테스트 소켓의 사시도이고,2 is a perspective view of a test socket according to a first embodiment of the present invention,
도 3은 도 2의 Ⅲ-Ⅲ 선에 따른 단면도이고,3 is a cross-sectional view taken along line III-III of FIG. 2,
도 4는 본 발명의 제2 실시예에 따른 테스트 소켓의 단면도이고,4 is a cross-sectional view of a test socket according to a second embodiment of the present invention,
도 5는 본 발명의 제1 실시예에 따른 테스트 소켓의 동작 과정을 설명하기 위한 도면이고,5 is a view for explaining the operation process of the test socket according to the first embodiment of the present invention,
도 6은 본 발명의 실시예에 따른 테스트 소켓의 제2 소켓 모듈의 실시예들을 설명하기 위한 도면이고,6 is a view for explaining embodiments of the second socket module of the test socket according to an embodiment of the present invention,
도 7 및 도 8은 본 발명의 제1 실시예에 따른 테스트 소켓의 제조방법을 설명하기 위한 도면이고,7 and 8 are views for explaining a method of manufacturing a test socket according to a first embodiment of the present invention,
도 9는 본 발명의 제3 실시예에 따른 테스트 소켓의 단면도이고,9 is a cross-sectional view of a test socket according to a third embodiment of the present invention,
도 10은 본 발명의 실시예에 따른 테스트 소켓의 제2 소켓 모듈의 다른 예를 나타낸 도면이다.10 is a view showing another example of the second socket module of the test socket according to an embodiment of the present invention.
본 발명은 부분 교체가 가능한 테스트 소켓에 관한 것으로, 절연성 재질의 제1 절연 본체와, 상기 제1 절연 본체에 상호 이격되게 형성되어 각각 상하 방향으로 도전 라인을 형성하는 복수의 제1 도전 패턴을 포함하는 제1 소켓 모듈과, 절연성 재질의 제2 절연 본체와, 각각 상하 방향으로 도전 라인을 형성하는 복수의 제2 도전 패턴을 포함하고, 상기 제1 소켓 모듈의 상부에 안착될 때 상호 대응하는 위치의 상기 제1 도전 패턴과 상기 제2 도전 패턴이 접촉되어 상기 제1 도전 패턴과 상기 제2 도전 패턴이 전기적으로 연결되는 제2 소켓 모듈을 포함하고; 각각의 상기 제1 도전 패턴은 상기 제2 소켓 모듈을 향해 상향 돌출되어 상기 제2 도전 패턴과 접촉되는 상부 접촉부를 포함하며; 상기 제2 소켓 모듈을 향해 상향 돌출된 상기 상부 접촉부에 의해 상기 제1 절연 본체와 상기 제2 절연 본체 사이에 빈 공간에 형성되는 것을 특징으로 한다. The present invention relates to a test socket that can be partially replaced, and includes a first insulating body made of an insulating material, and a plurality of first conductive patterns formed to be spaced apart from each other on the first insulating body to form conductive lines in the vertical direction, respectively. A first socket module that includes a first socket module, a second insulating body made of an insulating material, and a plurality of second conductive patterns each forming a conductive line in a vertical direction, and positions corresponding to each other when seated on an upper portion of the first socket module And a second socket module in which the first conductive pattern and the second conductive pattern are in contact with each other to electrically connect the first conductive pattern and the second conductive pattern; Each of the first conductive patterns includes an upper contact portion protruding upward toward the second socket module to contact the second conductive pattern; It is characterized in that it is formed in an empty space between the first insulating body and the second insulating body by the upper contact portion protruding upward toward the second socket module.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 제1 실시예에 따른 테스트 소켓(100)의 사시도이고, 도 3은 도 2의 Ⅲ-Ⅲ 선에 따른 단면도이다. 도 2 및 도 3을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 테스트 소켓(100)은 제1 소켓 모듈(110)과 제2 소켓 모듈(130)을 포함한다.2 is a perspective view of the test socket 100 according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2. 2 and 3, the test socket 100 according to the first embodiment of the present invention includes a first socket module 110 and a second socket module 130.
제1 소켓 모듈(110)은 제2 소켓 모듈(130)의 하부에 배치된 상태로, 검사회로기판 측과 전기적으로 연결된다. 여기서, 제1 소켓 모듈(110)은 제1 절연 본체(111) 및 복수의 제1 도전 패턴(112,113,114)을 포함한다.The first socket module 110 is disposed under the second socket module 130 and is electrically connected to the inspection circuit board side. Here, the first socket module 110 includes a first insulating body 111 and a plurality of first conductive patterns 112, 113, and 114.
제1 절연 본체(111)는 절연성 재질로 마련되는데, 탄성을 갖는 실리콘 재질로 마련되는 것을 예로 한다. 여기서, 제1 절연 본체(111)에는 상하 방향으로 관통된 복수의 제1 관통홀(111a, 도 7의 (a) 참조)이 형성되는데, 각각의 제1 도전 패턴(112,113,114)은 각각의 제1 관통홀(111a)에 형성되어 상하 방향으로 복수의 도전 라인을 형성한다.The first insulating body 111 is made of an insulating material, and is made of a silicon material having elasticity. Here, the first insulating body 111 is formed with a plurality of first through holes 111a (see Fig. 7 (a)) penetrating in the vertical direction, and each of the first conductive patterns 112, 113 and 114 It is formed in the through hole 111a to form a plurality of conductive lines in the vertical direction.
각각의 제1 도전 패턴(112,113,114)은 상부 접촉부(113)와 내측 도전부(112)를 포함할 수 있다. 또한, 각각의 제1 도전 패턴(112,113,114)은 하부 접촉부(114)를 더 포함할 수 있다.Each of the first conductive patterns 112, 113, and 114 may include an upper contact part 113 and an inner conductive part 112. In addition, each of the first conductive patterns 112, 113, and 114 may further include a lower contact portion 114.
상부 접촉부(113)는 제1 소켓 모듈(110)을 향해 상향 돌출되어 제1 소켓 모듈(110)의 후술할 제2 도전 패턴(132)에 각각 접촉된다. 본 발명에서는 상부 접촉부(113)가 내측 도전부(112)로부터 상향 돌출된 상태를 가지며 제2 도전 패턴(132)과 접촉됨으로써, 제2 도전 패턴(132), 상부 접촉부(113) 및 내측 도전부(112)가 상하 방향으로 도전 라인을 형성하게 된다.The upper contact portions 113 protrude upward toward the first socket module 110 and contact each of the second conductive patterns 132 to be described later of the first socket module 110. In the present invention, the upper contact part 113 protrudes upward from the inner conductive part 112 and is in contact with the second conductive pattern 132, so that the second conductive pattern 132, the upper contact part 113, and the inner conductive part 112 is to form a conductive line in the vertical direction.
내측 도전부(112)는 제1 관통홀(111a) 내부에 형성되는데, 제1 관통홀(111a) 내부에 도전성을 갖는 도전성 파우더를 포함하는 액상 재질이 경화되어 형성된다. 즉, 도전성 파우도와 액상의 실리콘을 혼합한 후 제1 관통홀(111a)에 주입하여 이를 경화시키게 되면 도전성을 갖는 내측 도전부(112)가 형성 가능하게 된다.The inner conductive part 112 is formed in the first through hole 111a, and is formed by curing a liquid material including conductive powder having conductivity in the first through hole 111a. That is, when conductive powder and liquid silicon are mixed and injected into the first through hole 111a to cure it, the inner conductive portion 112 having conductivity can be formed.
본 발명에서는 상부 접촉부(113) 또한 도전성을 갖는 도전성 파우더를 포함하는 액상 재질, 예컨대, 액상의 실리콘을 경화시켜 형성하는 것을 예로 한다. 이 때, 내측 도전부(112)와 상부 접촉부(113)를 형성하기 위한 도전성 파우더와 액상 실리콘의 조성은 서로 상이하게 할 수 있다. 예를 들어 상부 접촉부(113)는 도전성 파우더의 조성을 더 많이 하여 도전성 파우더가 좀 더 조밀하게 배치되도록 할 수 있는데, 이 경우 상부 접촉부(113)의 경도가 내측 도전부(112)보다 크기 형성 가능하게 된다.In the present invention, the upper contact part 113 is also formed by curing a liquid material including a conductive powder having conductivity, for example, liquid silicon. In this case, the composition of the conductive powder and liquid silicon for forming the inner conductive part 112 and the upper contact part 113 may be different from each other. For example, the upper contact part 113 may have a higher composition of the conductive powder so that the conductive powder is more densely disposed. In this case, the hardness of the upper contact part 113 is larger than that of the inner conductive part 112. do.
또한, 상부 접촉부(113)의 직경이 내측 도전부(112)의 직경보다 작게 마련되는데, 제2 소켓 모듈(130)에 의해 하부 방향으로 상부 접촉부(113)가 가압되면, 직경이 내측 도전부(112)보다 작고, 경도가 내측 도전부(112)보다 큰 상부 접촉부(113)가 내측 도전부(112) 내부로 밀려 들어가는 형태를 가질 수 있는 바, 상세한 설명은 후술한다.In addition, the diameter of the upper contact part 113 is provided smaller than the diameter of the inner conductive part 112. When the upper contact part 113 is pressed in the lower direction by the second socket module 130, the diameter of the inner conductive part ( The upper contact portion 113, which is smaller than 112) and having a hardness greater than that of the inner conductive portion 112, may have a shape that is pushed into the inner conductive portion 112, and a detailed description will be described later.
한편, 하부 접촉부(114)는 내측 도전부(112)의 하부에 형성되어 제1 절연 본체(111)의 하부 방향으로 돌출된다. 상부 접촉부(113)와 마찬가지로, 도전성을 갖는 도전성 파우더를 포함하는 액상 재질, 예컨대, 액상의 실리콘을 경화시켜 형성될 수 있다. 그리고, 내측 도전부(112)와 하부 접촉부(114)를 형성하기 위한 도전성 파우더와 액상 실리콘의 조성은 서로 상이하게 할 수 있다. 예를 들어 하부 접촉부(114)는 도전성 파우더의 조성을 더 많이 하여 도전성 파우더가 좀 더 조밀하게 배치되도록 할 수 있는데, 이 경우 하부 접촉부(114)의 경도가 내측 도전부(112)보다 크기 형성 가능하게 된다.Meanwhile, the lower contact portion 114 is formed under the inner conductive portion 112 and protrudes downward of the first insulating body 111. Like the upper contact part 113, it may be formed by curing a liquid material including a conductive powder having conductivity, for example, liquid silicone. In addition, the composition of the conductive powder and liquid silicon for forming the inner conductive part 112 and the lower contact part 114 may be different from each other. For example, the lower contact portion 114 may have a more dense composition of the conductive powder, so that the lower contact portion 114 has a hardness larger than that of the inner conductive portion 112. do.
또한, 하부 접촉부(114)의 직경이 내측 도전부(112)의 직경보다 작게 마련되는데, 제1 도전 패턴(112,113,114)이 하부 방향으로 가압될 때 직경이 내측 도전부(112)보다 작고, 경도가 내측 도전부(112)보다 큰 하부 접촉부(114)가 내측 도전부(112) 내부로 밀려 들어가는 형태를 가질 수 있는 바, 상세한 설명은 후술한다.In addition, the diameter of the lower contact portion 114 is provided smaller than the diameter of the inner conductive portion 112. When the first conductive patterns 112, 113, 114 are pressed downward, the diameter is smaller than the inner conductive portion 112, and the hardness is The lower contact portion 114 that is larger than the inner conductive portion 112 may have a shape that is pushed into the inner conductive portion 112, and a detailed description will be provided later.
한편, 제2 소켓 모듈(130)은 제2 절연 본체(131) 및 복수의 제2 도전 패턴(132)을 포함한다.Meanwhile, the second socket module 130 includes a second insulating body 131 and a plurality of second conductive patterns 132.
제2 절연 본체(131)는 절연성 재질로 마련되는데, 본 발명에서는 FR4 필름 또는 PI 필름으로 마련되는 것을 예로 한다. 필름 형태로 제작되는 제2 절연 본체(131)의 두께는 제1 절연 본체(111)의 두께보다 얇게 마련되는데, 제1 절연 본체(111)가 테스트 소켓(100)의 전체 구조를 형성하고, 제2 절연 본체(131)를 포함하는 제2 소켓 모듈(130)이 제1 소켓 모듈(110)의 상부에 안착되는 형태를 갖게 된다.The second insulating body 131 is made of an insulating material, and in the present invention, it is assumed that it is made of an FR4 film or a PI film. The thickness of the second insulating body 131 manufactured in the form of a film is provided to be thinner than that of the first insulating body 111, and the first insulating body 111 forms the entire structure of the test socket 100, and 2 The second socket module 130 including the insulating body 131 is mounted on the first socket module 110.
제2 절연 본체(131)에는 상하 방향으로 관통된 복수의 제2 관통홀(131a)이 형성되고, 제2 도전 패턴(132)은 각각의 제2 관통홀(131a) 내부에 형성된다. A plurality of second through holes 131a penetrated in the vertical direction are formed in the second insulating body 131, and the second conductive patterns 132 are formed in each of the second through holes 131a.
본 발명에서는 제2 도전 패턴(132)이 도전성을 갖는 도전성 파우더를 포함하는 액상 재질, 예컨대 액상의 실리콘이 경화되어 형성되는 것을 예로 하는데, 그 제조 방법에 대해서는 후술한다.In the present invention, as an example, the second conductive pattern 132 is formed by curing a liquid material including a conductive powder having conductivity, for example, liquid silicon, and a method of manufacturing the second conductive pattern 132 will be described later.
여기서, 본 발명에 따른 제2 소켓 모듈(130)은 지지링(133)을 더 포함할 수 있다. 지지링(133)은 각각의 제2 관통홀(131a)의 내측 표면과 제2 도전 패턴(132)의 둘레 사이에 개제되어 제2 도전 패턴(132)이 제2 관통홀(131a)의 내부에 위치하도록 지지된다.Here, the second socket module 130 according to the present invention may further include a support ring 133. The support ring 133 is interposed between the inner surface of each second through hole 131a and the circumference of the second conductive pattern 132 so that the second conductive pattern 132 is inside the second through hole 131a. Supported to be positioned.
그리고, 지지링(133)은 탄성을 갖는 재질로 마련되는데, 본 발명에서는 액상의 실리콘이 경화되어 형성되는 것을 예로 한다. 이를 통해, 제2 도전 패턴(132)이 하부 방향으로 가압될 때 제2 도전 패턴(132)의 하부 방향으로의 이동을 탄성적으로 지지하게 된다. 이러한 지지 구조는 트램펄린(Trampolining)과 유사한 구조로 제2 도전 패턴(132)을 지지하게 된다.In addition, the support ring 133 is made of a material having elasticity, and in the present invention, it is assumed that liquid silicone is cured and formed. Through this, when the second conductive pattern 132 is pressed in the downward direction, the movement of the second conductive pattern 132 in the downward direction is elastically supported. This support structure supports the second conductive pattern 132 in a structure similar to a trampoline.
한편, 도 4는 본 발명의 제2 실시예에 따른 테스트 소켓(100a)의 단면도이다. 도 4에 도시된 제2 실시예에 따른 테스트 소켓(100a)은 제1 실시예의 구성에 대응하며, 탄성 스프링(115)을 더 포함한다.Meanwhile, FIG. 4 is a cross-sectional view of a test socket 100a according to a second embodiment of the present invention. The test socket 100a according to the second embodiment shown in FIG. 4 corresponds to the configuration of the first embodiment, and further includes an elastic spring 115.
탄성 스프링(115)은 각각의 내측 도전부(112)를 감싸도록 제1 절연 본체(111)의 내부에 마련된다. 그리고, 탄성 스프링(115)은 테스트 과정에서 제2 소켓 모듈(130)이 하부 방향으로 가압될 때 상부 방향으로 복원력을 제공하게 된다.The elastic spring 115 is provided inside the first insulating body 111 to surround each inner conductive portion 112. In addition, the elastic spring 115 provides a restoring force in the upper direction when the second socket module 130 is pressed downward during the test process.
상기와 같은 구성에 따라, 도 3에 도시된 바와 같이, 제2 소켓 모듈(130)이 제1 소켓 모듈(110)의 상부에 안착되면, 제1 소켓 모듈(110)로부터 상부 방향으로 돌출된 상부 접촉부(113)가 제2 소켓 모듈(130)의 제2 도전 패턴(132)과 접촉되는데, 이 때, 제1 소켓 모듈(110)을 향해 상향 돌출된 상부 접촉부(113)에 의해 제1 절연 본체(111)와 제2 절연 본체(131) 사이에 빈 공간이 형성된다.According to the above configuration, as shown in FIG. 3, when the second socket module 130 is seated on the first socket module 110, the upper portion protruding upward from the first socket module 110 The contact portion 113 is in contact with the second conductive pattern 132 of the second socket module 130, at this time, the first insulating body by the upper contact portion 113 protruding upward toward the first socket module 110 An empty space is formed between 111 and the second insulating body 131.
여기서, 본 발명에 따른 테스트 소켓(100,100a)이 반도체 소자의 검사를 위해 적용되면, 반도체 소자의 각 단자 또는 볼이 각각의 제2 도전 패턴(132) 및 제1 도전 패턴(112,113,114)을 하부 방향으로 가압하게 되는데, 이 때 상부 방향으로 작용하는 포스(Force)가 제1 절연 본체(111) 및 제2 절연 본체(131) 사이의 빈 공간에 의해 상부 방향으로 가해지는 포스(Force)가 감소하게 됨으로써, 상대적으로 적은 힘으로 반도체 소자를 가압하게 되어 반도체 소자나 테스트 소켓(100,100a)의 손상을 방지할 수 있게 된다.Here, when the test sockets 100 and 100a according to the present invention are applied for inspection of a semiconductor device, each terminal or ball of the semiconductor device moves each of the second conductive patterns 132 and the first conductive patterns 112, 113, and 114 downward. At this time, the force acting in the upper direction decreases the force applied in the upper direction by the empty space between the first insulating body 111 and the second insulating body 131. As a result, the semiconductor device is pressed with a relatively small force, so that damage to the semiconductor device or the test sockets 100 and 100a can be prevented.
또한, 반도체 패키지의 핀 수의 증가에 따라 판면 사이즈가 증가하는 추세에서, 양측 가장자리 간의 높이 편차를 보상하기 위해 더 큰 힘으로 반도체 소자를 테스트 소켓(100,100a) 방향으로 누르게 되는데, 본 발명에 따른 테스트 소켓(100,100a)이 테스트 과정에서 상부 방향으로 작용하는 포스(Force)가 감소됨에 따라 상대적으로 적은 힘으로 반도체 소자를 가압하더라도 테스트가 가능하게 되어 반도체 소자의 손상을 방지할 수 있게 된다.In addition, in the trend that the plate surface size increases with the increase in the number of pins of the semiconductor package, the semiconductor device is pressed in the direction of the test sockets 100 and 100a with a greater force to compensate for the height deviation between the two edges. As the force applied to the upper direction of the test sockets 100 and 100a in the test process is reduced, the test is possible even if the semiconductor device is pressed with a relatively small force, so that damage to the semiconductor device can be prevented.
또한, 제2 실시예에서는 탄성 스프링(115)이 빈 공간에 의해 손실될 수 있는 복원력을 보완하게 된다. 즉, 상부 방향으로 작용하는 포스(Force)는 스프링의 탄성 계수에 의해 큰 영향을 미치지 않지만, 탄성 스프링(115)의 특성상 복원력은 증가시키게 됨으로써, 본 발명에 따른 테스트 소켓(100a)의 수명을 증가시킬 수 있게 된다.In addition, in the second embodiment, the elastic spring 115 compensates for the restoring force that may be lost due to the empty space. That is, the force acting in the upper direction does not have a large influence by the elastic modulus of the spring, but due to the characteristic of the elastic spring 115, the restoring force increases, thereby increasing the life of the test socket 100a according to the present invention. You can make it.
또한, 빈 공간의 형성하는 제1 소켓 모듈(110)과 제2 소켓 모듈(130) 중, 반도체 소자와의 접촉에 따라 손상되기 쉬운 제2 소켓 모듈(130)이 제1 소켓 모듈(110)로부터 분리될 수 있어, 제2 소켓 모듈(130)의 손상시 제2 소켓 모듈(130) 만의 교체가 가능하여 손상에 따른 교체 비용을 절감할 수 있게 된다. 마찬가지로 제1 소켓 모듈(110)이 손상된 경우에도 제1 소켓 모듈(110) 만의 교체가 가능하게 되어, 부분 교체가 가능한 테스트 소켓(100,100a)이 제공된다.In addition, of the first socket module 110 and the second socket module 130 forming an empty space, the second socket module 130, which is easily damaged by contact with the semiconductor element, is removed from the first socket module 110. Since it can be separated, it is possible to replace only the second socket module 130 when the second socket module 130 is damaged, thereby reducing the replacement cost according to the damage. Similarly, even when the first socket module 110 is damaged, only the first socket module 110 can be replaced, and thus test sockets 100 and 100a capable of partial replacement are provided.
도 5는 본 발명의 제1 실시예에 따른 테스트 소켓(100)의 동작 과정을 설명하기 위한 도면이다. 도 5를 참조하여, 본 발명의 제1 실시예에 따른 테스트 소켓(100)의 동작 과정을 설명하면, 도 5의 (a)에 도시된 바와 같이, 반도체 소자가 하강하면, 반도체 소자의 각각의 볼이 제2 도전 패턴(132)에 접촉된다.5 is a diagram for explaining an operation process of the test socket 100 according to the first embodiment of the present invention. Referring to FIG. 5, an operation process of the test socket 100 according to the first embodiment of the present invention will be described. As shown in FIG. 5A, when the semiconductor device descends, each of the semiconductor devices The ball comes into contact with the second conductive pattern 132.
반도체 소자의 볼이 제2 도전 패턴(132)을 하부 방향으로 계속 밀게 되면, 도 5의 (b) 및 도 5의 (d)에 도시된 바와 같이, 제1 소켓 모듈(110)의 상부 접촉부(113) 및 하부 접촉부(114)가 내측 접촉부에 밀려 들어가는 형태를 갖게 되어, 반도체 소자의 가압을 탄성적으로 지지하게 된다.When the ball of the semiconductor device continues to push the second conductive pattern 132 downward, as shown in FIGS. 5B and 5D, the upper contact portion of the first socket module 110 ( 113) and the lower contact portion 114 are pushed into the inner contact portion, thereby elastically supporting the pressing of the semiconductor device.
도 5에 도시된 동작의 예는 본 발명에 따른 테스트 소켓(100)이 극단적으로 하부 방향으로 가압될 때를 가정하여 도시한 것으로 실제 모든 테스트 과정에서 도 5에 도시된 바와 같은 형태로 변형되는 것을 의미하지는 않는다. 또한, 하부 접촉부(114)가 먼저 밀려 들어가고 상부 접촉부(113)가 나중에 밀려 들어가는 과정으로 도시하고 있으나, 그 순서도 이에 국한되지 않고, 함께 또는 반대의 순서로 밀려 들어갈 수 있음은 물론이다.An example of the operation shown in FIG. 5 is shown on the assumption that the test socket 100 according to the present invention is pressed in an extremely downward direction, and is transformed into a shape as shown in FIG. 5 in all test processes. Does not mean. In addition, although the lower contact portion 114 is first pushed in and the upper contact portion 113 is pushed in later, the order is not limited thereto, and may be pushed together or in the opposite order.
마찬가지로, 도 6의 (a)에 도시된 바와 같이, 상술한 지지링(133)의 구조에 따라 상부 접촉부(113) 및 하부 접촉부(114)가 밀려 들어가기 전에 지지링(133)의 탄성적인 지지가 먼저 또는 나중에 발생할 수도 있다. 즉, 본 발명에 따른 테스트 소켓(100)을 구성하는 각각의 구성 요소들이 상부 방향으로의 가압을 탄성적으로 지지하는데, 그 순서가 전술한 예에 국한되지 않고, 그 순서와 무관하게 본 발명의 기술적 사항에 포함됨은 당연하다.Similarly, as shown in (a) of Figure 6, according to the structure of the support ring 133 described above, the elastic support of the support ring 133 before the upper contact portion 113 and the lower contact portion 114 are pushed in. It can happen first or later. That is, each of the components constituting the test socket 100 according to the present invention elastically supports the pressure in the upward direction, the order of which is not limited to the above-described example, regardless of the order of the present invention. It is natural to be included in the technical matters.
도 6의 (b)는 반도체 소자의 단자가, 도 6의 (a)에 도시된 BGA(Ball Grid Array) 형태가 아닌 LGA(Land Grid Array) 형태일 때, 제2 소켓 모듈(130a)의 제2 도전 패턴(132)의 상부 표면으로부터 돌출된 돌출 접촉부(134)를 형성한 예를 나타낸 도면이다.6B shows the second socket module 130a when the terminal of the semiconductor device is in the LGA (Land Grid Array) form instead of the BGA (Ball Grid Array) form shown in FIG. 6A. 2 is a view showing an example in which the protruding contact portion 134 protruding from the upper surface of the conductive pattern 132 is formed.
이하에서는, 도 7 및 도 8을 참조하여 본 발명의 제1 실시예에 따른 테스트 소켓(100)의 제조 방법에 대해 상세히 설명한다.Hereinafter, a method of manufacturing the test socket 100 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 7 and 8.
도 7은 본 발명의 제1 실시예에 따른 테스트 소켓(100)의 제1 소켓 모듈(110)의 제조방법을 설명하기 위한 도면이다. 도 7을 참조하여 설명하면, 먼저, 복수의 제1 관통홀(111a)이 형성된 제1 절연 본체(111)를 마련된다. 여기서, 제1 절연 본체(111)는 실리콘 재질로 제작한 후 레이저를 통해 제1 관통홀(111a)을 형성할 수 있다.7 is a view for explaining a method of manufacturing the first socket module 110 of the test socket 100 according to the first embodiment of the present invention. Referring to FIG. 7, first, a first insulating body 111 in which a plurality of first through holes 111a are formed is provided. Here, after the first insulating body 111 is made of a silicon material, the first through hole 111a may be formed through a laser.
또한, 다수의 제1 금형봉(미도시, 이하 동일)이 상향 돌출된 제1 금형(미도시, 이하 동일)에 실리콘을 주입을 주입한 후 경화시켜, 제1 관통홀(111a)이 형성된 제1 절연 본체(111)를 제작할 수 있다. 여기서, 상술한 제2 실시예에 따른 테스트 소켓(100)의 경우, 각각의 제1 금형봉에 탄성 스프링(115)을 삽입하고, 실리콘을 주입한 후 경화시키면, 각각의 제1 관통홀(111a) 주변에 탄성 스프링(115)이 배치된 제1 절연 본체(111)의 제작이 가능하게 된다.In addition, a plurality of first mold rods (not shown, hereinafter the same) are injected into a first mold (not shown, hereinafter the same) that protrudes upward and then cured, thereby forming a first through hole 111a. 1 Insulation body 111 can be manufactured. Here, in the case of the test socket 100 according to the second embodiment described above, when the elastic spring 115 is inserted into each of the first mold rods, silicone is injected and then cured, each of the first through holes 111a ) It is possible to manufacture the first insulating body 111 in which the elastic spring 115 is disposed around.
상기와 같이 복수의 제1 관통홀(111a)이 형성된 제1 절연 본체(111)가 마련되면, 각각의 제1 관통홀(111a)에 도전성 파우더를 포함한 액상 실리콘을 주입한 후 경화시키게 되면, 도 7의 (b)에 도시된 바와 같이, 제1 절연 본체(111)에 내측 도전부(112)가 형성된다.When the first insulating body 111 having a plurality of first through holes 111a formed as described above is provided, liquid silicon including conductive powder is injected into each of the first through holes 111a and then cured. As shown in (b) of 7, the inner conductive portion 112 is formed in the first insulating body 111.
그리고, 도 7의 (c)에 도시된 바와 같이, 제1 절연 본체(111)의 상부에 제1 관통홀(111a)보다 작은 내경을 갖는 제1 금형홀(310a)이 형성된 제1 금형 시트(310)를 안착시킨 후, 각각의 제1 금형홀(310a)에 도전성 파우더를 포함한 액상 실리콘을 주입한 후 경화시키게 되면, 내측 도전부(112)의 상부에 상부 접촉부(113)가 형성된다. 이 때, 동일한 방법으로 하부 접촉부(114)를 형성하게 되면, 도 7의 (d)에 도시된 바와 같은 제1 소켓 모듈(110)의 제작이 가능하게 된다.In addition, as shown in (c) of FIG. 7, a first mold sheet having a first mold hole 310a having an inner diameter smaller than that of the first through hole 111a is formed on the first insulating body 111 ( After mounting 310), when liquid silicon including conductive powder is injected into each of the first mold holes 310a and then cured, the upper contact part 113 is formed on the inner conductive part 112. In this case, when the lower contact portion 114 is formed in the same manner, the first socket module 110 as shown in FIG. 7D can be manufactured.
도 8을 참조하여, 본 발명에 따른 제2 소켓 모듈(130)의 제작 과정을 설명하면, 먼저, 복수의 제2 관통홀(131a)이 형성된 제2 절연 본체(131)를 제2 금형봉(321)이 형성된 제2 금형(320)에 안착시킨다. 이 때, 각각의 제2 금형봉(321)은 제2 관통홀(131a)에 삽입되는데, 도 8의 (a)에 도시된 바와 같이, 제2 금형봉(321)의 직경은 제2 관통홀(131a)의 내경보다 작게 마련되어 제2 금형봉(321)과 제2 관통홀(131a) 사이에는 공간이 형성된다.Referring to FIG. 8, the manufacturing process of the second socket module 130 according to the present invention will be described. First, a second insulating body 131 having a plurality of second through holes 131a formed thereon is formed with a second mold rod ( The second mold 321 is mounted on the formed second mold 320. At this time, each second mold rod 321 is inserted into the second through hole 131a, and as shown in Fig. 8A, the diameter of the second mold rod 321 is the second through hole A space is formed between the second mold rod 321 and the second through hole 131a by providing smaller than the inner diameter of (131a).
그리고, 도 8의 (b)에 도시된 바와 같이, 제2 금형봉(321)과 제2 관통홀(131a) 사이에 액상의 실리콘을 주입한 후 경화시키게 되면, 도 8의 (c)에 도시된 바와 같이, 지지링(133)이 형성되고, 이를 평판의 제3 금형(330)에 안착시킨 후 제2 금형봉(321)의 제거에 따라 형성된 공간에 도전성 파우더를 갖는 액상 실리콘을 주입하여 경화시키게 되면, 도 8의 (d)에 도시된 바와 같이, 제2 도전 패턴(132), 지지링(133) 및 제2 절연 본체(131)로 구성된 제2 소켓 모듈(130)의 제작이 가능하게 된다.And, as shown in (b) of FIG. 8, when liquid silicone is injected between the second mold rod 321 and the second through hole 131a and then cured, it is shown in (c) of FIG. As described above, the support ring 133 is formed, and after placing it on the third mold 330 of the flat plate, liquid silicon having conductive powder is injected into the space formed by the removal of the second mold rod 321 to cure. If so, it is possible to manufacture the second socket module 130 composed of the second conductive pattern 132, the support ring 133, and the second insulating body 131, as shown in (d) of FIG. do.
도 9는 본 발명의 제3 실시예에 따른 테스트 소켓(100b)의 단면도이다. 도 9에 도시된 제3 실시예에 따른 테스트 소켓(100b)은 제1 실시예에 따른 테스트 소켓(100)의 변형 예로, 상부 절연링(116)을 더 포함한다.9 is a cross-sectional view of a test socket 100b according to a third embodiment of the present invention. The test socket 100b according to the third embodiment shown in FIG. 9 is a modified example of the test socket 100 according to the first embodiment, and further includes an upper insulating ring 116.
상부 절연링(116)은 각각의 상부 접촉부(113)의 외주면을 감싸도록 형성되는데, 상부 접촉부(113)의 상부가 상부 방향으로 돌출되도록 상부 접촉부(113)의 외부를 감싸게 된다. 이 때, 상호 인접한 상부 절연링(116)은, 도 9에 도시된 바와 같이, 상호 이격되어 사이에 공간이 형성됨으로써, 전술한 제1 실시예와 동일한 효과를 제공하면서도, 인접한 상부 접촉부(113) 간에 발생할 수 있는 쇼트(short)를 방지할 수 있게 된다.The upper insulating ring 116 is formed to surround the outer circumferential surface of each of the upper contact parts 113, and surrounds the outside of the upper contact part 113 so that the upper part of the upper contact part 113 protrudes upward. In this case, the upper insulating rings 116 adjacent to each other are spaced apart from each other to form a space therebetween, as shown in FIG. 9, thereby providing the same effect as in the first embodiment, and the adjacent upper contact portions 113 It is possible to prevent a short that may occur between the liver.
마찬가지로, 본 발명의 제3 실시예에 따른 테스트 소켓(100b)은 하부 절연링(117)을 더 포함할 수 있다. 하부 절연링(117)은 각각의 하부 접촉부(114)의 외주면을 감싸도록 형성되는데, 하부 접촉부(114)의 하부가 하부 방향으로 돌출되도록 하부 접촉부(114)의 외부를 감싸게 된다. 이 때, 상호 인접한 하부 절연링(117)은, 도 9에 도시된 바와 같이, 상호 이격되어 사이에 공간이 형성됨으로써, 전술한 제1 실시예와 동일한 효과를 제공하면서도, 인접한 하부 접촉부(114) 간에 발생할 수 있는 쇼트(short)를 방지할 수 있게 된다.Likewise, the test socket 100b according to the third embodiment of the present invention may further include a lower insulating ring 117. The lower insulating ring 117 is formed to surround the outer circumferential surface of each of the lower contact portions 114, and surround the outside of the lower contact portion 114 so that the lower portion of the lower contact portion 114 protrudes downward. In this case, the lower insulating rings 117 adjacent to each other are spaced apart from each other to form a space therebetween, as shown in FIG. 9, thereby providing the same effect as in the first embodiment, and the adjacent lower contact portions 114 It is possible to prevent a short that may occur between the liver.
여기서, 상부 절연링(116)과 하부 절연링(117)은 도 7의 (c) 및 (d)에 도시된 바와 같이, 상부 접촉부(113)와 하부 접촉부(114)가 형성된 상태에서 상부 접촉부(113)와 하부 접촉부(114)의 직경보다 큰 내경을 갖는 금형홀(미도시)이 형성된 금형 시트(미도시)를 이용하여 도 8의 (a) 및 (b)에 도시된 방법을 통해 제조할 수 있다.Here, the upper insulating ring 116 and the lower insulating ring 117 are formed with the upper contact part 113 and the lower contact part 114 as shown in (c) and (d) of FIG. 7. 113) and a mold sheet (not shown) having a mold hole (not shown) having an inner diameter larger than the diameter of the lower contact portion 114 to be manufactured through the method shown in FIGS. 8A and 8B. I can.
도 10은 본 발명의 실시예에 따른 테스트 소켓(100)의 제2 소켓 모듈(130b)의 다른 예를 나타낸 도면이다. 도 10에 도시된 바와 같이, 제2 소켓 모듈(130b)의 제2 절연 시트에는 제2 도전 패턴(132)들 사이사이에 상하로 관통된 복수의 동작홀(135)이 형성된다. 여기서, 복수의 동작홀(135)은 제2 절연 시트에 랜덤하게 형성되거나 일정한 규칙을 가지고 형성될 수 있다.10 is a diagram showing another example of the second socket module 130b of the test socket 100 according to an embodiment of the present invention. As shown in FIG. 10, a plurality of operation holes 135 vertically penetrating between the second conductive patterns 132 are formed in the second insulating sheet of the second socket module 130b. Here, the plurality of operation holes 135 may be formed randomly in the second insulating sheet or may be formed with a certain rule.
복수의 동작홀(135)은 제2 도전 패턴(132)들 사이사이에 형성되어, 제2 절연 본체(131)의 각각의 제2 도전 패턴(132)들이 상하 방향으로 독립적으로 움직일 수 있는 여유를 제공하게 됨으로써, 각각의 제2 도전 패턴(132)들이 독립적으로 안정적으로 제1 도전 패턴(112,113,114)과 접촉이 가능하게 된다.The plurality of operation holes 135 are formed between the second conductive patterns 132, so that the second conductive patterns 132 of the second insulating body 131 can independently move in the vertical direction. By providing, each of the second conductive patterns 132 can independently and stably contact the first conductive patterns 112, 113, and 114.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.Although some embodiments of the present invention have been shown and described, those skilled in the art of ordinary skill in the art to which the present invention pertains will appreciate that the present embodiments can be modified without departing from the principles or spirit of the present invention. . The scope of the invention will be determined by the appended claims and their equivalents.
[부호의 설명][Explanation of code]
100, 100a, 100b : 테스트 소켓100, 100a, 100b: test socket
110 : 제1 소켓 모듈 111 : 제1 절연 본체110: first socket module 111: first insulating body
111a : 제1 관통홀 112 : 내측 도전부111a: first through hole 112: inner conductive part
113 : 상부 접촉부 114 : 하부 접촉부113: upper contact portion 114: lower contact portion
115 : 탄성 스프링115: elastic spring
130, 130a, 130b : 제2 소켓 모듈130, 130a, 130b: second socket module
131 : 제2 절연 본체 131a : 제2 관통홀131: second insulating body 131a: second through hole
132 : 제2 도전 패턴 133 : 지지링132: second conductive pattern 133: support ring
134 : 돌출 접촉부 135 : 동작홀134: protruding contact part 135: operation hole
310 : 제1 금형 시트 310a : 제1 금형홀310: first mold sheet 310a: first mold hole
320 : 제2 금형 321 : 제2 금형봉320: second mold 321: second mold rod
330 : 제3 금형330: 3rd mold
본 발명은 반도체 소자 등과 같은 전자 부품과 검사회로기판 사이에 배치되어 이를 전기적으로 연결하는데 적용된다.The present invention is disposed between an electronic component such as a semiconductor device and an inspection circuit board and applied to electrically connect it.

Claims (12)

  1. 부분 교체가 가능한 테스트 소켓에 있어서,In a partially replaceable test socket,
    절연성 재질의 제1 절연 본체와, 상기 제1 절연 본체에 상호 이격되게 형성되어 각각 상하 방향으로 도전 라인을 형성하는 복수의 제1 도전 패턴을 포함하는 제1 소켓 모듈과,A first socket module including a first insulating body made of an insulating material, and a plurality of first conductive patterns formed to be spaced apart from each other on the first insulating body to form conductive lines in a vertical direction, respectively,
    절연성 재질의 제2 절연 본체와, 각각 상하 방향으로 도전 라인을 형성하는 복수의 제2 도전 패턴을 포함하고, 상기 제1 소켓 모듈의 상부에 안착될 때 상호 대응하는 위치의 상기 제1 도전 패턴과 상기 제2 도전 패턴이 접촉되어 상기 제1 도전 패턴과 상기 제2 도전 패턴이 전기적으로 연결되는 제2 소켓 모듈을 포함하고;A second insulating body made of an insulating material and a plurality of second conductive patterns each forming a conductive line in a vertical direction, the first conductive pattern at a position corresponding to each other when seated on the first socket module And a second socket module in which the second conductive pattern is in contact with each other to electrically connect the first conductive pattern and the second conductive pattern;
    각각의 상기 제1 도전 패턴은 상기 제2 소켓 모듈을 향해 상향 돌출되어 상기 제2 도전 패턴과 접촉되는 상부 접촉부를 포함하며;Each of the first conductive patterns includes an upper contact portion protruding upward toward the second socket module to contact the second conductive pattern;
    상기 제2 소켓 모듈을 향해 상향 돌출된 상기 상부 접촉부에 의해 상기 제1 절연 본체와 상기 제2 절연 본체 사이에 빈 공간에 형성되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.Partly replaceable test socket, characterized in that formed in an empty space between the first insulating body and the second insulating body by the upper contact portion protruding upward toward the second socket module.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 절연 본체에는 상하 방향으로 관통된 복수의 제1 관통홀이 형성되고;A plurality of first through holes penetrating in the vertical direction are formed in the first insulating body;
    각각의 상기 제1 도전 패턴은 상기 제1 관통홀 내부에 도전성을 갖는 도전성 파우더를 포함하는 액상 재질이 경화되어 형성된 내측 도전부를 더 포함하며;Each of the first conductive patterns further includes an inner conductive portion formed by curing a liquid material including conductive powder having conductivity in the first through hole;
    상기 상부 접촉부는 상기 내측 도전부의 상부에 형성되어 상기 제2 소켓 모듈을 향해 상향 돌출되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The upper contact part is formed on the inner conductive part and protrudes upward toward the second socket module.
  3. 제2항에 있어서,The method of claim 2,
    상기 상부 접촉부의 직경은 상기 내측 도전부의 직경보다 작게 마련되어, 상기 제2 소켓 모듈에 의해 하부 방향으로 가압될 때 상기 상부 접촉부가 상기 내측 도전부 내부로 밀려 들어가는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The upper contact portion has a diameter smaller than the diameter of the inner conductive portion, and the upper contact portion is pushed into the inner conductive portion when pressed in a downward direction by the second socket module. .
  4. 제2항에 있어서,The method of claim 2,
    상기 내측 도전부의 하부에 형성되어 상기 제1 절연 본체 하부 방향으로 돌출되는 하부 접촉부를 더 포함하는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.And a lower contact portion formed under the inner conductive portion and protruding toward a lower portion of the first insulating body.
  5. 제4항에 있어서,The method of claim 4,
    상기 하부 접촉부의 직경은 상기 내측 도전부의 직경보다 작게 마련되어, 상기 제2 소켓 모듈에 의해 상기 제1 소켓 모듈이 하부 방향으로 가압될 때 상기 하부 접촉부가 상기 내측 도전부 내부로 밀려 들어가는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The lower contact portion is provided with a diameter smaller than the diameter of the inner conductive portion, and the lower contact portion is pushed into the inner conductive portion when the first socket module is pressed downward by the second socket module. Test socket with partial replacement.
  6. 제4항에 있어서,The method of claim 4,
    상기 상부 접촉부 및 상기 하부 접촉부는 도전성 파우더를 포함하는 액상 재질이 경화되어 형성되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The upper and lower contact portions are partially replaceable test sockets, characterized in that formed by curing a liquid material containing conductive powder.
  7. 제2항에 있어서,The method of claim 2,
    상기 내측 도전부를 감싸도록 상기 제1 절연 본체의 내부에 마련되는 탄성 스프링을 더 포함하는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.Partly replaceable test socket, characterized in that it further comprises an elastic spring provided inside the first insulating body so as to surround the inner conductive portion.
  8. 제1항에 있어서,The method of claim 1,
    상기 제2 절연 본체에는 상하 방향으로 관통된 복수의 제2 관통홀이 형성되고, 상기 제2 도전 패턴은 각각의 상기 제2 관통홀 내부에 형성되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The second insulating body is provided with a plurality of second through holes penetrating in the vertical direction, and the second conductive pattern is formed in each of the second through holes.
  9. 제8항에 있어서,The method of claim 8,
    상기 제2 소켓 모듈은 각각의 상기 제2 관통홀의 내측 표면과 상기 제2 도전 패턴의 둘레 사이에 개제되어 상기 제2 도전 패턴이 상기 제2 관통홀의 내부에 위치하도록 지지하는 지지링을 더 포함하며;The second socket module further includes a support ring interposed between the inner surface of each of the second through holes and the circumference of the second conductive pattern to support the second conductive pattern so as to be located inside the second through hole, ;
    상기 지지링은 탄성을 갖는 절연성 재질로 마련되어, 상기 제2 도전 패턴이 하부 방향으로 가압될 때 상기 제2 도전 패턴의 하부 방향으로의 이동을 탄성적으로 지지하는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The support ring is made of an insulating material having elasticity, and when the second conductive pattern is pressed downward, it elastically supports the movement of the second conductive pattern in a downward direction. socket.
  10. 제8항에 있어서,The method of claim 8,
    상기 제2 절연 본체는 FR4 필름 또는 PI 필름으로 마련되며;The second insulating body is provided with an FR4 film or a PI film;
    상기 제2 절연 본체의 두께는 상기 제1 절연 본체의 두께보다 얇게 마련되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.Partly replaceable test socket, characterized in that the thickness of the second insulating body is provided thinner than the thickness of the first insulating body.
  11. 제2항에 있어서,The method of claim 2,
    상기 제1 소켓 모듈은 각각의 상기 상부 접촉부의 외주면을 감싸되, 상기 상부 접촉부의 상부가 상부 방향으로 돌출되도록 상기 상부 접촉부를 감싸는 상부 절연링을 더 포함하며;The first socket module further includes an upper insulating ring surrounding the outer circumferential surface of each of the upper contact portions, and surrounding the upper contact portion such that an upper portion of the upper contact portion protrudes upward;
    상호 인접한 상기 상부 절연링은 상호 이격되어 사이에 공간이 형성되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The upper insulating rings adjacent to each other are spaced apart from each other to form a space between the test socket that can be partially replaced.
  12. 제4항에 있어서,The method of claim 4,
    상기 제1 소켓 모듈은 각각의 상기 하부 접촉부의 외주면을 감싸되, 상기 하부 접촉부의 하부가 하부 방향으로 돌출되도록 상기 하부 접촉부를 감싸는 하부 절연링을 더 포함하며;The first socket module further includes a lower insulating ring surrounding the outer circumferential surface of each of the lower contact portions, and surrounding the lower contact portion such that a lower portion of the lower contact portion protrudes downward;
    상호 인접한 상기 하부 절연링은 상호 이격되어 사이에 공간이 형성되는 것을 특징으로 하는 부분 교체가 가능한 테스트 소켓.The partially replaceable test socket, characterized in that the lower insulating rings adjacent to each other are spaced apart from each other to form a space therebetween.
PCT/KR2019/011908 2019-08-22 2019-09-16 Test socket with replaceable portion WO2021033824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190102943A KR102191701B1 (en) 2019-08-22 2019-08-22 Test socket capable of being partially replaced
KR10-2019-0102943 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021033824A1 true WO2021033824A1 (en) 2021-02-25

Family

ID=74089808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011908 WO2021033824A1 (en) 2019-08-22 2019-09-16 Test socket with replaceable portion

Country Status (2)

Country Link
KR (1) KR102191701B1 (en)
WO (1) WO2021033824A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102587516B1 (en) * 2023-05-18 2023-10-11 주식회사 티에스이 Test socket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303184B1 (en) * 2012-06-04 2013-09-09 에이케이이노텍주식회사 Contactor for testing semiconductor
KR20170008330A (en) * 2015-07-13 2017-01-24 주식회사 이노글로벌 Manufacturing method of semiconductor package test socket using plural moldpin
KR20170104905A (en) * 2016-03-07 2017-09-18 주식회사 이노글로벌 Bi-directional conductive socket for testing semiconductor device, bi-directional conductive module for testing semiconductor device, and manufacturing method thereof
KR20180085103A (en) * 2017-01-17 2018-07-26 주식회사 이노글로벌 By-directional electrically conductive pattern module
KR101956080B1 (en) * 2017-12-28 2019-03-11 (주)티에스이 Burn-in socket for semiconductor test capable of transmitting high speed signal and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084047A (en) * 2001-06-29 2003-03-19 Sony Corp Measuring jig for semiconductor device
JP4556698B2 (en) * 2005-02-14 2010-10-06 ソニー株式会社 Probe pin unit
KR200445395Y1 (en) * 2007-08-13 2009-07-27 주식회사 아이에스시테크놀러지 Conductive contactor
KR200446269Y1 (en) * 2008-02-25 2009-10-29 주식회사 아이에스시테크놀러지 Test socket with gap member
US9261537B2 (en) * 2009-04-21 2016-02-16 Johnstech International Corporation Wafer level integrated circuit contactor and method of construction
CN108450012A (en) * 2015-07-03 2018-08-24 奥金斯电子有限公司 Test jack, test jack manufacturing method and test jack clamp assembly
KR20170019090A (en) * 2015-08-11 2017-02-21 주식회사 대성엔지니어링 Test socket
KR101921931B1 (en) * 2017-02-08 2019-02-13 주식회사 오킨스전자 Open cell type FPCB film, test socket having thereof, and method for manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303184B1 (en) * 2012-06-04 2013-09-09 에이케이이노텍주식회사 Contactor for testing semiconductor
KR20170008330A (en) * 2015-07-13 2017-01-24 주식회사 이노글로벌 Manufacturing method of semiconductor package test socket using plural moldpin
KR20170104905A (en) * 2016-03-07 2017-09-18 주식회사 이노글로벌 Bi-directional conductive socket for testing semiconductor device, bi-directional conductive module for testing semiconductor device, and manufacturing method thereof
KR20180085103A (en) * 2017-01-17 2018-07-26 주식회사 이노글로벌 By-directional electrically conductive pattern module
KR101956080B1 (en) * 2017-12-28 2019-03-11 (주)티에스이 Burn-in socket for semiconductor test capable of transmitting high speed signal and manufacturing method thereof

Also Published As

Publication number Publication date
KR102191701B1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
WO2014129784A1 (en) Test socket with high density conduction section
WO2019216503A1 (en) Semiconductor device test socket
WO2015012498A1 (en) Conductive connector and manufacturing method therefor
WO2014204161A2 (en) Insert for inspection
WO2009145416A1 (en) Socket for testing semiconductor chip
WO2018135674A1 (en) Bidirectional conductive pattern module
WO2020022745A1 (en) Conductive sheet for test
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2018199403A1 (en) Socket for testing semiconductor devices
WO2021033824A1 (en) Test socket with replaceable portion
WO2021045286A1 (en) Test socket having empty space
WO2021246719A1 (en) Test socket
WO2018208117A1 (en) Inspection socket
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
WO2020209583A1 (en) Test socket
WO2016167412A1 (en) Bidirectional conductive socket for testing high-frequency device, bidirectional conductive module for testing high-frequency device, and manufacturing method thereof
WO2020145493A1 (en) Signal transmission connector and manufacturing method therefor
WO2019039628A1 (en) Bidirectional conductive module having laser processing technology applied thereto and method for manufacturing same
WO2019245153A1 (en) Plate spring-type connecting pin
KR102221578B1 (en) Bi-directional electrically conductive module with air layer
WO2017209357A1 (en) Bidirectional conductive pin, bidirectional conductive pattern module and method for preparing same
WO2019146831A1 (en) Bidirectional conductive module
KR102158507B1 (en) Test socket and manufacturing method thereof
WO2021075628A1 (en) Bidirectional conductive module with buffer area formed around conductive lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19942398

Country of ref document: EP

Kind code of ref document: A1