WO2021033735A1 - ポリオレフィン微多孔膜、積層体、及び電池 - Google Patents

ポリオレフィン微多孔膜、積層体、及び電池 Download PDF

Info

Publication number
WO2021033735A1
WO2021033735A1 PCT/JP2020/031351 JP2020031351W WO2021033735A1 WO 2021033735 A1 WO2021033735 A1 WO 2021033735A1 JP 2020031351 W JP2020031351 W JP 2020031351W WO 2021033735 A1 WO2021033735 A1 WO 2021033735A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
temperature
film
microporous membrane
polyethylene
Prior art date
Application number
PCT/JP2020/031351
Other languages
English (en)
French (fr)
Inventor
寛子 田中
直哉 西村
遼 下川床
久万 琢也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202080056537.3A priority Critical patent/CN114269817A/zh
Priority to US17/636,130 priority patent/US20220298314A1/en
Priority to JP2020545384A priority patent/JPWO2021033735A1/ja
Priority to KR1020227004184A priority patent/KR20220051167A/ko
Publication of WO2021033735A1 publication Critical patent/WO2021033735A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/07Long chain branching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane, a laminate, and a battery using the same, which are excellent in safety and output characteristics when used as a battery separator.
  • Polyolefin microporous membranes are used as filters, fuel cell separators, condenser separators, etc. In particular, it is suitably used as a separator for lithium-ion batteries widely used in notebook personal computers, mobile phones, digital cameras, and the like. The reason is that the polyolefin microporous membrane has excellent mechanical strength and shutdown characteristics of the membrane.
  • lithium-ion secondary batteries have been developed with the aim of increasing energy density, capacity, and output, mainly for in-vehicle applications, and along with this, the required characteristics for safety of separators are even higher. It is becoming a thing.
  • the separator needs to have a function (shutdown function) of melting and clogging the holes to cut off the current in order to prevent accidents such as ignition when the inside of the battery is overheated in an overcharged state. It is preferable that the temperature at which this shutdown function is exhibited (shutdown temperature) is low. In addition, the temperature inside the battery continues to rise momentarily even after shutdown. Therefore, it is necessary to maintain the shape of the separator itself and prevent short-circuiting of the electrodes at a temperature equal to or higher than the shutdown temperature, and it is preferable that the break film temperature (meltdown temperature) of the separator is high.
  • the thickness of the separator tends to become thinner, and it is required to increase the strength of the separator in order to prevent short circuits due to foreign matter in the battery or when winding.
  • a method of controlling the crystal orientation of polyolefin by stretching at a high magnification and a method of increasing the molecular weight of the raw material can be mentioned.
  • the melting point becomes high and the shutdown temperature also becomes high, so there is a trade-off between high strength and low shutdown temperature.
  • Patent Document 1 provides a polyolefin microporous film having a low heat shrinkage rate, excellent film rupture resistance, and small variation in film thickness by using polyethylene and polypropylene having a high terminal vinyl group concentration in combination. ..
  • Patent Document 2 the meltdown characteristics are improved by adding a high molecular weight polypropylene material.
  • Patent Document 3 proposes a separator having excellent safety by improving the meltdown characteristics and increasing the temperature difference between the shutdown temperature and the meltdown temperature by adding high molecular weight polypropylene. Further, by using ultra-high molecular weight polyethylene in combination, a low thermal shrinkage rate is achieved at high temperature, and in Example 17, a high-strength film with a piercing strength of 200 gf is obtained even though it is a thin film of 3.2 ⁇ m.
  • Patent Document 1 does not pay attention to the melting point and shutdown characteristics of the polyethylene used, and the shutdown temperature of the obtained film exceeds 135 ° C. Further, as a method for lowering the shutdown temperature, a component having a molecular weight of 1000 or less is contained in a certain amount or more, and the molecular weight distribution of the polyolefin microporous membrane is very wide. When the molecular weight distribution is wide as described above, the melting point peak becomes broad, so that the shutdown rate becomes slow.
  • the polyolefin microporous membrane described in Patent Document 2 has linear polyethylene as a main component and the crystals are highly oriented by stretching, the shutdown temperature exceeds 135 ° C., which is improved from the viewpoint of safety. There is room.
  • the separator described in Patent Document 3 is stretched at a high magnification in order to achieve high strength, the shutdown temperature is as high as 138 ° C, and the temperature difference from the meltdown temperature is relatively small. Furthermore, since linear high-density polyethylene is used, it is considered that a high melting point component is generated as the crystal orientation progresses due to stretching. In such a case, even if the shutdown starts from a low temperature, it is considered that it takes time to complete the shutdown due to the presence of the high melting point component.
  • An object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a polyolefin microporous membrane having excellent safety and output characteristics when used as a battery separator.
  • the present invention has the following configurations.
  • It contains a polyethylene resin and a polyolefin (B) other than polyethylene, has peaks below 150 ° C and above 150 ° C on a differential scanning calorimeter (DSC), and has a half-value width of peaks below 150 ° C at 10 ° C or less.
  • DSC differential scanning calorimeter
  • a polyolefin microporous membrane having a 10 ⁇ m equivalent puncture strength of 2.0 N or more.
  • the polyolefin microporous membrane according to [1] which has a peak at 135 ° C. or lower in DSC.
  • the polyolefin microporous membrane of the present invention has high safety and excellent output characteristics having low shutdown characteristics and high meltdown characteristics when used as a battery separator while having high strength. Therefore, it can be suitably used as a battery separator or a laminate for a battery such as an electric vehicle that requires high energy density, high capacity, and high output, and a secondary battery.
  • the polyolefin microporous membrane according to the embodiment of the present invention contains a polyethylene-based resin and a polyolefin (B) other than polyethylene. It has peaks below 150 ° C and above 150 ° C in DSC, respectively. And the half width of the peak below 150 ° C is 10 ° C or less. The 10 ⁇ m equivalent puncture strength is 2.0 N or more.
  • microporous membrane is 150 ° C. when heated by a differential scanning calorimeter (DSC) based on JIS K7121.
  • DSC differential scanning calorimeter
  • One of the features is that it has peaks below and above 150 ° C. Having a peak here means that the result obtained by DSC has a maximum value when the horizontal axis is temperature and the vertical axis is heat flow, and the polyolefin microporous membrane in the embodiment of the present invention has a maximum value. It is characterized in that the maximum temperature is present at less than 150 ° C and above 150 ° C, respectively.
  • the temperature of the peak below 150 ° C. is preferably 140 ° C. or lower, more preferably 135 ° C. or lower.
  • the lower limit is 120 ° C. or higher, preferably 123 ° C. or higher. If it is higher than the above range, it is not preferable because the shutdown becomes hot when used as a battery separator. Further, when the maximum temperature of the peak below 150 ° C. is lower than the above range, the shrinkage rate at high temperature becomes high, and the electrodes come into contact with each other in the battery to cause a short circuit, which is not preferable.
  • the polyolefin microporous membrane according to the embodiment of the present invention needs to have a half width of a peak below 150 ° C. of 10 ° C. or less, preferably 10.0 ° C. or lower, more preferably 9.5 ° C. or lower. It is more preferably 9.3 ° C. or lower, particularly preferably 9.1 ° C. or lower, and most preferably 9.0 ° C. or lower.
  • the smaller the full width at half maximum the easier it is for the resin to melt at once when the temperature reaches a certain level when the polyolefin microporous membrane is used as a battery separator, which increases the shutdown speed and improves battery safety. Since they are connected, it is preferable that the half width is small.
  • the half width of the peak referred to here is the temperature at which the calorific value Q 1/2 is 0.5 times the maximum calorific value Q in the region below 150 ° C., respectively, T 1 and T 2 (T 1 ⁇ T 2). ) as meaning the value of T 2 -T 1 in the case of. Since there are two or more maximum values in the region below 150 ° C., when there are three or more temperatures that are Q 1/2 , the minimum temperature of the corresponding temperature is T 1 and the maximum temperature is T 2. Calculate the half width. In order to set the full width at half maximum in the above range, it is preferable that the raw material composition of the film is in the range described later, and the stretching conditions and heat fixing conditions at the time of film formation are in the range described later.
  • the method of lowering the shutdown temperature has been achieved by adding a low melting point polymer that melts at a low temperature to the raw material.
  • the low melting point polymer has low crystallinity, the pores are insufficiently opened in the stretching process, the porosity of the obtained porous film tends to decrease, and the strength tends to decrease, so that the output characteristics and safety of the battery tend to decrease. It was difficult to achieve both sex.
  • a method of stretching at a high magnification can be mentioned, but by increasing the magnification, the crystals of polyolefins other than the low melting point polymer, which is the main component, are oriented and the melting point is increased, so that the shutdown temperature is raised.
  • the film thickness of the microporous polyolefin membrane according to the embodiment of the present invention is appropriately adjusted depending on the intended use and is not particularly limited, but a thin film is preferable in order to increase the capacity of the battery.
  • the lower limit is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the upper limit is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less. If the film thickness exceeds 15 ⁇ m, sufficient output characteristics and energy density may not be obtained when used as a separator for future high-capacity batteries.
  • the film thickness can be adjusted by adjusting the discharge amount of the extruder, the film forming speed, the stretching ratio, the stretching temperature, and the like within a range that does not deteriorate other physical properties.
  • the porosity of the polyolefin microporous membrane according to the embodiment of the present invention is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
  • the upper limit is preferably 70% or less, more preferably 65% or less, and even more preferably 60% or less.
  • the porosity is lower than the above range, the ion permeability becomes insufficient when used as a battery separator, and the output characteristics of the battery deteriorate. Therefore, it is preferably 30% or more. If it is higher than the above range, the strength is lowered and a short circuit is likely to occur during winding or due to a foreign substance in the battery, so that it is preferably 70% or less.
  • the raw material composition of the film is within the range described later, and the stretching conditions and heat fixing conditions at the time of film formation are within the range described later.
  • the microporous polyolefin film according to the embodiment of the present invention needs to have a film puncture strength of 2.0 N or more in terms of a film thickness of 10 ⁇ m, preferably 2.5 N or more, more preferably 2.8 N or more. It is more preferably 3.0 N or more, still more preferably 3.3 N or more, particularly preferably 3.5 N or more, and most preferably 3.8 N or more. If the puncture strength is less than 2.0 N, a short circuit may occur during winding or due to foreign matter in the battery, which may reduce the safety of the battery. From the viewpoint of battery safety, if the puncture strength is 2.0 N or more, the strength can be increased.
  • the upper limit is 15N.
  • the raw material composition of the film is in the range described later and the stretching conditions at the time of film formation are in the range described later, and generally, the stretching ratio is increased to increase the stretching ratio. It is possible to increase the strength.
  • the microporous polyolefin film according to the embodiment of the present invention preferably has an air permeation resistance of the film converted to a film thickness of 10 ⁇ m of 100 seconds / 100 cm 3 or more and 2000 seconds / 100 cm 3 or less. More preferably 100 seconds / 100 cm 3 or more and 600 seconds / 100 cm 3 or less, further preferably 100 seconds / 100 cm 3 or more and 400 seconds / 100 cm 3 or less, and most preferably 140 seconds / 100 cm 3 or more and 400 seconds / 100 cm 3 or less.
  • the air permeation resistance is less than 100 seconds / 100 cm 3 , the strength of the film becomes low when used as a thin film separator, and the handleability deteriorates, or when used as a separator for high-power batteries, it depends on dendrites. A slight short circuit may occur easily. If the air permeation resistance exceeds 2000 seconds / 100 cm 3 , the ion permeability may be insufficient when used as a battery separator, and the output characteristics of the battery may deteriorate. In order to set the air permeation resistance within the above range, it is preferable that the raw material composition of the film is within the range described later, and the stretching conditions during film formation are within the range described later.
  • the polyolefin microporous membrane according to the embodiment of the present invention has an M MD and an M TD of 80 MPa or more when the tensile strength in the longitudinal direction of the film is M MD and the tensile strength in the width direction is M TD. preferable.
  • the tensile strength is more preferably 90 MPa or more, further preferably 100 MPa or more, most preferably 110 MPa or more, and particularly preferably 150 MPa or more. If the tensile strength is less than 90 MPa, a short circuit is likely to occur during winding or due to foreign matter in the battery when the thin film is formed, which may reduce the safety of the battery.
  • the tensile strength is high, but there is often a trade-off between lowering the shutdown temperature and improving the tensile strength, and the upper limit is about 200 MPa.
  • the raw material composition of the film is set in the range described later, and the stretching conditions at the time of film formation are set in the range described later, so that the tensile strength is within the above range and the peak in DSC. It is preferable because it is possible to suppress an increase in temperature and an increase in half-value width.
  • the direction parallel to the film forming direction is referred to as the film forming direction or the longitudinal direction or the MD direction
  • the direction orthogonal to the film forming direction in the film surface is the width direction or TD. Called direction.
  • the tensile elongation in the MD direction (tensile breaking elongation) and the tensile elongation in the TD direction of the polyolefin microporous membrane are not particularly limited, but both are, for example, 40% or more and 300% or less, and 50% or more and 200%. It is preferably 60% or more and 200% or less, and more preferably 70% or more and 150% or less.
  • breaking elongation in the MD direction is within the above range, it is less likely to be deformed and wrinkled even when a high tension is applied during coating, so that the occurrence of coating defects is suppressed and the flatness of the coating surface is flat. Is preferable because it is good.
  • the tensile elongation (tensile breaking elongation) of the polyolefin microporous membrane in the TD direction is preferably 60% or more, and more preferably 70% or more.
  • breaking elongation in the TD direction is within the above range, it has excellent collision resistance that can be evaluated by an impact test or the like, and when a polyolefin microporous film is used as a separator, the unevenness of the electrode, the deformation of the battery, and the heat generation of the battery are generated. This is preferable because the separator can follow the generation of internal stress due to the above.
  • the MD tensile elongation and the TD tensile elongation are values measured by a method based on ASTM D882.
  • the microporous polyolefin membrane according to the embodiment of the present invention preferably has a shutdown temperature of 135 ° C. or lower. It is more preferably 133 ° C. or lower, further preferably 130 ° C. or lower, and most preferably 128 ° C. or lower. If the shutdown temperature is 135 ° C. or lower, safety is improved when used as a battery separator for a secondary battery that requires high energy density, high capacity, and high output for electric vehicles and the like. From the viewpoint of safety, it is preferable that the shutdown temperature is low, but if the shutdown temperature is 80 ° C or less, the holes will close even under normal operating environment and the battery characteristics will deteriorate. Therefore, the lower limit of the shutdown temperature is about 80 ° C. Is.
  • the raw material composition of the film should be in the range described later, the draw ratio during film formation should be 25 to 100 times, and the heat fixing temperature should be in the range of 70 to 135 ° C. Is preferable.
  • a specific polyethylene-based resin described later is used as a raw material to set the raw material composition within the range described later, and the stretching conditions and heat fixing conditions during film formation are set within the range described later. Achieved both high strength and low shutdown temperature without reducing the shutdown speed.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably has a meltdown temperature of 160 ° C. or higher. It is more preferably 162 ° C. or higher, further preferably 165 ° C. or higher, and most preferably 168 ° C. or higher.
  • the meltdown temperature is 160 ° C. or higher, safety is improved when used as a battery separator for a secondary battery that requires high energy density, high capacity, and high output in an electric vehicle or the like.
  • the meltdown temperature is preferably high from the viewpoint of safety, but the upper limit is about 250 ° C. from the viewpoint of balance with other characteristics.
  • the raw material composition of the film is in the range described later, and the stretching conditions and heat fixing conditions at the time of film formation are in the range described later.
  • the polyolefin microporous membrane in the embodiment of the present invention is preferably a single layer.
  • the single layer referred to here is a structure in which layers having different compositions, raw materials used, and physical properties are not arranged in the film thickness direction of the polyolefin microporous film.
  • a single layer not only simplifies the manufacturing process, but also simplifies the manufacturing process as compared with a lamination in which two or more layers having different compositions, raw materials, and physical properties are arranged in the film thickness direction of the polyolefin microporous film.
  • a single layer is preferable because it can be thinned.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably has an average pore diameter of 50 nm or less. It is more preferably 40 nm or less, further preferably 30 nm or less, and most preferably 25 nm or less.
  • the above-mentioned preferable range is preferable because the resistance to dendrites is improved and an internal short circuit can be prevented. From the above viewpoint, the smaller the average pore diameter is, the more preferable it is, but if it is too small, the ion permeability may be insufficient and the output characteristics of the battery may be deteriorated. Therefore, the lower limit is about 10 nm.
  • the average pore size in the above range it is preferable to use at least a high molecular weight substance and a polyolefin (B) described later as the raw material of the film, and to set the draw ratio at the time of film formation in the range of 25 to 100 times.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably has a ratio of average pore diameter to maximum pore diameter (average pore diameter / maximum pore diameter) of 0.7 to 1.0. It is more preferably 0.72 to 1.0, still more preferably 0.75 to 1.0, and most preferably 0.8 to 1.0.
  • (average pore diameter / maximum pore diameter) is 0.7 or more, the uniformity of the pore diameter is high, so that a slight short circuit due to dendrite can be suppressed even when used as a thin-film separator for a high-power battery.
  • the upper limit is 1.0 in principle of measurement. In order to set (average pore size / maximum pore size) in the above range, it is preferable that the raw material composition of the film is in the range described later and the stretching conditions at the time of film formation are in the range described later.
  • the polyolefin microporous film according to the embodiment of the present invention is a film containing a polyolefin resin as a main component.
  • the "main component” means that the ratio of the specific component to all the components is 50% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. , Most preferably 99% by mass or more.
  • the polyolefin resin used in the embodiment of the present invention may be a polyolefin composition.
  • the polyolefin resin include polyethylene-based resin and polypropylene-based resin, and two or more kinds of these may be blended and used.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably contains a polyethylene resin as a main component.
  • the polyethylene-based resin referred to here includes not only a homopolymer of ethylene but also a copolymer obtained by copolymerizing other monomers.
  • the polyolefin microporous membrane according to the embodiment of the present invention contains a polyethylene resin and a polyolefin (B) other than polyethylene.
  • a polyethylene resin and a polyolefin (B) other than polyethylene.
  • polyethylene-based resin As the polyethylene-based resin, as described above, not only the homopolymer of ethylene but also the one obtained by copolymerizing other monomers can be used, and various polyethylenes can be used. Ultra-high density polyethylene, high density polyethylene, Examples thereof include medium-density polyethylene and low-density polyethylene.
  • the copolymer of the other monomer is preferably a copolymer containing another ⁇ -olefin in order to lower the melting point and crystallinity of the raw material.
  • the ⁇ -olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like.
  • ⁇ -olefin-containing copolymer ethylene / ⁇ -olefin copolymer
  • a hexene-1 -containing copolymer is preferable, and an ethylene / 1-hexene copolymer is more preferably used as a main component. Is.
  • the ⁇ -olefin can be confirmed by measuring with C 13-NMR.
  • Polyethylene-based resin is mainly composed of high-density polyethylene (polyethylene having a density of 0.920 g / cm 3 or more and 0.970 g / cm 3 or less) because it has excellent melt extrusion characteristics and uniform drawing processing characteristics. It is preferable to use it.
  • High-density polyethylene includes straight-chain high-density polyethylene and branched high-density polyethylene, and it is particularly preferable to include branched high-density polyethylene (branched HDPE).
  • branched high-density polyethylene is more preferable because the in-plane crystal orientation does not easily proceed, changes in the crystal structure can be suppressed, and the shutdown temperature can be lowered. Furthermore, even if the draw ratio is increased, the crystal orientation does not easily proceed, and the formation of the high melting point component can be suppressed, so that the increase in the half width of the peak in DSC can also be suppressed. As a result, it is possible to achieve high strength and thin film by high-magnification stretching while maintaining the shutdown speed.
  • the melting point of the high-density polyethylene is preferably 130 ° C. or higher, and preferably 135 ° C. or lower.
  • the melting point is 130 ° C. or higher, the decrease in the porosity can be suppressed, and when the melting point is 135 ° C. or lower, the increase in the shutdown temperature can be suppressed.
  • particularly preferred form of the polyolefin resin to be used for the purpose of lowering the polyolefin resin or the shutdown temperature in the embodiment of the present invention had an Mw 1.0 ⁇ 10 5 ⁇ 1.0 ⁇ 10 6 and a melting point of 130 ⁇ 135 ° C.
  • low molecular weight polyethylene such as low density polyethylene, linear low density polyethylene, ethylene / ⁇ -olefin copolymer produced by a single site catalyst, and low molecular weight polyethylene having a weight average molecular weight of 1000 to 100,000 is added to the polyethylene resin. Then, a shutdown function at a low temperature is provided, and the characteristics as a battery separator can be improved.
  • the content ratio of the above-mentioned low molecular weight polyethylene is high in the polyethylene resin, the porosity of the microporous film will decrease in the film forming process, so the content ratio of the low molecular weight polyethylene is ethylene / ⁇ -olefin.
  • the density of the copolymer is preferably adjusted to exceed 0.94 g / cm 3, and it is more preferable to add branched high-density polyethylene having a long-chain branched component to adjust the density.
  • the molecular weight distribution of the polymer constituting the polyolefin microporous membrane according to the embodiment of the present invention preferably contains less than 20% of components having a molecular weight of less than 40,000. More preferably, the amount of components having a molecular weight of less than 20,000 is less than 20%, and even more preferably, the amount of components having a molecular weight of less than 10,000 is less than 20%.
  • the polyolefin microporous membrane according to the embodiment of the present invention contains a polyolefin (B) other than polyethylene for the purpose of improving the meltdown characteristics.
  • the polyolefin (B) is not particularly limited, and polypropylene-based resin, polymethylpentene-based resin, polybutene-based resin, polyacetal-based resin, styrene-based resin, polyphenylene ether-based resin, and the like can be used.
  • a polypropylene resin is preferable from the viewpoint of electrical stability when used as a separator.
  • a block copolymer or a random copolymer can be used in addition to the propylene homopolymer.
  • the block copolymer and the random copolymer can contain a copolymer component with ⁇ -ethylene other than propylene, and ethylene is preferable as the other ⁇ -ethylene.
  • the upper limit of the content of polyolefin (B) in the polyolefin microporous membrane is preferably 40% by mass or less, more preferably 35% by mass or less, based on the total mass of the polyolefin microporous membrane.
  • the lower limit of the content of the polyolefin (B) is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and 20% by mass or more. It is particularly preferable that there is, and most preferably 22% by mass or more.
  • the content of the polyolefin (B) is 40% by mass or less, the pore size of the microporous membrane becomes large, sufficient permeability can be obtained, the strength is excellent, and the rise in shutdown temperature can be suppressed. Further, when it is 5% by mass or more, it has a co-continuous structure with the polyolefin resin as the main component, and the effect of improving the meltdown temperature by the polyolefin (B) is likely to be exhibited.
  • the melting point of the polyolefin (B) to be added is preferably 150 ° C. or higher, more preferably 155 ° C. or higher, and even more preferably 160 ° C. or higher.
  • Further molecular weight of the polyolefin (B) is preferably a weight average molecular weight of 5.0 ⁇ 10 5 or more, more preferably 10 ⁇ 10 5 or more, further preferably 15 ⁇ 10 5 or more.
  • the upper limit of the weight average molecular weight is 10 ⁇ 10 6 or less, preferably more preferably 8.0 ⁇ 10 6 or less, further preferably 5.0 ⁇ 10 6 or less, most preferably 3.0 ⁇ 10 6 or less.
  • the polyolefin microporous film according to the embodiment of the present invention is preferably produced by using a polyolefin resin solution obtained by heating and dissolving the polyolefin resin used in the embodiment of the present invention in a plasticizer.
  • the high-density polyethylene which is a polyolefin resin contained in the polyolefin resin solution, preferably has a weight average molecular weight (Mw) of 1.0 ⁇ 10 4 or more and 1.0 ⁇ 10 6 or less, and 5.0 ⁇ 10 4 or more 3 more preferably .5 ⁇ 10 5 or less, still more preferably 1.0 ⁇ 10 5 or more 2.5 ⁇ 10 5 or less, is 1.0 ⁇ 10 5 or more 2.0 ⁇ 10 5 or less Is particularly preferred.
  • Mw weight average molecular weight
  • polyolefins other than polyethylene contained in the polyolefin resin solution is preferably a weight average molecular weight of 5.0 ⁇ 10 5 or more, more preferably 10 ⁇ 10 5 or more, more preferably 15 ⁇ 10 5 or more is there.
  • the upper limit of the weight average molecular weight is 10 ⁇ 10 6 or less, preferably more preferably 8.0 ⁇ 10 6 or less, further preferably 5.0 ⁇ 10 6 or less, most preferably 3.0 ⁇ 10 6 or less.
  • the molecular weight of 5.0 ⁇ 10 5 or more preferably the strength of the resulting microporous polyolefin membrane is sufficient, using raw material such that the 10 ⁇ 10 6 or less and in the manufacturing process, during melt-kneading In addition, it is preferable because the viscosity does not become too high and the kneading can be performed uniformly.
  • the melting point of polyolefins other than polyethylene is preferably 150 ° C. or higher, more preferably 155 ° C. or higher, and even more preferably 160 ° C. or higher. This range is preferable because the meltdown temperature can be raised.
  • the blending ratio of the polyolefin resin and the plasticizer may be 100% by mass based on the total of the polyolefin resin and the plasticizer, and the content of the polyolefin resin may be appropriately selected within a range that does not impair the moldability, but is 10 to 50% by mass. Is.
  • the polyolefin resin is less than 10% by mass (when the plasticizer is 90% by mass or more)
  • the amount of the polyolefin resin exceeds 50% by mass (when the amount of the plasticizer is 50% by mass or less)
  • the shrinkage in the film thickness direction becomes large and the molding processability also deteriorates.
  • the polyolefin microporous membrane according to the embodiment of the present invention includes antioxidants, heat stabilizers and antistatic agents, ultraviolet absorbers, and further blocking inhibitors and fillers as long as the effects of the present invention are not impaired.
  • Various additives such as the above may be contained.
  • an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyethylene resin.
  • examples of the antioxidant include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4) and 1,3,5-trimethyl-2,4,6-tris (3,5-di).
  • Benzene for example, BASF "Irganox” (registered trademark) 1330: molecular weight 775.2), tetrakis [methylene-3- (3,5-di-t-butyl-4-) It is preferable to use one or more selected from [hydroxyphenyl) propionate] methane (for example, "Irganox” (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF).
  • Appropriate selection of the type and amount of antioxidant and heat stabilizer is important for adjusting or enhancing the characteristics of the microporous membrane.
  • the polyolefin microporous membrane according to the embodiment of the present invention can be obtained by biaxial stretching using the above-mentioned raw materials.
  • the biaxial stretching method can be obtained by any of the inflation method, the simultaneous biaxial stretching method, and the sequential biaxial stretching method. Among them, film forming stability, thickness uniformity, high rigidity and dimensional stability of the film are obtained. It is preferable to adopt the simultaneous biaxial stretching method or the sequential biaxial stretching method in terms of controlling the above.
  • the method for producing a microporous polyolefin membrane according to the embodiment of the present invention comprises the following steps (a) to (e).
  • a polymer material containing a single polyolefin, a polyolefin mixture, a polyolefin solvent (plasticizer) mixture, an additive, and a polyolefin kneaded product is kneaded and dissolved to prepare a polyolefin solution.
  • B The dissolved product is extruded into a sheet.
  • a polyolefin resin solution is prepared by heat-dissolving the polyolefin resin used in the embodiment of the present invention in a plasticizer.
  • the plasticizer is not particularly limited as long as it is a solvent capable of sufficiently dissolving the polyolefin resin, but the solvent is preferably a liquid at room temperature in order to enable stretching at a relatively high magnification.
  • Solvents include aliphatic, cyclic aliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil distillates having corresponding boiling points, and dibutylphthalates.
  • Examples thereof include phthalates that are liquid at room temperature, such as dioctyl phthalates.
  • a non-volatile liquid solvent such as liquid paraffin.
  • a solid solvent may be mixed with the liquid solvent.
  • examples of such a solid solvent include stearyl alcohol, ceryl alcohol, paraffin wax and the like. However, if only a solid solvent is used, uneven stretching may occur.
  • the viscosity of the liquid solvent is preferably 20 to 200 cSt at 40 ° C.
  • the viscosity at 40 ° C. is 20 cSt or more, the sheet obtained by extruding the polyolefin resin solution from the die is unlikely to become non-uniform.
  • the liquid solvent can be easily removed.
  • the viscosity of the liquid solvent is the viscosity measured at 40 ° C. using an Ubbelohde viscometer.
  • ultra-high molecular weight polyethylene By containing ultra-high molecular weight polyethylene, the pores can be made finer and the heat resistance can be improved, and the strength and elongation can be further improved.
  • the ultra-high molecular weight polyethylene may be a copolymer containing a small amount of other ⁇ -olefins as well as a homopolymer of ethylene. Other ⁇ -olefins other than ethylene may be the same as above.
  • the swell and neck are large at the outlet of the base when molding into a sheet, and the formability of the sheet deteriorates. There is a tendency.
  • ultra-high molecular weight polyethylene because the viscosity and strength of the sheet are increased and the process stability is increased by adding ultra high molecular weight polyethylene as an auxiliary material.
  • the proportion of ultra-high molecular weight polyethylene is 50% by mass or more, the extrusion load increases and the extrusion moldability deteriorates. Therefore, the amount of ultra-high molecular weight polyethylene added is preferably less than 50% by mass with respect to the total amount of the polyolefin resin. ..
  • the uniform melt-kneading of the polyolefin resin solution is not particularly limited, but when it is desired to prepare a high-concentration polyolefin resin solution, it is preferably performed in a twin-screw extruder. If necessary, various additives such as antioxidants may be added as long as the effects of the present invention are not impaired. In particular, it is preferable to add an antioxidant in order to prevent oxidation of the polyolefin resin.
  • the polyolefin microporous membrane according to the embodiment of the present invention is a single membrane microporous membrane containing a polyethylene resin and a polyolefin (B) other than polyethylene, it is necessary to uniformly knead and extrude a plurality of raw materials having different melting points. .. If the kneaded state is not uniform, the strength and meltdown temperature of the microporous membrane may decrease, and the pore size may vary widely. In order to knead uniformly, in the first half of the extruder, when the melting point of the raw material with the lowest melting point among the polyethylene resin and polyolefin (B) used is Tm1, set it to Tm1 + 30 ° C.
  • the polyolefin resin solution is uniformly mixed at a temperature at which the polyethylene resin and the polyolefin (B) are completely melted.
  • the melt-kneading temperature is preferably (Tm2-10 ° C.) to (Tm2 + 120 ° C.) when the melting point of the raw material having the highest melting point among the polyethylene-based resin and the polyolefin (B) used is Tm2. More preferably, it is (Tm2 + 20 ° C.) to (Tm2 + 100 ° C.).
  • the melting point means a value measured by DSC based on JIS K7121 (1987) (hereinafter, the same applies).
  • the melt-kneading temperature is preferably in the range of 160 ° C. or lower in the first half of the extruder and 150 to 280 ° C. in the latter half.
  • the melt-kneading temperature is low from the viewpoint of suppressing the deterioration of the resin, but if it is lower than the above-mentioned temperature, unmelted matter is generated in the extruded product extruded from the die, causing film rupture or the like in the subsequent stretching step. If the temperature is higher than the above-mentioned temperature, the thermal decomposition of the polyolefin resin becomes severe, and the physical properties of the obtained microporous film, for example, the strength and the porosity may be inferior. In addition, the decomposed product precipitates on a chill roll or a roll in the stretching process and adheres to the sheet, which leads to deterioration of the appearance. Therefore, it is preferable to knead within the above range.
  • a gel-like sheet is obtained by cooling the obtained extruded product, and the microphase of the polyolefin resin separated by the solvent can be immobilized by cooling. It is preferable to cool to 10 to 50 ° C. in the cooling step. This is because the final cooling temperature is preferably set to be equal to or lower than the crystallization end temperature, and by making the higher-order structure finer, uniform stretching can be easily performed in the subsequent stretching. Therefore, cooling is preferably performed at a rate of 30 ° C./min or higher at least up to the gelation temperature or lower. If the cooling rate is less than 30 ° C./min, the crystallinity increases and it is difficult to obtain a gel-like sheet suitable for stretching.
  • cooling method there are a method of directly contacting with cold air, cooling water, and other cooling media, a method of contacting with a roll cooled with a refrigerant, a method of using a casting drum, and the like.
  • the polyolefin microporous membrane according to the embodiment of the present invention is preferably a single layer from the viewpoint of process simplification and thinning, but is not limited to a single layer and may be a laminated body.
  • the number of layers is not particularly limited, and may be two layers or three or more layers.
  • the laminated portion may contain a desired resin in addition to polyethylene to the extent that the effects of the present invention are not impaired.
  • a method of forming the polyolefin microporous film into a laminate a conventional method can be used. For example, desired resins are prepared as required, and these resins are separately supplied to an extruder to obtain a desired resin. There is a method of forming a laminate by melting at a temperature, merging in a polymer tube or a die, and extruding from a slit-shaped die at each desired thickness.
  • the obtained gel-like (including laminated sheet) sheet is stretched.
  • the stretching method used includes uniaxial stretching in the sheet transport method (MD direction) by a roll stretching machine, uniaxial stretching in the sheet width direction (TD direction) by a tenter, a roll stretching machine and a tenter, or a combination of a tenter and a tenter. Sequential biaxial stretching by, simultaneous biaxial stretching by simultaneous biaxial tenter, and the like.
  • the stretching ratio varies depending on the thickness of the gel-like sheet from the viewpoint of uniformity of film thickness, but it is preferable to stretch 5 times or more in any direction.
  • the area magnification is preferably 25 times or more, more preferably 36 times or more, even more preferably 49 times, and most preferably 64 times or more.
  • the area magnification is preferably 100 times or less.
  • the area magnification is increased, tearing is likely to occur frequently during the production of the microporous film, the productivity is lowered, and when the orientation is advanced and the crystallinity is high, the melting point and strength of the microporous film are improved.
  • the higher crystallinity means that the amorphous part is reduced, and the melting point and shutdown temperature of the film are raised.
  • the stretching temperature is preferably in the range of (melting point of the gel-like sheet + 10 ° C. or less) to (crystal dispersion temperature of polyolefin resin Tcd) to (melting point of the gel-like sheet + 5 ° C.).
  • the stretching temperature is preferably 90 to 125 ° C., more preferably 90 to 120 ° C.
  • the crystal dispersion temperature Tcd is obtained from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065. Alternatively, it may be obtained from NMR.
  • the temperature is lower than 90 ° C., the pores are insufficiently opened due to low temperature stretching, it is difficult to obtain uniformity in film thickness, and the pore ratio is also low. If the temperature is higher than 125 ° C., the sheet melts and the pores are likely to be closed.
  • Cleavage occurs in the higher-order structure formed on the gel sheet by the above stretching, the crystal phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensionally irregularly connected network structure. Stretching improves the mechanical strength and expands the pores, making it suitable as a battery separator. Further, by stretching before removing the plasticizer, the polyolefin resin is in a state of being sufficiently plasticized and softened, so that the higher-order structure can be cleaved smoothly and the crystal phase can be uniformly refined. it can. Further, since the cleavage is easy, strain at the time of stretching is less likely to remain, and the heat shrinkage rate can be lowered as compared with the case of stretching after removing the plasticizer.
  • plasticizer extraction (cleaning) / drying step Next, the plasticizer (solvent) remaining in the gel sheet is removed using a cleaning solvent. Since the polyolefin resin phase and the solvent phase are separated, a microporous film can be obtained by removing the solvent.
  • the cleaning solvent include saturated hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as diethyl ether and dioxane, ketones such as methyl ethyl ketone, and ethane trifluoride. Chain fluorocarbon and the like can be mentioned.
  • These cleaning solvents have low surface tension (eg, 24 mN / m or less at 25 ° C.).
  • a cleaning solvent with a low surface tension in a network structure that forms microporous, shrinkage due to surface tension at the gas-liquid interface is suppressed during cleaning and drying, and a microporous membrane with good porosity and permeability is suppressed. Is obtained.
  • These cleaning solvents are appropriately selected according to the plasticizer and used alone or in combination.
  • the cleaning method can be performed by immersing the gel-like sheet in a cleaning solvent and extracting it, showering the gel-like sheet with the cleaning solvent, or a method using a combination thereof.
  • the amount of the cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more with respect to 100 parts by mass of the gel sheet.
  • the washing temperature may be 15 to 30 ° C., and if necessary, heat to 80 ° C. or lower.
  • the mechanical and electrical properties of the polyolefin microporous film are examined.
  • the longer the gel sheet is immersed in the cleaning solvent the better.
  • the above-mentioned washing is preferably carried out until the residual solvent in the gel-like sheet after washing, that is, the polyolefin microporous membrane becomes less than 1% by mass.
  • the solvent in the polyolefin microporous membrane is dried and removed in the drying step.
  • the drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, or the like can be selected.
  • the drying temperature is preferably 40 to 100 ° C, more preferably 40 to 80 ° C. If the drying is insufficient, the porosity of the polyolefin microporous membrane will decrease due to subsequent heat fixation, and the permeability will deteriorate.
  • the dried polyolefin microporous film may be stretched (re-stretched) in at least the uniaxial direction.
  • the re-stretching can be performed by the tenter method or the like in the same manner as the above-mentioned stretching while heating the microporous membrane.
  • the re-stretching may be uniaxial stretching or biaxial stretching. In the case of multi-stage stretching, simultaneous biaxial and / and sequential stretching are combined.
  • the re-stretching temperature is preferably equal to or lower than the melting point of the polyolefin composition, and more preferably within the range of (Tcd-20 ° C.) to the melting point. Specifically, 70 to 135 ° C. is preferable, and 110 to 132 ° C. is more preferable. Most preferably, it is 120 to 130 ° C.
  • the re-stretching ratio is preferably 1.01 to 1.6 times, particularly preferably 1.1 to 1.6 times in the TD direction, and more preferably 1.2 to 1.4 times.
  • the ratio is 1.01 to 1.6 times in the MD direction and the TD direction, respectively.
  • the re-stretching magnification may be different in the MD direction and the TD direction.
  • the relaxation rate from the maximum re-stretching ratio is preferably 0.9 or less, and more preferably 0.8 or less.
  • the heat fixing temperature is preferably 70 to 135 ° C, more preferably 110 to 132 ° C. Most preferably, it is 115 to 130 ° C.
  • the heat fixing time is not particularly limited, but is 1 second to 15 minutes. Within this range, it is possible to sufficiently relax the strain stress and suppress pore blockage due to melting of the polyolefin resin.
  • the microporous membrane can be hydrophilized.
  • the hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like.
  • the monomer graft is preferably carried out after the cross-linking treatment.
  • the microporous polyolefin membrane is crosslinked by irradiation with ionizing radiation such as ⁇ -ray, ⁇ -ray, ⁇ -ray, and electron beam.
  • ionizing radiation such as ⁇ -ray, ⁇ -ray, ⁇ -ray, and electron beam.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable.
  • the cross-linking treatment raises the meltdown temperature of the microporous polyolefin membrane.
  • any of nonionic surfactant, cationic surfactant, anionic surfactant or amphoteric surfactant can be used, but nonionic surfactant is preferable.
  • the multilayer microporous membrane is immersed in water or a solution prepared by dissolving a surfactant in a lower alcohol such as methanol, ethanol, or isopropyl alcohol, or the solution is applied to the multilayer microporous membrane by the doctor blade method.
  • the polyolefin microporous film is made of a fluororesin porous body such as polyvinylidene fluoride or polytetrafluoroethylene, or a polyimide or polyphenylene sulfide for the purpose of improving meltdown characteristics and heat resistance when used as a battery separator.
  • a surface coating such as a porous body or an inorganic coating such as ceramic may be applied.
  • the polyolefin microporous film according to the embodiment of the present invention is a laminate having a coat layer on at least one side.
  • the polyolefin microporous film obtained as described above can be used for various purposes such as filters, fuel cell separators, and condenser separators. Especially when used as a battery separator, it has low shutdown characteristics and high melt. Not only does it have down characteristics, but it also has high strength despite being a thin film, which makes it possible to achieve both high energy density, high capacity, and high output for electric vehicles, etc. It can be preferably used as a battery separator for a required secondary battery.
  • the present invention also relates to a battery using the polyolefin microporous membrane or laminate according to the embodiment of the present invention.
  • Detector Differential Refractometer Detector RI Guard column: Shodex G-HT Column: Shodex HT806M (2 pcs) ( ⁇ 7.8 mm x 30 cm, manufactured by Showa Denko) Solvent: 1,2,4-trichlorobenzene (TCB, manufactured by Wako Pure Chemical Industries, Ltd.) (with 0.1% BHT added) Flow velocity: 1.0 mL / min Column temperature: 145 ° C Sample preparation: 5 mL of the measurement solvent was added to 5 mg of the sample, and the mixture was heated and stirred at 160 to 170 ° C.
  • Mw (PE conversion) Mw (PS conversion measurement value) x 0.468
  • Mn (PE conversion) Mn (PS conversion measurement value) x 0.468
  • Puncture strength The piercing strength was measured according to JIS Z 1707 (2019), except that the test speed was set to 2 mm / sec.
  • a polyolefin microporous film is pierced in an atmosphere of 25 ° C with a needle with a spherical tip (radius of curvature R: 0.5 mm) and a diameter of 1.0 mm using a force gauge (DS2-20N manufactured by Imada Co., Ltd.).
  • the maximum load (N) of was measured, and the puncture strength when the film thickness was 10 ⁇ m was calculated from the following formula.
  • Puncture strength (10 ⁇ m conversion) (N) maximum load (N) ⁇ 10 ( ⁇ m) / film thickness ( ⁇ m) of polyolefin microporous membrane
  • Pore rate (%) (volume-mass / film density) / volume x 100
  • the film density was calculated assuming a constant value of 0.99 g / cm 3.
  • Tensile strength, tensile elongation Tensile strength M MD and tensile strength M TD , and tensile elongation in the MD direction and tensile elongation in the TD direction are 100 mm in accordance with ASTM D882 using a strip-shaped test piece with a width of 30 mm. Measured at a speed of / min.
  • the measurement cell was composed of an aluminum block and had a structure having a thermocouple directly under the polyolefin microporous membrane.
  • the sample was cut into 5 cm ⁇ 5 cm squares, and the temperature was measured while fixing the periphery with an ⁇ ring.
  • a microporous membrane having a meltdown temperature of 50 mm square is sandwiched between a pair of metal block frames having holes with a diameter of 12 mm, and a tungsten carbide sphere with a diameter of 10 mm is placed on the microporous membrane.
  • the microporous membrane is installed so as to have a horizontal plane. Start from 30 ° C and raise the temperature at 5 ° C / min. The temperature at which the microporous membrane was ruptured by the sphere was measured and used as the meltdown temperature (MD temperature).
  • DSC measurement Melting point and full width at half maximum are determined by differential scanning calorimetry (DSC). This DSC was performed using TA Instruments MDSC2920 or Q1000Tzero-DSC, and the temperature was raised from 30 ° C. to 230 ° C. at a rate of 10 ° C./min based on JIS K7121, and the temperature at the maximum value of the obtained melting peak ( Peak temperature) was evaluated. The peak temperature in the region below 150 ° C. was defined as P1, and the peak temperature in the region above 150 ° C. was defined as P2.
  • the full width at half maximum is T when the temperature at which the calorific value Q 1/2 is 0.5 times the maximum calorific value Q in the region below 150 ° C. is T 1 and T 2 (T 1 ⁇ T 2 ), respectively.
  • the value of 2- T 1 was calculated. If there are two or more maximum values in the region below 150 ° C and three or more temperatures that are Q 1/2 , the minimum temperature of the corresponding temperature is T 1 and the maximum temperature is T 2. Calculate the price range.
  • Example 1 Branched high-density polyethylene (branched HDPE) (weight average molecular weight (Mw) 1.8 ⁇ 10 5, melting point 133 ° C.) 54.6 parts by weight, ultra high molecular weight polyethylene (UHPE) (Mw2.0 ⁇ 10 6 , melting point 133 ° C. ) 23.4 parts by mass of polypropylene (PP) (Mw1.1 ⁇ 10 6 , melting point 165 ° C.) 22.0 parts by mass, were mixed respectively to give the polyolefin composition.
  • branched HDPE weight average molecular weight (Mw) 1.8 ⁇ 10 5, melting point 133 ° C.) 54.6 parts by weight
  • UHPE ultra high molecular weight polyethylene
  • PP polypropylene
  • the obtained polyethylene resin solution is put into a twin-screw extruder, kneaded at 150 ° C in the first half of the extruder and 180 ° C in the second half, supplied to a T-die, extruded into a sheet, and then the extruded product is controlled to 15 ° C.
  • a gel-like sheet was formed by cooling with a cooling roll.
  • the obtained gel-like sheet was clipped on four sides with a film stretcher, stretched 7 times in the longitudinal direction at 115 ° C., stretched 7 times in the width direction (sequential stretching (surface magnification 49 times)), and as it was.
  • the sheet width was fixed in a film stretcher, held at a temperature of 115 ° C. for 10 seconds, and taken out.
  • the stretched gel-like sheet was fixed to a gold frame, immersed in a methylene chloride bath in a washing tank, and dried after removing liquid paraffin to obtain a polyolefin microporous film.
  • microporous polyolefin membrane fixed to the metal frame was introduced into a hot air oven, and heat fixing treatment was performed at 120 ° C. for 10 minutes.
  • Table 1 shows the raw material characteristics of the polyolefin microporous membrane, the film forming conditions, and the evaluation results for the microporous membrane.
  • Example 2 A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the branched HDPE was 59.5 parts by mass, the UHPE was 25.5 parts by mass, and the PP was 15.0 parts by mass.
  • Example 3 Without using UHPE, 60% by mass of liquid paraffin was added to 40% by mass of the polyolefin composition consisting of 80.0 parts by mass of branched HDPE and 20.0 parts by mass of PP, and simultaneous biaxial stretching and heat fixing temperature were set to 125 ° C. Obtained a polyolefin microporous film in the same manner as in Example 1.
  • Example 4 A polyolefin microporous film was obtained in the same manner as in Example 3 except that the draw ratio was 10 times in the longitudinal direction and 10 times in the width direction.
  • Example 5 A polyolefin microporous film was obtained in the same manner as in Example 1 except that the stretching method was simultaneous biaxial stretching and the magnification was 5 times in the longitudinal direction and 5 times in the width direction.
  • Example 6 A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the branched HDPE was 62.5 parts by mass, the UHPE was 30.0 parts by mass, and the PP was 7.5 parts by mass.
  • Branched high-density polyethylene (branched HDPE) (weight average molecular weight (Mw) 9.0 ⁇ 10 4, melting point 131 ° C.) 20.0 parts by weight, ultra high molecular weight polyethylene (UHPE) (Mw1.0 ⁇ 10 6 , melting point 136 ° C. ) 70.0 parts by mass of polypropylene (PP) (Mw1.1 ⁇ 10 6 , melting point 165 ° C.) 10.0 parts by mass, were mixed respectively to give the polyolefin composition.
  • branched HDPE weight average molecular weight (Mw) 9.0 ⁇ 10 4, melting point 131 ° C.) 20.0 parts by weight
  • UHPE ultra high molecular weight polyethylene
  • PP polypropylene
  • the obtained polyethylene resin solution is put into a twin-screw extruder, kneaded at 180 ° C., supplied to a T-die, extruded into a sheet, and then the extruded product is cooled by a cooling roll controlled at 15 ° C. to form a gel. A sheet was formed.
  • the obtained gel-like sheet is clipped on four sides with a film stretcher, stretched 5 times in the longitudinal direction at 115 ° C., stretched 5 times in the width direction (simultaneous stretching (surface magnification 25 times)), and remains as it is.
  • the sheet width was fixed in a film stretcher, held at a temperature of 115 ° C. for 10 seconds, and taken out.
  • the stretched gel-like sheet was fixed to a gold frame, immersed in a methylene chloride bath in a washing tank, and dried after removing liquid paraffin to obtain a polyolefin microporous film.
  • the microporous polyolefin membrane fixed to the gold frame was introduced into a hot air oven, and heat-fixing treatment was performed at 130 ° C. for 10 minutes.
  • Example 8 A microporous polyolefin membrane was obtained in the same manner as in Example 7 except that the branched HDPE was 20.0 parts by mass, the UHPE was 75.0 parts by mass, and the PP was 5.0 parts by mass.
  • Comparative Example 2 A polyolefin microporous film was obtained in the same manner as in Comparative Example 1 except that the stretching method was simultaneous biaxial stretching and the magnification was 5 times in the longitudinal direction and 5 times in the width direction.
  • Comparative Example 5 70% by mass of liquid paraffin was added to 30.0% by mass of a polyolefin composition consisting of 80.0 parts by mass of linear HDPE and 20.0 parts by mass of PP, and the draw ratio was 8 times in the longitudinal direction and 8 in the width direction.
  • a microporous polyolefin film was obtained in the same manner as in Comparative Example 2 except that the temperature was doubled and the heat fixation temperature was 125 ° C.
  • linear HDPE linear high-density polyethylene
  • the polyolefin microporous membrane of the present invention has high safety and excellent output characteristics having low shutdown characteristics and high meltdown characteristics when used as a battery separator while having high strength. Therefore, it can be suitably used as a battery separator or a laminate for a battery such as an electric vehicle that requires high energy density, high capacity, and high output, and a secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、ポリエチレン系樹脂とポリエチレン以外のポリオレフィン(B)からなり、DSCにおいて150℃未満および150℃以上にそれぞれピークを有し、かつ150℃未満のピークの半値幅が10℃以下であり、さらに10μm換算突刺強度が2.0N以上であるポリオレフィン微多孔膜に関する。

Description

ポリオレフィン微多孔膜、積層体、及び電池
 本発明は、電池用セパレータとして用いた際に安全性および出力特性に優れたポリオレフィン微多孔膜、積層体、及びそれを用いた電池に関する。
 ポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータなどとして用いられている。特にノート型パーソナルコンピュータや携帯電話、デジタルカメラなどに広く使用さるリチウムイオン電池用のセパレータとして好適に使用されている。その理由は、ポリオレフィン微多孔膜が優れた膜の機械強度やシャットダウン特性を有していることが挙げられる。特に、リチウムイオン二次電池において近年は車載用途を中心に高エネルギー密度化・高容量化・高出力化を目指して開発が進められており、それに伴いセパレータへの安全性に対する要求特性も一層高いものとなってきている。
 セパレータは、電池内部が過充電状態で過熱した際に、発火等の事故を防ぐため、溶融して孔を目詰まりさせて、電流を遮断する機能(シャットダウン機能)を有することが必要であり、このシャットダウン機能が発現する温度(シャットダウン温度)は低い方が好ましい。またシャットダウン後も瞬間的には電池内部の温度は上昇し続ける。そのためシャットダウン温度以上の温度において、セパレータ自体の形状は維持し、電極のショートを防止しなければならず、セパレータの破膜温度(メルトダウン温度)は高い方が好ましい。したがって、低シャットダウンと高メルトダウンの両立が必要であり、シャットダウン温度とメルトダウン温度の温度差が大きいほど、高安全性が高いと言える。シャットダウン温度を低温化する手法としては、セパレータを構成する材料の分子量の低下による原料の低融点化が挙げられ、メルトダウン温度を高温化する手法としては、ポリプロピレン等の高融点のポリオレフィンを添加する手法が挙げられる。また、シャットダウン機能に関しては、素早く電流を遮断することが安全上必要であり、シャットダウン速度も重要な特性となる。
 一方で、電池の高容量化に伴い、セパレータの厚みは薄膜化の傾向にあり、捲回時や電池内の異物などによる短絡を防ぐために、セパレータの高強度化が求められている。一般に、セパレータを高強度化するためには、高倍率延伸することでポリオレフィンの結晶配向制御をする手法や、原料を高分子量化する手法が挙げられる。しかし、結晶を高配向させると融点が高温化し、シャットダウン温度も高温化するため、高強度化とシャットダウン温度の低温化はトレードオフとなる。
 特許文献1には末端ビニル基濃度が高いポリエチレンとポリプロピレンを併用することにより、低熱収縮率であり、かつ、耐破膜性に優れ、膜厚のバラツキが小さいポリオレフィン微多孔膜を提供している。
 特許文献2には、ポリプロピレンの高分子量体を添加することによりメルトダウン特性を改善している。
 特許文献3には、高分子量ポリプロピレンを添加することにより、メルトダウン特性を向上させ、シャットダウン温度とメルトダウン温度の温度差を大きくし、安全性に優れたセパレータが提案されている。また超高分子量ポリエチレンも併用することにより、高温下での低熱収縮率化を達成しており、実施例17においては3.2μmと薄膜ながらも突刺強度200gfと高強度なフィルムを得ている。
国際公開第2007/051416号 日本国特開2005-200578号公報 国際公開第2015/166878号
 しかしながら、特許文献1においては、使用するポリエチレンの融点とシャットダウン特性については着目しておらず、得られたフィルムのシャットダウン温度は135℃を上回るものである。さらにシャットダウン温度を低下させる手法として、分子量1000以下の成分を一定量以上含有することを特徴とし、ポリオレフィン微多孔膜の分子量分布は非常に広いものとなっている。このように分子量分布が広い場合は、融点ピークがブロードとなるため、シャットダウン速度が遅くなる。
 特許文献2に記載のポリオレフィン微多孔膜は、直鎖状ポリエチレンを主成分として延伸により結晶を高配向化させているため、シャットダウン温度は135℃を上回るものであり、安全性の観点では改善の余地がある。
 特許文献3に記載のセパレータは、高強度を達成するために、高倍率延伸をしており、シャットダウン温度は138℃と高温化し、メルトダウン温度との温度差は比較的小さい。さらに直鎖状の高密度ポリエチレンを用いているため、延伸により結晶の配向が進行するに伴い高融点成分が生成すると考えられる。このような場合には、低温からシャットダウンが開始するも、高融点成分が存在するために、シャットダウンが完了するまでに時間を要すると考えられる。
 上記のように高エネルギー密度化・高容量化・高出力化に伴う多様化する顧客のニーズに対し電池性能を損ねることなく安全性の高いセパレータの開発には改善の余地がある。
 本発明の課題は、上記した問題点を解決することにある。すなわち、電池用セパレータとして用いたとき安全性および出力特性に優れたポリオレフィン微多孔膜を提供することにある。
 上述した課題を解決し、目的を達成するために、本発明は以下の構成を有する。
〔1〕
 ポリエチレン系樹脂とポリエチレン以外のポリオレフィン(B)を含み、示差走査熱量計(DSC)において150℃未満および150℃以上にそれぞれピークを有し、かつ150℃未満のピークの半値幅が10℃以下であり、10μm換算突刺強度が2.0N以上であるポリオレフィン微多孔膜。
〔2〕
 さらにDSCにおいて135℃以下にピークを有する〔1〕記載のポリオレフィン微多孔膜。
〔3〕
 単層である〔1〕または〔2〕に記載のポリオレフィン微多孔膜。
〔4〕
 前記ポリエチレン以外のポリオレフィン(B)の含有量が10質量%以上である〔1〕~〔3〕のいずれか一つに記載のポリオレフィン微多孔膜。
〔5〕
 前記ポリエチレン以外のポリオレフィン(B)がポリプロピレン系樹脂である〔1〕~〔4〕のいずれか一つに記載のポリオレフィン微多孔膜。
〔6〕
 シャットダウン温度が135℃以下である〔1〕~〔5〕のいずれか一つに記載のポリオレフィン微多孔膜。
〔7〕
 メルトダウン温度が160℃以上である〔1〕~〔6〕のいずれか一つに記載のポリオレフィン微多孔膜。
〔8〕
 膜厚が10μm以下である〔1〕~〔7〕のいずれか一つに記載のポリオレフィン微多孔膜。
〔9〕
 示差走査熱量計(DSC)において120℃以上にピークを有する〔1〕~〔8〕のいずれか一つに記載のポリオレフィン微多孔膜。
〔10〕
 〔1〕~〔9〕のいずれか一つに記載のポリオレフィン微多孔膜の少なくとも片面にコート層を設けた積層体。
〔11〕
 〔1〕~〔9〕のいずれか一つに記載のポリオレフィン微多孔膜又は〔10〕に記載の積層体を用いた電池。
 本発明のポリオレフィン微多孔膜は、高強度でありながらも電池用セパレータとして用いたとき低シャットダウン特性と高メルトダウン特性を有する高い安全性および優れた出力特性を有する。そのため、電気自動車などの高エネルギー密度化、高容量化および高出力化を必要とする電池、及び二次電池用の電池用セパレータや積層体として好適に使用することができる。
 本発明の実施形態にかかるポリオレフィン微多孔膜は、ポリエチレン系樹脂とポリエチレン以外のポリオレフィン(B)を含み、
DSCにおいて150℃未満および150℃以上にそれぞれピークを有し、
かつ150℃未満のピークの半値幅が10℃以下であり、
10μm換算突刺強度が2.0N以上である。
 本発明の実施形態に係るポリオレフィン微多孔膜(以下、単に「微多孔膜」と称する場合がある)は、示差走査熱量計(DSC)でJISK7121に基づき昇温加熱を行った場合に、150℃未満および150℃以上にそれぞれピークを有することを特徴の一つとする。ここで言うピークを有するとは、DSCで得られた結果について、横軸を温度、縦軸を熱流とした場合に極大値を持つことであり、本発明の実施形態におけるポリオレフィン微多孔膜は、その極大値となる温度が150℃未満と150℃以上にそれぞれ存在する点に特徴がある。
 また上記150℃未満のピークの温度は、140℃以下であることが好ましく、135℃以下がより好ましい。下限値は120℃以上であり、好ましくは123℃以上である。上記範囲よりも高い場合は、電池のセパレータとして用いた場合に、シャットダウンが高温化するため好ましくない。また、上記150℃未満のピークの最大となる温度が上記範囲よりも低い場合は、高温時の収縮率が高くなり、電池内で電極同士が接触しショートするため好ましくない。
 さらに本発明の実施形態に係るポリオレフィン微多孔膜は、上記150℃未満のピークの半値幅が10℃以下である必要があり、好ましくは10.0℃以下、より好ましくは9.5℃以下、さらに好ましくは9.3℃以下、特に好ましくは9.1℃以下、最も好ましくは9.0℃以下である。半値幅が小さければ小さいほど、ポリオレフィン微多孔膜を電池のセパレータとして用いた際に、一定温度になった際に一気に樹脂が溶融しやすくなることから、シャットダウン速度が上がり、電池の安全性向上につながるため、半値幅は小さい方が好ましい。ここで言うピークの半値幅とは、150℃未満の領域における最大発熱量Qに対し、0.5倍の発熱量Q1/2となる温度をそれぞれT、T(T<T)とした場合のT-Tの値を意味する。なお、150℃未満の領域に極大値を2つ以上有するため、Q1/2となる温度が3つ以上存在する場合においては、該当する温度の最小温度をT、最大温度をTとして半値幅を算出する。半値幅を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、フィルム製膜時の延伸条件や熱固定条件を後述する範囲内とすることが好ましい。
 通常、上記シャットダウン温度を低くする手法としては、低温で融解する低融点ポリマーを原料に添加することで達成されてきた。しかし低融点ポリマーは結晶性が低いため、延伸過程での開孔が不十分であり、得られる多孔性フィルムの空孔率が低下し、強度も低下する傾向にあり、電池の出力特性と安全性を両立することは困難であった。さらに高強度化するために、高倍率延伸する手法が挙げられるが、高倍率化することで主成分となる低融点ポリマー以外のポリオレフィンの結晶が配向し高融点化が進むことで、シャットダウン温度が上昇し、高強度化とシャットダウン低温化の両立は困難であった。さらに高倍率延伸することでポリオレフィンの結晶配向が進み、高融点成分が生成するため、特にDSCチャートのピークの高温側がブロードとなることから、半値幅が広くなりシャットダウン速度の低下につながることが一般的である。
 本発明の実施形態に係るポリオレフィン微多孔膜の膜厚は用途によって適宜調整されるものであり特に限定はされないが、電池の高容量化のためには薄膜である方が好ましい。下限値としては、好ましくは2μm以上、より好ましくは3μm以上である。また上限としては、好ましくは15μm以下、より好ましくは12μm以下、さらに好ましくは10μm以下、特に好ましくは8μm以下である。膜厚が15μmを超えると将来の高容量電池向けセパレータとして用いた際に十分な出力特性やエネルギー密度を得られない場合がある。上記観点から膜厚は薄いほど好ましいが、安全性が低下したり、ハンドリングが困難になる場合があるため膜厚は2μm程度が下限である。膜厚は他の物性を悪化させない範囲内で、押出機の吐出量、製膜速度、延伸倍率、延伸温度などにより調整可能である。
 また、本発明の実施形態に係るポリオレフィン微多孔膜の空孔率は、30%以上であることが好ましく、35%以上であることがより好ましく、40%以上であることがさらに好ましい。また上限としては70%以下であることが好ましく、65%以下であることがより好ましく、60%以下であることがさらに好ましい。空孔率が上記範囲よりも低い場合は、電池のセパレータとして使用した場合に、イオンの透過性が不十分となり、電池の出力特性が低下するため、30%以上であることが好ましい。また、上記範囲よりも高い場合は、強度が低下し、捲回時や電池内の異物等による短絡が生じやすくなるため、70%以下であることが好ましい。空孔率を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、フィルム製膜時の延伸条件や熱固定条件を後述する範囲内とすることが好ましい。
 本発明の実施形態に係るポリオレフィン微多孔膜は、膜厚10μmに換算したフィルムの突刺強度が2.0N以上である必要があり、好ましくは2.5N以上、より好ましくは、2.8N以上、さらに好ましくは3.0N以上、よりさらに好ましくは3.3N以上、特に好ましくは3.5N以上、最も好ましくは3.8N以上である。突刺強度が2.0N未満であると、捲回時や電池内の異物等による短絡が生じ、電池の安全性が低下する場合がある。電池安全性の観点から、突刺強度が2.0N以上であれば高強度化することができる。しかし、突刺強度の高強度化とシャットダウン温度の低温化がトレードオフとなる場合が多く、15Nが上限となる。突刺強度を上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましく、一般に延伸倍率を高倍率化することにより高強度化させることが可能となる。
 本発明の実施形態に係るポリオレフィン微多孔膜は、膜厚10μmに換算したフィルムの透気抵抗度が100秒/100cm以上2000秒/100cm以下であることが好ましい。より好ましくは100秒/100cm以上600秒/100cm以下、さらに好ましくは100秒/100cm以上400秒/100cm以下、最も好ましくは140秒/100cm以上400秒/100cm以下である。透気抵抗度が100秒/100cm未満であると、薄膜のセパレータとして使用した際に、フィルムの強度が低くなりハンドリング性が低下したり、高出力電池用のセパレータとして用いた時、デンドライトによる微短絡が生じやすくなる場合がある。透気抵抗度が2000秒/100cmを超えると電池用セパレータとして使用した場合に、イオンの透過性が不十分となり、電池の出力特性が低下する場合がある。透気抵抗度を上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましい。
 本発明の実施形態に係るポリオレフィン微多孔膜は、フィルムの長手方向の引張強度をMMD、幅方向の引張強度をMTDとした時、MMDおよびMTDがいずれも80MPa以上であることが好ましい。引張強度はより好ましくは90MPa以上、更に好ましくは100MPa以上、最も好ましくは110MPa以上であり、特に好ましくは150MPa以上である。引張強度が90MPa未満であると、薄膜にした時に捲回時や電池内の異物などによる短絡が生じやすくなり、電池の安全性が低下する場合がある。安全性向上の観点からは引張強度は高い方が好ましいが、シャットダウン温度の低温化と引張強度の向上はトレードオフとなる場合が多く、200MPa程度が上限である。引張強度を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、フィルム製膜時の延伸条件を後述する範囲内とすることで、引張強度が上記範囲内となり、DSCにおけるピーク温度の高温化、半値幅の増大を抑制することができるためが好ましい。
 なお、本発明の実施形態においては、フィルムの製膜する方向に平行な方向を、製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。
 ポリオレフィン微多孔膜のMD方向の引張伸度(引張破断伸度)およびTD方向の引張伸度は、特に限定されないが、いずれも、例えば、40%以上300%以下であり、50%以上200%以下であることが好ましく、60%以上200%以下であることが好ましく、更に70%以上150%以下であることが好ましい。MD方向の破断伸度が、前記の範囲である場合、塗工する時に高い張力が掛かった場合も変形しにくく、シワも発生しにくいので塗工欠陥の発生が抑制され塗工表面の平面性が良いので好ましい。
 ポリオレフィン微多孔膜のTD方向の引張伸度(引張破断伸度)は、60%以上であることが好ましく、70%以上であることがより好ましい。TD方向の破断伸度が、前記の範囲である場合、衝撃試験等で評価できる耐衝突性に優れ、また、ポリオレフィン微多孔膜をセパレータとして用いた場合、電極の凹凸、電池の変形、電池発熱による内部応力発生等に対して、セパレータが追従できるので好ましい。
 なお、MD引張伸度及びTD引張伸度は、ASTM D882に準拠した方法により測定した値である。
 本発明の実施形態に係るポリオレフィン微多孔膜は、シャットダウン温度が135℃以下であることが好ましい。より好ましくは133℃以下、更に好ましくは130℃以下、最も好ましくは128℃以下である。シャットダウン温度が135℃以下であれば、電気自動車などの高エネルギー密度化・高容量化・高出力化を必要とする二次電池用の電池用セパレータとして用いた際に安全性が向上する。安全性の観点からシャットダウン温度は低いことが好ましいが、シャットダウン温度が80℃以下となると、通常の使用環境下でも孔が閉じ、電池特性が悪化してしまうため、シャットダウン温度は80℃程度が下限である。シャットダウン温度を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、フィルム製膜時の延伸倍率を25倍~100倍とし、熱固定温度を70~135℃の範囲とすることが好ましい。
 本発明の実施形態においては、後述する特定のポリエチレン系樹脂を原料に用いて原料組成を後述する範囲とし、また、フィルム製膜時の延伸条件や熱固定条件を後述する範囲内とすることで、シャットダウン速度を低下させることなく、高強度化とシャットダウンの低温化の両立を達成した。
 本発明の実施形態に係るポリオレフィン微多孔膜は、メルトダウン温度が160℃以上であることが好ましい。より好ましくは162℃以上、更に好ましくは165℃以上、最も好ましくは168℃以上である。メルトダウン温度が160℃以上であると、電気自動車などの高エネルギー密度化・高容量化・高出力化を必要とする二次電池用の電池用セパレータとして用いた際に安全性が向上する。安全性の観点からメルトダウン温度は高いことが好ましいが、他の特性とのバランスの観点から250℃程度が上限である。メルトダウン温度を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、フィルム製膜時の延伸条件や熱固定条件を後述する範囲内とすることが好ましい。
 本発明の実施形態におけるポリオレフィン微多孔膜は単層であることが好ましい。ここで言う単層とは、組成や使用原料、物性が互いに異なる層がポリオレフィン微多孔膜の膜厚方向に配置されていない構造である。単層であれば、組成や使用原料、物性が互いに異なる2種以上の複数の層がポリオレフィン微多孔膜の膜厚方向に配置される積層に比べて、製造工程が簡略となるだけでなく、薄膜化が可能となるため、単層であることが好ましい。
 通常、シャットダウン特性とメルトダウン特性の両立には、シャットダウンを低温化させる層とメルトダウンを高温化させる層を積層させる方法が一般的であった。しかし、将来必要とされる膜厚の薄い微多孔膜においては、積層であると各層の膜厚が薄くなりすぎるため、各層の特性の発現が困難であったり、厚みムラや積層ムラが大きくなり、物性のバラツキが大きくなる場合があった。一方、シャットダウン特性とメルトダウン特性を単層の微多孔膜で両立するためには、特性の異なる原料を均一に混練する必要があるが、従来技術では均一な混練は困難であり、さらに薄膜においては混練の不均一性がより顕著になるため、薄膜でかつ優れたシャットダウン特性とメルトダウン特性を両立した単層の微多孔膜を得ることは困難であった。
 本発明の実施形態に係るポリオレフィン微多孔膜は、平均孔径が50nm以下であることが好ましい。より好ましくは40nm以下、さらに好ましくは30nm以下、最も好ましくは25nm以下である。上記好ましい範囲であると、デンドライトに対する耐性が向上し、内部短絡を防ぐことができるため好ましい。上記観点からは平均孔径は小さいほど好ましいが、小さすぎるとイオンの透過性が不十分となり、電池の出力特性が低下する場合があるため10nm程度が下限である。平均孔径を上記範囲とするには、フィルムの原料として、少なくとも高分子量体および後述するポリオレフィン(B)を用い、またフィルム製膜時の延伸倍率を25~100倍の範囲とすることが好ましい。
 本発明の実施形態に係るポリオレフィン微多孔膜は、平均孔径と最大孔径の比(平均孔径/最大孔径)が0.7~1.0であることが好ましい。より好ましくは0.72~1.0、さらに好ましくは0.75~1.0、最も好ましくは0.8~1.0である。(平均孔径/最大孔径)が0.7以上であると、孔径の均一性が高いため、薄膜の高出力電池用セパレータとして使用した際にもデンドライトによる微短絡を抑制可能である。上限は測定原理上1.0である。(平均孔径/最大孔径)を上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましい。
 次に本発明の実施形態に係るポリオレフィン微多孔膜の原料について説明するが、必ずしもこれに限定されるものではない。
 本発明の実施形態に係るポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分とするフィルムである。ここで、本発明において「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味し、より好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは99質量%以上である。
 本発明の実施形態に用いられるポリオレフィン樹脂は、ポリオレフィン組成物であってもよい。ポリオレフィン樹脂としては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂などが挙げられ、これらを2種類以上ブレンドして用いても良い。
 本発明の実施形態に係るポリオレフィン微多孔膜は、ポリエチレン系樹脂を主成分とすることが好ましい。ここでいうポリエチレン系樹脂とは、エチレンの単独重合体のみではなく、その他単量体を共重合させたものも含む。
 本発明の実施形態に係るポリオレフィン微多孔膜はポリエチレン系樹脂とポリエチレン以外のポリオレフィン(B)を含有する。まずポリエチレン系樹脂について説明する。
 ポリエチレン系樹脂としては、上述のとおり、エチレンの単独重合体のみではなく、その他単量体を共重合させたものも含み、種々のポリエチレンを用いることができ、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン等が挙げられる。
 その他単量体を共重合させたものとしては、原料の融点や結晶性を低下させるために、他のα-オレフィンを含有する共重合体であることが好ましい。α-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。α-オレフィンを含有する共重合体(エチレン・α-オレフィン共重合体)としてはヘキセン-1を含有する共重合体が好ましく、より好ましくはエチレン・1-ヘキセン共重合体を主成分とすることである。また、α-オレフィンはC13-NMRで測定することで確認できる。
 ポリエチレン系樹脂は、溶融押出特性に優れ、均一な延伸加工特性に優れるため、高密度ポリエチレン(密度が0.920g/cm以上0.970g/cm以下のポリエチレンをいう。)を主成分として用いることが好ましい。
 高密度ポリエチレンには、直鎖高密度ポリエチレンと分岐高密度ポリエチレンがあり、特に、分岐高密度ポリエチレン(分岐HDPE)を含むことが好ましい。分岐高密度ポリエチレンは面内の結晶配向が進みにくく、結晶構造の変化を抑制でき、シャットダウン温度を低下できるため、より好ましい。さらには、延伸倍率を高倍率化しても結晶配向が進みにくく、高融点成分の生成を抑制することができるため、DSCにおけるピークの半値幅の増大も抑制可能である。その結果、シャットダウン速度を維持したまま、高倍率延伸により高強度化、薄膜化を実現することが可能となる。
 また、高密度ポリエチレンの融点は、130℃以上であることが好ましく、135℃以下であることが好ましい。融点が130℃以上であると、空孔率の低下を抑制でき、135℃以下であるとシャットダウン温度の上昇を抑えることができる。
 つまり、本発明の実施形態におけるポリオレフィン樹脂またはシャットダウン温度を低下させる目的で使用するポリオレフィン樹脂の特に好ましい形態はMwが1.0×10~1.0×10かつ融点が130~135℃のポリエチレンであり、このポリエチレンがポリオレフィン樹脂全体を100質量%としたときに50質量%以上含まれていることが好ましい。
 また、ポリエチレン系樹脂に低密度ポリエチレン、直鎖状低密度ポリエチレン、シングルサイト触媒により製造されたエチレン・α-オレフィン共重合体、重量平均分子量1000~100000の低分子量ポリエチレン等の低分子量ポリエチレンを添加すると、低温でのシャットダウン機能が付与され、電池用セパレータとしての特性を向上させることができる。ただし、ポリエチレン系樹脂において、上述の低分子量ポリエチレンの含有割合が多いと、製膜工程において、微多孔膜の空孔率の低下が起こるため、低分子量ポリエチレンの含有割合は、エチレン・α-オレフィン共重合体としての密度が0.94g/cmを超えるよう調整することが好ましく、長鎖分岐成分を有する分岐高密度ポリエチレンを添加して密度を調整することがさらに好ましい。
 また、上記観点から、本発明の実施形態に係るポリオレフィン微多孔膜を構成するポリマーの分子量分布は、分子量4万未満の成分量が20%未満であることが好ましい。より好ましくは分子量2万未満の成分量が20%未満、更に好ましくは分子量1万未満の成分量が20%未満である。
 また、本発明の実施形態に係るポリオレフィン微多孔膜はメルトダウン特性を向上させる目的でポリエチレン以外のポリオレフィン(B)を含有する。ポリオレフィン(B)としては、特に限定されず、ポリプロピレン系樹脂、ポリメチルペンテン系樹脂、ポリブテン系樹脂、ポリアセタール系樹脂、スチレン系樹脂、ポリフェニレンエーテル系樹脂などを用いることが出来るが、中でも混練性やセパレータとして用いた時の電気的安定性の観点から、ポリプロピレン系樹脂が好ましい。ポリプロピレン系樹脂の種類は、プロピレンの単独重合体のほかに、ブロック共重合体、ランダム共重合体も使用することができる。ブロック共重合体、ランダム共重合体には、プロピレン以外の他のα-エチレンとの共重合体成分を含有することができ、当該他のα-エチレンとしては、エチレンが好ましい。
 ポリオレフィン微多孔膜におけるポリオレフィン(B)の含有量の上限値としては、ポリオレフィン微多孔膜全質量に対して、40質量%以下であることが好ましく、35質量%以下がより好ましい。またポリオレフィン(B)の含有量の下限値としては5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましく、22質量%以上であることが最も好ましい。ポリオレフィン(B)の含有量が40質量%以下であれば、微多孔膜の孔径が大きくなり十分な透過性が得られ、強度に優れ、シャットダウン温度の上昇を抑えることができる。また5質量%以上であれば、主成分であるポリオレフィン樹脂と共連続構造を有し、ポリオレフィン(B)によるメルトダウン温度向上の効果が発現しやすくなる。
 また添加するポリオレフィン(B)の融点は150℃以上であることが好ましく、より好ましくは155℃以上であり、さらに好ましくは160℃以上である。
 さらにポリオレフィン(B)の分子量は、重量平均分子量が5.0×10以上であることが好ましく、より好ましくは10×10以上であり、さらに好ましくは15×10以上である。また重量平均分子量の上限値としては10×10以下であることが好ましく、より好ましくは8.0×10以下であることが好ましく、さらに好ましくは5.0×10以下であり、最も好ましくは3.0×10以下である。分子量が上記範囲内である場合は、得られるポリオレフィン微多孔膜の強度が十分となり、かつメルトダウン温度を高温化することができるため好ましい。
 後述するように、本発明の実施形態に係るポリオレフィン微多孔膜は、本発明の実施形態に用いられるポリオレフィン樹脂を可塑剤に加熱溶解させたポリオレフィン樹脂溶液を用いて製造することが好ましい。
 ポリオレフィン樹脂溶液に含まれるポリオレフィン樹脂である高密度ポリエチレンは、重量平均分子量(Mw)が1.0×10以上1.0×10以下であることが好ましく、5.0×10以上3.5×10以下であることがより好ましく、1.0×10以上2.5×10以下であることがさらに好ましく、1.0×10以上2.0×10以下であることが特に好ましい。重量平均分子量が上記の範囲内であると、製膜時に面内への過度な結晶配向が進みにくく、ポリオレフィン微多孔膜の結晶構造の変化を適切な範囲に制御しやすいためシャットダウン特性を良化でき、透過性の悪化も抑制できる。また、ポリオレフィン微多孔膜の高強度化に繋がるため好ましい。
 ポリオレフィン樹脂溶液にさらに含まれるポリエチレン以外のポリオレフィンは、重量平均分子量が5.0×10以上であることが好ましく、より好ましくは10×10以上であり、さらに好ましくは15×10以上である。また重量平均分子量の上限値としては10×10以下であることが好ましく、より好ましくは8.0×10以下であることが好ましく、さらに好ましくは5.0×10以下であり、最も好ましくは3.0×10以下である。分子量が5.0×10以上である場合は、得られるポリオレフィン微多孔膜の強度が十分となるため好ましく、10×10以下となるような原料を用いると製造工程で、溶融混練の際に、粘度が高くなりすぎず、均一に混練することができるため好ましい。
 ポリエチレン以外のポリオレフィンの融点は150℃以上であることが好ましく、より好ましくは155℃以上であり、さらに好ましくは160℃以上である。この範囲であると、メルトダウン温度を高くすることができるため好ましい。
 ポリオレフィン樹脂と可塑剤との配合割合はポリオレフィン樹脂と可塑剤との合計を100質量%として、ポリオレフィン樹脂の含有量は成形加工性を損ねない範囲で適宜選択して良いが、10~50質量%である。ポリオレフィン樹脂が10質量%未満では(可塑剤が90質量%以上であると)、シート状に成形する際に、口金の出口でスウエルやネックインが大きく、シートの成形性が悪化し製膜性が低下する。一方、ポリオレフィン樹脂が50質量%を超えると(可塑剤が50質量%以下では)、膜厚方向の収縮が大きくなり、成形加工性も低下する。
 その他、本発明の実施形態に係るポリオレフィン微多孔膜には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリエチレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤としては、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えばBASF社製“Irganox”(登録商標)1330:分子量775.2)、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製“Irganox”(登録商標)1010:分子量1177.7)等から選ばれる1種類以上を用いることが好ましい。酸化防止剤や熱安定剤の種類および添加量を適宜選択することは微多孔膜の特性の調整又は増強として重要である。
 本発明の実施形態に係るポリオレフィン微多孔膜は、上述した原料を用い、二軸延伸されることによって得られる。二軸延伸の方法としては、インフレーション法、同時二軸延伸法、逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの高剛性と寸法安定性を制御する点において同時二軸延伸法または逐次二軸延伸法を採用することが好ましい。
 次に本発明の実施形態に係るポリオレフィン微多孔膜の製造方法を説明するが、必ずしもこれに限定されるものではない。本発明の実施形態に係るポリオレフィン微多孔膜の製造方法は、以下の(a)~(e)の工程からなる。
(a)ポリオレフィン単体、ポリオレフィン混合物、ポリオレフィン溶剤(可塑剤)混合物、添加剤、及びポリオレフィン混練物を含むポリマー材料を混練・溶解してポリオレフィン溶液を調製する
(b)溶解物を押出し、シート状に成型して冷却固化し
(c)得られたシートをロール方式またはテンター方式により延伸を行う
(d)その後、得られた延伸フィルムから可塑剤を抽出しフィルムを乾燥する
(e)つづいて熱処理/再延伸/熱固定を行う。
 以下、各工程について説明する。
 (a)ポリオレフィン樹脂溶液の調製
 本発明の実施形態に用いられるポリオレフィン系樹脂を、可塑剤に加熱溶解させたポリオレフィン樹脂溶液を調製する。可塑剤としては、ポリオレフィン樹脂を十分に溶解できる溶剤であれば特に限定されないが、比較的高倍率の延伸を可能とするために、溶剤は室温で液体であるのが好ましい。溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。液体溶剤の含有量が安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。溶融混練状態では、ポリオレフィン樹脂と混和するが室温では固体の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。ただし、固体溶剤のみを使用すると、延伸ムラ等が発生するおそれがある。
 液体溶剤の粘度は40℃において20~200cStであることが好ましい。40℃における粘度を20cSt以上とすれば、ダイからポリオレフィン樹脂溶液を押し出したシートが不均一になりにくい。一方、200cSt以下とすれば液体溶剤の除去が容易である。なお、液体溶剤の粘度は、ウベローデ粘度計を用いて40℃で測定した粘度である。
 本発明の実施形態に用いるポリエチレン系樹脂に2種類以上のポリエチレンをブレンドする場合、重量平均分子量が1.0×10以上4.0×10未満の超高分子量ポリエチレンを用いることが好ましい。超高分子量ポリエチレンを含有することによって、孔を微細化、高耐熱性化が可能であり、さらに、強度や伸度を向上させることができる。超高分子量ポリエチレンは、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外の他のα-オレフィンは上記と同じでよい。
 さらに、前述の主原料またはシャットダウン温度を低下させる目的で使用する原料は分子量が比較的小さいため、シート状に成形する際に、口金の出口でスウエルやネックが大きく、シートの成形性が悪化する傾向にある。副材として超高分子量ポリエチレンを添加することでシートの粘度や強度が上昇し工程安定性が増加するため、超高分子量ポリエチレンを添加することが好ましい。ただし、超高分子量ポリエチレンの割合が50質量%以上であると押出負荷が増加して押出成形性が低下するため、超高分子量ポリエチレンの添加量はポリオレフィン樹脂全量に対して50質量%未満が好ましい。
 (b)押出物の形成およびゲル状シートの形成
 ポリオレフィン樹脂溶液の均一な溶融混練は、特に限定されないが、高濃度のポリオレフィン樹脂溶液を調製したい場合、二軸押出機中で行うことが好ましい。必要に応じて、本発明の効果を損なわない範囲で酸化防止剤等の各種添加剤を添加してもよい。特にポリオレフィン樹脂の酸化を防止するために酸化防止剤を添加することが好ましい。
 本発明の実施形態に係るポリオレフィン微多孔膜はポリエチレン系樹脂とポリエチレン以外のポリオレフィン(B)を含む単膜の微多孔膜であるため、複数の融点の異なる原料を均一に混練し押し出す必要がある。混練状態が均一でない場合、微多孔膜の強度やメルトダウン温度が低下したり、孔径のバラツキが大きくなる場合がある。均一に混練するために、押出機の前半は使用するポリエチレン系樹脂及びポリオレフィン(B)の中で最も融点の低い原料の融点をTm1としたとき、Tm1+30℃以下に設定し、原料が溶ける前の状態で均一に混合させることが好ましい。次に押出機後半では、ポリエチレン系樹脂及びポリオレフィン(B)が完全に溶融する温度で、ポリオレフィン樹脂溶液を均一に混合する。溶融混練温度は、使用するポリエチレン系樹脂及びポリオレフィン(B)の中で最も融点の高い原料の融点をTm2としたとき、(Tm2-10℃)~(Tm2+120℃)とするのが好ましい。さらに好ましくは(Tm2+20℃)~(Tm2+100℃)である。ここで、融点とは、JIS K7121(1987)に基づき、DSCにより測定した値をいう(以下、同じ)。例えば、ポリエチレン系樹脂とポリプロピレン系樹脂を用いる場合の溶融混練温度は押出機前半が160℃以下、後半が150~280℃の範囲が好ましい。
 樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合があり、上述の温度より高いと、ポリオレフィン樹脂の熱分解が激しくなり、得られる微多孔膜の物性、例えば、強度や空孔率等が劣る場合がある。また、分解物がチルロールや延伸工程上のロールなどに析出し、シートに付着することで外観の悪化につながる。そのため、上記範囲内で混練することが好ましい。
 次に、得られた押出物を冷却することによりゲル状シートが得られ、冷却により、溶剤によって分離されたポリオレフィン樹脂のミクロ相を固定化することができる。冷却工程において10~50℃まで冷却するのが好ましい。これは、最終冷却温度を結晶化終了温度以下とするのが好ましいためで、高次構造を細かくすることで、その後の延伸において均一延伸が行いやすくなる。そのため、冷却は少なくともゲル化温度以下までは30℃/分以上の速度で行うのが好ましい。冷却速度が30℃/分未満では、結晶化度が上昇し、延伸に適したゲル状シートとなりにくい。一般に冷却速度が遅いと、比較的大きな結晶が形成されるので、ゲル状シートの高次構造が粗くなり、それを形成するゲル構造も大きなものとなる。対して冷却速度が速いと、比較的小さな結晶が形成されるので、ゲル状シートの高次構造が密となり、高強度化や孔径の均一化につながる。
 冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラム等を用いる方法等がある。
 また、本発明の実施形態に係るポリオレフィン微多孔膜は、工程簡略化や薄膜化の観点から単層であることが好ましいが、単層に限定されるものではなく、積層体にしてもよい。積層数は特に限定は無く、2層積層であっても3層以上の積層であってもよい。積層部分は、上述したようにポリエチレンの他に、本発明の効果を損なわない程度にそれぞれ所望の樹脂を含んでも良い。ポリオレフィン微多孔膜を積層体とする方法としては、従来の方法を用いることができるが、例えば、所望の樹脂を必要に応じて調製し、これらの樹脂を別々に押出機に供給して所望の温度で溶融させ、ポリマー管あるいはダイ内で合流させて、目的とするそれぞれの厚みでスリット状ダイから押出しを行う等して、積層体を形成する方法がある。
 (c)延伸工程
 得られたゲル状(積層シートを含む)シートを延伸する。用いられる延伸方法としては、ロール延伸機によるシート搬送方法(MD方向)への一軸延伸、テンターによるシート幅方向(TD方向)への一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸、同時二軸テンターによる同時二軸延伸などが挙げられる。延伸倍率は、膜厚の均一性の観点より、ゲル状シートの厚さによって異なるが、いずれの方向でも5倍以上に延伸することが好ましい。面積倍率では、25倍以上が好ましく、さらに好ましくは36倍以上、さらにより好ましくは49倍、最も好ましくは64倍以上である。面積倍率が25倍未満では、延伸が不十分で膜の均一性が損なわれる易く、強度の観点からも優れた微多孔膜が得られない。面積倍率は100倍以下が好ましい。面積倍率を大きくすると、微多孔膜の製造中に破れが多発しやすくなり、生産性が低下するとともに、配向が進み結晶化度が高くなると、微多孔膜の融点や強度が向上する。しかし、結晶化度が高くなるということは、非晶部が減少することを意味し、フィルムの融点およびシャットダウン温度が上昇する。
 延伸温度はゲル状シートの融点+10℃以下にすることが好ましく、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ゲル状シートの融点+5℃)の範囲にするのがより好ましい。具体的には、ポリエチレン組成物の場合は約90~100℃の結晶分散温度を有するので、延伸温度は好ましくは90~125℃であり、より好ましくは90~120℃である。結晶分散温度TcdはASTM D 4065に従って測定した動的粘弾性の温度特性から求める。または、NMRから求める場合もある。90℃未満であると低温延伸のため開孔が不十分となり膜厚の均一性が得られにくく、空孔率も低くなる。125℃より高いと、シートの融解が起こり、孔の閉塞が起こりやすくなる。
 以上のような延伸によりゲルシートに形成された高次構造に開裂が起こり、結晶相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに、細孔が拡大するので、電池用セパレータに好適になる。また、可塑剤を除去する前に延伸することによって、ポリオレフィン樹脂が十分に可塑化し軟化した状態であるために、高次構造の開裂がスムーズになり、結晶相の微細化を均一に行うことができる。また、開裂が容易であるために、延伸時のひずみが残りにくく、可塑剤を除去した後に延伸する場合に比べて熱収縮率を低くすることができる。
 (d)可塑剤抽出(洗浄)・乾燥工程
 次に、ゲル状シート中に残留する可塑剤(溶剤)を洗浄溶剤を用いて除去する。ポリオレフィン樹脂相と溶剤相とは分離しているので、溶剤の除去により微多孔膜が得られる。洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン等の鎖状フルオロカーボンなどがあげられる。これらの洗浄溶剤は低い表面張力(例えば、25℃で24mN/m以下)を有する。低い表面張力の洗浄溶剤を用いることにより、微多孔を形成する網状構造において、洗浄後に乾燥時に気-液界面の表面張力による収縮が抑制され、良好な空孔率および透過性を有する微多孔膜が得られる。これらの洗浄溶剤は可塑剤に応じて適宜選択し、単独または混合して用いる。
 洗浄方法は、ゲル状シートを洗浄溶剤に浸漬し抽出する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法等により行うことができる。洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100質量部に対して300質量部以上であるのが好ましい。洗浄温度は15~30℃でよく、必要に応じて80℃以下に加熱する。この時、溶剤の洗浄効果を高める観点、得られるポリオレフィン微多孔膜のTD方向および/またはMD方向の物性が不均一にならないようにする観点、ポリオレフィン微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に浸漬している時間は長ければ長いほどが良い。上述のような洗浄は、洗浄後のゲル状シート、すなわちポリオレフィン微多孔膜中の残留溶剤が1質量%未満になるまで行うのが好ましい。
 その後、乾燥工程でポリオレフィン微多孔膜中の溶剤を乾燥させ除去する。乾燥方法としては、特に限定は無く、金属加熱ロールを用いる方法や熱風を用いる方法などを選択することができる。乾燥温度は40~100℃であることが好ましく、40~80℃がより好ましい。乾燥が不十分であると、後の熱固定でポリオレフィン微多孔膜の空孔率が低下し、透過性が悪化する。
 (e)熱処理/再延伸/熱固定工程
 乾燥したポリオレフィン微多孔膜を少なくとも一軸方向に延伸(再延伸)してもよい。再延伸は、微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。再延伸は一軸延伸でも二軸延伸でもよい。多段延伸の場合は、同時二軸または/および逐次延伸を組み合わせることにより行う。
 再延伸の温度は、ポリオレフィン組成物の融点以下にすることが好ましく、(Tcd-20℃)~融点の範囲内にするのがより好ましい。具体的には、70~135℃が好ましく、110~132℃がより好ましい。最も好ましくは、120~130℃である。
 再延伸の倍率は、一軸延伸の場合、1.01~1.6倍が好ましく、特にTD方向は1.1~1.6倍が好ましく、1.2~1.4倍がより好ましい。二軸延伸の場合、MD方向およびTD方向にそれぞれ1.01~1.6倍とするのが好ましい。なお、再延伸の倍率は、MD方向とTD方向で異なってもよい。上述の範囲内で延伸することで、空孔率および透過性を上昇させることができるが、1.6以上の倍率で延伸を行うと、配向が進み、フィルムの融点が上昇し、シャットダウン温度が上昇する。
熱収縮率の及びしわやたるみの観点より再延伸最大倍率からの緩和率は0.9以下が好ましく、0.8以下であることがさらに好ましい。
 再延伸の実施有無によらず、フィルムの幅を一定に固定して熱固定を実施することが好ましい。熱固定を行うことで、延伸により生じる歪み応力を緩和させることができ、DSCのピーク半値幅がシャープとなる。熱固定の温度は70~135℃が好ましく、110~132℃がより好ましい。最も好ましくは、115~130℃である。熱固定の時間は特に限定されないが、1秒~15分である。この範囲であると、歪み応力を十分に緩和させつつ、ポリオレフィン樹脂の溶融による孔閉塞も抑制することができる。
 (f)その他の工程
 さらに、その他用途に応じて、微多孔膜に親水化処理を施すこともできる。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。ポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射により架橋処理を施すのが好ましい。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理によりポリオレフィン微多孔膜のメルトダウン温度が上昇する。
 界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤又は両イオン系界面活性剤のいずれも使用できるが、ノニオン系界面活性剤が好ましい。界面活性剤を水又はメタノール、エタノール、イソプロピルアルコール等の低級アルコールに溶解してなる溶液中に多層微多孔膜を浸漬するか、多層微多孔膜にドクターブレード法により溶液を塗布する。
 ポリオレフィン微多孔膜は、電池用セパレータとして用いた場合のメルトダウン特性や耐熱性を向上する目的で、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等のフッ素系樹脂多孔質体やポリイミド、ポリフェニレンスルフィド等の多孔質体等の表面コーティングやセラミックなどの無機コーティングなどを行ってもよい。
 本発明の実施形態に係るポリオレフィン微多孔膜は、少なくとも片面にコート層を設けた積層体であることも好ましい。
 以上のようにして得られたポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータなど様々な用途で用いることができるが、特に電池用セパレータとして用いたとき、低シャットダウン特性、高メルトダウン特性を有するだけでなく、薄膜にもかかわらず高強度であるという、高安全性機能と出力特性を両立することから、電気自動車などの高エネルギー密度化、高容量化、および高出力化を必要とする二次電池用の電池用セパレータとして好ましく用いることができる。
 本発明は、本発明の実施形態に係るポリオレフィン微多孔膜又は積層体を用いた電池にも関する。
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
 1.ポリオレフィンの分子量分布測定
 高温ゲルパーミエーションクロマトグラフィー(GPC)によりポリオレフィンの分子量分布測定(重量平均分子量、分子量分布、所定成分の含有量などの測定)を行った。測定条件は以下の通りであった。
 装置:高温GPC装置(機器No. HT-GPC、Polymer Laboratories製、PL-220)
 検出器:示差屈折率検出器RI
 ガードカラム:Shodex G-HT
 カラム:Shodex HT806M(2本) (φ7.8mm×30cm、昭和電工製)
 溶媒:1,2,4-トリクロロベンゼン(TCB、和光純薬製)(0.1% BHT添加)
 流速:1.0mL/min
 カラム温度:145℃
 試料調製:試料5mgに測定溶媒5mLを添加し、160~170℃で約30分加熱攪拌した後、得られた溶液を金属フィルター(孔径0.5um)にてろ過した。
 注入量:0.200mL
 標準試料:単分散ポリスチレン(東ソー製)(PS)
 データ処理:TRC製GPCデータ処理システム
 その後、得られたMwおよびMnをポリエチレン(PE)に換算した。換算式は下記である。
 Mw(PE換算)=Mw(PS換算測定値)×0.468
 Mn(PE換算)=Mn(PS換算測定値)×0.468
 2.膜厚
 ポリオレフィン微多孔膜の50mm×50mmの範囲内における5点の膜厚を接触厚み計、株式会社ミツトヨ製ライトマチックVL-50(10.5mmφ超硬球面測定子、測定荷重0.01N)により測定し、平均値を膜厚(μm)とした。
 3.透気抵抗度
 膜厚T(μm)のポリオレフィン微多孔膜に対して、JIS P-8117に準拠して、王研式透気度計(旭精工株式会社製、EGO-1T)で25℃の雰囲気下、透気度(秒/100cm)を測定した。また、下記の式により、膜厚を10μmとしたときの透気度(10μm換算)(秒/100cm)を算出した。
 式:透気度(10μm換算)(秒/100cm)=透気度(秒/100cm)×10(μm)/ポリオレフィン微多孔膜の膜厚(μm)
 4.突刺強度
 突刺強度は、試験速度を2mm/秒としたことを除いて、JIS Z 1707(2019)に準拠して測定した。フォースゲージ(株式会社イマダ製 DS2-20N)を用いて、先端が球面(曲率半径R:0.5mm)の直径1.0mmの針で、ポリオレフィン微多孔膜を25℃の雰囲気下で突刺したときの最大荷重(N)を計測し、下記式から膜厚10μmとした際の突刺強度を算出した。
  式:突刺強度(10μm換算)(N)=最大荷重(N)×10(μm)/ポリオレフィン微多孔膜の膜厚(μm)
 5.空孔率(%)
 ポリオレフィン微多孔膜から50mm×50mm角の正方形にサンプルを切り取り、室温25℃に おけるその体積(cm)と質量(g)とを測定した。それらの値と膜密度(g/cm) とから、ポリオレフィン微多孔膜の空孔率を次式により算出した。
 空孔率(%)=(体積-質量/膜密度)/体積×100 
 なお、膜密度は0.99g/cmの一定値と仮定して計算した。
 6.引張強度、引張伸度
 引張強度MMDおよび引張強度MTD、およびMD方向の引張伸度、TD方向の引張伸度ついては、幅30mmの短冊状試験片を用いて、ASTM D882に準拠し、100mm/minの速度にて測定した。
 7.シャットダウン温度
 ポリオレフィン微多孔膜を5℃/minの昇温速度で加熱しながら、透気度計(旭精工株式会社製、EGO-1T)により透気抵抗度を測定し、透気抵抗度が検出限界である1×10秒/100cmAirに到達した温度を求め、シャットダウン温度(℃)とした。
 測定セルはアルミブロックで構成され、ポリオレフィン微多孔膜の直下に熱電対を有する構造とし、サンプルを5cm×5cm角に切り取り、周囲をОリングで固定しながら昇温測定した。
 8.メルトダウン温度
 50mm角の微多孔膜を直径12mmの穴を有する一対の金属製のブロック枠を用いて挟み、タングステンカーバイド製の直径10mmの球を微多孔膜の上に設置する。微多孔膜は水平方向に平面を有するように設置される。30℃からスタートし、5℃/分で昇温する。微多孔膜が球によって破膜されたときの温度を測定し、メルトダウン温度(MD温度)とした。
 9.DSC測定
 融点および半値幅は示差走査熱量計(DSC)により決定される。このDSCはTAインスツルメンツのMDSC2920又はQ1000Tzero-DSCを用いて行い、JIS K7121に基づき、30℃から230℃まで10℃/minの速度で昇温し、得られた融解ピークの極大値での温度(ピーク温度)を評価した。150℃未満の領域におけるピーク温度をP1、150℃以上におけるピーク温度をP2とした。
 半値幅は、150℃未満の領域における最大発熱量Qに対し、0.5倍の発熱量Q1/2となる温度をそれぞれT、T(T<T)とした場合のT-Tの値を算出した。なお、150℃未満の領域に極大値を2つ以上有しQ1/2となる温度が3つ以上存在する場合においては、該当する温度の最小温度をT、最大温度をTとして半値幅を算出する。
 10.最大孔径及び平均孔径
 パームポロメーター(PMI社製、CFP-1500A)を用いて、Dry-up、Wet-upの順で、最大孔径及び平均孔径を測定した。Wet-upには表面張力が1.59×10-2N/mのPMI社製Galwick(商品名)で十分に浸した多孔性ポリオレフィンフィルムに圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。
 平均径については、Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P
 上記式中、「d(μm)」は多孔性ポリオレフィンフィルムの孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は浸液の濡れ張力、接触角等により定まる定数である。
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
 [実施例1]
 分岐高密度ポリエチレン(分岐HDPE)(重量平均分子量(Mw)1.8×10、融点133℃)54.6質量部、超高分子量ポリエチレン(UHPE)(Mw2.0×10、融点133℃)を23.4質量部、ポリプロピレン(PP)(Mw1.1×10、融点165℃)を22.0質量部、をそれぞれ混合し、ポリオレフィン組成物を得た。該ポリオレフィン組成物28.5質量%に流動パラフィン71.5質量%を加え、さらに、混合物中のポリオレフィンの質量を基準として0.5質量%の2,6-ジ-t-ブチル-p-クレゾールと0.7質量%のテトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシルフェニル)-プロピオネート〕メタンを酸化防止剤として加えて混合し、ポリエチレン樹脂溶液を調製した。
 得られたポリエチレン樹脂溶液を二軸押出機に投入し押出機前半を150℃、後半を180℃として混練し、Tダイに供給し、シート状に押し出した後、押出物を15℃に制御された冷却ロールで冷却してゲル状シートを形成した。
 得られたゲル状シートを、フィルムストレッチャーにより4辺をクリップで把持して115℃で長手方向に7倍延伸後、幅方向に7倍延伸(逐次延伸(面倍率49倍))し、そのままフィルムストレッチャー内でシート幅を固定し115℃の温度で10秒間保持し取り出した。
 次いで延伸したゲル状シートを金枠に固定し、洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィン除去後乾燥を行い、ポリオレフィン微多孔膜を得た。
 最後に金枠に固定されたポリオレフィン微多孔膜を熱風オーブンに導入し、120℃で10分熱固定処理を行った。
 ポリオレフィン微多孔膜の原料特性、製膜条件および微多孔膜についての評価結果を表1に記載する。
 [実施例2]
 分岐HDPEを59.5質量部、UHPEを25.5質量部、PPを15.0質量部とした以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。
 [実施例3]
 UHPEを使用せず、分岐HDPE80.0質量部とPP20.0質量部からなるポリオレフィン組成物40質量%に流動パラフィンを60質量%添加し、同時2軸延伸、熱固定温度を125℃とした以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。
 [実施例4]
 延伸倍率を長手方向に10倍、幅方向に10倍とした以外は実施例3と同様にしてポリオレフィン微多孔膜を得た。
 [実施例5]
 延伸方法を同時2軸延伸とし、倍率を長手方向に5倍、幅方向に5倍とした以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。
 [実施例6]
 分岐HDPEを62.5質量部、UHPEを30.0質量部、PPを7.5質量部とした以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。
 [実施例7]
 分岐高密度ポリエチレン(分岐HDPE)(重量平均分子量(Mw)9.0×10、融点131℃)20.0質量部、超高分子量ポリエチレン(UHPE)(Mw1.0×10、融点136℃)を70.0質量部、ポリプロピレン(PP)(Mw1.1×10、融点165℃)を10.0質量部、をそれぞれ混合し、ポリオレフィン組成物を得た。該ポリオレフィン組成物23質量%に流動パラフィン77質量%を加え、さらに、混合物中のポリオレフィンの質量を基準として0.5質量%の2,6-ジ-t-ブチル-p-クレゾールと0.7質量%のテトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシルフェニル)-プロピオネート〕メタンを酸化防止剤として加えて混合し、ポリエチレン樹脂溶液を調製した。
 得られたポリエチレン樹脂溶液を二軸押出機に投入し180℃で混練し、Tダイに供給し、シート状に押し出した後、押出物を15℃に制御された冷却ロールで冷却してゲル状シートを形成した。
 得られたゲル状シートを、フィルムストレッチャーにより4辺をクリップで把持して115℃で長手方向に5倍延伸後、幅方向に5倍延伸(同時延伸(面倍率25倍))し、そのままフィルムストレッチャー内でシート幅を固定し115℃の温度で10秒間保持し取り出した。
 次いで延伸したゲル状シートを金枠に固定し、洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィン除去後乾燥を行い、ポリオレフィン微多孔膜を得た。
 最後に金枠に固定されたポリオレフィン微多孔膜を熱風オーブンに導入し、130℃で10分熱固定処理を行った。
 [実施例8]
 分岐HDPEを20.0質量部、UHPEを75.0質量部、PPを5.0質量部とした以外は実施例7と同様にしてポリオレフィン微多孔膜を得た。
 [比較例1]
 分岐HDPEの代わりに、直鎖HDPE(Mw3.0×10、融点136℃)を用い、二軸押出機の温度を180℃一定とした以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。
 [比較例2]
 延伸方法を同時2軸延伸とし、倍率を長手方向に5倍、幅方向に5倍とした以外は比較例1と同様にしてポリオレフィン微多孔膜を得た。
 [比較例3]
 PPを使用せず、分岐HDPE40.0質量部とUHPE60.0質量部からなるポリオレフィン組成物25質量%に流動パラフィンを75.0質量%添加し、延伸温度を110℃、熱固定温度を115℃とした以外は実施例3と同様にしてポリオレフィン微多孔膜を得た。
 [比較例4]
 分岐HDPEの代わりに、直鎖HDPE(Mw3.0×10、融点136℃)を用い、二軸押出機の温度を180℃一定、熱固定温度120℃とした以外は実施例6と同様にしてポリオレフィン微多孔膜を得た。
 [比較例5]
 直鎖HDPEを80.0質量部、PPを20.0質量部からなるポリオレフィン組成物30.0質量%に流動パラフィンを70質量%添加し、延伸倍率を長手方向に8倍、幅方向に8倍とし、熱固定温度を125℃とした以外は比較例2と同様にしてポリオレフィン微多孔膜を得た。
 得られたポリオレフィン微多孔膜についての評価結果は表1、表2に記載のとおりである。
 なお、表1、表2に記載の「直鎖HDPE」は直鎖高密度ポリエチレンを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のポリオレフィン微多孔膜は、高強度でありながらも電池用セパレータとして用いたとき低シャットダウン特性と高メルトダウン特性を有する高い安全性および優れた出力特性を有する。そのため、電気自動車などの高エネルギー密度化、高容量化および高出力化を必要とする電池、及び二次電池用の電池用セパレータや積層体として好適に使用することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年8月22日出願の日本特許出願(特願2019-152105)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  ポリエチレン系樹脂とポリエチレン以外のポリオレフィン(B)を含み、
    示差走査熱量計(DSC)において150℃未満および150℃以上にそれぞれピークを有し、
    かつ150℃未満のピークの半値幅が10℃以下であり、10μm換算突刺強度が2.0N以上であるポリオレフィン微多孔膜。
  2.  さらにDSCにおいて135℃以下にピークを有する請求項1記載のポリオレフィン微多孔膜。
  3.  単層である請求項1または2に記載のポリオレフィン微多孔膜。
  4.  前記ポリエチレン以外のポリオレフィン(B)の含有量が10質量%以上である請求項1~3のいずれか一項に記載のポリオレフィン微多孔膜。
  5.  前記ポリエチレン以外のポリオレフィン(B)がポリプロピレン系樹脂である請求項1~4のいずれか一項に記載のポリオレフィン微多孔膜。
  6.  シャットダウン温度が135℃以下である請求項1~5のいずれか一項に記載のポリオレフィン微多孔膜。
  7.  メルトダウン温度が160℃以上である請求項1~6のいずれか一項に記載のポリオレフィン微多孔膜。
  8.  膜厚が10μm以下である請求項1~7のいずれか一項に記載のポリオレフィン微多孔膜。
  9.  示差走査熱量計(DSC)において120℃以上にピークを有する請求項1~8のいずれか一項に記載のポリオレフィン微多孔膜。
  10.  請求項1~9のいずれか一項に記載のポリオレフィン微多孔膜の少なくとも片面にコート層を設けた積層体。
  11.  請求項1~9のいずれか一項に記載のポリオレフィン微多孔膜又は請求項10に記載の積層体を用いた電池。
PCT/JP2020/031351 2019-08-22 2020-08-19 ポリオレフィン微多孔膜、積層体、及び電池 WO2021033735A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080056537.3A CN114269817A (zh) 2019-08-22 2020-08-19 聚烯烃微多孔膜、层叠体和电池
US17/636,130 US20220298314A1 (en) 2019-08-22 2020-08-19 Polyolefin microporous film, layered body, and battery
JP2020545384A JPWO2021033735A1 (ja) 2019-08-22 2020-08-19
KR1020227004184A KR20220051167A (ko) 2019-08-22 2020-08-19 폴리올레핀 미다공막, 적층체 및 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-152105 2019-08-22
JP2019152105 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021033735A1 true WO2021033735A1 (ja) 2021-02-25

Family

ID=74661004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031351 WO2021033735A1 (ja) 2019-08-22 2020-08-19 ポリオレフィン微多孔膜、積層体、及び電池

Country Status (5)

Country Link
US (1) US20220298314A1 (ja)
JP (1) JPWO2021033735A1 (ja)
KR (1) KR20220051167A (ja)
CN (1) CN114269817A (ja)
WO (1) WO2021033735A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276468A1 (ja) * 2021-06-30 2023-01-05 東レ株式会社 ポリオレフィン微多孔膜および電池用セパレータ
WO2023145319A1 (ja) * 2022-01-28 2023-08-03 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
WO2023176880A1 (ja) * 2022-03-18 2023-09-21 東レ株式会社 ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674026B2 (en) * 2021-03-18 2023-06-13 Ddp Specialty Electronic Materials Us, Llc Polyolefin-based microporous films via sequential cold and hot stretching of unannealed polypropylene copolymer films

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194132A (ja) * 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2004196871A (ja) * 2002-12-16 2004-07-15 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
WO2007052663A1 (ja) * 2005-11-01 2007-05-10 Tonen Chemical Corporation ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP2010537845A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP2013057045A (ja) * 2011-09-06 2013-03-28 Kee:Kk 耐熱性改良ポリオレフィン微多孔膜及びその製造方法。
WO2015166878A1 (ja) * 2014-04-30 2015-11-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜
WO2019093184A1 (ja) * 2017-11-08 2019-05-16 東レ株式会社 ポリオレフィン複合多孔質膜及びその製造方法、並びに電池用セパレータ及び電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200578A (ja) 2004-01-16 2005-07-28 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
CN1960264A (zh) 2005-11-03 2007-05-09 华为技术有限公司 一种计费的方法和系统
HUE062394T2 (hu) * 2014-06-20 2023-10-28 Toray Industries Többrétegû mikroporózus poliolefin film, eljárás elõállítására és cellaszeparátor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194132A (ja) * 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2004196871A (ja) * 2002-12-16 2004-07-15 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
WO2007052663A1 (ja) * 2005-11-01 2007-05-10 Tonen Chemical Corporation ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP2010537845A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP2013057045A (ja) * 2011-09-06 2013-03-28 Kee:Kk 耐熱性改良ポリオレフィン微多孔膜及びその製造方法。
WO2015166878A1 (ja) * 2014-04-30 2015-11-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜
WO2019093184A1 (ja) * 2017-11-08 2019-05-16 東レ株式会社 ポリオレフィン複合多孔質膜及びその製造方法、並びに電池用セパレータ及び電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276468A1 (ja) * 2021-06-30 2023-01-05 東レ株式会社 ポリオレフィン微多孔膜および電池用セパレータ
WO2023145319A1 (ja) * 2022-01-28 2023-08-03 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
WO2023176880A1 (ja) * 2022-03-18 2023-09-21 東レ株式会社 ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター

Also Published As

Publication number Publication date
CN114269817A (zh) 2022-04-01
US20220298314A1 (en) 2022-09-22
KR20220051167A (ko) 2022-04-26
JPWO2021033735A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
JP4808935B2 (ja) ポリエチレン微多孔膜の製造方法並びにその微多孔膜及び用途
WO2021033735A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
JP7395827B2 (ja) 多孔性ポリオレフィンフィルム
JP2002284918A (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
JPWO2015083705A1 (ja) ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、ポリオレフィン微多孔膜捲回体、非水電解液系二次電池およびポリオレフィン微多孔膜の製造方法
JP7207300B2 (ja) 多孔性ポリオレフィンフィルム
CN113614993A (zh) 聚烯烃微多孔膜、二次电池用隔板及二次电池
JP7380570B2 (ja) ポリオレフィン微多孔膜、電池用セパレータ、二次電池及びポリオレフィン微多孔膜の製造方法
JP2015208894A (ja) ポリオレフィン製積層微多孔膜
JP2021038379A (ja) 多孔性ポリオレフィンフィルム
JP2005343958A (ja) ポリエチレン微多孔膜の製造方法並びにその微多孔膜及び用途
JP6962320B2 (ja) ポリオレフィン微多孔膜、及びそれを用いた電池
WO2018180713A1 (ja) ポリオレフィン微多孔膜およびそれを用いた電池
WO2021033733A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
JP2022082461A (ja) ポリオレフィン微多孔膜、電池用セパレータ、及び二次電池
WO2021015269A1 (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池用セパレータ
JP2020164860A (ja) ポリオレフィン微多孔膜、電池用セパレータ、二次電池及びポリオレフィン微多孔膜の製造方法
JP2020164861A (ja) ポリオレフィン微多孔膜、電池用セパレータ、二次電池及びポリオレフィン微多孔膜の製造方法
JP2020164858A (ja) ポリオレフィン製微多孔膜、電池用セパレータ、及び二次電池
KR20240087644A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터, 및 이차 전지
WO2022202095A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
JP2020164824A (ja) ポリオレフィン微多孔膜、電池
JP2021105166A (ja) ポリオレフィン微多孔膜、及び二次電池
JP2021021067A (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池
JP2021021068A (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545384

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855286

Country of ref document: EP

Kind code of ref document: A1