WO2015012498A1 - Conductive connector and manufacturing method therefor - Google Patents

Conductive connector and manufacturing method therefor Download PDF

Info

Publication number
WO2015012498A1
WO2015012498A1 PCT/KR2014/005777 KR2014005777W WO2015012498A1 WO 2015012498 A1 WO2015012498 A1 WO 2015012498A1 KR 2014005777 W KR2014005777 W KR 2014005777W WO 2015012498 A1 WO2015012498 A1 WO 2015012498A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
coating layer
metal coating
conductive metal
connector
Prior art date
Application number
PCT/KR2014/005777
Other languages
French (fr)
Korean (ko)
Inventor
황규식
이병주
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Priority to CN201480041445.2A priority Critical patent/CN105452877B/en
Publication of WO2015012498A1 publication Critical patent/WO2015012498A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers

Definitions

  • the present invention relates to a conductive connector and a method for manufacturing the same, and more particularly, to a conductive connector for a test socket used for testing the electrical characteristics of the device under test and a method for manufacturing the same.
  • the electrical connection between the device under test and the test device should be made stable, and an electrical connection connector is used for this purpose. That is, the role of the connector device for electrical connection is to connect the terminal of the device under test and the pad of the test device with each other so that the electrical signals can be exchanged in both directions.
  • This electrical connection connector is used in a test apparatus for testing a device under test and is also called a test socket in that the device under test is coupled.
  • the conductive connector has a structure in which a conductive portion having elasticity is connected to the terminal of the device under test, and the pogo pin is configured to elastically contact the terminal of the device under test by a spring provided therein.
  • the conventional conductive connector and the pogo pin have a merit that can cushion the mechanical shock that may occur when the device under test and the test device are connected, and thus are widely used as test sockets.
  • FIG. 1 illustrates a conductive connector as an example of a conventional electrical connector
  • FIGS. 2 and 3 are plan views and cross-sectional views showing an enlarged conductive part of the conventional conductive connector shown in FIG. 1.
  • the conventional conductive connector 10 includes a plurality of conductive portions 12 disposed at positions corresponding to the terminals 22 of the device under test 20, and the plurality of conductive portions.
  • the insulating support part 11 which insulates each other while supporting the 22 is included.
  • the conductive portion 12 has a structure in which the conductive particles 12a are arranged in a thickness direction, that is, in a vertical direction, in a substrate made of an insulating elastic material 11a such as silicone rubber. It is made of the same material as the elastic material 11a in the conductive portion 12, for example, silicone rubber.
  • the conductive connector 10 is mounted on the inspection apparatus 30 and is inspected while the device under test 20 descends while the conductive portion 12 is in contact with the pad 32 of the inspection apparatus 30.
  • the terminal 22 of the device 20 presses the conductive portion 12 downward, the conductive particles 12a in the conductive portion 12 come into contact with each other to be in an electrically conductive state.
  • the part 12 is elastically compressive and deforms to cushion the mechanical shock that may occur when contacting the terminal 22 of the device under test 20.
  • the inspection device 30 is provided.
  • a predetermined test signal is applied from the pad 32 of the ())
  • the signal is transmitted to the terminal 22 of the device under test 20 via the conductive portion 12 of the conductive connector 10, thereby providing a predetermined electrical test. It can be done.
  • the conductive portion 12 of the conventional conductive connector 10 has a structure in which the conductive particles 12a are contained in the insulating elastic material 11a as described above. Only a portion of the small amount of conductive particles 12a is exposed to the upper surface of the conductive portion 12 in contact with the terminal 22 of the device under test 20 due to the elastic material 11a. Thereby, the contact area between the electroconductive particle 12a of the electroconductive part 12 and the terminal 22 of the device under test 20 is narrow, and the terminal 22 of the electroconductive part 12 and the device under test 20 is tested. Since the electrical contact resistance between the contact increases or poor contact occurs, there is a problem that the reliability of the conductive connector 10, that is, the quality screening ability for the device under test 20 is lowered.
  • the present invention has been made to solve the conventional problems as described above, and forms a conductive metal coating layer on the upper surface of the conductive portion to reduce the electrical contact resistance between the terminal and the conductive portion of the device under test and its manufacture.
  • the purpose is to provide a method.
  • a conductive connector according to an aspect of the present invention for achieving the above technical problem is disposed between the device under test and the test device, the conductive connector for electrically connecting the terminal of the device under test and the pad of the test device with each other.
  • a plurality of conductive portions disposed at positions corresponding to the terminals of the device under test and having conductive particles arranged in a vertical direction in an elastic material; An insulating support portion for insulating the plurality of conductive portions while supporting the plurality of conductive portions; And a conductive metal coating layer formed on an upper surface of each of the plurality of conductive parts.
  • the conductive parts may be formed to protrude upward from the upper surface of the insulating support, and the conductive metal coating layer may be formed on the upper surfaces of the protruding parts of the plurality of conductive parts.
  • the conductive metal coating layer may be formed on the side of the protrusion of the plurality of conductive parts.
  • the conductive metal coating layer may be formed to a diameter larger than the diameter of the plurality of conductive parts.
  • a guide film for guiding the terminal of the device under test to the center of the conductive part may be attached to an upper surface of the insulating support part, and the guide film may have a plurality of through-holes into which protrusions of the plurality of conductive parts are inserted.
  • the conductive metal coating layer may have a thickness of 0.1 ⁇ m ⁇ 10 ⁇ m.
  • the conductive metal of the conductive metal coating layer may include at least one selected from the group consisting of iron, nickel, chromium, gold, silver, copper, platinum, and alloys thereof.
  • the conductive metal coating layer may be made of conductive metal nanoparticles.
  • the average particle diameter of the conductive metal nanoparticles may be 10nm ⁇ 100nm.
  • the forming of the conductive metal coating layer may include attaching a mask film having holes formed on the upper surface of the insulating support to expose the plurality of conductive parts; Forming a conductive metal coating layer on an upper surface of the mask film and an upper surface of the plurality of conductive portions exposed by the holes; And removing the conductive metal coating layer formed on the upper surface of the mask film while removing the mask film from the upper surface of the insulating support.
  • the conductive parts may be formed to protrude upward from the upper surface of the insulating support, and the conductive metal coating layer may be formed on the upper surfaces of the protruding parts of the conductive parts.
  • the conductive metal coating layer may be formed on the side of the protrusion of the plurality of conductive parts.
  • the conductive metal coating layer may be formed to a diameter larger than the diameter of the plurality of conductive parts.
  • a guide film for guiding the terminal of the device under test to the center of the conductive part may be attached to an upper surface of the insulating support part, and the guide film may have a plurality of through-holes into which protrusions of the plurality of conductive parts are inserted.
  • the holes formed in the mask film may have a diameter greater than or equal to the diameter of the conductive portion.
  • the mask film is polyimide (PI), polyethylene terephthalate (PET), triacetate cellulose (TAC), ethylene vinyl acetate (EVA), polyflopropylene (PP), polycarbonate (PC), copper It may be made of any one material selected from the group consisting of a thin film sheet, an aluminum thin film sheet, and a stainless thin film sheet.
  • PI polyimide
  • PET polyethylene terephthalate
  • TAC triacetate cellulose
  • EVA ethylene vinyl acetate
  • PP polyflopropylene
  • PC polycarbonate
  • copper may be made of any one material selected from the group consisting of a thin film sheet, an aluminum thin film sheet, and a stainless thin film sheet.
  • the conductive metal coating layer may be formed to have a thickness of 0.1 ⁇ m ⁇ 10 ⁇ m.
  • the conductive metal paste may be coated on the upper surface of the mask film and the upper surface of the plurality of conductive parts by a printing method and then dried to form the conductive metal coating layer.
  • the conductive metal nanoparticle aqueous solution may be sprayed, sprayed, and then coated on the upper surface of the mask film and the upper surface of the plurality of conductive parts to form the conductive metal coating layer by drying.
  • the conductive connector since the conductive metal coating layer is formed on the upper surface of the conductive portion, the contact area with the terminal of the device under test is widened, so that the electrical contact resistance between the terminal of the device under test and the conductive portion is This decrease results in a stable electrical connection. Thereby, there exists an effect which improves the reliability of a conductive connector and the quality selection ability with respect to the device under test.
  • the upper surface of the conductive portion is covered by a harder coating layer than the conductive portion, wear and damage of the conductive portion caused by the conductive portion directly contacting the terminal of the device under test can be prevented, and contamination or damage of the conductive portion by foreign matter can be prevented. As a result, the service life of the conductive connector can be extended.
  • FIG. 1 is a cross-sectional view showing an example of a conventional conductive connector.
  • FIG. 2 and 3 are enlarged plan views and cross-sectional views of conductive portions of the conventional conductive connector shown in FIG.
  • FIG. 4 illustrates a conductive connector according to an embodiment of the present invention.
  • FIG. 5 is an enlarged view of the conductive part and the coating layer shown in FIG. 4.
  • FIG. 6 is a view partially showing a conductive connector according to another embodiment of the present invention.
  • FIG. 7 is a view partially showing a conductive connector according to another embodiment of the present invention.
  • FIG. 8 to 11 are diagrams for explaining step-by-step the manufacturing method of the conductive connector according to an embodiment of the present invention shown in FIG.
  • FIG. 12 and 13 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
  • FIG. 14 and 15 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
  • FIG. 4 is a view showing a conductive connector according to an embodiment of the present invention
  • Figure 5 is an enlarged view showing the conductive portion and the coating layer shown in FIG.
  • the conductive connector 100 is disposed between the device under test 20 and the test device 30 of the device under test 20. It is a kind of electrical connection connector, that is, a test socket, which serves to electrically connect the terminal 22 and the pad 32 of the test apparatus 30 to each other.
  • the conductive connector 100 enables electrical flow in a thickness direction, that is, a vertical direction, and disables electrical flow in a plane direction orthogonal to the thickness direction, that is, in a horizontal direction. It is configured to absorb the impact force applied from the terminal 22 of the device under test 20.
  • the conductive connector 100 includes a plurality of conductive parts 120, an insulating support part 110, and a conductive metal coating layer 130.
  • the conductive portion 120 is disposed at a position corresponding to the terminal 22 of the device under test 20 and has a structure in which the conductive particles 120a are arranged in the thickness direction in the elastic material 110a.
  • the horizontal cross section of the conductive portion 120 may have various shapes, but preferably has a circular cross-sectional shape. That is, the conductive portion 120 preferably has a cylindrical shape.
  • a heat resistant polymer material having a crosslinked structure may be used.
  • the curable polymer material forming material that can be used to obtain such an elastic polymer material various materials can be used, but liquid silicone rubber is preferable in terms of molding processability and electrical properties.
  • the liquid silicone rubber may be any of an addition type, a condensation type, a vinyl group or a hydroxyl group. Specifically, dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, methylphenyl vinyl silicone raw rubber, etc. are mentioned.
  • the silicone rubber cured product preferably has a compression set of 10% or less, more preferably 8% or less at 150 ° C. Most preferably, it is 6% or less.
  • the compression set is more than 10%, when the obtained conductive connector 100 is repeatedly used in a high temperature environment, it is disturbed in the chain of the conductive particles 120a in the conductive portion 120, so that it is necessary. Maintaining conductivity becomes difficult.
  • the conductive particles 120a constituting the conductive portion 120 it is preferable to use those in which a highly conductive metal is coated on the surface of core particles (hereinafter, referred to as "magnetic core particles") that exhibit magnetic properties.
  • the magnetic core particles preferably have an average particle diameter of 3 ⁇ m to 40 ⁇ m.
  • the average particle diameter of a magnetic core particle says what was measured by the laser diffraction scattering method.
  • the saturation magnetization is preferably 0.1 m 3 / m 2 or more, more preferably 0.3 m 3 / m 2 or more, and 0.5 m 3 It is most preferable that it is / m ⁇ 2> or more.
  • the said highly conductive metal means that the electrical conductivity in 0 degreeC is 5 * 10 ⁇ 6> / ohm or more.
  • Highly conductive metals coated on the surface of the magnetic core particles include gold, silver, rhodium, platinum, chromium, and the like, and among them, gold is preferable in terms of chemical stability and high conductivity.
  • the insulating support 110 supports the conductive part 120 and maintains insulation between the conductive parts 120.
  • the insulating support 110 is preferably made of the same material as the elastic material 110a in the conductive part 120, for example, silicone rubber.
  • the present invention is not limited thereto and may be used as long as the material has good elasticity and excellent insulation.
  • the coating layer 130 is coated on the upper surface of the conductive portion 120 in contact with the terminal 22 of the device under test 20.
  • the coating layer 130 may be formed to the same diameter as the diameter of the conductive portion 120, but is not limited thereto, and may be formed to a diameter larger than the diameter of the conductive portion 120.
  • the coating layer 130 is preferably formed to have a thickness of 0.1 ⁇ m ⁇ 10 ⁇ m.
  • the conductive metal for forming the coating layer 130 for example, iron, nickel, chromium, gold, silver, copper, platinum, or an alloy thereof may be used.
  • the coating layer 130 may be made of nanoparticles of the conductive metal, the average particle diameter of the conductive metal nanoparticles is preferably 10nm ⁇ 100nm.
  • the conductive connector 100 having the configuration as described above is mounted on the inspection apparatus 30, and thus, the bottom of the conductive portion 120 of the conductive connector 100 and the inspection apparatus 30.
  • the pad 32 is in contact.
  • the terminal 22 of the device under test 20 contacts the coating layer 130 formed on the upper surface of the conductive part 120, and the coating layer 130 and the conductive part ( 120) press down.
  • the conductive particles 120a in the conductive portion 120 are in contact with each other to be electrically conductive, and in this process, the conductive portion 120 is elastically compressed and deformed while the terminal 22 of the device under test 20. ) To cushion mechanical shocks that may occur.
  • the pad 32 of the test device 30 is electrically connected.
  • a predetermined test signal is applied to the terminal, and the signal is transmitted to the terminal 22 of the device under test 20 through the conductive portion 120 and the coating layer 130 to perform a predetermined electrical test.
  • the conductive connector 100 has the following effects.
  • the terminal 22 of the device under test 20 is formed on the upper surface of the conductive portion 120. Since the contact with the conductive metal coating layer 130, the electrical contact area is widened. Accordingly, since the electrical contact resistance between the terminal 22 and the conductive portion 120 of the device under test 20 is reduced, thereby making a stable electrical connection, the reliability of the conductive connector 100 and the device under test 20 are reduced. It is effective to improve the quality of the screening ability for good.
  • the coating layer 130 is made of a conductive metal, it is formed harder than the conductive portion 120.
  • the conductive portion 120 of the conductive portion 120 generated by the direct contact with the terminal 22 of the device under test 20 Since wear and damage can be prevented, and contamination or damage of the conductive portion 120 due to foreign matter can be prevented, there is an effect of extending the life of the conductive connector 100.
  • FIG. 6 is a view partially showing a conductive connector according to another embodiment of the present invention
  • Figure 7 is a view partially showing a conductive connector according to another embodiment of the present invention.
  • the conductive connector 200 includes a plurality of conductive parts 220, an insulating support part 210, and a conductive metal coating layer 230. .
  • the conductive portion 220 is disposed at a position corresponding to the terminal 22 of the device under test 20 and has a structure in which the conductive particles 220a are arranged in the thickness direction in the elastic material 210a.
  • the insulating support portion 210 supports the conductive portion 220 and performs a function of maintaining insulation between the conductive portions 220.
  • Detailed configuration of the conductive portion 220 and the insulating support 210 is the same as the configuration of the conductive connector 100 according to the embodiment shown in Figures 4 and 5, a detailed description thereof will be omitted.
  • the conductive portion 220 is formed to protrude upward from the upper surface of the insulating support portion 210. That is, the conductive portion 220 includes a protrusion 222 protruding a predetermined height above the upper surface of the insulating support portion 210. As described above, when the conductive portion 220 protrudes upward from the upper surface of the insulating support portion 210, there is an advantage in that a reliable contact with the terminal 22 of the device under test 20 is possible.
  • the coating layer 230 is formed on the upper surface of the protrusion 222 of the conductive portion 220.
  • the coating layer 230 may be formed on the side surface of the protrusion 222, and may be formed to a diameter larger than the diameter of the conductive portion 220.
  • the type and thickness of the conductive metal forming the coating layer 230 are the same as the coating layer 130 of the conductive connector 100 according to the exemplary embodiment shown in FIGS. 4 and 5, a detailed description thereof will be omitted. .
  • the conductive connector 300 includes a plurality of conductive parts 320, an insulating support part 310, a conductive metal coating layer 330, and a guide. It comprises a film 340.
  • the conductive part 320 is disposed at a position corresponding to the terminal 22 of the device under test 20 and has a structure in which the conductive particles 320a are arranged in the thickness direction in the elastic material 310a.
  • the insulating support part 310 performs the function of maintaining the insulating property between the conductive parts 320 while supporting the conductive part 320.
  • the conductive metal coating layer 330 is formed on an upper surface of the protrusion 322 of the conductive portion 320.
  • the coating layer 330 may be formed on the side surface of the protrusion 322, and may be formed to a diameter larger than the diameter of the conductive portion 320.
  • Specific configuration of the conductive portion 320, the insulating support 310 and the conductive metal coating layer 330 is the same as the configuration of the conductive connector 200 according to another embodiment shown in Figure 6, the detailed description thereof will be omitted Let's do it.
  • the terminal 22 of the device under test 20 descends from the center of the conductive portion 320 on the upper surface of the insulating support portion 310, the terminal 22 is lowered.
  • Guide film 340 to guide the toward the center of the conductive portion 320 is attached.
  • the guide film 340 is formed to surround the side surface of the protrusion 322 at a predetermined distance from the side surface of the protrusion 322 of the conductive portion 320. That is, the guide film 340 is provided with a plurality of through holes 342 into which the protrusion 322 of the conductive part 320 is inserted.
  • the diameter of the through hole 342 is formed to be larger than the diameter of the protrusion 322 of the conductive portion 320.
  • the height of the guide film 340 may be the same as the height of the protrusion 322.
  • a synthetic resin material such as polyimide may be used, but is not limited thereto.
  • the conductive connectors 200 and 300 according to other embodiments of the present invention having the configuration as described above also have the same operation and effect as the conductive connector 100 according to the embodiment shown in FIGS. 4 and 5. Therefore, detailed description thereof will be omitted.
  • FIG. 8 to 11 are diagrams for explaining step-by-step the manufacturing method of the conductive connector according to an embodiment of the present invention shown in FIG.
  • the upper mold 420 is disposed on the upper portion of the lower mold 410 via the spacer 430.
  • a molding space surrounded by the spacer 430 is formed between the lower mold 410 and the upper mold 420.
  • a magnetic layer 412 is formed at each position, and a nonmagnetic layer 411 is formed at a portion other than the magnetic layer 412.
  • a magnetic layer 422 is formed at a position corresponding to the conductive portion 120 of the conductive connector 100 on the bottom of the upper magnetic substrate 424, and the magnetic layer 422.
  • the nonmagnetic layer 421 is formed at portions other than the?
  • the molding material 100a is injected into the molding space inside the prepared mold 400.
  • the molding material 100a may be manufactured by containing a plurality of conductive particles 120a in a liquid elastic material 110a, for example, a liquid silicone rubber.
  • the elastic material 110a and the conductive particles 120a have been described in detail above.
  • an electromagnet (not shown) disposed on the bottom surface side of the lower mold 310 and the upper surface side of the upper mold 320 is operated to be injected into the molding space inside the mold 400.
  • the magnetic field is applied to the formed molding material 100a in the vertical direction.
  • the conductive particles 120a dispersed in the liquid elastic material 110a are arranged in a vertical direction by flocking between the magnetic layer 322 of the upper mold 320 and the magnetic layer 312 of the lower mold 310. do.
  • the molding material 100a is cured in the mold 400 for 1.5 hours at a temperature of, for example, approximately 100 ° C.
  • the conductive particles 120a are arranged in the vertical direction in the cured elastic material 110a, and the plurality of conductive parts 120 are formed of the cured elastic material 110a around the plurality of conductive parts 120. Insulated support 110 is formed.
  • the mask film 150 is attached to the upper surface of the insulating support 110.
  • a plurality of holes 152 are formed in the mask film 150, through which a plurality of conductive parts 120 are exposed.
  • the plurality of holes 152 may be formed to have a diameter equal to or larger than the diameter of the conductive portion 120.
  • non-metal-based polyimide PI
  • PET polyethylene terephthalate
  • TAC triacetate cellulose
  • EVA ethylene vinyl acetate
  • PP polyflofilene
  • PC polycarbonate
  • the method of forming the holes 152 in the mask film 150 may include various methods such as laser processing, mechanical drill processing, wet processing by etching, exposure and development using photoresist and photomask, and the like. This can be used.
  • the conductive metal coating layer 130 is formed on the top surface of the mask film 150 and the top surfaces of the plurality of conductive parts 120 exposed by the holes 152.
  • the conductive metal paste is applied to the upper surface of the mask film 150 and the upper surface of the plurality of conductive parts 120 by a printing method with a predetermined thickness, and then the applied conductive metal paste is heated and dried to form a conductive metal.
  • the conductive metal coating layer 130 may be formed while the paste is hardened.
  • the conductive metal for example, iron, nickel, chromium, gold, silver, copper, platinum, or an alloy thereof may be used.
  • the average particle diameter of the conductive metal nanoparticles is preferably 10nm ⁇ 100nm.
  • the mask film 150 is removed. Specifically, when the mask film 150 is peeled off from the top surface of the insulating support 110, the coating layer 130 formed on the top surface of the mask film 150 is also removed, and the plurality of conductive parts 120 The conductive metal coating layer 130 coated on the upper surface remains.
  • the conductive metal coating layer 130 formed as described above has a diameter equal to the diameter of the conductive portion 120 or a diameter larger than the diameter of the conductive portion 120 according to the diameters of the holes 152 formed in the mask film 150. Have.
  • FIG. 12 and 13 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
  • the manufacturing method of the conductive connector 200 according to another embodiment of the present invention is similar to the manufacturing method of the conductive connector 100 according to the embodiment of the present invention described above, the following description will focus on the differences between them. Shall be.
  • the plurality of conductive parts 220 and the insulating support part 210 are formed in the same manner as shown in FIGS. 8 and 9.
  • the conductive portion 220 protrudes upward from the upper surface of the insulating support portion 210 so that the protrusion 222 is formed.
  • the protrusion 222 of the conductive portion 220 concave the magnetic layer 422 of the upper mold 420 shown in FIGS. 8 and 9 toward the upper magnetic substrate 424 as compared to the nonmagnetic layer 421.
  • the mask film 250 is attached to the upper surface of the insulating support portion 210.
  • a plurality of holes 252 are formed in the mask film 250, through which the protrusions 222 of the plurality of conductive parts 220 are exposed.
  • the plurality of holes 252 may be formed to have a diameter equal to or larger than a diameter of the protrusion 222 of the conductive part 220. Since the material of the mask film 250 and the method of forming the holes 252 are the same as described in the above-described embodiment, a description thereof will be omitted.
  • the conductive metal coating layer 230 is disposed on the upper surface of the mask film 250 and the upper surfaces of the protrusions 222 of the plurality of conductive parts 220 exposed by the holes 252. To form. In this case, the coating layer 230 may be formed on the side surface of the protrusion part 222 of the conductive part 220.
  • the method of forming the conductive metal coating layer 230 is the same as described in the above-described embodiment.
  • the coating layer 230 formed on the upper surface of the mask film 250 is removed. Accordingly, the conductive metal coating layer 230 coated on the top and side surfaces of the protrusions 222 of the plurality of conductive parts 220 remains.
  • FIG. 14 and 15 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
  • the manufacturing method of the conductive connector 300 according to another embodiment of the present invention is similar to the manufacturing method of the conductive connector 200 according to another embodiment of the present invention described above, the following description will focus on the differences between them. Let's do it.
  • a plurality of conductive portions 320 and insulating support portions 310 including protrusions 322 are formed in the same manner as described above.
  • a guide film 340 having a plurality of through holes 342 into which the protrusion 322 of the conductive part 320 is inserted is attached to an upper surface of the insulating support part 310.
  • the height of the guide film 340 may be the same as the height of the protrusion 322, the plurality of through holes 342 is formed to have a diameter larger than the diameter of the protrusion 322 of the conductive portion 320. Can be.
  • the mask film 350 is attached to the upper surface of the guide film 340.
  • a plurality of holes 352 are formed in the mask film 350, through which the protrusions 322 of the plurality of conductive parts 320 are exposed.
  • the plurality of holes 352 may be formed to have the same diameter as the diameter of the through hole 342 of the guide film 340. Since the material of the mask film 350 and the method of forming the holes 352 are the same as described in the above-described embodiment, a description thereof will be omitted.
  • the conductive metal coating layer 330 is disposed on the upper surface of the mask film 350 and the upper surfaces of the protrusions 322 of the plurality of conductive parts 320 exposed by the holes 352. To form. In this case, the coating layer 330 may be formed on the side surface of the protrusion 322 of the conductive part 320.
  • the method of forming the conductive metal coating layer 330 is the same as described in the above-described embodiment.
  • the coating layer 330 formed on the upper surface of the mask film 350 is removed. Accordingly, the conductive metal coating layer 330 coated on the upper and side surfaces of the protrusions 322 of the plurality of conductive parts 320 remains.
  • the present invention can be used in a conductive connector for a test socket used for inspecting electrical characteristics of a device under test and a method of manufacturing the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Measuring Leads Or Probes (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

Disclosed are a conductive connector arranged between a device to be tested and a test device to electrically connect terminals of the device to be tested and pads of the test device to each other, and a manufacturing method therefor. The disclosed conductive connector comprises: a plurality of conductive parts arranged at locations corresponding to the terminals of the device to be tested and having conductive particles aligned inside an elastic material in the vertical direction; an insulating support part for supporting the plurality of conductive parts and insulating the space between the plurality of conductive parts; and a conductive metal coating layer formed on the upper surface of each of the plurality of conductive parts.

Description

도전성 커넥터 및 그 제조방법Conductive connector and manufacturing method thereof
본 발명은 도전성 커넥터 및 그 제조방법에 관한 것으로, 더욱 상세하게는 피검사 디바이스의 전기적 특성 검사를 위해 사용되는 테스트 소켓용 도전성 커넥터 및 그 제조방법에 관한 것이다. The present invention relates to a conductive connector and a method for manufacturing the same, and more particularly, to a conductive connector for a test socket used for testing the electrical characteristics of the device under test and a method for manufacturing the same.
일반적으로, 반도체 집적 회로나 반도체 패키지 등의 전자 부품이나 이러한 전자 부품을 구성하기 위한 혹은 탑재하기 위한 회로 기판에 대해서는 제조 후에 전기적 특성을 검사하는 것이 필요하다. 이러한 피검사 디바이스의 전기적 특성 검사를 위해서는 피검사 디바이스와 검사 장치(테스트 보드)와의 전기적 접속이 안정적으로 이루어져야 하며, 이를 위해 전기접속용 커넥터가 사용된다. 즉, 전기접속용 커넥터 장치의 역할은 피검사 디바이스의 단자와 검사 장치의 패드를 서로 접속시켜 전기적인 신호가 양방향으로 교환 가능하게 하는 것이다. 이러한 전기접속용 커넥터는 피검사 디바이스를 테스트하기 위한 검사 장치에 사용되며 피검사 디바이스가 결합된다는 점에서 테스트 소켓이라고도 한다. In general, for electronic components such as semiconductor integrated circuits and semiconductor packages, and circuit boards for constituting or mounting such electronic components, it is necessary to inspect electrical characteristics after manufacture. In order to inspect the electrical characteristics of the device under test, the electrical connection between the device under test and the test device (test board) should be made stable, and an electrical connection connector is used for this purpose. That is, the role of the connector device for electrical connection is to connect the terminal of the device under test and the pad of the test device with each other so that the electrical signals can be exchanged in both directions. This electrical connection connector is used in a test apparatus for testing a device under test and is also called a test socket in that the device under test is coupled.
종래의 전기접속용 커넥터, 즉 테스트 소켓으로는, 일반적으로 도전성 커넥터와 포고핀이 사용되고 있다. 이 중에서 도전성 커넥터는 탄성을 가지는 도전부를 피검사 디바이스의 단자에 접속시키는 구조를 갖고 있으며, 포고핀은 그 내부에 마련된 스프링에 의해 피검사 디바이스의 단자에 탄성 접촉하도록 구성되어 있다. As a conventional electrical connector, that is, a test socket, a conductive connector and a pogo pin are generally used. Among these, the conductive connector has a structure in which a conductive portion having elasticity is connected to the terminal of the device under test, and the pogo pin is configured to elastically contact the terminal of the device under test by a spring provided therein.
이와 같이, 종래의 도전성 커넥터와 포고핀은 피검사 디바이스와 검사 장치와의 연결 시 발생할 수 있는 기계적인 충격을 완충할 수 있는 장점이 있어서, 테스트 소켓으로서 널리 사용되고 있다. As such, the conventional conductive connector and the pogo pin have a merit that can cushion the mechanical shock that may occur when the device under test and the test device are connected, and thus are widely used as test sockets.
도 1에는 종래의 전기접속용 커넥터의 일 예로서 도전성 커넥터가 도시되어 있으며, 도 2와 도 3은 도 1에 도시된 종래의 도전성 커넥터의 도전부를 확대하여 도시한 평면도와 단면도이다. 1 illustrates a conductive connector as an example of a conventional electrical connector, and FIGS. 2 and 3 are plan views and cross-sectional views showing an enlarged conductive part of the conventional conductive connector shown in FIG. 1.
도 1 내지 도 3을 참조하면, 종래의 도전성 커넥터(10)는, 피검사 디바이스(20)의 단자(22)와 대응되는 위치에 배치된 다수의 도전부(12)와, 상기 다수의 도전부(22)를 지지하면서 서로 절연시키는 절연지지부(11)를 포함하고 있다. 1 to 3, the conventional conductive connector 10 includes a plurality of conductive portions 12 disposed at positions corresponding to the terminals 22 of the device under test 20, and the plurality of conductive portions. The insulating support part 11 which insulates each other while supporting the 22 is included.
상기 도전부(12)는 실리콘 고무와 같은 절연성 탄성 물질(11a)로 이루어진 기재 내에 도전성 입자들(12a)이 두께 방향으로, 즉 수직 방향으로 배열되어 있는 구조를 가지며, 상기 절연지지부(11)는 상기 도전부(12) 내의 탄성 물질(11a)과 동일한 소재, 예컨대 실리콘 고무로 이루어진다. The conductive portion 12 has a structure in which the conductive particles 12a are arranged in a thickness direction, that is, in a vertical direction, in a substrate made of an insulating elastic material 11a such as silicone rubber. It is made of the same material as the elastic material 11a in the conductive portion 12, for example, silicone rubber.
상기 도전성 커넥터(10)는 검사 장치(30)에 탑재되며, 검사 장치(30)의 패드(32)에 각 도전부(12)가 접촉된 상태에서, 피검사 디바이스(20)가 하강하면서 피검사 디바이스(20)의 단자(22)가 상기 도전부(12)를 하측으로 가압하면 상기 도전부(12) 내의 도전성 입자들(12a)이 서로 접촉함으로써 전기적으로 도통 가능한 상태가 되며, 이 과정에서 도전부(12)가 탄성적으로 압축 변형되면서 피검사 디바이스(20)의 단자(22)와 접촉 시 발생할 수 있는 기계적인 충격을 완충하게 된다. The conductive connector 10 is mounted on the inspection apparatus 30 and is inspected while the device under test 20 descends while the conductive portion 12 is in contact with the pad 32 of the inspection apparatus 30. When the terminal 22 of the device 20 presses the conductive portion 12 downward, the conductive particles 12a in the conductive portion 12 come into contact with each other to be in an electrically conductive state. The part 12 is elastically compressive and deforms to cushion the mechanical shock that may occur when contacting the terminal 22 of the device under test 20.
이와 같이, 피검사 디바이스(20)의 단자(22)와 검사 장치(30)의 패드(32)가 도전성 커넥터(10)의 도전부(12)에 의해 서로 전기적으로 연결된 상태에서, 검사 장치(30)의 패드(32)로부터 소정의 검사신호가 인가되면 그 신호가 도전성 커넥터(10)의 도전부(12)를 거쳐서 피검사 디바이스(20)의 단자(22)로 전달됨으로써 소정의 전기적인 테스트가 수행될 수 있는 것이다. In this way, in the state in which the terminal 22 of the device under test 20 and the pad 32 of the inspection device 30 are electrically connected to each other by the conductive portion 12 of the conductive connector 10, the inspection device 30 is provided. When a predetermined test signal is applied from the pad 32 of the ()), the signal is transmitted to the terminal 22 of the device under test 20 via the conductive portion 12 of the conductive connector 10, thereby providing a predetermined electrical test. It can be done.
그런데, 도 3에 도시된 바와 같이, 종래의 도전성 커넥터(10)의 도전부(12)는, 상기한 바와 같이 절연성 탄성 물질(11a) 내에 도전성 입자들(12a)이 함유된 구조를 가지고 있으므로, 피검사 디바이스(20)의 단자(22)와 접촉되는 도전부(12)의 상면에는 탄성 물질(11a)로 인해 소량의 도전성 입자(12a)의 일부만이 노출된다. 이에 따라, 도전부(12)의 도전성 입자(12a)와 피검사 디바이스(20)의 단자(22) 사이의 접촉 면적이 좁아서, 도전부(12)와 피검사 디바이스(20)의 단자(22) 사이의 전기적 접촉 저항이 증가하거나 접촉 불량이 발생하게 되므로, 도전성 커넥터(10)의 신뢰성, 즉 피검사 디바이스(20)에 대한 양품 선별 능력이 저하되는 문제점이 있었다. However, as shown in FIG. 3, the conductive portion 12 of the conventional conductive connector 10 has a structure in which the conductive particles 12a are contained in the insulating elastic material 11a as described above. Only a portion of the small amount of conductive particles 12a is exposed to the upper surface of the conductive portion 12 in contact with the terminal 22 of the device under test 20 due to the elastic material 11a. Thereby, the contact area between the electroconductive particle 12a of the electroconductive part 12 and the terminal 22 of the device under test 20 is narrow, and the terminal 22 of the electroconductive part 12 and the device under test 20 is tested. Since the electrical contact resistance between the contact increases or poor contact occurs, there is a problem that the reliability of the conductive connector 10, that is, the quality screening ability for the device under test 20 is lowered.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하고자 창출된 것으로서, 도전부의 상면에 도전성 금속 코팅층을 형성하여 피검사 디바이스의 단자와 도전부 사이의 전기적 접촉 저항을 감소시키도록 구성된 도전성 커넥터와 그 제조방법을 제공하는데 그 목적이 있다. SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems as described above, and forms a conductive metal coating layer on the upper surface of the conductive portion to reduce the electrical contact resistance between the terminal and the conductive portion of the device under test and its manufacture. The purpose is to provide a method.
상기한 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따른 도전성 커넥터는, 피검사 디바이스와 검사 장치의 사이에 배치되어 상기 피검사 디바이스의 단자와 상기 검사 장치의 패드를 서로 전기적으로 연결하는 도전성 커넥터에 있어서,A conductive connector according to an aspect of the present invention for achieving the above technical problem is disposed between the device under test and the test device, the conductive connector for electrically connecting the terminal of the device under test and the pad of the test device with each other. To
상기 피검사 디바이스의 단자와 대응되는 위치에 배치되며 탄성 물질 내에 도전성 입자들이 수직 방향으로 배열된 다수의 도전부; 상기 다수의 도전부를 지지하면서 상기 다수의 도전부 사이를 절연시키는 절연지지부; 및 상기 다수의 도전부 각각의 상면에 형성되는 도전성 금속 코팅층;을 구비하는 것을 특징으로 한다. A plurality of conductive portions disposed at positions corresponding to the terminals of the device under test and having conductive particles arranged in a vertical direction in an elastic material; An insulating support portion for insulating the plurality of conductive portions while supporting the plurality of conductive portions; And a conductive metal coating layer formed on an upper surface of each of the plurality of conductive parts.
여기서, 상기 다수의 도전부는 상기 절연지지부의 상면 위쪽으로 돌출되도록 형성되고, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 상면에 형성될 수 있다. The conductive parts may be formed to protrude upward from the upper surface of the insulating support, and the conductive metal coating layer may be formed on the upper surfaces of the protruding parts of the plurality of conductive parts.
또한, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 측면에도 형성될 수 있다. In addition, the conductive metal coating layer may be formed on the side of the protrusion of the plurality of conductive parts.
또한, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 직경보다 큰 직경으로 형성될 수 있다. In addition, the conductive metal coating layer may be formed to a diameter larger than the diameter of the plurality of conductive parts.
또한, 상기 절연지지부의 상면에는 상기 피검사 디바이스의 단자를 상기 도전부의 중심쪽으로 가이드하는 가이드 필름이 부착되고, 상기 가이드 필름에는 상기 다수의 도전부의 돌출부가 삽입되는 다수의 관통공이 형성될 수 있다. In addition, a guide film for guiding the terminal of the device under test to the center of the conductive part may be attached to an upper surface of the insulating support part, and the guide film may have a plurality of through-holes into which protrusions of the plurality of conductive parts are inserted.
또한, 상기 도전성 금속 코팅층은 0.1㎛ ~ 10㎛의 두께를 가질 수 있다. In addition, the conductive metal coating layer may have a thickness of 0.1㎛ ~ 10㎛.
또한, 상기 도전성 금속 코팅층의 도전성 금속은 철, 니켈, 크롬, 금, 은, 동, 백금, 및 이들의 합금으로 이루어진 군 중에서 선택된 적어도 하나를 포함할 수 있다. In addition, the conductive metal of the conductive metal coating layer may include at least one selected from the group consisting of iron, nickel, chromium, gold, silver, copper, platinum, and alloys thereof.
또한, 상기 도전성 금속 코팅층은 도전성 금속 나노 입자들로 이루어질 수 있다. In addition, the conductive metal coating layer may be made of conductive metal nanoparticles.
또한, 상기 도전성 금속 나노 입자들의 평균 입자 직경은 10nm ~ 100nm일 수 있다. In addition, the average particle diameter of the conductive metal nanoparticles may be 10nm ~ 100nm.
그리고, 상기한 기술적 과제를 달성하기 위한 본 발명에 따른 도전성 커넥터의 제조방법은, In addition, the manufacturing method of the conductive connector according to the present invention for achieving the above technical problem,
금형 내부의 성형 공간에 액상의 탄성 물질 내에 도전성 입자들이 함유된 성형용 재료를 주입하는 단계; 상기 금형 내부의 성형 공간에 주입된 상기 성형용 재료에 수직 방향으로 자기장을 인가함으로써, 상기 도전성 입자들이 수직 방향으로 배열되도록 하는 단계; 상기 성형용 재료를 경화시켜 상기 다수의 도전부와 절연지지부를 형성하는 단계; 및 상기 다수의 도전부의 상면에 도전성 금속 코팅층을 형성하는 단계;를 포함하는 것을 특징으로 한다.Injecting a molding material containing conductive particles into a liquid elastic material into a molding space inside the mold; Applying a magnetic field in a vertical direction to the molding material injected into the molding space inside the mold to arrange the conductive particles in a vertical direction; Curing the molding material to form the plurality of conductive parts and the insulating support part; And forming a conductive metal coating layer on upper surfaces of the plurality of conductive parts.
여기서, 상기 도전성 금속 코팅층을 형성하는 단계는, 상기 절연지지부의 상면에 상기 다수의 도전부를 노출시키는 구멍들이 형성된 마스크 필름을 부착하는 단계와; 상기 마스크 필름의 상면과 상기 구멍들에 의해 노출된 다수의 도전부의 상면에 도전성 금속 코팅층을 형성하는 단계와; 상기 절연지지부의 상면으로부터 상기 마스크 필름을 제거하면서, 상기 마스크 필름의 상면에 형성된 상기 도전성 금속 코팅층을 제거하는 단계;를 포함할 수 있다. The forming of the conductive metal coating layer may include attaching a mask film having holes formed on the upper surface of the insulating support to expose the plurality of conductive parts; Forming a conductive metal coating layer on an upper surface of the mask film and an upper surface of the plurality of conductive portions exposed by the holes; And removing the conductive metal coating layer formed on the upper surface of the mask film while removing the mask film from the upper surface of the insulating support.
그리고, 상기 다수의 도전부는 상기 절연지지부의 상면 위쪽으로 돌출되도록 형성되고, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 상면에 형성될 수 있다. The conductive parts may be formed to protrude upward from the upper surface of the insulating support, and the conductive metal coating layer may be formed on the upper surfaces of the protruding parts of the conductive parts.
또한, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 측면에도 형성될 수 있다. In addition, the conductive metal coating layer may be formed on the side of the protrusion of the plurality of conductive parts.
또한, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 직경보다 큰 직경으로 형성될 수 있다. In addition, the conductive metal coating layer may be formed to a diameter larger than the diameter of the plurality of conductive parts.
또한, 상기 절연지지부의 상면에는 상기 피검사 디바이스의 단자를 상기 도전부의 중심쪽으로 가이드하는 가이드 필름이 부착되고, 상기 가이드 필름에는 상기 다수의 도전부의 돌출부가 삽입되는 다수의 관통공이 형성될 수 있다. In addition, a guide film for guiding the terminal of the device under test to the center of the conductive part may be attached to an upper surface of the insulating support part, and the guide film may have a plurality of through-holes into which protrusions of the plurality of conductive parts are inserted.
또한, 상기 마스크 필름에 형성된 구멍들은 상기 도전부의 직경보다 크거나 동일한 직경을 가질 수 있다. In addition, the holes formed in the mask film may have a diameter greater than or equal to the diameter of the conductive portion.
또한, 상기 마스크 필름은, 폴리이미드(PI), 폴리에틸렌테레프탈레이드(PET), 트리아세테이트셀룰로우즈(TAC), 에틸렌비닐아세테이트(EVA), 폴리플로필렌(PP), 폴리카보네이트(PC), 구리박막시트, 알루미늄박막시트, 및 스테인레스박막시트로 이루어진 군 중에서 선택된 어느 하나의 재질로 이루어질 수 있다. In addition, the mask film is polyimide (PI), polyethylene terephthalate (PET), triacetate cellulose (TAC), ethylene vinyl acetate (EVA), polyflopropylene (PP), polycarbonate (PC), copper It may be made of any one material selected from the group consisting of a thin film sheet, an aluminum thin film sheet, and a stainless thin film sheet.
또한, 상기 도전성 금속 코팅층은 0.1㎛ ~ 10㎛의 두께를 가지도록 형성될 수 있다. In addition, the conductive metal coating layer may be formed to have a thickness of 0.1㎛ ~ 10㎛.
또한, 상기 도전성 금속 코팅층 형성 단계는, 도전성 금속 페이스트를 프린팅 방법에 의해 상기 마스크 필름의 상면과 상기 다수의 도전부의 상면에 도포한 후 건조시킴으로써 상기 도전성 금속 코팅층을 형성할 수 있다. In the forming of the conductive metal coating layer, the conductive metal paste may be coated on the upper surface of the mask film and the upper surface of the plurality of conductive parts by a printing method and then dried to form the conductive metal coating layer.
상기 도전성 금속 코팅층 형성 단계는, 도전성 금속 나노 입자 수용액을 스프레이 방식으로 분사하여 상기 마스크 필름의 상면과 상기 다수의 도전부의 상면에 도포한 후 건조시킴으로써 상기 도전성 금속 코팅층을 형성할 수 있다. In the forming of the conductive metal coating layer, the conductive metal nanoparticle aqueous solution may be sprayed, sprayed, and then coated on the upper surface of the mask film and the upper surface of the plurality of conductive parts to form the conductive metal coating layer by drying.
본 발명의 실시예들에 따른 도전성 커넥터에 의하면, 도전부의 상면에 도전성 금속 코팅층이 형성됨으로써 피검사 디바이스의 단자와의 접촉 면적이 넓어지게 되므로, 피검사 디바이스의 단자와 도전부 사이의 전기적 접촉 저항이 감소하여 안정적인 전기적 접속이 이루어지게 된다. 이에 따라, 도전성 커넥터의 신뢰성과 피검사 디바이스에 대한 양품 선별 능력이 향상되는 효과가 있다. According to the conductive connector according to the embodiments of the present invention, since the conductive metal coating layer is formed on the upper surface of the conductive portion, the contact area with the terminal of the device under test is widened, so that the electrical contact resistance between the terminal of the device under test and the conductive portion is This decrease results in a stable electrical connection. Thereby, there exists an effect which improves the reliability of a conductive connector and the quality selection ability with respect to the device under test.
또한, 도전부의 상면이 도전부에 비해 단단한 코팅층에 의해 덮여 있으므로, 도전부가 피검사 디바이스의 단자에 직접 접촉됨으로써 발생되는 도전부의 마모나 손상이 방지되고, 이물질에 의한 도전부의 오염이나 손상도 방지될 수 있으므로, 도전성 커넥터의 수명이 연장되는 효과가 있다. In addition, since the upper surface of the conductive portion is covered by a harder coating layer than the conductive portion, wear and damage of the conductive portion caused by the conductive portion directly contacting the terminal of the device under test can be prevented, and contamination or damage of the conductive portion by foreign matter can be prevented. As a result, the service life of the conductive connector can be extended.
도 1은 종래의 도전성 커넥터의 일 예를 도시한 단면도이다. 1 is a cross-sectional view showing an example of a conventional conductive connector.
도 2와 도 3은 도 1에 도시된 종래의 도전성 커넥터의 도전부를 확대하여 도시한 평면도와 단면도이다. 2 and 3 are enlarged plan views and cross-sectional views of conductive portions of the conventional conductive connector shown in FIG.
도 4는 본 발명의 일 실시예에 따른 도전성 커넥터를 도시한 도면이다. 4 illustrates a conductive connector according to an embodiment of the present invention.
도 5는 도 4에 도시된 도전부와 코팅층을 확대하여 도시한 도면이다. FIG. 5 is an enlarged view of the conductive part and the coating layer shown in FIG. 4.
도 6은 본 발명의 다른 실시예에 따른 도전성 커넥터를 부분적으로 도시한 도면이다. 6 is a view partially showing a conductive connector according to another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시예에 따른 도전성 커넥터를 부분적으로 도시한 도면이다.7 is a view partially showing a conductive connector according to another embodiment of the present invention.
도 8 내지 도 11은 도 4에 도시된 본 발명의 일 실시예에 따른 도전성 커넥터의 제조방법을 단계별로 설명하기 위한 도면들이다. 8 to 11 are diagrams for explaining step-by-step the manufacturing method of the conductive connector according to an embodiment of the present invention shown in FIG.
도 12와 도 13은 도 6에 도시된 본 발명의 다른 실시예에 따른 도전성 커넥터의 제조방법을 설명하기 위한 도면이다. 12 and 13 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
도 14와 도 15는 도 7에 도시된 본 발명의 또 다른 실시예에 따른 도전성 커넥터의 제조방법을 설명하기 위한 도면이다. 14 and 15 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
이하, 첨부된 도면들을 참조하면서 본 발명의 실시예들에 따른 도전성 커넥터와 그 제조방법에 대해 상세하게 설명하기로 한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 가리킨다.Hereinafter, a conductive connector and a method of manufacturing the same according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the following drawings indicate like elements.
도 4는 본 발명의 일 실시예에 따른 도전성 커넥터를 도시한 도면이고, 도 5는 도 4에 도시된 도전부와 코팅층을 확대하여 도시한 도면이다. 4 is a view showing a conductive connector according to an embodiment of the present invention, Figure 5 is an enlarged view showing the conductive portion and the coating layer shown in FIG.
도 4와 도 5를 함께 참조하면, 본 발명의 일 실시예에 따른 도전성 커넥터(100)는, 피검사 디바이스(20)와 검사 장치(30)의 사이에 배치되어 상기 피검사 디바이스(20)의 단자(22)와 검사 장치(30)의 패드(32)를 서로 전기적으로 연결하는 역할을 하는 전기접속용 커넥터, 즉 테스트 소켓의 일종이다. 4 and 5 together, the conductive connector 100 according to an embodiment of the present invention is disposed between the device under test 20 and the test device 30 of the device under test 20. It is a kind of electrical connection connector, that is, a test socket, which serves to electrically connect the terminal 22 and the pad 32 of the test apparatus 30 to each other.
상기 도전성 커넥터(100)는, 두께 방향, 즉 수직 방향으로는 전기적인 흐름을 가능하게 하고 두께 방향과 직교하는 면방향, 즉 수평 방향으로는 전기적인 흐름을 불가하게 하는 것으로서, 탄성적으로 수축 변형되면서 피검사 디바이스(20)의 단자(22)로부터 가해지는 충격력을 흡수할 수 있도록 구성된다. 구체적으로, 상기 도전성 커넥터(100)는, 다수의 도전부(120)와, 절연지지부(110)와, 도전성 금속 코팅층(130)을 포함하여 구성된다. The conductive connector 100 enables electrical flow in a thickness direction, that is, a vertical direction, and disables electrical flow in a plane direction orthogonal to the thickness direction, that is, in a horizontal direction. It is configured to absorb the impact force applied from the terminal 22 of the device under test 20. In detail, the conductive connector 100 includes a plurality of conductive parts 120, an insulating support part 110, and a conductive metal coating layer 130.
상기 도전부(120)는, 피검사 디바이스(20)의 단자(22)와 대응되는 위치에 배치되며, 탄성 물질(110a) 내에 도전성 입자들(120a)이 두께 방향으로 배열된 구조를 가진다. The conductive portion 120 is disposed at a position corresponding to the terminal 22 of the device under test 20 and has a structure in which the conductive particles 120a are arranged in the thickness direction in the elastic material 110a.
상기 도전부(120)의 수평 단면은 다양한 형상을 가질 수 있으나, 원형의 단면 형상을 가지는 것이 바람직하다. 즉, 상기 도전부(120)는 원기둥 형상을 가지는 것이 바람직하다. The horizontal cross section of the conductive portion 120 may have various shapes, but preferably has a circular cross-sectional shape. That is, the conductive portion 120 preferably has a cylindrical shape.
상기 도전부(120)를 형성하는 탄성 물질(110a)로는 가교 구조를 갖는 내열성의 고분자 물질이 사용될 수 있다. 이러한 탄성 고분자 물질을 얻기 위해 이용할 수 있는 경화성의 고분자 물질 형성 재료로는, 다양한 것이 이용될 수 있지만, 성형 가공성 및 전기 특성 측면에서 액상 실리콘 고무가 바람직하다. 액상 실리콘 고무로는 부가형의 것, 축합형의 것, 비닐기나 히드록실기를 함유하는 것 등의 어느 것이어도 좋다. 구체적으로는, 디메틸실리콘 생고무, 메틸비닐실리콘 생고무, 메틸페닐비닐실리콘 생고무 등을 들 수 있다. As the elastic material 110a forming the conductive portion 120, a heat resistant polymer material having a crosslinked structure may be used. As the curable polymer material forming material that can be used to obtain such an elastic polymer material, various materials can be used, but liquid silicone rubber is preferable in terms of molding processability and electrical properties. The liquid silicone rubber may be any of an addition type, a condensation type, a vinyl group or a hydroxyl group. Specifically, dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, methylphenyl vinyl silicone raw rubber, etc. are mentioned.
상기 도전부(120)를 실리콘 고무의 경화물에 의해 형성하는 경우에 있어서, 상기 실리콘 고무 경화물은 150℃에 있어서의 압축 영구 왜곡이 10% 이하인 것이 바람직하고, 8% 이하인 것이 더욱 바람직하며, 6% 이하인 것이 가장 바람직하다. 압축 영구 왜곡이 10%를 넘는 경우에는, 얻을 수 있는 도전성 커넥터(100)를 고온 환경 하에서 반복해서 사용하였을 때, 도전부(120) 내의 도전성 입자들(120a)의 연쇄에 흐트러짐이 생기므로, 필요한 도전성을 유지하는 것이 곤란해진다.In the case where the conductive portion 120 is formed of a cured product of silicone rubber, the silicone rubber cured product preferably has a compression set of 10% or less, more preferably 8% or less at 150 ° C. Most preferably, it is 6% or less. When the compression set is more than 10%, when the obtained conductive connector 100 is repeatedly used in a high temperature environment, it is disturbed in the chain of the conductive particles 120a in the conductive portion 120, so that it is necessary. Maintaining conductivity becomes difficult.
상기 도전부(120)를 구성하는 도전성 입자들(120a)로는 자성을 나타내는 코어 입자(이하,「자성 코어 입자」라 함)의 표면에 고도전성 금속이 피복되어 이루어진 것을 이용하는 것이 바람직하다. 상기 자성 코어 입자는 평균 입자 직경이 3㎛ 내지 40㎛인 것이 바람직하다. 여기서, 자성 코어 입자의 평균 입자 직경은 레이저 회절 산란법에 의해 측정된 것을 말한다. 상기 자성 코어 입자를 구성하는 재료로는, 철, 니켈, 코발트, 또는 이들의 합금이 사용될 수 있으며, 포화 자화가 0.1 ㏝/㎡ 이상인 것이 바람직하고, 0.3 ㏝/㎡ 이상인 것이 더욱 바람직하며, 0.5 ㏝/㎡ 이상인 것이 가장 바람직하다. 그리고, 상기 고도전성 금속이라 함은 0℃에 있어서의 도전율이 5 × 106 Ω/m 이상인 것을 말한다. 상기 자성 코어 입자의 표면에 피복되는 고도전성 금속으로는, 금, 은, 로듐, 백금, 크롬 등이 있으며, 이들 중에서는 화학적으로 안정되고 또한 높은 도전율을 갖는다는 점에서 금이 바람직하다. As the conductive particles 120a constituting the conductive portion 120, it is preferable to use those in which a highly conductive metal is coated on the surface of core particles (hereinafter, referred to as "magnetic core particles") that exhibit magnetic properties. The magnetic core particles preferably have an average particle diameter of 3 µm to 40 µm. Here, the average particle diameter of a magnetic core particle says what was measured by the laser diffraction scattering method. As the material constituting the magnetic core particles, iron, nickel, cobalt, or an alloy thereof may be used, and the saturation magnetization is preferably 0.1 m 3 / m 2 or more, more preferably 0.3 m 3 / m 2 or more, and 0.5 m 3 It is most preferable that it is / m <2> or more. In addition, the said highly conductive metal means that the electrical conductivity in 0 degreeC is 5 * 10 <6> / ohm or more. Highly conductive metals coated on the surface of the magnetic core particles include gold, silver, rhodium, platinum, chromium, and the like, and among them, gold is preferable in terms of chemical stability and high conductivity.
상기 절연지지부(110)는 상기 도전부(120)를 지지하면서 도전부들(120) 사이의 절연성을 유지시키는 기능을 수행한다. 이러한 절연지지부(110)는 상기 도전부(120) 내의 탄성 물질(110a)과 동일한 소재, 예컨대 실리콘 고무로 이루어진 것이 바람직하다. 다만, 이에 한정되는 것은 아니며 탄성력이 좋으면서 절연성이 우수한 소재라면 무엇이나 사용될 수 있음은 물론이다.The insulating support 110 supports the conductive part 120 and maintains insulation between the conductive parts 120. The insulating support 110 is preferably made of the same material as the elastic material 110a in the conductive part 120, for example, silicone rubber. However, the present invention is not limited thereto and may be used as long as the material has good elasticity and excellent insulation.
상기 코팅층(130)은 상기 피검사 디바이스(20)의 단자(22)와 접촉되는 상기 도전부(120)의 상면에 코팅된다. 상기 코팅층(130)은 도전부(120)의 직경과 동일한 직경으로 형성될 수 있으나, 이에 한정되지는 않으며, 도전부(120)의 직경보다 큰 직경으로 형성될 수도 있다. 또한, 상기 코팅층(130)은 0.1㎛ ~ 10㎛의 두께를 가지도록 형성되는 것이 바람직하다. The coating layer 130 is coated on the upper surface of the conductive portion 120 in contact with the terminal 22 of the device under test 20. The coating layer 130 may be formed to the same diameter as the diameter of the conductive portion 120, but is not limited thereto, and may be formed to a diameter larger than the diameter of the conductive portion 120. In addition, the coating layer 130 is preferably formed to have a thickness of 0.1㎛ ~ 10㎛.
상기 코팅층(130)을 형성하는 도전성 금속으로는, 예컨대 철, 니켈, 크롬, 금, 은, 동, 백금, 또는 이들의 합금이 사용될 수 있다. 또한, 상기 코팅층(130)은 상기 도전성 금속의 나노 입자들로 이루어질 수 있으며, 상기 도전성 금속 나노 입자들의 평균 입자 직경은 10nm ~ 100nm인 것이 바람직하다. As the conductive metal for forming the coating layer 130, for example, iron, nickel, chromium, gold, silver, copper, platinum, or an alloy thereof may be used. In addition, the coating layer 130 may be made of nanoparticles of the conductive metal, the average particle diameter of the conductive metal nanoparticles is preferably 10nm ~ 100nm.
이하에서는, 상기한 구성을 가진 본 발명의 일 실시예에 따른 도전성 커넥터(100)의 작용 및 효과를 설명하기로 한다. Hereinafter, the operation and effect of the conductive connector 100 according to an embodiment of the present invention having the above configuration will be described.
도 4를 참조하면, 상기한 바와 같은 구성을 가진 도전성 커넥터(100)는 검사 장치(30) 위에 탑재되며, 이에 따라 도전성 커넥터(100)의 도전부(120)의 저면과 검사 장치(30)의 패드(32)가 접촉된다. 이 상태에서 피검사 디바이스(20)가 하강하면, 피검사 디바이스(20)의 단자(22)가 도전부(120)의 상면에 형성된 코팅층(130)에 접촉되면서 상기 코팅층(130)과 도전부(120)를 아래쪽으로 가압한다. Referring to FIG. 4, the conductive connector 100 having the configuration as described above is mounted on the inspection apparatus 30, and thus, the bottom of the conductive portion 120 of the conductive connector 100 and the inspection apparatus 30. The pad 32 is in contact. When the device under test 20 is lowered in this state, the terminal 22 of the device under test 20 contacts the coating layer 130 formed on the upper surface of the conductive part 120, and the coating layer 130 and the conductive part ( 120) press down.
이때, 상기 도전부(120) 내의 도전성 입자들(120a)이 서로 접촉함으로써 전기적으로 도통 가능한 상태가 되며, 이 과정에서 도전부(120)가 탄성 압축 변형되면서 피검사 디바이스(20)의 단자(22)와 접촉 시 발생할 수 있는 기계적인 충격을 완충하게 된다. At this time, the conductive particles 120a in the conductive portion 120 are in contact with each other to be electrically conductive, and in this process, the conductive portion 120 is elastically compressed and deformed while the terminal 22 of the device under test 20. ) To cushion mechanical shocks that may occur.
상기 도전부(120)와 코팅층(130)을 통해 피검사 디바이스(20)의 단자(22)와 검사 장치(30)의 패드(32)가 전기적으로 연결되면, 검사 장치(30)의 패드(32)로부터 소정의 검사신호가 인가되고, 그 신호가 도전부(120)와 코팅층(130)을 거쳐서 피검사 디바이스(20)의 단자(22)로 전달됨으로써 소정의 전기적인 테스트가 수행된다. When the terminal 22 of the device under test 20 and the pad 32 of the test device 30 are electrically connected through the conductive part 120 and the coating layer 130, the pad 32 of the test device 30 is electrically connected. A predetermined test signal is applied to the terminal, and the signal is transmitted to the terminal 22 of the device under test 20 through the conductive portion 120 and the coating layer 130 to perform a predetermined electrical test.
그리고, 상기 도전성 커넥터(100)는 아래와 같은 효과를 가진다. In addition, the conductive connector 100 has the following effects.
본 발명에 따른 도전성 커넥터(100)에 의하면, 상기한 바와 같이 피검사 디바이스(20)에 대한 전기적 테스트 과정에서, 피검사 디바이스(20)의 단자(22)는 도전부(120)의 상면에 형성된 도전성 금속 코팅층(130)에 접촉되므로, 전기적 접촉 면적이 넓어지게 된다. 이에 따라, 피검사 디바이스(20)의 단자(22)와 도전부(120) 사이의 전기적 접촉 저항이 감소하여 안정적인 전기적 접속이 이루어지게 되므로, 도전성 커넥터(100)의 신뢰성과 피검사 디바이스(20)에 대한 양품 선별 능력이 향상되는 효과가 있다. According to the conductive connector 100 according to the present invention, as described above, in the electrical test process for the device under test 20, the terminal 22 of the device under test 20 is formed on the upper surface of the conductive portion 120. Since the contact with the conductive metal coating layer 130, the electrical contact area is widened. Accordingly, since the electrical contact resistance between the terminal 22 and the conductive portion 120 of the device under test 20 is reduced, thereby making a stable electrical connection, the reliability of the conductive connector 100 and the device under test 20 are reduced. It is effective to improve the quality of the screening ability for good.
그리고, 상기 코팅층(130)은 도전성 금속으로 이루어지므로, 도전부(120)에 비해 단단하게 형성된다. 이와 같이, 도전부(120)의 상면이 단단한 코팅층(130)에 의해 덮여 있으므로, 도전부(120)가 피검사 디바이스(20)의 단자(22)에 직접 접촉됨으로써 발생되는 도전부(120)의 마모나 손상이 방지되고, 이물질에 의한 도전부(120)의 오염이나 손상도 방지될 수 있으므로, 도전성 커넥터(100)의 수명이 연장되는 효과가 있다. In addition, since the coating layer 130 is made of a conductive metal, it is formed harder than the conductive portion 120. Thus, since the upper surface of the conductive portion 120 is covered by the hard coating layer 130, the conductive portion 120 of the conductive portion 120 generated by the direct contact with the terminal 22 of the device under test 20 Since wear and damage can be prevented, and contamination or damage of the conductive portion 120 due to foreign matter can be prevented, there is an effect of extending the life of the conductive connector 100.
이하에서는, 본 발명에 따른 도전성 커넥터의 다른 실시예들에 대해 설명하기로 한다. Hereinafter, other embodiments of the conductive connector according to the present invention will be described.
도 6은 본 발명의 다른 실시예에 따른 도전성 커넥터를 부분적으로 도시한 도면이고, 도 7은 본 발명의 또 다른 실시예에 따른 도전성 커넥터를 부분적으로 도시한 도면이다.6 is a view partially showing a conductive connector according to another embodiment of the present invention, Figure 7 is a view partially showing a conductive connector according to another embodiment of the present invention.
먼저, 도 6을 참조하면, 본 발명의 다른 실시예에 따른 도전성 커넥터(200)는, 다수의 도전부(220)와, 절연지지부(210)와, 도전성 금속 코팅층(230)을 포함하여 구성된다. First, referring to FIG. 6, the conductive connector 200 according to another embodiment of the present invention includes a plurality of conductive parts 220, an insulating support part 210, and a conductive metal coating layer 230. .
상기 도전부(220)는, 피검사 디바이스(20)의 단자(22)와 대응되는 위치에 배치되며, 탄성 물질(210a) 내에 도전성 입자들(220a)이 두께 방향으로 배열된 구조를 가진다. 그리고, 상기 절연지지부(210)는 상기 도전부(220)를 지지하면서 도전부들(220) 사이의 절연성을 유지시키는 기능을 수행한다. 상기 도전부(220)와 절연지지부(210)의 구체적 구성은 도 4와 도 5에 도시된 일 실시예에 따른 도전성 커넥터(100)의 구성과 동일하므로, 이에 대한 상세한 설명은 생략하기로 한다. The conductive portion 220 is disposed at a position corresponding to the terminal 22 of the device under test 20 and has a structure in which the conductive particles 220a are arranged in the thickness direction in the elastic material 210a. In addition, the insulating support portion 210 supports the conductive portion 220 and performs a function of maintaining insulation between the conductive portions 220. Detailed configuration of the conductive portion 220 and the insulating support 210 is the same as the configuration of the conductive connector 100 according to the embodiment shown in Figures 4 and 5, a detailed description thereof will be omitted.
다만, 본 실시예에 있어서, 상기 도전부(220)는 절연지지부(210)의 상면 위쪽으로 돌출되도록 형성된다. 즉, 상기 도전부(220)는 절연지지부(210)의 상면 위로 소정 높이 돌출된 돌출부(222)를 포함한다. 이와 같이, 도전부(220)가 절연지지부(210)의 상면 위쪽으로 돌출된 경우에는 피검사디바이스(20)의 단자(22)와 확실한 접촉이 가능하게 되는 장점이 있다. However, in the present exemplary embodiment, the conductive portion 220 is formed to protrude upward from the upper surface of the insulating support portion 210. That is, the conductive portion 220 includes a protrusion 222 protruding a predetermined height above the upper surface of the insulating support portion 210. As described above, when the conductive portion 220 protrudes upward from the upper surface of the insulating support portion 210, there is an advantage in that a reliable contact with the terminal 22 of the device under test 20 is possible.
이 경우, 상기 코팅층(230)은 상기 도전부(220)의 돌출부(222) 상면에 형성된다. 또한, 상기 코팅층(230)은 상기 돌출부(222)의 측면에도 형성될 수 있으며, 상기 도전부(220)의 직경보다 큰 직경으로 형성될 수 있다. In this case, the coating layer 230 is formed on the upper surface of the protrusion 222 of the conductive portion 220. In addition, the coating layer 230 may be formed on the side surface of the protrusion 222, and may be formed to a diameter larger than the diameter of the conductive portion 220.
상기 코팅층(230)을 형성하는 도전성 금속의 종류와 두께 등은 도 4와 도 5에 도시된 일 실시예에 따른 도전성 커넥터(100)의 코팅층(130)과 동일하므로, 이에 대한 상세한 설명은 생략한다. Since the type and thickness of the conductive metal forming the coating layer 230 are the same as the coating layer 130 of the conductive connector 100 according to the exemplary embodiment shown in FIGS. 4 and 5, a detailed description thereof will be omitted. .
다음으로, 도 7을 참조하면, 본 발명의 또 다른 실시예에 따른 도전성 커넥터(300)는, 다수의 도전부(320)와, 절연지지부(310)와, 도전성 금속 코팅층(330)과, 가이드 필름(340)을 포함하여 구성된다. Next, referring to FIG. 7, the conductive connector 300 according to another embodiment of the present invention includes a plurality of conductive parts 320, an insulating support part 310, a conductive metal coating layer 330, and a guide. It comprises a film 340.
상기 도전부(320)는, 피검사 디바이스(20)의 단자(22)와 대응되는 위치에 배치되며, 탄성 물질(310a) 내에 도전성 입자들(320a)이 두께 방향으로 배열된 구조를 가진다. 그리고, 상기 절연지지부(310)는 상기 도전부(320)를 지지하면서 도전부들(320) 사이의 절연성을 유지시키는 기능을 수행한다. 상기 도전성 금속 코팅층(330)은 상기 도전부(320)의 돌출부(322) 상면에 형성된다. 또한, 상기 코팅층(330)은 상기 돌출부(322)의 측면에도 형성될 수 있으며, 상기 도전부(320)의 직경보다 큰 직경으로 형성될 수 있다. 상기 도전부(320), 절연지지부(310) 및 도전성 금속 코팅층(330)의 구체적 구성은 도 6에 도시된 다른 실시예에 따른 도전성 커넥터(200)의 구성과 동일하므로, 이에 대한 상세한 설명은 생략하기로 한다. The conductive part 320 is disposed at a position corresponding to the terminal 22 of the device under test 20 and has a structure in which the conductive particles 320a are arranged in the thickness direction in the elastic material 310a. In addition, the insulating support part 310 performs the function of maintaining the insulating property between the conductive parts 320 while supporting the conductive part 320. The conductive metal coating layer 330 is formed on an upper surface of the protrusion 322 of the conductive portion 320. In addition, the coating layer 330 may be formed on the side surface of the protrusion 322, and may be formed to a diameter larger than the diameter of the conductive portion 320. Specific configuration of the conductive portion 320, the insulating support 310 and the conductive metal coating layer 330 is the same as the configuration of the conductive connector 200 according to another embodiment shown in Figure 6, the detailed description thereof will be omitted Let's do it.
다만, 본 실시예에 있어서, 상기 절연지지부(310)의 상면에는, 피검사 디바이스(20)의 단자(22)가 도전부(320)의 중심과 어긋난 상태로 하강할 때, 상기 단자(22)를 상기 도전부(320)의 중심쪽으로 가이드하는 가이드 필름(340)이 부착된다. 상기 가이드 필름(340)은 상기 도전부(320)의 돌출부(322)의 측면과 소정의 간격을 두고 상기 돌출부(322)의 측면을 둘러싸도록 형성된다. 즉, 상기 가이드 필름(340)에는 상기 도전부(320)의 돌출부(322)가 삽입되는 다수의 관통공(342)이 형성된다. 상기 관통공(342)의 직경은 상기 도전부(320)의 돌출부(322)의 직경보다 크도록 형성된다. 또한, 상기 가이드 필름(340)의 높이는 상기 돌출부(322)의 높이와 동일할 수 있다. 상기 가이드 필름(340)으로서, 예를 들어 폴리이미드와 같은 합성수지소재가 사용될 수 있으나, 이에 한정되지는 않는다. However, in the present embodiment, when the terminal 22 of the device under test 20 descends from the center of the conductive portion 320 on the upper surface of the insulating support portion 310, the terminal 22 is lowered. Guide film 340 to guide the toward the center of the conductive portion 320 is attached. The guide film 340 is formed to surround the side surface of the protrusion 322 at a predetermined distance from the side surface of the protrusion 322 of the conductive portion 320. That is, the guide film 340 is provided with a plurality of through holes 342 into which the protrusion 322 of the conductive part 320 is inserted. The diameter of the through hole 342 is formed to be larger than the diameter of the protrusion 322 of the conductive portion 320. In addition, the height of the guide film 340 may be the same as the height of the protrusion 322. As the guide film 340, for example, a synthetic resin material such as polyimide may be used, but is not limited thereto.
상기한 바와 같은 구성을 가진 본 발명의 다른 실시예들에 따른 도전성 커넥터(200, 300)도, 도 4와 도 5에 도시된 일 실시예에 따른 도전성 커넥터(100)와 마찬가지의 작용 및 효과를 가지므로, 이에 대한 상세한 설명은 생략하기로 한다. The conductive connectors 200 and 300 according to other embodiments of the present invention having the configuration as described above also have the same operation and effect as the conductive connector 100 according to the embodiment shown in FIGS. 4 and 5. Therefore, detailed description thereof will be omitted.
이하에서는, 상기한 구성을 가진 본 발명의 실시예들에 따른 도전성 커넥터의 제조방법에 대해 설명하기로 한다. Hereinafter, a method of manufacturing a conductive connector according to embodiments of the present invention having the above configuration will be described.
도 8 내지 도 11은 도 4에 도시된 본 발명의 일 실시예에 따른 도전성 커넥터의 제조방법을 단계별로 설명하기 위한 도면들이다. 8 to 11 are diagrams for explaining step-by-step the manufacturing method of the conductive connector according to an embodiment of the present invention shown in FIG.
먼저, 도 8에 도시된 바와 같이, 하부금형(410)의 상부에 스페이서(430)를 개재하여 상부금형(420)을 배치한다. 상기 하부금형(410)과 상부금형(420)의 사이에 스페이서(430)에 의해 둘러싸인 성형 공간이 형성된다. First, as shown in FIG. 8, the upper mold 420 is disposed on the upper portion of the lower mold 410 via the spacer 430. A molding space surrounded by the spacer 430 is formed between the lower mold 410 and the upper mold 420.
상기 하부금형(410)에 있어서, 하부 자성체기판(414)의 상면에 도전성 커넥터(100)의 도전부(120)와 대응되는 위치마다, 즉 피검사 디바이스(20)의 단자(22)와 대응되는 위치마다 자성체층(412)이 형성되고, 상기 자성체층(412) 이외의 부분에는 비자성체층(411)이 형성된다. In the lower mold 410, each position corresponding to the conductive part 120 of the conductive connector 100 on the upper surface of the lower magnetic substrate 414, that is, corresponding to the terminal 22 of the device under test 20. A magnetic layer 412 is formed at each position, and a nonmagnetic layer 411 is formed at a portion other than the magnetic layer 412.
그리고, 상기 상부금형(420)에 있어서도, 상부 자성체기판(424)의 저면에 도전성 커넥터(100)의 도전부(120)와 대응되는 위치마다 자성체층(422)이 형성되고, 상기 자성체층(422) 이외의 부분에는 비자성체층(421)이 형성된다. Also, in the upper mold 420, a magnetic layer 422 is formed at a position corresponding to the conductive portion 120 of the conductive connector 100 on the bottom of the upper magnetic substrate 424, and the magnetic layer 422. The nonmagnetic layer 421 is formed at portions other than the?
다음으로, 준비된 금형(400) 내부의 성형 공간에 성형용 재료(100a)를 주입한다. 상기 성형용 재료(100a)는 액상의 탄성 물질(110a), 예컨대 액상의 실리콘 고무 내에 다수의 도전성 입자(120a)를 함유시켜 제조될 수 있다. 상기 탄성 물질(110a)과 도전성 입자(120a)에 대해서는 위에서 상세하게 설명되었다. Next, the molding material 100a is injected into the molding space inside the prepared mold 400. The molding material 100a may be manufactured by containing a plurality of conductive particles 120a in a liquid elastic material 110a, for example, a liquid silicone rubber. The elastic material 110a and the conductive particles 120a have been described in detail above.
다음으로, 도 9을 참조하면, 하부금형(310)의 저면측과 상부금형(320)의 상면측에 각각 배치된 전자석(미도시)을 작동시켜, 상기 금형(400) 내부의 성형 공간에 주입된 성형용 재료(100a)에 수직 방향으로 자기장을 인가한다. 그러면, 액상의 탄성 물질(110a) 내에 분산되어 있던 도전성 입자들(120a)이 상부금형(320)의 자성체층(322)과 하부금형(310)의 자성체층(312) 사이로 몰려들면서 수직 방향으로 배열된다. Next, referring to FIG. 9, an electromagnet (not shown) disposed on the bottom surface side of the lower mold 310 and the upper surface side of the upper mold 320 is operated to be injected into the molding space inside the mold 400. The magnetic field is applied to the formed molding material 100a in the vertical direction. Then, the conductive particles 120a dispersed in the liquid elastic material 110a are arranged in a vertical direction by flocking between the magnetic layer 322 of the upper mold 320 and the magnetic layer 312 of the lower mold 310. do.
이어서, 성형용 재료(100a)를 금형(400) 내에서 예컨대, 대략 100℃의 온도에서 1.5 시간 동안 경화 처리한다. 그러면, 경화된 탄성 물질(110a) 내에 도전성 입자들(120a)이 수직 방향으로 배열되어 이루어진 다수의 도전부(120)와, 상기 다수의 도전부(120) 둘레의 경화된 탄성 물질(110a)로 이루어진 절연지지부(110)가 형성된다. Subsequently, the molding material 100a is cured in the mold 400 for 1.5 hours at a temperature of, for example, approximately 100 ° C. Then, the conductive particles 120a are arranged in the vertical direction in the cured elastic material 110a, and the plurality of conductive parts 120 are formed of the cured elastic material 110a around the plurality of conductive parts 120. Insulated support 110 is formed.
다음으로, 도 10에 도시된 바와 같이, 상기 절연지지부(110)의 상면에 마스크 필름(150)을 부착한다. 상기 마스크 필름(150)에는 다수의 구멍들(152)이 형성되어 있으며, 이를 통해 다수의 도전부(120)가 노출된다. 상기 다수의 구멍들(152)은 도전부(120)의 직경과 동일한 직경 또는 보다 큰 직경을 가지도록 형성될 수 있다. Next, as shown in FIG. 10, the mask film 150 is attached to the upper surface of the insulating support 110. A plurality of holes 152 are formed in the mask film 150, through which a plurality of conductive parts 120 are exposed. The plurality of holes 152 may be formed to have a diameter equal to or larger than the diameter of the conductive portion 120.
상기 마스크 필름(150)의 재질로는, 비금속 계열인 폴리이미드(PI), 폴리에틸렌테레프탈레이드(PET), 트리아세테이트셀룰로우즈(TAC), 에틸렌비닐아세테이트(EVA), 폴리플로필렌(PP), 또는 폴리카보네이트(PC)가 사용될 수 있으며, 또한 금속 계열인 구리박막시트, 알루미늄박막시트, 또는 스테인레스박막시트도 사용될 수 있다. 그리고, 상기 마스크 필름(150)에 구멍들(152)을 형성하는 방법으로는, 레이저 가공, 기계적 드릴 가공, 에칭에 의한 습식 가공, 포토레지스트와 포토마스크를 사용한 노광 및 현상을 이용하는 방법 등 다양한 방법이 이용될 수 있다. As the material of the mask film 150, non-metal-based polyimide (PI), polyethylene terephthalate (PET), triacetate cellulose (TAC), ethylene vinyl acetate (EVA), polyflofilene (PP), Alternatively, polycarbonate (PC) may be used, and a metal based copper thin sheet, aluminum thin sheet, or stainless thin sheet may also be used. The method of forming the holes 152 in the mask film 150 may include various methods such as laser processing, mechanical drill processing, wet processing by etching, exposure and development using photoresist and photomask, and the like. This can be used.
다음으로, 도 11에 도시된 바와 같이, 상기 마스크 필름(150)의 상면과 상기 구멍들(152)에 의해 노출된 다수의 도전부(120)의 상면에 도전성 금속 코팅층(130)을 형성한다. Next, as shown in FIG. 11, the conductive metal coating layer 130 is formed on the top surface of the mask film 150 and the top surfaces of the plurality of conductive parts 120 exposed by the holes 152.
구체적으로, 도전성 금속 페이스트를 프린팅 방법에 의해 상기 마스크 필름(150)의 상면과 다수의 도전부(120)의 상면에 소정 두께로 도포한 후, 도포된 도전성 금속 페이스트를 가열하여 건조시키면, 도전성 금속 페이스트가 단단하게 경화되면서 상기 도전성 금속 코팅층(130)이 형성될 수 있다. 이때, 상기 도전성 금속으로는, 예컨대 철, 니켈, 크롬, 금, 은, 동, 백금, 또는 이들의 합금이 사용될 수 있다. Specifically, the conductive metal paste is applied to the upper surface of the mask film 150 and the upper surface of the plurality of conductive parts 120 by a printing method with a predetermined thickness, and then the applied conductive metal paste is heated and dried to form a conductive metal. The conductive metal coating layer 130 may be formed while the paste is hardened. In this case, as the conductive metal, for example, iron, nickel, chromium, gold, silver, copper, platinum, or an alloy thereof may be used.
한편, 도전성 금속 나노 입자 수용액을 스프레이 방식으로 분사하여 상기 마스크 필름(150)의 상면과 다수의 도전부(120)의 상면에 소정 두께로 도포한 후 건조시킴으로써 상기 도전성 금속 코팅층(130)을 형성할 수도 있다. 이때, 상기 도전성 금속 나노 입자들의 평균 입자 직경은 10nm ~ 100nm인 것이 바람직하다. On the other hand, by spraying a conductive metal nanoparticle aqueous solution in a spray method to apply a predetermined thickness on the upper surface of the mask film 150 and the upper surface of the plurality of conductive portion 120 to form the conductive metal coating layer 130 by drying. It may be. In this case, the average particle diameter of the conductive metal nanoparticles is preferably 10nm ~ 100nm.
마지막으로, 상기 마스크 필름(150)을 제거한다. 구체적으로, 상기 절연지지부(110)의 상면으로부터 상기 마스크 필름(150)을 벗겨 내면, 상기 마스크 필름(150)의 상면에 형성된 코팅층(130)도 함께 제거되며, 상기 다수의 도전부(120)의 상면에 코팅된 도전성 금속 코팅층(130)은 남게 된다. 이와 같이 형성되는 도전성 금속 코팅층(130)은 상기 마스크 필름(150)에 형성된 구멍들(152)의 직경에 따라 도전부(120)의 직경과 동일한 직경 또는 도전부(120)의 직경보다 큰 직경을 가지게 된다. Finally, the mask film 150 is removed. Specifically, when the mask film 150 is peeled off from the top surface of the insulating support 110, the coating layer 130 formed on the top surface of the mask film 150 is also removed, and the plurality of conductive parts 120 The conductive metal coating layer 130 coated on the upper surface remains. The conductive metal coating layer 130 formed as described above has a diameter equal to the diameter of the conductive portion 120 or a diameter larger than the diameter of the conductive portion 120 according to the diameters of the holes 152 formed in the mask film 150. Have.
이로써, 도 4에 도시된 바와 같은 구성을 가진 도전성 커넥터(100)의 제조가 완료된다. This completes the manufacture of the conductive connector 100 having the configuration as shown in FIG. 4.
도 12와 도 13은 도 6에 도시된 본 발명의 다른 실시예에 따른 도전성 커넥터의 제조방법을 설명하기 위한 도면들이다. 12 and 13 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
본 발명의 다른 실시예에 따른 도전성 커넥터(200)의 제조방법은 전술한 본 발명의 일 실시예에 따른 도전성 커넥터(100)의 제조방법과 유사하므로, 이하에서는 이들 사이의 차이점을 중심으로 설명하기로 한다. Since the manufacturing method of the conductive connector 200 according to another embodiment of the present invention is similar to the manufacturing method of the conductive connector 100 according to the embodiment of the present invention described above, the following description will focus on the differences between them. Shall be.
먼저, 도 8과 도 9에 도시된 바와 마찬가지 방법으로 다수의 도전부(220)와 절연지지부(210)를 형성한다. 이때, 도 12에 도시된 바와 같이, 상기 도전부(220)는 절연지지부(210)의 상면 위쪽으로 돌출되어 돌출부(222)가 형성되도록 한다. 상기 도전부(220)의 돌출부(222)는, 도 8과 도 9에 도시된 상부금형(420)의 자성체층(422)을 비자성체층(421)에 비해서 상부 자성체기판(424) 쪽으로 오목하게 형성함으로써 달성될 수 있다.First, the plurality of conductive parts 220 and the insulating support part 210 are formed in the same manner as shown in FIGS. 8 and 9. In this case, as shown in FIG. 12, the conductive portion 220 protrudes upward from the upper surface of the insulating support portion 210 so that the protrusion 222 is formed. The protrusion 222 of the conductive portion 220 concave the magnetic layer 422 of the upper mold 420 shown in FIGS. 8 and 9 toward the upper magnetic substrate 424 as compared to the nonmagnetic layer 421. By forming.
다음으로, 상기 절연지지부(210)의 상면에 마스크 필름(250)을 부착한다. 상기 마스크 필름(250)에는 다수의 구멍들(252)이 형성되어 있으며, 이를 통해 다수의 도전부(220)의 돌출부(222)가 노출된다. 상기 다수의 구멍들(252)은 도전부(220)의 돌출부(222) 직경과 동일한 직경 또는 보다 큰 직경을 가지도록 형성될 수 있다. 상기 마스크 필름(250)의 재질과 구멍(252)의 형성 방법은 전술한 일 실시예에서 설명된 바와 동일하므로, 이에 대한 설명은 생략한다. Next, the mask film 250 is attached to the upper surface of the insulating support portion 210. A plurality of holes 252 are formed in the mask film 250, through which the protrusions 222 of the plurality of conductive parts 220 are exposed. The plurality of holes 252 may be formed to have a diameter equal to or larger than a diameter of the protrusion 222 of the conductive part 220. Since the material of the mask film 250 and the method of forming the holes 252 are the same as described in the above-described embodiment, a description thereof will be omitted.
다음으로, 도 13에 도시된 바와 같이, 상기 마스크 필름(250)의 상면과 상기 구멍들(252)에 의해 노출된 다수의 도전부(220)의 돌출부(222) 상면에 도전성 금속 코팅층(230)을 형성한다. 이때, 도전부(220)의 돌출부(222) 측면에도 상기 코팅층(230)이 형성될 수 있다. 상기 도전성 금속 코팅층(230)을 형성하는 방법은 전술한 일 실시예에서 설명된 바와 동일하다. Next, as shown in FIG. 13, the conductive metal coating layer 230 is disposed on the upper surface of the mask film 250 and the upper surfaces of the protrusions 222 of the plurality of conductive parts 220 exposed by the holes 252. To form. In this case, the coating layer 230 may be formed on the side surface of the protrusion part 222 of the conductive part 220. The method of forming the conductive metal coating layer 230 is the same as described in the above-described embodiment.
마지막으로, 상기 절연지지부(210)의 상면으로부터 상기 마스크 필름(250)을 벗겨 냄으로써, 상기 마스크 필름(250)의 상면에 형성된 코팅층(230)을 제거한다. 이에 따라, 상기 다수의 도전부(220)의 돌출부(222) 상면과 측면에 코팅된 도전성 금속 코팅층(230)은 남게 된다. Finally, by removing the mask film 250 from the upper surface of the insulating support 210, the coating layer 230 formed on the upper surface of the mask film 250 is removed. Accordingly, the conductive metal coating layer 230 coated on the top and side surfaces of the protrusions 222 of the plurality of conductive parts 220 remains.
이로써, 도 6에 도시된 바와 같은 구성을 가진 도전성 커넥터(200)의 제조가 완료된다. This completes the manufacture of the conductive connector 200 having the configuration as shown in FIG. 6.
도 14와 도 15는 도 7에 도시된 본 발명의 또 다른 실시예에 따른 도전성 커넥터의 제조방법을 설명하기 위한 도면이다. 14 and 15 are views for explaining a method of manufacturing a conductive connector according to another embodiment of the present invention shown in FIG.
본 발명의 또 다른 실시예에 따른 도전성 커넥터(300)의 제조방법은 전술한 본 발명의 다른 실시예에 따른 도전성 커넥터(200)의 제조방법과 유사하므로, 이하에서는 이들 사이의 차이점을 중심으로 설명하기로 한다. Since the manufacturing method of the conductive connector 300 according to another embodiment of the present invention is similar to the manufacturing method of the conductive connector 200 according to another embodiment of the present invention described above, the following description will focus on the differences between them. Let's do it.
먼저, 도 14를 참조하면, 전술한 바와 같은 방법으로 돌출부(322)를 포함하는 다수의 도전부(320)와 절연지지부(310)를 형성한다. First, referring to FIG. 14, a plurality of conductive portions 320 and insulating support portions 310 including protrusions 322 are formed in the same manner as described above.
그리고, 상기 절연지지부(310)의 상면에 상기 도전부(320)의 돌출부(322)가 삽입되는 다수의 관통공(342)이 형성된 가이드 필름(340)을 부착한다. 이때, 상기 가이드 필름(340)의 높이는 상기 돌출부(322)의 높이와 동일할 수 있으며, 상기 다수의 관통공(342)은 도전부(320)의 돌출부(322) 직경보다 큰 직경을 가지도록 형성될 수 있다.In addition, a guide film 340 having a plurality of through holes 342 into which the protrusion 322 of the conductive part 320 is inserted is attached to an upper surface of the insulating support part 310. In this case, the height of the guide film 340 may be the same as the height of the protrusion 322, the plurality of through holes 342 is formed to have a diameter larger than the diameter of the protrusion 322 of the conductive portion 320. Can be.
다음으로, 상기 가이드 필름(340)의 상면에 마스크 필름(350)을 부착한다. 상기 마스크 필름(350)에는 다수의 구멍들(352)이 형성되어 있으며, 이를 통해 다수의 도전부(320)의 돌출부(322)가 노출된다. 상기 다수의 구멍들(352)은 상기 가이드 필름(340)의 관통공(342)의 직경과 동일한 직경을 가지도록 형성되는 것이 바람직하다. 상기 마스크 필름(350)의 재질과 구멍(352)의 형성 방법은 전술한 일 실시예에서 설명된 바와 동일하므로, 이에 대한 설명은 생략한다. Next, the mask film 350 is attached to the upper surface of the guide film 340. A plurality of holes 352 are formed in the mask film 350, through which the protrusions 322 of the plurality of conductive parts 320 are exposed. The plurality of holes 352 may be formed to have the same diameter as the diameter of the through hole 342 of the guide film 340. Since the material of the mask film 350 and the method of forming the holes 352 are the same as described in the above-described embodiment, a description thereof will be omitted.
다음으로, 도 15에 도시된 바와 같이, 상기 마스크 필름(350)의 상면과 상기 구멍들(352)에 의해 노출된 다수의 도전부(320)의 돌출부(322) 상면에 도전성 금속 코팅층(330)을 형성한다. 이때, 도전부(320)의 돌출부(322) 측면에도 상기 코팅층(330)이 형성될 수 있다. 상기 도전성 금속 코팅층(330)을 형성하는 방법은 전술한 일 실시예에서 설명된 바와 동일하다. Next, as shown in FIG. 15, the conductive metal coating layer 330 is disposed on the upper surface of the mask film 350 and the upper surfaces of the protrusions 322 of the plurality of conductive parts 320 exposed by the holes 352. To form. In this case, the coating layer 330 may be formed on the side surface of the protrusion 322 of the conductive part 320. The method of forming the conductive metal coating layer 330 is the same as described in the above-described embodiment.
마지막으로, 상기 가이드 필름(340)의 상면으로부터 상기 마스크 필름(350)을 벗겨 냄으로써, 상기 마스크 필름(350)의 상면에 형성된 코팅층(330)을 제거한다. 이에 따라, 상기 다수의 도전부(320)의 돌출부(322) 상면과 측면에 코팅된 도전성 금속 코팅층(330)은 남게 된다. Finally, by removing the mask film 350 from the upper surface of the guide film 340, the coating layer 330 formed on the upper surface of the mask film 350 is removed. Accordingly, the conductive metal coating layer 330 coated on the upper and side surfaces of the protrusions 322 of the plurality of conductive parts 320 remains.
이로써, 도 7에 도시된 바와 같은 구성을 가진 도전성 커넥터(300)의 제조가 완료된다. This completes the manufacture of the conductive connector 300 having the configuration as shown in FIG. 7.
본 발명은 도면에 도시된 실시예들을 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능함을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다. Although the present invention has been described with reference to the embodiments illustrated in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Accordingly, the true scope of protection of the present invention should be defined by the appended claims.
본 발명은 피검사 디바이스의 전기적 특성 검사를 위해 사용되는 테스트 소켓용 도전성 커넥터 및 그 제조방법에 이용될 수 있다. The present invention can be used in a conductive connector for a test socket used for inspecting electrical characteristics of a device under test and a method of manufacturing the same.

Claims (20)

  1. 피검사 디바이스와 검사 장치의 사이에 배치되어 상기 피검사 디바이스의 단자와 상기 검사 장치의 패드를 서로 전기적으로 연결하는 도전성 커넥터에 있어서,A conductive connector disposed between a device under test and an inspection device, the conductive connector electrically connecting a terminal of the device under test and a pad of the inspection device to each other,
    상기 피검사 디바이스의 단자와 대응되는 위치에 배치되며 탄성 물질 내에 도전성 입자들이 수직 방향으로 배열된 다수의 도전부; A plurality of conductive portions disposed at positions corresponding to the terminals of the device under test and having conductive particles arranged in a vertical direction in an elastic material;
    상기 다수의 도전부를 지지하면서 상기 다수의 도전부 사이를 절연시키는 절연지지부; 및An insulating support portion for insulating the plurality of conductive portions while supporting the plurality of conductive portions; And
    상기 다수의 도전부 각각의 상면에 형성되는 도전성 금속 코팅층;을 구비하는 것을 특징으로 하는 도전성 커넥터. And a conductive metal coating layer formed on an upper surface of each of the plurality of conductive parts.
  2. 제 1항에 있어서,The method of claim 1,
    상기 다수의 도전부는 상기 절연지지부의 상면 위쪽으로 돌출되도록 형성되고, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 상면에 형성되는 것을 특징으로 하는 도전성 커넥터.And the conductive parts are formed to protrude upward from an upper surface of the insulating support part, and the conductive metal coating layer is formed on upper surfaces of the protruding parts of the plurality of conductive parts.
  3. 제 2항에 있어서, The method of claim 2,
    상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 측면에도 형성되는 것을 특징으로 하는 도전성 커넥터.The conductive metal coating layer is also formed on the side of the projecting portion of the conductive portion conductive connector.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 도전성 금속 코팅층은 상기 다수의 도전부의 직경보다 큰 직경으로 형성되는 것을 특징으로 하는 도전성 커넥터.The conductive metal coating layer is a conductive connector, characterized in that formed with a diameter larger than the diameter of the plurality of conductive parts.
  5. 제 2항에 있어서,The method of claim 2,
    상기 절연지지부의 상면에는 상기 피검사 디바이스의 단자를 상기 도전부의 중심쪽으로 가이드하는 가이드 필름이 부착되고, 상기 가이드 필름에는 상기 다수의 도전부의 돌출부가 삽입되는 다수의 관통공이 형성된 것을 특징으로 하는 도전성 커넥터. And a guide film for guiding the terminal of the device under test to the center of the conductive portion on an upper surface of the insulating support portion, wherein the guide film has a plurality of through-holes into which protrusions of the plurality of conductive portions are inserted. .
  6. 제 1항 내지 제 3항, 또는 제 5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3 or 5,
    상기 도전성 금속 코팅층은 0.1㎛ ~ 10㎛의 두께를 가지는 것을 특징으로 하는 도전성 커넥터. The conductive metal coating layer has a thickness of 0.1㎛ ~ 10㎛ conductive connector.
  7. 제 1항 내지 제 3항, 또는 제 5항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3 or 5,
    상기 도전성 금속 코팅층의 도전성 금속은 철, 니켈, 크롬, 금, 은, 동, 백금, 및 이들의 합금으로 이루어진 군 중에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 도전성 커넥터. The conductive metal of the conductive metal coating layer is a conductive connector, characterized in that it comprises at least one selected from the group consisting of iron, nickel, chromium, gold, silver, copper, platinum, and alloys thereof.
  8. 제 1항 내지 제 3항, 또는 제 5항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3 or 5,
    상기 도전성 금속 코팅층은 도전성 금속 나노 입자들로 이루어진 것을 특징으로 하는 도전성 커넥터. The conductive metal coating layer is a conductive connector, characterized in that made of conductive metal nanoparticles.
  9. 제 8항에 있어서,The method of claim 8,
    상기 도전성 금속 나노 입자들의 평균 입자 직경은 10nm ~ 100nm인 것을 특징으로 하는 도전성 커넥터. The conductive connector, characterized in that the average particle diameter of the conductive metal nanoparticles is 10nm ~ 100nm.
  10. 제 1항에 기재된 도전성 커넥터의 제조방법에 있어서, In the manufacturing method of the conductive connector of Claim 1,
    금형 내부의 성형 공간에 액상의 탄성 물질 내에 도전성 입자들이 함유된 성형용 재료를 주입하는 단계;Injecting a molding material containing conductive particles into a liquid elastic material into a molding space inside the mold;
    상기 금형 내부의 성형 공간에 주입된 상기 성형용 재료에 수직 방향으로 자기장을 인가함으로써, 상기 도전성 입자들이 수직 방향으로 배열되도록 하는 단계;Applying a magnetic field in a vertical direction to the molding material injected into the molding space inside the mold to arrange the conductive particles in a vertical direction;
    상기 성형용 재료를 경화시켜 상기 다수의 도전부와 절연지지부를 형성하는 단계; 및Curing the molding material to form the plurality of conductive parts and the insulating support part; And
    상기 다수의 도전부의 상면에 도전성 금속 코팅층을 형성하는 단계;를 포함하는 것을 특징으로 하는 도전성 커넥터의 제조방법.Forming a conductive metal coating layer on the upper surface of the plurality of conductive parts; manufacturing method of a conductive connector comprising a.
  11. 제 10항에 있어서,The method of claim 10,
    상기 도전성 금속 코팅층을 형성하는 단계는, Forming the conductive metal coating layer,
    상기 절연지지부의 상면에 상기 다수의 도전부를 노출시키는 구멍들이 형성된 마스크 필름을 부착하는 단계와;Attaching a mask film having holes formed on the insulating support to expose the plurality of conductive parts;
    상기 마스크 필름의 상면과 상기 구멍들에 의해 노출된 다수의 도전부의 상면에 도전성 금속 코팅층을 형성하는 단계와;Forming a conductive metal coating layer on an upper surface of the mask film and an upper surface of the plurality of conductive portions exposed by the holes;
    상기 절연지지부의 상면으로부터 상기 마스크 필름을 제거하면서, 상기 마스크 필름의 상면에 형성된 상기 도전성 금속 코팅층을 제거하는 단계;를 포함하는 것을 특징으로 하는 도전성 커넥터의 제조방법. And removing the conductive metal coating layer formed on the upper surface of the mask film while removing the mask film from the upper surface of the insulating support part.
  12. 제 11항에 있어서,The method of claim 11,
    상기 다수의 도전부는 상기 절연지지부의 상면 위쪽으로 돌출되도록 형성되고, 상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 상면에 형성되는 것을 특징으로 하는 도전성 커넥터의 제조방법.Wherein the plurality of conductive parts are formed to protrude upward from an upper surface of the insulating support, and the conductive metal coating layer is formed on an upper surface of the protruding part of the plurality of conductive parts.
  13. 제 12항에 있어서, The method of claim 12,
    상기 도전성 금속 코팅층은 상기 다수의 도전부의 돌출부 측면에도 형성되는 것을 특징으로 하는 도전성 커넥터의 제조방법.The conductive metal coating layer is a method of manufacturing a conductive connector, characterized in that formed on the side of the protrusion of the plurality of conductive parts.
  14. 제 10항 내지 제 13항 중 어느 한 항에 있어서, The method according to any one of claims 10 to 13,
    상기 도전성 금속 코팅층은 상기 다수의 도전부의 직경보다 큰 직경으로 형성되는 것을 특징으로 하는 도전성 커넥터의 제조방법.The conductive metal coating layer is a method of manufacturing a conductive connector, characterized in that formed with a diameter larger than the diameter of the plurality of conductive parts.
  15. 제 12항에 있어서, The method of claim 12,
    상기 절연지지부의 상면에는 상기 피검사 디바이스의 단자를 상기 도전부의 중심쪽으로 가이드하는 가이드 필름이 부착되고, 상기 가이드 필름에는 상기 다수의 도전부의 돌출부가 삽입되는 다수의 관통공이 형성된 것을 특징으로 하는 도전성 커넥터의 제조방법. And a guide film for guiding the terminal of the device under test to the center of the conductive portion on an upper surface of the insulating support portion, wherein the guide film has a plurality of through-holes into which protrusions of the plurality of conductive portions are inserted. Manufacturing method.
  16. 제 11항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13,
    상기 마스크 필름에 형성된 구멍들은 상기 도전부의 직경보다 크거나 동일한 직경을 가지는 것을 특징으로 하는 도전성 커넥터의 제조방법.The holes formed in the mask film have a diameter greater than or equal to the diameter of the conductive portion.
  17. 제 11항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13,
    상기 마스크 필름은, 폴리이미드(PI), 폴리에틸렌테레프탈레이드(PET), 트리아세테이트셀룰로우즈(TAC), 에틸렌비닐아세테이트(EVA), 폴리플로필렌(PP), 폴리카보네이트(PC), 구리박막시트, 알루미늄박막시트, 및 스테인레스박막시트로 이루어진 군 중에서 선택된 어느 하나의 재질로 이루어진 것을 특징으로 하는 도전성 커넥터의 제조방법. The mask film is polyimide (PI), polyethylene terephthalate (PET), triacetate cellulose (TAC), ethylene vinyl acetate (EVA), polyflopropylene (PP), polycarbonate (PC), copper thin film sheet , Aluminum thin film sheet, and stainless thin film sheet manufacturing method of a conductive connector characterized in that made of any one material selected from the group consisting of.
  18. 제 10항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 10 to 13,
    상기 도전성 금속 코팅층은 0.1㎛ ~ 10㎛의 두께를 가지도록 형성되는 것을 특징으로 하는 도전성 커넥터의 제조방법. The conductive metal coating layer is a method of manufacturing a conductive connector, characterized in that formed to have a thickness of 0.1㎛ ~ 10㎛.
  19. 제 11항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13,
    상기 도전성 금속 코팅층 형성 단계는, 도전성 금속 페이스트를 프린팅 방법에 의해 상기 마스크 필름의 상면과 상기 다수의 도전부의 상면에 도포한 후 건조시킴으로써 상기 도전성 금속 코팅층을 형성하는 것을 특징으로 하는 도전성 커넥터의 제조방법. In the forming of the conductive metal coating layer, the conductive metal paste is coated on the upper surface of the mask film and the upper surface of the plurality of conductive parts by a printing method and then dried to form the conductive metal coating layer. .
  20. 제 11항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 11 to 13,
    상기 도전성 금속 코팅층 형성 단계는, 도전성 금속 나노 입자 수용액을 스프레이 방식으로 분사하여 상기 마스크 필름의 상면과 상기 다수의 도전부의 상면에 도포한 후 건조시킴으로써 상기 도전성 금속 코팅층을 형성하는 것을 특징으로 하는 도전성 커넥터의 제조방법. In the forming of the conductive metal coating layer, the conductive metal nanoparticle aqueous solution is sprayed by spraying, and then coated on the upper surface of the mask film and the upper surface of the plurality of conductive parts, and then dried to form the conductive metal coating layer. Manufacturing method.
PCT/KR2014/005777 2013-07-24 2014-06-30 Conductive connector and manufacturing method therefor WO2015012498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480041445.2A CN105452877B (en) 2013-07-24 2014-06-30 Elecrical connector and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130087499A KR101393601B1 (en) 2013-07-24 2013-07-24 Conductive connector and manufacturing method of the same
KR10-2013-0087499 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015012498A1 true WO2015012498A1 (en) 2015-01-29

Family

ID=50893725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005777 WO2015012498A1 (en) 2013-07-24 2014-06-30 Conductive connector and manufacturing method therefor

Country Status (4)

Country Link
KR (1) KR101393601B1 (en)
CN (1) CN105452877B (en)
TW (1) TWI516769B (en)
WO (1) WO2015012498A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728906B (en) * 2019-08-29 2021-05-21 南韓商Isc股份有限公司 Test socket
CN113015914A (en) * 2018-11-13 2021-06-22 株式会社Isc Connector for electrical connection

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591670B1 (en) * 2014-06-02 2016-02-04 배준규 method of preparing rubber socket for semiconductor test, and computer-readable recording medium for the same
KR101624689B1 (en) 2014-08-21 2016-05-26 주식회사 아이에스시 Electrical connecting connector
KR101567296B1 (en) 2014-10-30 2015-11-10 주식회사 아이에스시 Color changeable test soket and method for manufacturing thereof
KR101586340B1 (en) * 2014-12-26 2016-01-18 주식회사 아이에스시 Electrical test socket and fabrication method of conductive powder for electrical test socket
WO2016195251A1 (en) * 2015-05-29 2016-12-08 배준규 Rubber socket for semiconductor test and manufacturing method thereof
KR101685023B1 (en) * 2015-06-24 2016-12-09 배준규 rubber socket for semiconductor test, and manufacturing method for the same, and computer-readable recording medium for the same
KR101673142B1 (en) * 2015-05-29 2016-11-16 배준규 rubber socket for semiconductor test, method of manufacturing the same, and computer-readable recording medium for the same
KR101683017B1 (en) * 2015-07-03 2016-12-07 주식회사 오킨스전자 Test socket and method for manufacturing thereof and die thereof
KR101739536B1 (en) * 2016-05-11 2017-05-24 주식회사 아이에스시 Test socket and conductive particle
JP6918518B2 (en) * 2017-02-27 2021-08-11 デクセリアルズ株式会社 Electrical property inspection jig
KR101920855B1 (en) 2017-05-11 2018-11-21 주식회사 아이에스시 Electrical test socket
KR101923144B1 (en) 2017-05-18 2018-11-28 이승용 Interface for testing semiconductor device
KR101967401B1 (en) * 2017-12-29 2019-04-10 에스케이하이닉스 주식회사 Test socket
CN109037974B (en) * 2018-06-26 2020-09-01 中国电子科技集团公司第二十九研究所 Contact type broadband radio frequency interconnection method and structure
KR102080006B1 (en) * 2018-09-06 2020-04-07 주식회사 아이에스시 Test connector and manufacturing method of the test connector
KR102103747B1 (en) * 2018-10-25 2020-04-23 주식회사 오킨스전자 Device for test socket having Metal-CNT composites and/or Polymer-CNT composites
KR102193528B1 (en) * 2019-04-17 2020-12-23 주식회사 아이에스시 Test connector applicable at extremely low temperature
JP7308660B2 (en) * 2019-05-27 2023-07-14 東京エレクトロン株式会社 Intermediate connection member and inspection device
US11509080B2 (en) 2020-07-22 2022-11-22 Te Connectivity Solutions Gmbh Electrical connector assembly having hybrid conductive polymer contacts
US11128072B1 (en) 2020-07-22 2021-09-21 TE Connectivity Services Gmbh Electrical connector assembly having variable height contacts
US11509084B2 (en) 2020-07-24 2022-11-22 Te Connectivity Solutions Gmbh Electrical connector assembly having hybrid conductive polymer contacts
US11894629B2 (en) 2021-03-09 2024-02-06 Tyco Electronics Japan G.K. Electrical interconnect with conductive polymer contacts having tips with different shapes and sizes
KR102606892B1 (en) 2021-06-15 2023-11-29 (주)포인트엔지니어링 Supporting plate for electrical test socket, socket pin for electrical test socket, and electrical test socket
WO2024035163A1 (en) * 2022-08-10 2024-02-15 삼성전자 주식회사 Connector and electronic device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093599A (en) * 1999-09-28 2001-04-06 Jsr Corp Anisotropic electrical connector and checker including same
KR200312739Y1 (en) * 2003-01-27 2003-05-13 주식회사 아이에스시테크놀러지 Integrated silicone contactor with an electric conductor
KR20060062824A (en) * 2004-12-06 2006-06-12 주식회사 아이에스시테크놀러지 Silicone connector for testing semiconductor package
JP2011096975A (en) * 2009-11-02 2011-05-12 Fujimori Kogyo Co Ltd Method of manufacturing transparent conductive film, and transparent conductive film
KR101266124B1 (en) * 2012-04-03 2013-05-27 주식회사 아이에스시 Test socket with high density conduction section and fabrication method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226786A (en) * 2010-04-15 2011-11-10 Tokyo Electron Ltd Contact structure and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093599A (en) * 1999-09-28 2001-04-06 Jsr Corp Anisotropic electrical connector and checker including same
KR200312739Y1 (en) * 2003-01-27 2003-05-13 주식회사 아이에스시테크놀러지 Integrated silicone contactor with an electric conductor
KR20060062824A (en) * 2004-12-06 2006-06-12 주식회사 아이에스시테크놀러지 Silicone connector for testing semiconductor package
JP2011096975A (en) * 2009-11-02 2011-05-12 Fujimori Kogyo Co Ltd Method of manufacturing transparent conductive film, and transparent conductive film
KR101266124B1 (en) * 2012-04-03 2013-05-27 주식회사 아이에스시 Test socket with high density conduction section and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015914A (en) * 2018-11-13 2021-06-22 株式会社Isc Connector for electrical connection
TWI728906B (en) * 2019-08-29 2021-05-21 南韓商Isc股份有限公司 Test socket

Also Published As

Publication number Publication date
TW201512664A (en) 2015-04-01
KR101393601B1 (en) 2014-05-13
TWI516769B (en) 2016-01-11
CN105452877A (en) 2016-03-30
CN105452877B (en) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2015012498A1 (en) Conductive connector and manufacturing method therefor
WO2014129784A1 (en) Test socket with high density conduction section
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
WO2013162343A1 (en) Test socket which allows for ease of alignment
WO2016126024A1 (en) Test socket having conductive particles in coupled form
WO2014204161A2 (en) Insert for inspection
WO2016010383A1 (en) Test socket
WO2019216503A1 (en) Semiconductor device test socket
WO2017023037A1 (en) Test socket
WO2016105031A1 (en) Electrical test socket and method for manufacturing conductive particle for electrical test socket
WO2018105896A1 (en) Test socket apparatus
WO2011002125A1 (en) Probe device for testing
KR101246301B1 (en) Socket for electrical test with micro-line
WO2014104782A1 (en) Test socket and socket body
WO2020022745A1 (en) Conductive sheet for test
WO2016068541A1 (en) Electrical connector including porous insulation sheet having through-hole and manufacturing method therefor
WO2021137527A1 (en) Test socket assembly
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2023128428A1 (en) Test socket for signal loss protection
WO2018128361A1 (en) Vertical ultra low leakage probe card for dc parameter test
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
KR101483757B1 (en) Connector for electrical connection
WO2018208117A1 (en) Inspection socket
WO2011099822A2 (en) Test socket
WO2019045426A1 (en) Test socket and conductive particles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041445.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829271

Country of ref document: EP

Kind code of ref document: A1