WO2019039628A1 - Bidirectional conductive module having laser processing technology applied thereto and method for manufacturing same - Google Patents

Bidirectional conductive module having laser processing technology applied thereto and method for manufacturing same Download PDF

Info

Publication number
WO2019039628A1
WO2019039628A1 PCT/KR2017/009255 KR2017009255W WO2019039628A1 WO 2019039628 A1 WO2019039628 A1 WO 2019039628A1 KR 2017009255 W KR2017009255 W KR 2017009255W WO 2019039628 A1 WO2019039628 A1 WO 2019039628A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
vertical direction
conductive
mold
base
Prior art date
Application number
PCT/KR2017/009255
Other languages
French (fr)
Korean (ko)
Inventor
문해중
이은주
Original Assignee
주식회사 이노글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노글로벌 filed Critical 주식회사 이노글로벌
Publication of WO2019039628A1 publication Critical patent/WO2019039628A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a bidirectional conductive module and a method of manufacturing the same, and more particularly, to a bidirectional conductive module and a method of manufacturing the same, which can improve the electrical characteristics while overcoming the limitations of fine pitch and thickness, will be.
  • the semiconductor device is subjected to a manufacturing process and then an inspection is performed to determine whether the electrical performance is good or not. Inspection is carried out with a semiconductor test socket (or a connector or a connector) formed so as to be in electrical contact with a terminal of a semiconductor element inserted between a semiconductor element and an inspection circuit board. Semiconductor test sockets are used in burn-in testing process of semiconductor devices in addition to final semiconductor testing of semiconductor devices.
  • a technique proposed to be compatible with the integration of such semiconductor devices is to form a perforated pattern in a vertical direction on a silicon body made of a silicone material made of an elastic material and then to fill the perforated pattern with a conductive powder to form a conductive pattern PCR socket type is widely used.
  • a conventional semiconductor testing apparatus 1 includes a support plate 30 and a semiconductor test socket 10 of PCR socket type.
  • the support plate 30 supports the semiconductor test socket 10 when the semiconductor test socket 10 moves between the semiconductor element 3 and the test circuit board 5.
  • a main through hole (not shown) for the advance and retreat guide is formed at the center of the support plate 30, and the through holes for coupling are spaced apart from each other along the edge forming the main through hole .
  • the semiconductor test socket 10 is fixed to the support plate 30 by a peripheral support portion 50 joined to the upper and lower surfaces of the support plate 30.
  • the PCR socket type semiconductor test socket 10 has a perforated pattern formed on an insulating silicon body and conductive patterns are formed in the vertical direction by the conductive powder 11 filled in the perforated pattern.
  • the semiconductor type test socket 10 of the PCR type uses a body made of silicon
  • the semiconductor element 3 is pressed downward in contact with the semiconductor test socket 10
  • Deformation occurs.
  • a cross-section of the perforated pattern is deformed in the form of a jar by pressing in the downward direction.
  • Such a phenomenon causes an increase in electrical resistance, .
  • the upper part of the conductive powder is provided with an inclined surface, Thereby forming a groove or the like.
  • the present invention provides a bidirectional conductive module and a method of manufacturing the same that can overcome limitations of fine pitch and thickness while improving electrical characteristics and manufacturing by a simple manufacturing method It has its purpose.
  • a bi-directional conductive module comprising: an insulating main body formed of insulating material and having a plurality of through holes penetrating in a vertical direction; A conductive pattern portion including conductive particles having conductivity to be filled in each of the through holes; And at least one region is formed in the insulating main body so as to surround the peripheries of the through holes, thereby providing a restoring force in a vertical direction.
  • the elastic spring may be formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material.
  • the elastic spring may include a coil spring that is wound along the vertical direction inside the insulating main body around the through hole.
  • a method of manufacturing a bidirectional conductive module comprising the steps of: (a) providing a base mold having a plurality of mold pins protruding upward; (b) inserting an elastic spring into each of the mold pins so as to surround the respective mold pins; (c) injecting a liquid phase of an insulating material into the base mold and curing the base mold to form an insulating main body; (d) separating the insulating main body from the base metal mold, wherein a plurality of through holes are vertically formed in the insulating main body by each of the metal mold fins, and each of the through holes is formed so as to surround each of the through holes At least one region of the elastic spring being formed inside the insulating body; (e) filling the respective through holes with a filler including conductive particles having conductivity, and curing the filler. [5] The method of manufacturing a bidirectional conductive module according to claim 1,
  • the elastic spring may be formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material.
  • the elastic spring may include a coil spring for surrounding the mold pin.
  • a bidirectional conductive module comprising: an insulating main body made of an insulating material and having a plurality of through holes penetrating in a vertical direction; And a conductive pattern portion formed in each of the through holes and having conductivity in a vertical direction; The conductive pattern portion being inserted into the through hole to provide a restoring force in an up and down direction, the conductive pattern portion having elasticity; And a filler including conductive particles having conductivity to be filled between the elastic springs.
  • the elastic spring may include at least one of a carbon spring material, a stainless steel material, a tungsten material, and a plastic material; And a plating layer of a conductive material formed on the surface of the base spring.
  • the elastic spring may include a coil spring that is wound along the vertical direction within the through hole.
  • a method of manufacturing a bidirectional conductive module comprising: (a) providing an insulating main body of an insulating material having a plurality of through holes penetrating in a vertical direction; (b) inserting an elastic spring having electrical conductivity and providing a restoring force in each of the through-holes in a vertical direction; (c) filling the respective through-holes with a filler including conductive particles having conductivity, filling the spaces between the elastic springs and curing the conductive material, and .
  • a method of manufacturing a bidirectional conductive module comprising: (a) providing an insulating main body of an insulating material having a plurality of through holes penetrating in a vertical direction; (b) providing a fin-making mold having a mold hole having an inner diameter of a size corresponding to the inner diameter of the through-hole; (c) placing a base elastic spring having conductivity inside the mold hole; (d) filling the mold hole with a filler including conductive particles having conductivity, filling the gap between the base elastic springs and curing the base pin to form a base pin; (e) cutting the base pin in units corresponding to the thickness of the insulating main body to form a conductive pattern pin, the conductive pattern pin including an elastic spring formed by cutting and a filler; (f) inserting the conductive pattern pins into the respective through-holes to form conductive pattern portions, wherein the elastic springs in the conductive pattern fins are arranged to form a restoring force in
  • the elastic spring may include at least one of a carbon spring material, a stainless steel material, a tungsten material, and a plastic material; And a plating layer of a conductive material formed on the surface of the base spring.
  • the elastic spring may include a coil spring that is wound along the vertical direction within the through hole.
  • the elastic spring is formed inside the insulating body so as to surround the periphery of the through hole, thereby preventing deformation of the insulating body due to downward pressing generated in the test process of the semiconductor element
  • the present invention also provides a bidirectional conductive module and a method of manufacturing the same, which can provide a restoring force due to elastic support, thereby preventing deterioration of electrical characteristics due to deformation and enabling more stable inspection.
  • the elastic spring is supported by the spring, its deformation is minimized, and the life of the product can be improved.
  • FIG. 1 is a cross-sectional view of a conventional semiconductor test apparatus of PCR socket type
  • FIG. 2 is a view for explaining a warp phenomenon of a conventional PCR socket-type semiconductor test socket
  • FIG. 3 is a view for explaining a bidirectional conductive module according to the first embodiment of the present invention.
  • FIGS. 4 and 5 are views for explaining a method of manufacturing the bidirectional conductive module according to the first embodiment of the present invention
  • FIG. 6 is a view for explaining a method for manufacturing a bidirectional conductive module according to a second embodiment of the present invention
  • FIG. 7 and 8 are views for explaining another method of manufacturing the bidirectional conductive module according to the second embodiment of the present invention.
  • bidirectional conductive module 110, 310, 510 bidirectional conductive module 110, 310, 510:
  • the present invention relates to a bidirectional conductive module, and more particularly, to a bidirectional conductive module comprising: an insulating main body made of an insulating material and having a plurality of through holes penetrating in a vertical direction; A conductive pattern portion including conductive particles having conductivity to be filled in each of the through holes; And at least one region is formed inside the insulating body so as to surround the perimeter of each of the through holes, thereby providing a restoring force in a vertical direction.
  • FIG. 3 is a view for explaining the bidirectional conductive module 100 according to the first embodiment of the present invention.
  • the bidirectional conductive module 100 according to the first embodiment of the present invention includes an insulating main body 110, a conductive pattern portion 130, and an elastic spring 120.
  • the insulating main body 110 is made of an insulating material, and is made of a material having elasticity such as silicon.
  • the insulating main body 110 is formed with a plurality of through holes 111 (see Fig. 5) penetrating in the vertical direction.
  • the conductive pattern portion 130 is filled in each of the through holes 111 to form a conductive line in the vertical direction.
  • the conductive pattern part 130 includes conductive conductive particles 131.
  • the conductive pattern part 130 may be formed by filling and curing a filler mixed with the liquid silicon 132 and the conductive particles 131.
  • the conductive particles 131 may have the form of conductive conductive powder, conductive fiber, or conductive wire, and a plating of a conductive material may be formed on the outer surface to improve the conductivity.
  • At least one region of the elastic spring 120 is formed inside the insulating body 110 so as to surround the peripheries of the respective through holes 111.
  • 3 shows an example in which the entirety of the elastic spring 120 is formed inside the insulating main body 110 so as to surround the peripheries of the respective through holes 111.
  • FIG. 3 shows an example in which the entirety of the elastic spring 120 is formed inside the insulating main body 110 so as to surround the peripheries of the respective through holes 111.
  • the elastic spring 120 is formed so as to provide a restoring force in a vertical direction.
  • the elastic coil 120 is wound around the through hole 111 in the vertical direction inside the insulating main body 110, It is exemplified that it is composed of a spring type.
  • the bidirectional conductive module 100 is used as a semiconductor test socket, so that the terminals or the ball grid of the semiconductor element in the upper direction can direct the conductive pattern portion 130 downward
  • the resilient spring 120 resiliently supports the insulating body 110 together with the insulating body 110 to prevent deformation of the insulating body 110 when pressing. As a result, it is possible to prevent deterioration of electrical characteristics due to deformation.
  • the insulating main body 110 made of a silicon material can solve the problem of loss of restoring force and deformation in a continuous inspection process, life of the product can be improved.
  • the elastic spring 120 is formed of at least one of carbon steel material, stainless steel material, tungsten material, and plastic material. However, it may be made of other material capable of elastically supporting in the up- Of course it is.
  • FIG. 1 a method of manufacturing the bidirectional conductive module 100 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 1 a method of manufacturing the bidirectional conductive module 100 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 1 a method of manufacturing the bidirectional conductive module 100 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • a base mold 1 in which a plurality of mold pins 3 protrude upward is provided.
  • the plurality of mold pins 3 formed on the base metal mold 1 are provided at a size and an interval corresponding to the through holes 111 of the bidirectional conductive module 100.
  • the elastic springs 120 are inserted into the respective mold pins 3 so as to enclose the respective mold pins 3.
  • a liquid for example, a liquid silicone of an insulating material is injected into the base metal mold 1 , And cured at a high temperature to form the insulating main body 110.
  • high temperature curing is performed at a temperature of 150 DEG C for 15 minutes or more.
  • the insulating body 110 When the insulating body 110 is removed from the base metal 1 after the curing is completed, the insulating body 110 having the plurality of through holes 111 formed therein is completed, as shown in FIG. At this time, as described above, a plurality of through-holes penetrating in the vertical direction are formed in the insulating main body 110 by the respective metal mold pins 3, and a shape in which the elastic springs 120 surround the peripheries of the through- Is formed inside the insulating main body 110.
  • the filler including the conductive particles 131 for example, the filler mixed with the liquid silicon 132 and the conductive particles 131 is filled in the respective through holes 111 and then hardened,
  • the pattern portion 130 is formed to complete the fabrication of the bidirectional conductive module 100 as shown in Fig.
  • the filler is cured at a high temperature, for example, a high temperature of 160 ⁇ or higher.
  • bidirectional conductive module 300 according to a second embodiment of the present invention and a method of manufacturing the same will be described with reference to FIG.
  • the bidirectional conductive module 300 includes an insulating main body 310 and a conductive pattern portion 330 as shown in FIG. 6 (c).
  • the insulating main body 310 is made of an insulating material as in the first embodiment, and is made of a material having elasticity such as silicon.
  • the insulating main body 310 is formed with a plurality of through holes 311 penetrating in the vertical direction.
  • the conductive pattern portion 330 is formed in each of the through holes 311 to form a conductive line in the vertical direction.
  • the conductive pattern portion 330 includes the elastic spring 320 and a filler.
  • the elastic spring 320 is inserted into the through hole 311 to elastically provide a restoring force in a vertical direction.
  • the elastic spring 320 has conductivity.
  • the elastic spring 320 includes a base spring formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material, and a plating layer of a conductive material formed on the surface of the base spring For example.
  • the plating layer may be formed through sequential plating of nickel and gold.
  • the elastic spring 320 is formed as a coil spring that is wound along the vertical direction in the through-hole.
  • the filler is filled in a state in which the conductive particles 331 having conductivity and the liquid silicon 332 are mixed and cured.
  • the conductive particles 331 are filled between the elastic springs 320, the contact between the conductive particles 331 and the elastic springs 320 when pressed during the testing process of the semiconductor device, The electrical connection can be made more stably by the contact.
  • the elastic spring 320 elastically supports the terminal or the ball of the semiconductor element and disperses the pressure applied to the insulating main body 310 so that the deformation of the insulating main body 310 is minimized and the electrical characteristic It is possible to prevent deterioration and extend its service life.
  • FIG. 6A a method of manufacturing the bidirectional conductive module 300 according to the second embodiment of the present invention will be described.
  • a plurality of through- An insulating main body 310 of an insulating material formed with balls is provided.
  • the insulating main body 310 can be manufactured through the base mold 3 as shown in Fig. 4 (a), or through holes can be formed through laser processing.
  • the resilient spring 320 is inserted into each of the through holes 311 to provide a restoring force in the up-and-down direction and have conductivity.
  • the elastic spring 320 is provided as a coil spring that is wound along the vertical direction inside the through-hole.
  • the conductive pattern portion 330 is formed in the through hole 311, and the conductive pattern portion 330 is formed in the through hole 311, .
  • the filler includes the conductive particles 331 and the liquid silicon 332, and the conductive particles 331 are filled in the space between the elastic springs 320 when filled.
  • FIGS. 7 and 8 are views for explaining a bidirectional conductive module 500 according to a third embodiment of the present invention and a method of manufacturing the same.
  • the insulating main body 510 in which a plurality of through holes 511 are formed is provided as in the above-described embodiment (see Fig. 8B).
  • a fin forming mold 5 is prepared.
  • a mold hole 7 having an inner diameter corresponding to the inner diameter of the through hole 511 is formed.
  • the length of the mold hole 7 is longer than the thickness of the insulating main body 510, and the plurality of conductive pattern portions 530 are formed in the subsequent cutting process.
  • the base elastic spring 520a having conductivity is seated in the inside of the mold hole 7.
  • the base elastic spring 520a is cut in the subsequent cutting process to form the elastic spring 520.
  • the base spring 520 is made of at least one of carbon steel material, stainless steel material, tungsten material, and plastic material so as to have conductivity.
  • a plating layer of a conductive material formed on the surface thereof is the same as the above-described embodiment.
  • a filler containing a conductive particle 531a having conductivity for example, a filler in which liquid silicone 532a and conductive particles 531a are mixed is injected into the mold hole 7 in a state in which the base elastic spring 520a is seated. And then hardened to form a base pin 530a as shown in Fig. 8 (a). Here, the conductive particles 531a are cured in a state filled between the base elastic springs 520a.
  • the base pin 530a is cut in a unit corresponding to the thickness of the insulating main body 510 to form the conductive pattern fin 530b.
  • an elastic spring 520 formed by cutting and a filler that is, a conductive particle 531 and a cured silicon 532 are formed in the conductive pattern fin 530b formed by cutting the base pin 530a do.
  • the conductive pattern pin 530b when the conductive pattern pin 530b is inserted into the through hole 511 of the insulating main body 510, the conductive pattern pin 530b is electrically connected to the bidirectional conductive module 500
  • the conductive pattern portion 530 of the conductive pattern portion 530 is formed to enable the fabrication of the bidirectional conductive module.
  • the bidirectional conductive modules 100, 300 and 500 according to the present invention can be applied to an interposer for connecting a PCB and a PCB (or a CPU), an interposer for wafer inspection, and the like in addition to inspection of semiconductor devices.
  • the present invention can be applied to connecting a semiconductor device to be tested to an inspection circuit board in a process of testing semiconductor devices, and the present invention is also applicable to an interposer connecting between a CPU and a board or an interposer used for wafer inspection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

The present invention relates to a bidirectional conductive pin, a bidirectional conductive pattern module, and a method for manufacturing the same. The bidirectional conductive pin according to the present invention comprises: a pin body made of an insulative material; and a pin module provided inside the pin body such that the upper portion and the lower portion thereof are exposed to the upper surface and the lower surface of the pin body, respectively. The pin module comprises: an upper contact portion which has a cylindrical shape, and the upper portion of which is exposed to the upper portion of the pin body; a lower contact portion which has a cylindrical shape, and the lower portion of which is exposed to the lower portion of the pin body; and at least one connecting portion that electrically connects the upper contact portion and the lower contact portion inside the pin body. The at least one connecting portion is connected to the upper contact portion and to the lower contact portion in different positions in the circumferential direction, thereby connecting the upper contact portion and the lower contact portion while being wound along the circumferential direction. Accordingly, a conductive metal thin plate is patterned, and a pattern is wound by using a mold, for example, so as to form an upper contact portion and a lower contact portion. Accordingly, a connecting portion is formed to be wound in the circumferential direction, and comes to have elastically restoring power in the upward/downward direction, thereby making it possible to implement a single bidirectional conductive pin in the upward/downward direction.

Description

레이저 가공 기술이 적용된 양방향 도전성 모듈 및 그 제조방법Bi-directional conductive module with laser processing technology and manufacturing method thereof
본 발명은 양방향 도전성 모듈 및 그 제조방법에 관한 것으로서, 보다 상세하게는 미세 피치와 두께의 한계를 극복하면서도 전기적 특성이 향상되며, 간단한 제조 방법에 의해 제조가 가능한 양방향 도전성 모듈 및 그 제조방법에 관한 것이다.The present invention relates to a bidirectional conductive module and a method of manufacturing the same, and more particularly, to a bidirectional conductive module and a method of manufacturing the same, which can improve the electrical characteristics while overcoming the limitations of fine pitch and thickness, will be.
반도체 소자는 제조 과정을 거친 후 전기적 성능의 양불을 판단하기 위한 검사를 수행하게 된다. 반도체 소자의 양불 검사는 반도체 소자의 단자와 전기적으로 접촉될 수 있도록 형성된 반도체 테스트 소켓(또는 콘텍터 또는 커넥터)을 반도체 소자와 검사회로기판 사이에 삽입한 상태에서 검사가 수행된다. 그리고, 반도체 테스트 소켓은 반도체 소자의 최종 양불 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.The semiconductor device is subjected to a manufacturing process and then an inspection is performed to determine whether the electrical performance is good or not. Inspection is carried out with a semiconductor test socket (or a connector or a connector) formed so as to be in electrical contact with a terminal of a semiconductor element inserted between a semiconductor element and an inspection circuit board. Semiconductor test sockets are used in burn-in testing process of semiconductor devices in addition to final semiconductor testing of semiconductor devices.
반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 피치도 미세화되는 추세이고, 그에 따라 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다. 따라서, 기존의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하기 위한 반도체 테스트 소켓을 제작하는데 한계가 있었다.The size and pitch of the terminals of the semiconductor elements, that is, the leads, are also becoming finer in accordance with the development and miniaturization trend of semiconductor device integration technology, and accordingly, there is a demand for a method of finely forming a gap between conductive patterns of test sockets. Therefore, conventional Pogo-pin type semiconductor test sockets have a limitation in manufacturing semiconductor test sockets for testing integrated semiconductor devices.
이와 같은 반도체 소자의 집적화에 부합하도록 제안된 기술이, 탄성 재질의 실리콘 소재로 제작되는 실리콘 본체 상에 수직 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 분말을 충진하여 도전 패턴을 형성하는 PCR 소켓 타입이 널리 사용되고 있다.A technique proposed to be compatible with the integration of such semiconductor devices is to form a perforated pattern in a vertical direction on a silicon body made of a silicone material made of an elastic material and then to fill the perforated pattern with a conductive powder to form a conductive pattern PCR socket type is widely used.
도 1은 PCR 소켓 타입의 종래의 반도체 테스트 장치(1)의 단면을 도시한 도면이다. 도 1을 참조하여 설명하면, 종래의 반도체 테스트 장치(1)는 지지 플레이트(30) 및 PCR 소켓 타입의 반도체 테스트 소켓(10)을 포함한다.1 is a cross-sectional view of a conventional semiconductor test apparatus 1 of PCR socket type. Referring to FIG. 1, a conventional semiconductor testing apparatus 1 includes a support plate 30 and a semiconductor test socket 10 of PCR socket type.
지지 플레이트(30)는 반도체 테스트 소켓(10)이 반도체 소자(3) 및 검사회로기판(5) 사이에서 움직일 때 반도체 테스트 소켓(10)을 지지한다. 여기서, 지지 플레이트(30)의 중앙에는 진퇴 가이드용 메인 관통홀(미도시)이 형성되어 있고, 메인 관통홀을 형성하는 가장자리를 따라 가장자리로부터 이격되는 위치에 결합용 관통홀이 상호 이격되게 형성된다. 그리고, 반도체 테스트 소켓(10)은 지지 플레이트(30)의 상면 및 하면에 접합되는 주변 지지부(50)에 의해 지지 플레이트(30)에 고정된다.The support plate 30 supports the semiconductor test socket 10 when the semiconductor test socket 10 moves between the semiconductor element 3 and the test circuit board 5. [ Here, a main through hole (not shown) for the advance and retreat guide is formed at the center of the support plate 30, and the through holes for coupling are spaced apart from each other along the edge forming the main through hole . The semiconductor test socket 10 is fixed to the support plate 30 by a peripheral support portion 50 joined to the upper and lower surfaces of the support plate 30.
PCR 소켓 타입의 반도체 테스트 소켓(10)은 절연성의 실리콘 본체에 타공 패턴이 형성되고, 해당 타공 패턴 내에 충진되는 도전성 분말(11)에 의해 상하 방향으로 도전 패턴들이 형성된다.The PCR socket type semiconductor test socket 10 has a perforated pattern formed on an insulating silicon body and conductive patterns are formed in the vertical direction by the conductive powder 11 filled in the perforated pattern.
그런데, PCR 타입의 반도체 테스트 소켓(10)은 실리콘 재질의 몸체를 사용하고 있어, 반도체 소자(3)가 반도체 테스트 소켓(10)과 접촉하여 하부 방향으로 가압하게 되면, 도 2에 도시된 바와 같은 변형이 발생하게 된다. 일반적으로, 도 2의 (a)에 도시된 바와 같이, 하부 방향으로의 가압에 의해 타공 패턴의 단면이 항아리 형태로 변형이 발생하게 되는데, 이와 같은 현상은 전기적 저항을 높혀 결과적으로 전기적 특성에 악영향을 미치게 된다.However, since the semiconductor type test socket 10 of the PCR type uses a body made of silicon, when the semiconductor element 3 is pressed downward in contact with the semiconductor test socket 10, Deformation occurs. Generally, as shown in FIG. 2 (a), a cross-section of the perforated pattern is deformed in the form of a jar by pressing in the downward direction. Such a phenomenon causes an increase in electrical resistance, .
또한, 피치 간의 간격이 좁아지거나 반도체 테스트 소켓(10)의 두께가 두꺼워지게 되면, 도 2의 (b)에 도시된 바와 같이, C자 형태로 휘는 현상이 발생하게 되는데, 이 경우에도 전기적 특성의 약화로 보다 정확한 검사에 영향을 미쳐, 실제 0.3mm 피치에서 0.5mm 이상의 두께로 제작하지 못하는 원인으로 작용하고 있다.When the interval between the pitches becomes narrow or the thickness of the semiconductor test socket 10 becomes thick, a phenomenon of warping in a C-shape occurs as shown in FIG. 2 (b). In this case, It affects more accurate inspection due to weakening, and acts as a cause of failure to fabricate a thickness of 0.5 mm or more at an actual 0.3 mm pitch.
이와 같은 문제를 해소하기 위해, 한국등록특허 제10-1043351호에 개시된 PCR 소켓 및 PCR 소켓의 표면 처리 기법에서는 압력의 크기를 줄이기 위해 도전성 분말의 상부 부분에 경사면이 구비되도록 도전체의 상부에 노치홈을 형성하는 등의 방법을 제안하고 있다.In order to solve this problem, in the surface treatment technique of the PCR socket and the PCR socket disclosed in Korean Patent No. 10-1043351, in order to reduce the pressure, the upper part of the conductive powder is provided with an inclined surface, Thereby forming a groove or the like.
그러나, 상기 한국등록특허에 개시된 기술을 적용하는데 있어, 제조 방법이 복잡해지고, 이에 따른 가격 상승의 문제가 발생한다는 점에서 바람직하지 않다.However, the application of the technology disclosed in the Korean patent is not preferable in that the manufacturing method becomes complicated and a problem of price increase arises accordingly.
이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 미세 피치와 두께의 한계를 극복하면서도 전기적 특성이 향상되며, 간단한 제조 방법에 의해 제조가 가능한 양방향 도전성 모듈 및 그 제조방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention provides a bidirectional conductive module and a method of manufacturing the same that can overcome limitations of fine pitch and thickness while improving electrical characteristics and manufacturing by a simple manufacturing method It has its purpose.
상기 목적은 본 발명에 따라, 양방향 도전성 모듈에 있어서, 절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와; 각각의 상기 관통홀에 충진되는 도전성을 갖는 도전성 파티클을 포함하는 도전 패턴부와; 각각의 상기 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되어 상하 방향으로 복원력을 제공하는 탄성 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈에 의해서 달성된다.According to an aspect of the present invention, there is provided a bi-directional conductive module comprising: an insulating main body formed of insulating material and having a plurality of through holes penetrating in a vertical direction; A conductive pattern portion including conductive particles having conductivity to be filled in each of the through holes; And at least one region is formed in the insulating main body so as to surround the peripheries of the through holes, thereby providing a restoring force in a vertical direction.
여기서, 상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련될 수 있다.The elastic spring may be formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material.
그리고, 상기 탄성 스프링은 상기 관통홀 주변의 상기 절연성 본체 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함할 수 있다.The elastic spring may include a coil spring that is wound along the vertical direction inside the insulating main body around the through hole.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 양방향 도전성 모듈의 제조방법에 있어서, (a) 복수의 금형 핀이 상향 돌출된 베이스 금형을 마련하는 단계와; (b) 각각의 상기 금형 핀을 감싸도록 각각의 상기 금형 핀에 탄성 스프링을 끼우는 단계와; (c) 절연성 재질의 액상을 상기 베이스 금형에 주입하여 경화시켜 절연성 본체를 형성하는 단계와; (d) 상기 절연성 본체를 상기 베이스 금형으로부터 이탈시키는 단계 - 각각의 상기 금형 핀에 의해 상기 절연성 본체에 상하 방향으로 관통된 복수의 관통홀이 형성되고, 각각의 상기 관통홀의 주변을 감싸도록 각각의 상기 탄성 스프링의 적어도 일 영역이 상기 절연성 본체 내부에 형성됨 - 와; (e) 각각의 상기 관통홀에 도전성을 갖는 도전성 파티클을 포함하는 충진제를 충진하여 경화시키는 단계를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법에 의해서도 달성될 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a bidirectional conductive module, comprising the steps of: (a) providing a base mold having a plurality of mold pins protruding upward; (b) inserting an elastic spring into each of the mold pins so as to surround the respective mold pins; (c) injecting a liquid phase of an insulating material into the base mold and curing the base mold to form an insulating main body; (d) separating the insulating main body from the base metal mold, wherein a plurality of through holes are vertically formed in the insulating main body by each of the metal mold fins, and each of the through holes is formed so as to surround each of the through holes At least one region of the elastic spring being formed inside the insulating body; (e) filling the respective through holes with a filler including conductive particles having conductivity, and curing the filler. [5] The method of manufacturing a bidirectional conductive module according to claim 1,
여기서, 상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련될 수 있다.The elastic spring may be formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material.
그리고, 상기 탄성 스프링은 상기 금형 핀을 감싸는 코일 스프링을 포함할 수 있다.The elastic spring may include a coil spring for surrounding the mold pin.
한편, 상기 목적은 본 발명의 또 다른 실시 형태에 따라, 양방향 도전성 모듈에 있어서, 절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와; 각각의 상기 관통홀에 형성되어 상하 방향으로 도전성을 갖는 도전 패턴부를 포함하며; 상기 도전 패턴부는 상기 관통홀에 삽입되어 상하 방향으로 복원력을 제공하며, 도전성을 갖는 탄성 스프링과; 상기 탄성 스프링의 사이 사이에 충진되는 도전성을 갖는 도전성 파티클을 포함한 충진제를 포함하는 것을 특징으로 하는 양방향 도전성 모듈에 의해서도 달성될 수 있다.According to another aspect of the present invention, there is provided a bidirectional conductive module, comprising: an insulating main body made of an insulating material and having a plurality of through holes penetrating in a vertical direction; And a conductive pattern portion formed in each of the through holes and having conductivity in a vertical direction; The conductive pattern portion being inserted into the through hole to provide a restoring force in an up and down direction, the conductive pattern portion having elasticity; And a filler including conductive particles having conductivity to be filled between the elastic springs.
여기서, 상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 베이스 스프링과; 상기 베이스 스프링의 표면에 형성된 도전성 재질의 도금층을 포함할 수 있다.Here, the elastic spring may include at least one of a carbon spring material, a stainless steel material, a tungsten material, and a plastic material; And a plating layer of a conductive material formed on the surface of the base spring.
또한, 상기 탄성 스프링은 상기 관통홀 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함할 수 있다.In addition, the elastic spring may include a coil spring that is wound along the vertical direction within the through hole.
한편, 상기 목적은 본 발명의 또 다른 실시 형태에 따라, 양방향 도전성 모듈의 제조방법에 있어서, (a) 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 재질의 절연성 본체를 마련하는 단계와; (b) 각각의 상기 관통홀에 상하 방향으로 복원력을 제공하고 도전성을 갖는 탄성 스프링을 삽입하는 단계와; (c) 각각의 상기 관통홀에 도전성을 갖는 도전성 파티클을 포함하는 충진제를 충진하되 상기 탄성 스프링의 사이 사이에 충진하여 경화시키는 단계를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법에 의해서도 달성될 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a bidirectional conductive module, comprising: (a) providing an insulating main body of an insulating material having a plurality of through holes penetrating in a vertical direction; (b) inserting an elastic spring having electrical conductivity and providing a restoring force in each of the through-holes in a vertical direction; (c) filling the respective through-holes with a filler including conductive particles having conductivity, filling the spaces between the elastic springs and curing the conductive material, and .
한편, 상기 목적은 본 발명의 또 다른 실시 형태에 따라, 양방향 도전성 모듈의 제조방법에 있어서, (a) 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 재질의 절연성 본체를 마련하는 단계와; (b) 상기 관통홀의 내경에 대응하는 크기의 내경을 갖는 금형홀이 파인 핀제작 금형을 마련하는 단계와; (c) 상기 금형홀 내부에 도전성을 갖는 베이스 탄성 스프링을 안착시키는 단계와; (d) 상기 금형홀에 도전성을 갖는 도전성 파티클을 포함하는 충진제를 충진하되 상기 베이스 탄성 스프링의 사이 사이에 충진하여 경화시켜 베이스 핀을 형성하는 단계와; (e) 상기 베이스 핀을 상기 절연성 본체의 두께에 대응하도록 단위로 절단하여 도전 패턴핀을 형성하는 단계 - 도전 패턴핀은 절단에 의해 형성되는 탄성 스프링과 충진제를 포함함 - 와; (f) 상기 도전 패턴핀을 각각의 상기 관통홀에 삽입하여 도전 패턴부를 형성하는 단계 - 상기 도전 패턴핀 내의 상기 탄성 스프링은 상하 방향으로 복원력을 형성하도록 배치됨 -를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법에 의해서도 달성될 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a bidirectional conductive module, comprising: (a) providing an insulating main body of an insulating material having a plurality of through holes penetrating in a vertical direction; (b) providing a fin-making mold having a mold hole having an inner diameter of a size corresponding to the inner diameter of the through-hole; (c) placing a base elastic spring having conductivity inside the mold hole; (d) filling the mold hole with a filler including conductive particles having conductivity, filling the gap between the base elastic springs and curing the base pin to form a base pin; (e) cutting the base pin in units corresponding to the thickness of the insulating main body to form a conductive pattern pin, the conductive pattern pin including an elastic spring formed by cutting and a filler; (f) inserting the conductive pattern pins into the respective through-holes to form conductive pattern portions, wherein the elastic springs in the conductive pattern fins are arranged to form a restoring force in a vertical direction. Can also be achieved by a manufacturing method of a module.
여기서, 상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 베이스 스프링과; 상기 베이스 스프링의 표면에 형성된 도전성 재질의 도금층을 포함할 수 있다.Here, the elastic spring may include at least one of a carbon spring material, a stainless steel material, a tungsten material, and a plastic material; And a plating layer of a conductive material formed on the surface of the base spring.
또한, 상기 탄성 스프링은 상기 관통홀 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함할 수 있다.In addition, the elastic spring may include a coil spring that is wound along the vertical direction within the through hole.
상기와 같은 구성에 따라 본 발명에 따르면, 관통홀의 주변을 감싸도록 탄성 스프링이 절연성 본체의 내부에 형성되어, 반도체 소자의 테스트 과정에서 발생하는 하부 방향으로의 가압에 의해 절연성 본체의 변형을 방지할 뿐만 아니라 탄성적인 지지에 의한 복원력을 제공하게 되어, 변형에 따른 전기적 특성의 악화를 방지하면서도 보다 안정적인 검사가 가능한 양방향 도전성 모듈 및 그 제조방법에 제공된다.According to the present invention, the elastic spring is formed inside the insulating body so as to surround the periphery of the through hole, thereby preventing deformation of the insulating body due to downward pressing generated in the test process of the semiconductor element The present invention also provides a bidirectional conductive module and a method of manufacturing the same, which can provide a restoring force due to elastic support, thereby preventing deterioration of electrical characteristics due to deformation and enabling more stable inspection.
또한, 탄성 스프링에 의해 지지됨에 따라 그 변형이 최소화되어, 제품의 수명을 향상시킬 수 있는 효과가 제공된다.Further, since the elastic spring is supported by the spring, its deformation is minimized, and the life of the product can be improved.
도 1은 PCR 소켓 타입의 종래의 반도체 테스트 장치의 단면을 도시한 도면이고,1 is a cross-sectional view of a conventional semiconductor test apparatus of PCR socket type,
도 2는 종래의 PCR 소켓 타입의 반도체 테스트 소켓의 휨 현상을 설명하기 위한 도면이고,FIG. 2 is a view for explaining a warp phenomenon of a conventional PCR socket-type semiconductor test socket,
도 3은 본 발명의 제1 실시예에 따른 양방향 도전성 모듈을 설명하기 위한 도면이고,FIG. 3 is a view for explaining a bidirectional conductive module according to the first embodiment of the present invention, and FIG.
도 4 및 도 5는 본 발명의 제1 실시예에 따른 양방향 도전성 모듈의 제조방법을 설명하기 위한 도면이고,4 and 5 are views for explaining a method of manufacturing the bidirectional conductive module according to the first embodiment of the present invention,
도 6은 본 발명의 제2 실시예에 따른 양방향 도전성 모듈의 제조방법을 설명하기 위한 도면이고,6 is a view for explaining a method for manufacturing a bidirectional conductive module according to a second embodiment of the present invention,
도 7 및 도 8은 본 발명의 제2 실시예에 따른 양방향 도전성 모듈의 또 다른 제조방법을 설명하기 위한 도면이다.7 and 8 are views for explaining another method of manufacturing the bidirectional conductive module according to the second embodiment of the present invention.
[부호의 설명][Description of Symbols]
100,300,500 : 양방향 도전성 모듈 110,310,510 : 절연성 본체100, 300, 500: bidirectional conductive module 110, 310, 510:
111,311,511 : 관통홀 120,320,520 : 탄성 스프링111, 311, 511: through holes 120, 320, 520:
130,330,530 : 도전 패턴부 131,331,531 : 도전성 파티클130, 330, 530: conductive pattern part 131, 331, 531: conductive particle
132,332,532 : 실리콘132,332,532: Silicon
본 발명은 양방향 도전성 모듈에 관한 것으로, 절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와; 각각의 상기 관통홀에 충진되는 도전성을 갖는 도전성 파티클을 포함하는 도전 패턴부와; 각각의 상기 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되어 상하 방향으로 복원력을 제공하는 탄성 스프링을 포함하는 것을 특징으로 한다.The present invention relates to a bidirectional conductive module, and more particularly, to a bidirectional conductive module comprising: an insulating main body made of an insulating material and having a plurality of through holes penetrating in a vertical direction; A conductive pattern portion including conductive particles having conductivity to be filled in each of the through holes; And at least one region is formed inside the insulating body so as to surround the perimeter of each of the through holes, thereby providing a restoring force in a vertical direction.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)을 설명하기 위한 도면이다. 도 3을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)은 절연성 본체(110), 도전 패턴부(130) 및 탄성 스프링(120)을 포함한다.FIG. 3 is a view for explaining the bidirectional conductive module 100 according to the first embodiment of the present invention. The bidirectional conductive module 100 according to the first embodiment of the present invention includes an insulating main body 110, a conductive pattern portion 130, and an elastic spring 120.
절연성 본체(110)는 절연성 재질로 마련되는데, 실리콘과 같은 탄성을 갖는 재질로 마련되는 것을 예로 한다. 절연성 본체(110)에는 상하 방향으로 관통된 복수의 관통홀(111, 도 5 참조)이 형성된다.The insulating main body 110 is made of an insulating material, and is made of a material having elasticity such as silicon. The insulating main body 110 is formed with a plurality of through holes 111 (see Fig. 5) penetrating in the vertical direction.
도전 패턴부(130)는 각각의 관통홀(111)에 충진되어 형성되어, 상하 방향으로 도전 라인을 형성한다. 도전 패턴부(130)는 도전성을 갖는 도전성 파티클(131)을 포함하는데, 액상의 실리콘(132)과 도전성 파티클(131)이 혼합된 충진제의 충진 및 경화에 의해 형성될 수 있다. 여기서, 도전성 파티클(131)은 도전성을 갖는 도전성 분말, 도전성 파이버 또는 도전성 와이어의 형태를 가질 수 있으며, 도전성의 향상을 위해 외부 표면에 도전성 재질의 도금이 형성될 수 있다.The conductive pattern portion 130 is filled in each of the through holes 111 to form a conductive line in the vertical direction. The conductive pattern part 130 includes conductive conductive particles 131. The conductive pattern part 130 may be formed by filling and curing a filler mixed with the liquid silicon 132 and the conductive particles 131. [ Here, the conductive particles 131 may have the form of conductive conductive powder, conductive fiber, or conductive wire, and a plating of a conductive material may be formed on the outer surface to improve the conductivity.
탄성 스프링(120)은 각각의 관통홀(111)의 주변을 감싸도록 적어도 일 영역이 절연성 본체(110) 내부에 형성된다. 도 3에서는 탄성 스프링(120)의 전체가 절연성 본체(110) 내부에 형성된 상태로 각각의 관통홀(111)의 주변을 감싸도록 마련되는 것을 예로 하고 있으나, 제조 과정에서 일부가 관통홀(111) 측으로 노출되는 상태로 마련될 수 있음은 물론이다.At least one region of the elastic spring 120 is formed inside the insulating body 110 so as to surround the peripheries of the respective through holes 111. 3 shows an example in which the entirety of the elastic spring 120 is formed inside the insulating main body 110 so as to surround the peripheries of the respective through holes 111. However, As shown in FIG.
여기서, 탄성 스프링(120)은 상하 방향으로 복원력을 제공하도록 형성되는데, 도 4에 도시된 바와 같이, 관통홀(111)의 주변의 절연성 본체(110) 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링 형태로 구성되는 것을 예로 한다.As shown in FIG. 4, the elastic spring 120 is formed so as to provide a restoring force in a vertical direction. The elastic coil 120 is wound around the through hole 111 in the vertical direction inside the insulating main body 110, It is exemplified that it is composed of a spring type.
상기와 같은 구성에 따라, 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)이 반도체 테스트 소켓으로 사용되어 상부 방향에서 반도체 소자의 단자 또는 볼 그리드가 도전 패턴부(130)를 하부 방향으로 가압할 때 절연성 본체(110)와 함께 탄성 스프링(120)이 탄성적으로 이를 지지하여, 절연성 본체(110)의 변형을 방지하게 된다. 이를 통해, 변형에 따른 전기적 특성의 저하를 방지할 수 있게 된다.According to the above-described configuration, the bidirectional conductive module 100 according to the first embodiment of the present invention is used as a semiconductor test socket, so that the terminals or the ball grid of the semiconductor element in the upper direction can direct the conductive pattern portion 130 downward The resilient spring 120 resiliently supports the insulating body 110 together with the insulating body 110 to prevent deformation of the insulating body 110 when pressing. As a result, it is possible to prevent deterioration of electrical characteristics due to deformation.
또한, 실리콘 재질의 절연성 본체(110)가 지속적인 검사 과정에서 복원력을 상실하는 문제점과 변형의 문제점 또한 함께 해소할 수 있어, 제품의 수명을 향상시킬 수 있게 된다.In addition, since the insulating main body 110 made of a silicon material can solve the problem of loss of restoring force and deformation in a continuous inspection process, life of the product can be improved.
여기서, 본 발명에 따른 탄성 스프링(120)은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 예로 하는데, 상하 방향으로 탄성적으로 지지할 수 있는 다른 재질로 마련될 수 있음은 물론이다.Here, the elastic spring 120 according to the present invention is formed of at least one of carbon steel material, stainless steel material, tungsten material, and plastic material. However, it may be made of other material capable of elastically supporting in the up- Of course it is.
이하에서는, 도 4 및 도 5를 참조하여 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)의 제조방법에 대해 상세히 설명한다.Hereinafter, a method of manufacturing the bidirectional conductive module 100 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5. FIG.
먼저, 도 4의 (a)에 도시된 바와 같이, 복수의 금형 핀(3)이 상향 돌출된 베이스 금형(1)을 마련한다. 여기서, 베이스 금형(1)에 형성된 복수의 금형 핀(3)은 양방향 도전성 모듈(100)의 관통홀(111)에 대응하는 크기와 간격으로 마련된다. 그런 다음, 각각의 금형 핀(3)을 감싸도록 각각의 금형 핀(3)에 탄성 스프링(120)을 끼운다.First, as shown in Fig. 4 (a), a base mold 1 in which a plurality of mold pins 3 protrude upward is provided. Here, the plurality of mold pins 3 formed on the base metal mold 1 are provided at a size and an interval corresponding to the through holes 111 of the bidirectional conductive module 100. Then, the elastic springs 120 are inserted into the respective mold pins 3 so as to enclose the respective mold pins 3.
각각의 금형 핀(3)에 탄성 스프링(120)이 끼워진 상태에서, 도 4의 (b)에 도시된 바와 같이, 절연성 재질의 액상, 예컨대, 액상의 실리콘을 베이스 금형(1)에 주입한 후, 고온에서 경화시켜 절연성 본체(110)를 형성한다. 본 발명에서는 150℃의 온도에서 15분 이상 고온 경화시키는 것을 예로 한다.4 (b), in the state where the elastic springs 120 are fitted to the respective metal mold pins 3, a liquid, for example, a liquid silicone of an insulating material is injected into the base metal mold 1 , And cured at a high temperature to form the insulating main body 110. In the present invention, high temperature curing is performed at a temperature of 150 DEG C for 15 minutes or more.
경화가 완료되면, 절연성 본체(110)를 베이스 금형(1)으로부터 이탈시키면, 도 5에 도시된 바와 같이, 복수의 관통홀(111)이 형성된 절연성 본체(110)의 제작이 완료된다. 이 때, 상술한 바와 같이, 각각의 금형 핀(3)에 의해 절연성 본체(110)에 상하 방향으로 관통된 복수의 관통공이 형성되고, 각각의 관통공의 주변을 탄성 스프링(120)이 감싸는 형태로 절연성 본체(110) 내부에 형성된다.When the insulating body 110 is removed from the base metal 1 after the curing is completed, the insulating body 110 having the plurality of through holes 111 formed therein is completed, as shown in FIG. At this time, as described above, a plurality of through-holes penetrating in the vertical direction are formed in the insulating main body 110 by the respective metal mold pins 3, and a shape in which the elastic springs 120 surround the peripheries of the through- Is formed inside the insulating main body 110. [
그리고, 도전성 파티클(131)을 포함하는 충진제, 예컨대 상술한 바와 같이, 액상의 실리콘(132)과 도전성 파티클(131)이 혼합된 충진제를 각각의 관통홀(111)에 충진한 후 경화시키게 되면 도전 패턴부(130)가 형성되어, 도 3에 도시된 바와 같은 양방향 도전성 모듈(100)의 제작이 완료된다. 여기서, 충진제는 고온, 예를 들어 160℃ 이상의 고온에서 경화시키는 것을 예로 한다.When the filler including the conductive particles 131, for example, the filler mixed with the liquid silicon 132 and the conductive particles 131 is filled in the respective through holes 111 and then hardened, The pattern portion 130 is formed to complete the fabrication of the bidirectional conductive module 100 as shown in Fig. Here, the filler is cured at a high temperature, for example, a high temperature of 160 캜 or higher.
여기서, 도 4의 (b)에 도시된 절연성 본체(110)의 형성 과정에서는, 도 1에 도시된 지지 플레이트(30)를 함께 형성할 수 있음은 물론이다.Here, in the process of forming the insulating main body 110 shown in FIG. 4B, it is needless to say that the support plate 30 shown in FIG. 1 can be formed together.
이하에서는, 도 6을 참조하여 본 발명의 제2 실시예에 따른 양방향 도전성 모듈(300)과 그 제조방법에 대해 설명한다.Hereinafter, a bidirectional conductive module 300 according to a second embodiment of the present invention and a method of manufacturing the same will be described with reference to FIG.
본 발명의 제2 실시예에 따른 양방향 도전성 모듈(300)은, 도 6의 (c)에 도시된 바와 같이, 절연성 본체(310)와 도전 패턴부(330)를 포함한다.The bidirectional conductive module 300 according to the second embodiment of the present invention includes an insulating main body 310 and a conductive pattern portion 330 as shown in FIG. 6 (c).
절연성 본체(310)는, 제1 실시예와 마찬가지로, 절연성 재질로 마련되는데, 실리콘과 같은 탄성을 갖는 재질로 마련되는 것을 예로 한다. 절연성 본체(310)에는 상하 방향으로 관통된 복수의 관통홀(311)이 형성된다.The insulating main body 310 is made of an insulating material as in the first embodiment, and is made of a material having elasticity such as silicon. The insulating main body 310 is formed with a plurality of through holes 311 penetrating in the vertical direction.
도전 패턴부(330)는 각각의 관통홀(311)에 형성되어, 상하 방향으로 도전 라인을 형성한다. 본 발명의 제2 실시예에서는 도전 패턴부(330)가 탄성 스프링(320)과 충진제를 포함하는 것을 예로 한다.The conductive pattern portion 330 is formed in each of the through holes 311 to form a conductive line in the vertical direction. In the second embodiment of the present invention, the conductive pattern portion 330 includes the elastic spring 320 and a filler.
탄성 스프링(320)은 관통홀(311)에 삽입되어 상하 방향으로 탄성적으로 복원력을 제공한다. 본 발명에서는 탄성 스프링(320)이 도전성을 갖는 것을 예로 하는데, 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 베이스 스프링과, 베이스 스프링의 표면에 형성된 도전성 재질의 도금층을 포함하는 것을 예로 한다. 여기서, 도금층은 니켈과 금의 순차적인 도금을 통해 형성될 수 있다. 도 6의 (b)에 도시된 바와 같이, 탄성 스프링(320)은 관통공 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링으로 마련되는 것을 예로 한다.The elastic spring 320 is inserted into the through hole 311 to elastically provide a restoring force in a vertical direction. In the present invention, the elastic spring 320 has conductivity. The elastic spring 320 includes a base spring formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material, and a plating layer of a conductive material formed on the surface of the base spring For example. Here, the plating layer may be formed through sequential plating of nickel and gold. As shown in FIG. 6 (b), the elastic spring 320 is formed as a coil spring that is wound along the vertical direction in the through-hole.
충진제는, 제1 실시예에서와 마찬가지로, 도전성을 갖는 도전성 파티클(331)과 액상의 실리콘(332)이 혼합된 상태에서 충진된 후 경화되어 형성된다. 이 때, 도전성 파티클(331)은 탄성 스프링(320)의 사이 사이에 충진된 상태를 가짐으로써, 반도체 소자의 테스트 과정에서 가압될 때 도전성 파티클(331) 간의 접촉과, 탄성 스프링(320)과의 접촉에 의해 보다 안정적으로 전기적 연결이 가능하게 된다.As in the first embodiment, the filler is filled in a state in which the conductive particles 331 having conductivity and the liquid silicon 332 are mixed and cured. At this time, since the conductive particles 331 are filled between the elastic springs 320, the contact between the conductive particles 331 and the elastic springs 320 when pressed during the testing process of the semiconductor device, The electrical connection can be made more stably by the contact.
또한, 탄성 스프링(320)이 반도체 소자의 단자나 볼을 탄성적으로 지지해주어, 절연성 본체(310)에 가해지는 압력을 분산시킴으로써, 절연성 본체(310)의 변형이 최소화 되어 변형에 따른 전기적 특성의 저하를 방지함과 동시에 그 수명을 연장시킬 수 있게 된다.The elastic spring 320 elastically supports the terminal or the ball of the semiconductor element and disperses the pressure applied to the insulating main body 310 so that the deformation of the insulating main body 310 is minimized and the electrical characteristic It is possible to prevent deterioration and extend its service life.
도 6을 참조하여, 본 발명의 제2 실시예에 따른 양방향 도전성 모듈(300)의 제조방법을 설명하면, 먼저, 도 6의 (a)에 도시된 바와 같이, 상하 방향으로 관통된 복수의 관통공이 형성된 절연성 재질의 절연성 본체(310)를 마련한다. 여기서, 절연성 본체(310)의 제조는, 도 4의 (a)에 도시된 바와 같은 베이스 금형(3)을 통해 제조하거나, 레이저 가공을 통해 관통공을 형성할 수 있다.6A, a method of manufacturing the bidirectional conductive module 300 according to the second embodiment of the present invention will be described. First, as shown in FIG. 6A, a plurality of through- An insulating main body 310 of an insulating material formed with balls is provided. Here, the insulating main body 310 can be manufactured through the base mold 3 as shown in Fig. 4 (a), or through holes can be formed through laser processing.
그런 다음, 도 6의 (b)에 도시된 바와 같이, 각각의 관통홀(311)에 상하 방향으로 복원력을 제공하고 도전성을 갖는 탄성 스프링(320)을 삽입한다. 여기서, 탄성 스프링(320)은 상술한 바와 같이, 관통공 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링으로 마련되는 것을 예로 한다.Then, as shown in Fig. 6 (b), the resilient spring 320 is inserted into each of the through holes 311 to provide a restoring force in the up-and-down direction and have conductivity. Here, as described above, the elastic spring 320 is provided as a coil spring that is wound along the vertical direction inside the through-hole.
탄성 스프링(320)의 삽입이 완료된후 관통홀(311)에 충진제를 주입한 후 경화시키게 되면, 도 6의 (c)에 도시된 바와 같이, 관통홀(311)에 도전 패턴부(330)가 형성된다. 여기서, 충진제는 도전성 파티클(331)과 액상의 실리콘(332)을 포함하며, 충진시 도전성 파티클(331)은 탄성 스프링(320)의 사이 사이에 충진된 상태로 경화된다.6 (c), the conductive pattern portion 330 is formed in the through hole 311, and the conductive pattern portion 330 is formed in the through hole 311, . Here, the filler includes the conductive particles 331 and the liquid silicon 332, and the conductive particles 331 are filled in the space between the elastic springs 320 when filled.
도 7 및 도 8은 본 발명의 제3 실시예에 따른 양방향 도전성 모듈(500) 및 그 제조 방법을 설명하기 위한 도면이다. 전술한 실시예에서와 마찬가지로, 복수의 관통홀(511)이 형성된 절연성 본체(510)가 마련된다(도 8의 (b) 참조).FIGS. 7 and 8 are views for explaining a bidirectional conductive module 500 according to a third embodiment of the present invention and a method of manufacturing the same. The insulating main body 510 in which a plurality of through holes 511 are formed is provided as in the above-described embodiment (see Fig. 8B).
그런 다음, 도 7의 (a)에 도시된 바와 같이, 핀제작 금형(5)을 준비한다. 여기서, 핀제작 금형(5)에는 관통홀(511)의 내경에 대응하는 크기의 내경을 갖는 금형홀(7)이 형성되어 있다. 여기서, 금형홀(7)의 길이는 절연성 본체(510)의 두께보다 길게 마련되어 이후의 절취 과정에서 다수의 도전 패턴부(530)를 형성하도록 마련된다.Then, as shown in Fig. 7 (a), a fin forming mold 5 is prepared. Here, in the fin forming die 5, a mold hole 7 having an inner diameter corresponding to the inner diameter of the through hole 511 is formed. Here, the length of the mold hole 7 is longer than the thickness of the insulating main body 510, and the plurality of conductive pattern portions 530 are formed in the subsequent cutting process.
그런 다음, 도 7의 (a) 및 (b)에 도시된 바와 같이, 도전성을 갖는 베이스 탄성 스프링(520a)을 금형홀(7)의 내부에 안착시킨다. 여기서, 베이스 탄성 스프링(520a)은 이후의 절취 과정에서 절취되어 탄성 스프링(520)을 형성하게 되는데, 도전성을 갖도록 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 베이스 스프링과 그 표면에 형성된 도전성 재질의 도금층을 포함하는 것은 전술한 실시예와 동일하다.Then, as shown in Figs. 7 (a) and 7 (b), the base elastic spring 520a having conductivity is seated in the inside of the mold hole 7. Here, the base elastic spring 520a is cut in the subsequent cutting process to form the elastic spring 520. The base spring 520 is made of at least one of carbon steel material, stainless steel material, tungsten material, and plastic material so as to have conductivity. And a plating layer of a conductive material formed on the surface thereof is the same as the above-described embodiment.
베이스 탄성 스프링(520a)이 안착된 상태에서, 금형홀(7)에 도전성을 갖는 도전성 파티클(531a)을 포함하는 충진제, 예를 들어 액상의 실리콘(532a)과 도전성 파티클(531a)이 혼합된 충진제를 충진한 후 경화시켜, 도 8의 (a)에 도시된 바와 같은 베이스 핀(530a)을 형성한다. 여기서, 도전성 파티클(531a)은 베이스 탄성 스프링(520a)의 사이 사이에 충진된 상태로 경화된다.A filler containing a conductive particle 531a having conductivity, for example, a filler in which liquid silicone 532a and conductive particles 531a are mixed is injected into the mold hole 7 in a state in which the base elastic spring 520a is seated. And then hardened to form a base pin 530a as shown in Fig. 8 (a). Here, the conductive particles 531a are cured in a state filled between the base elastic springs 520a.
그런 다음, 베이스 핀(530a)을 절연성 본체(510)의 두께에 대응하는 단위로 절단하여, 도전 패턴핀(530b)을 형성한다. 이 때, 베이스 핀(530a)의 절단에 의해 형성된 도전 패턴핀(530b) 내부에는 절단에 의해 형성되는 탄성 스프링(520)과 충진제, 즉 도전성 파티클(531) 및 경화된 실리콘(532)를 포함하게 된다.Then, the base pin 530a is cut in a unit corresponding to the thickness of the insulating main body 510 to form the conductive pattern fin 530b. At this time, an elastic spring 520 formed by cutting and a filler, that is, a conductive particle 531 and a cured silicon 532 are formed in the conductive pattern fin 530b formed by cutting the base pin 530a do.
그런 다음, 도 8의 (b)에 도시된 바와 같이, 도전 패턴핀(530b)을 절연성 본체(510)의 관통홀(511)에 삽입하게 되면, 도전 패턴핀(530b)이 양방향 도전성 모듈(500)의 도전 패턴부(530)를 형성하여 양방향 도전성 모듈의 제작이 가능하게 된다.8 (b), when the conductive pattern pin 530b is inserted into the through hole 511 of the insulating main body 510, the conductive pattern pin 530b is electrically connected to the bidirectional conductive module 500 The conductive pattern portion 530 of the conductive pattern portion 530 is formed to enable the fabrication of the bidirectional conductive module.
본 발명에 따른 양방향 도전성 모듈(100,300,500)은 반도체 소자의 검사외에,PCB와 PCB(또는 CPU)를 연결하는 인터포저, 웨이퍼 검사용 인터포저 등에도 적용 가능하다.The bidirectional conductive modules 100, 300 and 500 according to the present invention can be applied to an interposer for connecting a PCB and a PCB (or a CPU), an interposer for wafer inspection, and the like in addition to inspection of semiconductor devices.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.Although several embodiments of the present invention have been shown and described, those skilled in the art will appreciate that various modifications may be made without departing from the principles and spirit of the invention . The scope of the invention will be determined by the appended claims and their equivalents.
본 발명은 반도체 소자의 테스트 등의 과정에서 테스트 대상인 반도체 소자와 검사회로기판을 연결하는데 적용 가능하며, CPU와 보드 사이를 연결하는 인터포저, 또는 웨이퍼 검사에 사용되는 인터포저에도 적용 가능하다. The present invention can be applied to connecting a semiconductor device to be tested to an inspection circuit board in a process of testing semiconductor devices, and the present invention is also applicable to an interposer connecting between a CPU and a board or an interposer used for wafer inspection.

Claims (13)

  1. 양방향 도전성 모듈에 있어서,In the bidirectional conductive module,
    절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와;An insulating main body made of an insulating material and having a plurality of through holes penetrating in a vertical direction;
    각각의 상기 관통홀에 충진되는 도전성을 갖는 도전성 파티클을 포함하는 도전 패턴부와;A conductive pattern portion including conductive particles having conductivity to be filled in each of the through holes;
    각각의 상기 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되어 상하 방향으로 복원력을 제공하는 탄성 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈.Wherein at least one region is formed in the insulating main body so as to surround the perimeter of each of the through holes, thereby providing a restoring force in a vertical direction.
  2. 제1항에 있어서,The method according to claim 1,
    상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 특징으로 하는 양방향 도전성 모듈.Wherein the elastic spring is formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material.
  3. 제1항에 있어서,The method according to claim 1,
    상기 탄성 스프링은 상기 관통홀 주변의 상기 절연성 본체 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈.Wherein the elastic spring includes a coil spring that is wound in a vertical direction inside the insulating body around the through hole.
  4. 양방향 도전성 모듈의 제조방법에 있어서,A method of manufacturing a bidirectional conductive module,
    (a) 복수의 금형 핀이 상향 돌출된 베이스 금형을 마련하는 단계와;(a) providing a base mold having a plurality of mold pins protruded upward;
    (b) 각각의 상기 금형 핀을 감싸도록 각각의 상기 금형 핀에 탄성 스프링을 끼우는 단계와;(b) inserting an elastic spring into each of the mold pins so as to surround the respective mold pins;
    (c) 절연성 재질의 액상을 상기 베이스 금형에 주입하여 경화시켜 절연성 본체를 형성하는 단계와;(c) injecting a liquid phase of an insulating material into the base mold and curing the base mold to form an insulating main body;
    (d) 상기 절연성 본체를 상기 베이스 금형으로부터 이탈시키는 단계 - 각각의 상기 금형 핀에 의해 상기 절연성 본체에 상하 방향으로 관통된 복수의 관통홀이 형성되고, 각각의 상기 관통홀의 주변을 감싸도록 각각의 상기 탄성 스프링의 적어도 일 영역이 상기 절연성 본체 내부에 형성됨 - 와;(d) separating the insulating main body from the base metal mold, wherein a plurality of through holes are vertically formed in the insulating main body by each of the metal mold fins, and each of the through holes is formed so as to surround each of the through holes At least one region of the elastic spring being formed inside the insulating body;
    (e) 각각의 상기 관통홀에 도전성을 갖는 도전성 파티클을 포함하는 충진제를 충진하여 경화시키는 단계를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.(e) filling each of the through holes with a filler including conductive particles having conductivity, and curing the filler.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 특징으로 하는 양방향 도전성 모듈이 제조방법.Wherein the elastic spring is formed of at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 탄성 스프링은 상기 금형 핀을 감싸는 코일 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.Wherein the elastic spring includes a coil spring that surrounds the mold pin.
  7. 양방향 도전성 모듈에 있어서,In the bidirectional conductive module,
    절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와;An insulating main body made of an insulating material and having a plurality of through holes penetrating in a vertical direction;
    각각의 상기 관통홀에 형성되어 상하 방향으로 도전성을 갖는 도전 패턴부를 포함하며;And a conductive pattern portion formed in each of the through holes and having conductivity in a vertical direction;
    상기 도전 패턴부는The conductive pattern portion
    상기 관통홀에 삽입되어 상하 방향으로 복원력을 제공하며, 도전성을 갖는 탄성 스프링과;An elastic spring inserted into the through hole to provide a restoring force in a vertical direction and having conductivity;
    상기 탄성 스프링의 사이 사이에 충진되는 도전성을 갖는 도전성 파티클을 포함한 충진제를 포함하는 것을 특징으로 하는 양방향 도전성 모듈.And a filler including conductive particles having conductivity to be filled between the elastic springs.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 탄성 스프링은The elastic spring
    탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 베이스 스프링과;A base spring provided at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material;
    상기 베이스 스프링의 표면에 형성된 도전성 재질의 도금층을 포함하는 것을 특징으로 하는 양방향 도전성 모듈.And a plating layer of a conductive material formed on a surface of the base spring.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 탄성 스프링은 상기 관통홀 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈.Wherein the elastic spring includes a coil spring wound in a vertical direction inside the through hole.
  10. 양방향 도전성 모듈의 제조방법에 있어서,A method of manufacturing a bidirectional conductive module,
    (a) 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 재질의 절연성 본체를 마련하는 단계와;(a) providing an insulating main body of an insulating material formed with a plurality of through holes penetrating in a vertical direction;
    (b) 각각의 상기 관통홀에 상하 방향으로 복원력을 제공하고 도전성을 갖는 탄성 스프링을 삽입하는 단계와;(b) inserting an elastic spring having electrical conductivity and providing a restoring force in each of the through-holes in a vertical direction;
    (c) 각각의 상기 관통홀에 도전성을 갖는 도전성 파티클을 포함하는 충진제를 충진하되 상기 탄성 스프링의 사이 사이에 충진하여 경화시키는 단계를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.(c) filling the respective through holes with a filler including conductive particles having conductivity, and filling the filler between the elastic springs and curing the filler.
  11. 양방향 도전성 모듈의 제조방법에 있어서,A method of manufacturing a bidirectional conductive module,
    (a) 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 재질의 절연성 본체를 마련하는 단계와;(a) providing an insulating main body of an insulating material formed with a plurality of through holes penetrating in a vertical direction;
    (b) 상기 관통홀의 내경에 대응하는 크기의 내경을 갖는 금형홀이 파인 핀제작 금형을 마련하는 단계와;(b) providing a fin-making mold having a mold hole having an inner diameter of a size corresponding to the inner diameter of the through-hole;
    (c) 상기 금형홀 내부에 도전성을 갖는 베이스 탄성 스프링을 안착시키는 단계와;(c) placing a base elastic spring having conductivity inside the mold hole;
    (d) 상기 금형홀에 도전성을 갖는 도전성 파티클을 포함하는 충진제를 충진하되 상기 베이스 탄성 스프링의 사이 사이에 충진하여 경화시켜 베이스 핀을 형성하는 단계와;(d) filling the mold hole with a filler including conductive particles having conductivity, filling the gap between the base elastic springs and curing the base pin to form a base pin;
    (e) 상기 베이스 핀을 상기 절연성 본체의 두께에 대응하도록 단위로 절단하여 도전 패턴핀을 형성하는 단계 - 도전 패턴핀은 절단에 의해 형성되는 탄성 스프링과 충진제를 포함함 - 와;(e) cutting the base pin in units corresponding to the thickness of the insulating main body to form a conductive pattern pin, the conductive pattern pin including an elastic spring formed by cutting and a filler;
    (f) 상기 도전 패턴핀을 각각의 상기 관통홀에 삽입하여 도전 패턴부를 형성하는 단계 - 상기 도전 패턴핀 내의 상기 탄성 스프링은 상하 방향으로 복원력을 형성하도록 배치됨 -를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.(f) inserting the conductive pattern pins into the respective through-holes to form conductive pattern portions, wherein the elastic springs in the conductive pattern fins are arranged to form a restoring force in a vertical direction. A method of manufacturing a module.
  12. 제10항 또는 제11항에 있어서,The method according to claim 10 or 11,
    상기 탄성 스프링은The elastic spring
    탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 베이스 스프링과;A base spring provided at least one of a carbon steel material, a stainless steel material, a tungsten material, and a plastic material;
    상기 베이스 스프링의 표면에 형성된 도전성 재질의 도금층을 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.And a plating layer of a conductive material formed on a surface of the base spring.
  13. 제10항 또는 제11항에 있어서,The method according to claim 10 or 11,
    상기 탄성 스프링은 상기 관통홀 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.Wherein the elastic spring includes a coil spring that is wound along the vertical direction inside the through hole.
PCT/KR2017/009255 2017-08-22 2017-08-24 Bidirectional conductive module having laser processing technology applied thereto and method for manufacturing same WO2019039628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0105910 2017-08-22
KR20170105910 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039628A1 true WO2019039628A1 (en) 2019-02-28

Family

ID=65439490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009255 WO2019039628A1 (en) 2017-08-22 2017-08-24 Bidirectional conductive module having laser processing technology applied thereto and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20190022249A (en)
WO (1) WO2019039628A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102191698B1 (en) * 2019-05-31 2020-12-16 주식회사 이노글로벌 A test socket and maufacturing method thereof
KR102158507B1 (en) * 2019-07-09 2020-09-22 주식회사 이노글로벌 Test socket and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237039A (en) * 2000-02-23 2001-08-31 Nec Corp Ic socket
KR200312740Y1 (en) * 2003-01-27 2003-05-13 주식회사 아이에스시테크놀러지 Integrated silicone contactor with an electric spring
US20100221960A1 (en) * 2006-08-08 2010-09-02 Un-Young Chung Pogo pin, the fabrication method thereof and test socket using the same
KR101482245B1 (en) * 2013-12-27 2015-01-16 주식회사 아이에스시 Electrical test socket
KR101526536B1 (en) * 2013-12-27 2015-06-10 주식회사 아이에스시 Conductive elastic member, fabrication method thereof and electrical test socket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237039A (en) * 2000-02-23 2001-08-31 Nec Corp Ic socket
KR200312740Y1 (en) * 2003-01-27 2003-05-13 주식회사 아이에스시테크놀러지 Integrated silicone contactor with an electric spring
US20100221960A1 (en) * 2006-08-08 2010-09-02 Un-Young Chung Pogo pin, the fabrication method thereof and test socket using the same
KR101482245B1 (en) * 2013-12-27 2015-01-16 주식회사 아이에스시 Electrical test socket
KR101526536B1 (en) * 2013-12-27 2015-06-10 주식회사 아이에스시 Conductive elastic member, fabrication method thereof and electrical test socket

Also Published As

Publication number Publication date
KR20190022249A (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
WO2015012498A1 (en) Conductive connector and manufacturing method therefor
WO2014129784A1 (en) Test socket with high density conduction section
KR101683017B1 (en) Test socket and method for manufacturing thereof and die thereof
WO2019198853A1 (en) Contacts and test socket apparatus for testing semiconductor device
KR20190052726A (en) By-directional electrically conductive module
WO2020022745A1 (en) Conductive sheet for test
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2019039628A1 (en) Bidirectional conductive module having laser processing technology applied thereto and method for manufacturing same
WO2021075628A1 (en) Bidirectional conductive module with buffer area formed around conductive lines
US6270356B1 (en) IC socket
KR101311752B1 (en) Contactor for testing semiconductor and manufacturing method thereof
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
WO2020145493A1 (en) Signal transmission connector and manufacturing method therefor
KR102030280B1 (en) Manufacturing method of anisotropic conductive sheet
WO2016167412A1 (en) Bidirectional conductive socket for testing high-frequency device, bidirectional conductive module for testing high-frequency device, and manufacturing method thereof
WO2019146831A1 (en) Bidirectional conductive module
WO2019245153A1 (en) Plate spring-type connecting pin
WO2020145577A1 (en) Conductor part protection member for signal transmission connector and manufacturing method therefor, and signal transmission connector having same and manufacturing method therefor
KR101391799B1 (en) Conductive contactor for testing semiconductor
KR20190051909A (en) Bi-directional electrically conductive module
WO2021033824A1 (en) Test socket with replaceable portion
WO2022045787A1 (en) Conductive particle and electrical connection connector including same
WO2017209357A1 (en) Bidirectional conductive pin, bidirectional conductive pattern module and method for preparing same
KR102158507B1 (en) Test socket and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922091

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 17922091

Country of ref document: EP

Kind code of ref document: A1