WO2023176880A1 - ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター - Google Patents

ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター Download PDF

Info

Publication number
WO2023176880A1
WO2023176880A1 PCT/JP2023/010063 JP2023010063W WO2023176880A1 WO 2023176880 A1 WO2023176880 A1 WO 2023176880A1 JP 2023010063 W JP2023010063 W JP 2023010063W WO 2023176880 A1 WO2023176880 A1 WO 2023176880A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
molecular weight
microporous membrane
less
polyolefin microporous
Prior art date
Application number
PCT/JP2023/010063
Other languages
English (en)
French (fr)
Inventor
琢也 久万
遼 下川床
直哉 西村
龍太 中嶋
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023176880A1 publication Critical patent/WO2023176880A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness

Definitions

  • the present invention relates to a polyolefin microporous membrane widely used as a separation membrane used for substance separation, selective permeation, etc., and as an isolation material for electrochemical reaction devices such as alkaline batteries, lithium secondary batteries, fuel cells, and capacitors. .
  • the present invention also relates to a nonaqueous electrolyte secondary battery, a filter, and a filtration unit.
  • Polyolefin microporous membranes are used as filters, fuel cell separators, condenser separators, etc. In particular, it is suitably used as a separator for lithium ion batteries, which are widely used in notebook personal computers, mobile phones, digital cameras, and the like.
  • the polyolefin microporous membrane has excellent membrane mechanical strength and shutdown characteristics.
  • lithium-ion secondary batteries have been developed with the aim of achieving higher energy density, higher capacity, and higher output, mainly for automotive applications, and as a result, the safety requirements for separators have also increased. It is becoming expensive.
  • the separator is required to have a function that ensures safety when the battery generates abnormal heat.
  • the above-mentioned shutdown temperature is a function of cutting off the current by melting the microporous polyolefin membrane and clogging the pores, and the lower the shutdown temperature, the better.
  • the temperature inside the battery continues to rise for a certain period of time even after shutdown. If the temperature is higher than the shutdown temperature, a meltdown phenomenon may occur in which the separator perforates and insulation cannot be maintained, and the temperature at which this meltdown occurs (meltdown temperature) is preferably higher.
  • Patent Document 1 discloses that by laminating a microporous membrane containing polyethylene and polypropylene as essential components and a microporous polyethylene membrane, a secondary A battery separator is described.
  • Patent Document 2 describes a polyolefin microporous membrane that has excellent coating properties and winding properties when coating a heat-resistant porous layer.
  • microporous membrane described in Patent Document 1 improves heat resistance by blending polypropylene with a higher melting point than polyethylene, other basic properties as a separator such as membrane strength are impaired due to the phase separation structure of polyethylene and polypropylene. there is a possibility. Further, there is no mention of heat resistance when a heat-resistant porous layer is provided on a microporous membrane.
  • An object of the present invention is to solve the above problems.
  • a heat-resistant porous layer is provided and used as a laminated film as a battery separator, it is possible to provide high safety against abnormal battery heat generation, and the excellent film strength allows for low resistance and high capacity batteries.
  • the purpose of the present invention is to provide a microporous polyolefin membrane that can be
  • the polyolefin microporous membrane of the present invention has the following configuration.
  • the standard deviation is Lms
  • the standard deviation of orientation parameter measurements at 100 locations in the TD direction is Lts
  • at least one of Lms and Lts is 0.02 or more and 0.15 or less
  • the puncture strength is 0.4 N/ ⁇ m.
  • the above microporous polyolefin membrane is 0.02 or more and 0.15 or less.
  • [IV] In the molecular weight distribution of the polyolefin microporous membrane measured by gel permeation chromatography method (GPC method), the content of components with a molecular weight of 1 million or more and less than 10 million is 25% by mass or more, and the molecular weight is 10 million or more.
  • [V] The microporous polyolefin membrane according to any one of [I] to [IV], containing 0.2 ppm or more of hafnium element.
  • [VI] A laminate in which a heat-resistant layer is further laminated on the polyolefin microporous membrane according to any one of [I] to [V].
  • [VII] A non-aqueous electrolyte secondary battery using the polyolefin microporous membrane according to any one of [I] to [V] or the laminate according to [VI].
  • [VIII] A filter using the polyolefin microporous membrane according to any one of [I] to [VII].
  • [IX] A filtration unit using the filter described in [VIII].
  • a heat-resistant porous layer when a heat-resistant porous layer is provided and used as a battery separator, it is possible to provide high safety against abnormal heat generation of the battery, and by having excellent permeability and membrane strength, it is possible to provide a high level of safety against abnormal heat generation of the battery. It is possible to provide a polyolefin microporous membrane that can be made resistive and have a high capacity.
  • the microporous polyolefin membrane of the present invention was prepared by measuring orientation parameters in the MD direction and TD direction at 10 points in total at 15 ⁇ m intervals in the MD direction and TD direction using polarized Raman spectroscopy.
  • the standard deviation of the measured values of the orientation parameter is Lms
  • the standard deviation of the measured values of the orientation parameter at 100 locations in the TD direction is Lts
  • at least one of Lms and Lts is 0.02 or more and 0.15 or less, and more preferably is 0.02 or more and 0.13 or less, more preferably 0.02 or more and 0.10 or less.
  • the orientation parameter is an index that indicates the degree of orientation of crystal molecular chains as a value calculated by Raman spectroscopy using the measurement method described below.The higher this value is, the more highly oriented the crystal molecular chains are. ing.
  • both Lms and Lts be 0.02 or more and 0.15 or less, and more preferably Preferably it is 0.02 or more and 0.13 or less, more preferably 0.02 or more and 0.12 or less.
  • Lms and Lts By setting Lms and Lts to 0.15 or less, local unevenness of the film at high temperatures is suppressed and heat resistance after coating the heat-resistant porous layer is improved, which is preferable. From the viewpoint of reducing unevenness, it is preferable that Lms and Lts are as small as possible; however, in order to make Lms and Lts less than 0.02, it is necessary to lower the stretching speed of the film, which may reduce productivity or increase the stretching temperature to a high temperature. Lms and Lts need to be 0.02 or more because the strength and permeability may decrease and it may not be possible to use it as a battery separator.
  • Lms and Lts are 0.15 or less because local unevenness in filtration accuracy is eliminated and it is possible to increase the filtration flow rate while suppressing filtration resistance.
  • the raw material composition of the film is within the range described below, and the stretching conditions during film formation are within the ranges described below.
  • the direction parallel to the film forming direction of the film is referred to as the film forming direction, longitudinal direction, or MD direction
  • the direction perpendicular to the film forming direction within the film plane is referred to as the width direction or TD direction.
  • the direction with the highest orientation is the MD direction
  • the orthogonal direction is the MD direction.
  • the microporous polyolefin membrane of the present invention has a puncture strength of 0.4 N/ ⁇ m or more in terms of unit thickness. It is more preferably 0.45 N/ ⁇ m or more, still more preferably 0.5 N/ ⁇ m or more, and most preferably 0.55 N/ ⁇ m or more.
  • the puncture strength is 0.4 N or more, even when used as a thin film separator, short circuits are less likely to occur during winding or due to foreign matter inside the battery, and the safety of the battery can be improved.
  • the puncture strength in terms of unit thickness is 0.4 N/ ⁇ m or more, it becomes easier to increase the porosity and make the film thinner, thereby increasing the filtration flow rate while suppressing the filtration resistance.
  • the raw material composition of the film be within the range described below, and the stretching conditions during film formation be within the range described below.
  • the polyolefin microporous membrane of the present invention has high puncture strength while reducing variation in orientation parameters by adjusting the raw material composition and film forming conditions to the ranges described below, and has good foreign object resistance when used as a battery separator. It has both heat resistance and heat resistance.
  • both Lma and Lta are 4. It is preferable that it is .0 or less.
  • Lma and Lta are more preferably 3.8 or less, still more preferably 3.6 or less, and most preferably 3.5 or less.
  • the microporous polyolefin membrane of the present invention allows the fibrils to open evenly and uniformly by adjusting the raw material composition and film forming conditions within the ranges described below, thereby obtaining a microporous polyolefin film with high strength even if the orientation parameter is small.
  • the polyolefin microporous membrane of the present invention preferably has a ratio of average pore diameter to maximum pore diameter (average pore diameter/maximum pore diameter) of 0.65 or more as measured by a palm porometer based on JIS K 3832-1990. It is more preferably 0.67 or more, still more preferably 0.69 or more, particularly preferably 0.71 or more. Moreover, (average pore diameter/maximum pore diameter) is preferably 0.9 or less.
  • the polyolefin microporous membrane has a more uniform pore structure, and the mechanical strength of the polyolefin microporous membrane can be improved. It is also possible to improve the ion permeability because the tortuosity of the material is also reduced. Furthermore, when used as a filter, it is preferable that (average pore diameter/maximum pore diameter) is 0.75N or more, since the distribution of pore diameters on the film surface is uniform, making it possible to improve filtration accuracy. In order to keep the above (average pore diameter/maximum pore diameter) within the above molecular weight range, it is preferable to set the raw material composition and film forming conditions of the microporous polyolefin membrane to the ranges described below.
  • the polyolefin microporous membrane of the present invention preferably has an average pore diameter of 50 nm or less.
  • the average pore diameter is more preferably 40 nm or less, still more preferably 30 nm or less, and most preferably 25 nm or less.
  • the average pore diameter exceeds 50 nm, micro short circuits due to dendrites may easily occur when used as a thin film separator for high-power batteries.
  • the average pore diameter is 20 nm or less because it enables high-definition filtration.
  • the thickness is more preferably 19 nm or less, and even more preferably 18 nm or less.
  • the raw material composition of the film is within the range described below, and the stretching conditions during film formation are within the range described below.
  • the polyolefin microporous membrane of the present invention preferably has a porosity of 30% or more.
  • the porosity is more preferably 35% or more, still more preferably 37% or more, and still more preferably 40% or more.
  • the porosity is more preferably 48% or more, still more preferably 50% or more.
  • the porosity is preferably 60% or less from the viewpoint of mechanical strength of the microporous polyolefin membrane.
  • the raw material composition of the microporous polyolefin membrane is within the range described below, and the stretching conditions and heat setting conditions during production of the microporous polyolefin membrane are within the ranges described below. .
  • the polyolefin microporous membrane of the present invention has an air permeability resistance of 30 seconds or less when 100 cm 3 of air is passed through it, as measured by the Oken tester method of JIS P-8117:2009, when converted to a thickness of 1 ⁇ m. It is preferable that The air permeability resistance is more preferably 25 seconds or less, even more preferably 21 seconds or less. When the air permeability resistance is 30 seconds or less, ion permeability can be maintained and output characteristics when used as a battery separator are improved. Furthermore, since the air permeability resistance is 5 seconds or more when converted to a thickness of 1 ⁇ m, it has an excellent balance with strength and heat resistance.
  • the raw material composition and laminated structure of the microporous membrane should be in the ranges described below, and the stretching conditions and heat setting conditions during film production of the microporous polyolefin film should be described below. It is preferable to keep it within this range.
  • the microporous polyolefin membrane of the present invention preferably has a thickness of 10 ⁇ m or less.
  • the thickness is more preferably 8 ⁇ m or less, still more preferably 5 ⁇ m or less, and most preferably 4 ⁇ m or less. If the thickness exceeds 10 ⁇ m, sufficient output characteristics and energy density may not be obtained when used as a separator for future high-capacity batteries. From the above point of view, the thinner the thickness is, the more preferable it is, but the lower limit of the thickness is preferably about 2 ⁇ m since safety may be reduced or handling may become difficult.
  • the thickness can be adjusted by adjusting the extruder discharge rate, film forming speed, stretching ratio, stretching temperature, etc. within a range that does not deteriorate other physical properties.
  • the polyolefin microporous membrane of the present invention has a temperature-stress curve of the polyolefin microporous membrane, where the horizontal axis is temperature and the vertical axis is stress, obtained from thermomechanical analysis measurement (TMA measurement) at a heating rate of 5°C/min.
  • TMA measurement thermomechanical analysis measurement
  • P 150 /P max ⁇ 0.6. It is more preferably 0.7 or more, still more preferably 0.75 or more, and most preferably 0.8 or more.
  • P 150 /P max is 0.95 or less.
  • the polyolefin microporous membrane of the present invention is obtained by a gel permeation chromatography method (GPC method), and the molecular weight distribution of the polyolefin microporous membrane with the horizontal axis as the molecular weight and the vertical axis as the detection intensity, the total component amount is 100 mass. It is preferable that the amount of components having a molecular weight of 10 million or more is 1.0% by mass or less when expressed as %. The content is more preferably 0.7% by mass or less, further preferably 0.5% by mass or less, most preferably 0.3% by mass or less.
  • GPC method gel permeation chromatography method
  • the polyolefin microporous membrane of the present invention is obtained by a gel permeation chromatography method (GPC method), and the molecular weight distribution of the polyolefin microporous membrane with the horizontal axis as the molecular weight and the vertical axis as the detection intensity, the total component amount is 100 mass. It is preferable that the amount of components having a molecular weight of 1,000,000 to 10,000,000 is 25% by mass or more. The content is more preferably 27% by mass or more, further preferably 30% by mass or more, and most preferably 32% by mass or more. The upper limit is preferably 80% by mass or less, more preferably 60% by mass or less.
  • GPC method gel permeation chromatography method
  • the amount of the component With a molecular weight of 10 million or more and the amount of the component with a molecular weight of 1 million to less than 10 million in the polyolefin microporous membrane within the above range, it becomes possible to uniformly stretch the entire microporous membrane from the initial stage of stretching. This makes it possible to control Lms and Lts to a small value, improve the mechanical strength of the microporous polyolefin membrane while maintaining membrane quality, and reduce the unstretched portion and improve ion permeability. Further, by setting the amount of the component having a molecular weight of 1 million or more and less than 10 million within the above range, the high molecular weight component becomes more uniform and the shape is easily maintained even after melting, so that the meltdown resistance is easily improved.
  • the raw materials used in the microporous polyolefin membrane, their composition, and kneading conditions be within the ranges described below.
  • the polyolefin microporous membrane of the present invention has a molecular weight distribution of a polyolefin microporous membrane obtained by gel permeation chromatography (GPC method), with the horizontal axis representing the molecular weight and the vertical axis representing the detection intensity. It is preferable to exist in a range of 500,000 or more.
  • This maximum detection intensity is preferably present in a molecular weight range of 100,000 to 500,000, more preferably 200,000 to 400,000, and still more preferably 200,000 to 300,000.
  • the maximum molecular weight detection intensity of the polyolefin microporous membrane By setting the maximum molecular weight detection intensity of the polyolefin microporous membrane within the above molecular weight range, relatively low molecular weight components that are highly compatible with plasticizers are increased, and high molecular weight components that form the skeleton of the microporous membrane structure are increased. In order to promote compatibility with the plasticizer, it becomes possible to improve the mechanical strength of the polyolefin microporous membrane while maintaining the film quality such as the film appearance.
  • the raw materials used for the microporous polyolefin membrane, their composition, and kneading conditions are within the ranges described below.
  • the polyolefin microporous membrane of the present invention preferably contains 0.2 ppm or more of hafnium element.
  • the hafnium element content is more preferably 0.5 ppm or more, still more preferably 0.8 ppm or more, and most preferably 1.0 ppm or more. Further, the hafnium element content is preferably 50 ppm or less, more preferably 40 ppm or less.
  • the molecular weight distribution of the polyolefin microporous membrane can be easily adjusted to the above range without adversely affecting battery performance.
  • the raw materials used for the microporous polyolefin membrane, their composition, and kneading conditions are within the ranges described below.
  • the specific polyethylene described below is used as a raw material, the raw material composition is within the range described below, and the stretching conditions and heat setting conditions during film formation are within the ranges described below, so that it can be used as a battery separator.
  • the stretching conditions and heat setting conditions during film formation are within the ranges described below, so that it can be used as a battery separator.
  • a polyolefin microporous membrane with excellent safety and heat resistance was achieved.
  • the microporous polyolefin membrane of the present invention is a film containing polyolefin as a main component.
  • the term "main component” means that the proportion of a specific component in all components is 50% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. , most preferably 99% by mass or more.
  • the polyolefin resin used as a raw material in the present invention is preferably a polyolefin, and may be a polyolefin composition.
  • examples of the polyolefin include polyethylene and polypropylene, and two or more types of these may be used as a blend.
  • the raw material used for the polyolefin microporous membrane of the present invention preferably contains at least one type of ultra-high molecular weight polyethylene (UHPE).
  • UHPE ultra-high molecular weight polyethylene
  • the proportion of ultra-high molecular weight polyethylene in the resin component of the polyolefin microporous membrane of the present invention is preferably 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more.
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention may be an ethylene homopolymer, or may be a copolymer containing other ⁇ -olefins in order to lower the melting point as described below.
  • Other ⁇ -olefins include, for example, propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, and styrene.
  • the presence and type of ⁇ -olefin can be confirmed by measuring with C 13 -NMR.
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention preferably has a weight average molecular weight (Mw) of 800,000 or more, more preferably 1,000,000 or more, and more preferably 1,200,000 or more, as determined by gel permeation chromatography (GPC) measurement.
  • Mw is more preferable.
  • Mw is preferably 2 million or less, more preferably 1.5 million or less.
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention has two peaks in the molecular weight distribution obtained from GPC measurements: 100,000 to less than 1 million and 1 million to 10 million. preferable.
  • the range on the low molecular weight side is more preferably 100,000 to 500,000, and the range on the high molecular weight side is more preferably 1 million to 5 million. Having peaks in both of the above molecular weight ranges promotes high strength, but low molecular weight components support high molecular weight components that are difficult to miscible with plasticizers, making them more compatible with plasticizers. This makes it possible to achieve both high quality and high strength.
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention has a molecular weight distribution obtained from GPC measurement, where the detection intensity at a molecular weight of 3 million is K300 and the detection intensity at a molecular weight of 7 million is K700, the ratio: K300/K700. is preferably 2.0 or more, more preferably 3.0 or more, and even more preferably 4.0 or more. The upper limit is preferably 15.0 or less, more preferably 10.0 or less, and even more preferably 6.0 or less.
  • This K300/K700 indicates molecular weight uniformity on the high molecular weight side, and the larger this value is, the sharper the distribution of high molecular weight components is.
  • the amount of components with a molecular weight of 10 million or more is preferably 4.0% by mass or less, more preferably 2.0% by mass or less, More preferably, it is 1.0% by mass or less.
  • a much higher stretching ratio than current production conditions is required, which causes non-uniform stretching. Therefore, although components with a molecular weight of 10 million or more have little role in increasing strength, there is concern that they may cause worsening of thermal shrinkage. Therefore, when the amount of this component is within the above range, even when the molecular weight is adjusted by melt-kneading, it is possible to maintain the molecular weight component necessary for increasing the strength of the polyolefin microporous membrane.
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention is preferably one that has been polymerized using a metallocene catalyst.
  • Polyethylene polymerized using a metallocene catalyst has a narrow molecular weight distribution, and the amount of K300/K700 or components having a molecular weight of 10 million or more can be easily adjusted to the above range.
  • polyethylene polymerized using a metallocene catalyst contains catalyst residues such as Hf (hafnium) and Cr (chromium).
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention preferably has a melting point of 134°C or higher, more preferably 135°C or higher, even more preferably 135.5°C or higher, as determined by differential scanning calorimetry (DSC). be. Further, the melting point is preferably 140°C or lower, more preferably 137.5°C or lower, and even more preferably 136.0 or lower. When the melting point is within the above range, deterioration of permeability and excessive increase in shutdown temperature in the heat setting process can be suppressed, and various physical properties can be achieved simultaneously.
  • DSC differential scanning calorimetry
  • the ultra-high molecular weight polyethylene used as a raw material in the present invention preferably has a ⁇ H (J/g) of 150 J/g or more, more preferably 155 J/g or more, as determined by a differential scanning calorimeter (DSC). .
  • ⁇ H is preferably 200 J/g or less, more preferably 190 J/g or less, and even more preferably 180 J/g or less.
  • the microporous polyolefin membrane of the present invention may contain polyolefins other than ultra-high molecular weight polyethylene (UHPE).
  • UHPE ultra-high molecular weight polyethylene
  • polyethylene is preferable from the viewpoint of compatibility with ultra-high molecular weight polyethylene.
  • the polyethylene other than ultra-high molecular weight polyethylene used as a raw material in the present invention preferably has a weight average molecular weight (Mw) of 10,000 or more, more preferably 50,000 or more, as determined by gel permeation chromatography (GPC) measurement. Moreover, Mw is preferably 300,000 or less, more preferably 200,000 or less. When Mw is within the above range, the structure formed by the high molecular weight polyolefin is not excessively inhibited, so that it is possible to further improve shutdown and heat shrinkage characteristics while maintaining mechanical strength.
  • Mw weight average molecular weight
  • the polyethylene other than ultra-high molecular weight polyethylene used as a raw material in the present invention preferably has a melting point of 136°C or lower, more preferably 134°C or lower, and even more preferably 133°C or lower, as determined by differential scanning calorimetry (DSC). It is. Further, the melting point is preferably 125°C or higher, more preferably 130°C or higher, and even more preferably 131°C or higher. When the melting point is within the above range, the shutdown characteristics can be improved while suppressing excessive deterioration of permeability in the heat setting process, and various physical properties can be achieved at the same time.
  • DSC differential scanning calorimetry
  • the polyethylene other than ultra-high molecular weight polyethylene used as a raw material in the present invention preferably has a ⁇ H (J/g) of 180 J/g or more, preferably 200 J/g, as determined by a differential scanning calorimeter (DSC). More preferably, it is 220 J/g. Moreover, ⁇ H is preferably 250 J/g or less, more preferably 240 J/g or less. When ⁇ H is within the above range, the shutdown characteristics can be improved while suppressing excessive deterioration of permeability in the heat setting process, and various physical properties can be achieved at the same time.
  • the microporous polyolefin membrane of the present invention may contain a polyolefin other than polyethylene for the purpose of improving meltdown characteristics.
  • the polyolefin other than polyethylene is not particularly limited, and polypropylene, polymethylpentene, polybutene, polyacetal, styrene resin, polyphenylene ether, etc. can be used.
  • polypropylene is preferred from the viewpoint of kneading properties and electrical stability when used as a separator.
  • block copolymers and random copolymers can also be used.
  • the block copolymer and random copolymer may contain a copolymer component with ⁇ -ethylene other than propylene. Ethylene is preferred as the other ⁇ -ethylene.
  • the upper limit of the amount of polypropylene added is preferably 40% by mass or less, more preferably 35% by mass or less, based on 100% by mass of the entire polyolefin resin.
  • the lower limit of the amount of polypropylene added is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and even more preferably 20% by mass or more. Most preferred.
  • the amount of polypropylene is more than the above range, the pore diameter of the microporous membrane may become small, resulting in poor permeability, decreased strength, or increased shutdown temperature. If the amount is less than the above range, it will not have a co-continuous structure with the main component polyolefin resin, making it difficult to achieve the effect of improving the meltdown temperature by adding polypropylene.
  • the melting point of the polypropylene added is preferably 150°C or higher, more preferably 155°C or higher, and even more preferably 160°C or higher.
  • the molecular weight of polypropylene is preferably a weight average molecular weight of 5.0 x 10 5 or more, more preferably 10 x 10 5 or more, and still more preferably 15 x 10 5 or more.
  • the upper limit of the weight average molecular weight is preferably 10 x 10 6 or less, more preferably 8.0 x 10 6 or less, still more preferably 5.0 x 10 6 or less, and most preferably 8.0 x 10 6 or less. Preferably it is 3.0 ⁇ 10 6 or less. If the polypropylene has a molecular weight lower than the above range, the strength of the resulting microporous polyolefin membrane may decrease.
  • the polypropylene has a molecular weight higher than the above range, the viscosity will increase during melt-kneading in the manufacturing process of a microporous polyolefin membrane, which will be described later, which is not preferable from the standpoint of uniformly kneading.
  • the polyolefin microporous membrane of the present invention may contain various additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, and even antiblocking agents and fillers within the range that does not impair the effects of the present invention.
  • the agent may also be included.
  • antioxidants examples include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4), 1,3,5-trimethyl-2,4,6-tris (3,5-di -t-butyl-4-hydroxybenzyl)benzene (for example, "Irganox” (registered trademark) 1330 manufactured by BASF: molecular weight 775.2), tetrakis[methylene-3(3,5-di-t-butyl-4-hydroxy) It is preferable to use one or more types selected from phenyl)propionate]methane (for example, "Irganox” (registered trademark) 1010 manufactured by BASF, molecular weight 1177.7).
  • the microporous polyolefin membrane of the present invention is obtained by biaxially stretching the above-mentioned raw materials.
  • Biaxial stretching can be achieved by any of the inflation method, simultaneous biaxial stretching method, and sequential biaxial stretching method, but among these, film forming stability, thickness uniformity, high rigidity and dimensional stability of the film are It is preferable to employ a simultaneous biaxial stretching method or a sequential biaxial stretching method in terms of controlling the .
  • microporous polyolefin membrane of the present invention preferably comprises the following steps (a) to (f).
  • a polyolefin resin solution is prepared by heating and dissolving a polyolefin resin and various additives in a plasticizer.
  • the plasticizer may be any solvent as long as it can sufficiently dissolve the polyolefin resin.
  • the plasticizer is preferably a liquid solvent that is liquid at room temperature.
  • Liquid solvents include aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil fractions with corresponding boiling points, and dibutyl phthalate. Examples include phthalic acid esters that are liquid at room temperature, such as dioctyl phthalate.
  • a nonvolatile liquid solvent such as liquid paraffin is preferred in order to obtain a gel-like sheet with a stable liquid solvent content.
  • the viscosity of the liquid solvent is preferably 20 cSt or more and 200 cSt or less at 40°C.
  • the viscosity is 20 cSt or more, the sheet obtained by extruding the polyolefin resin solution from a die is less likely to be non-uniform.
  • the viscosity is set to 200 cSt or less, the liquid solvent can be easily removed.
  • the viscosity of the liquid solvent can be measured at 40°C using an Ubbelohde viscometer.
  • a solid solvent that is miscible with the polyolefin in a melt-kneaded state but is solid at room temperature may be used by mixing it with a liquid solvent.
  • the solid solvent include stearyl alcohol, ceryl alcohol, and paraffin wax.
  • the blending ratio of the plasticizer is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 75% or more, based on the total of the polyolefin resin and plasticizer being 100% by mass. Further, the blending ratio of the plasticizer is preferably 90% by mass or less.
  • the plasticizer in order to increase the compatibility between the ultra-high molecular weight polyethylene used in the present invention and the plasticizer, it is preferable to add a large amount of the plasticizer immediately after the polyolefin resin is melt-kneaded.
  • the proportion of plasticizer added immediately after charging the ultra-high molecular weight polyethylene to the extruder is defined as the initial addition proportion.
  • the initial addition ratio is preferably 60% by mass or more, more preferably 70% by mass or more, particularly preferably 90% by mass or more, based on the total amount of plasticizer to be added as 100% by mass.
  • “immediately after charging ultra-high molecular weight polyethylene into the extruder” means “immediately after charging the ultra-high molecular weight polyethylene into the extruder” when the plasticizer charging port in the twin-screw extruder is provided downstream from the charging port for the ultra-high molecular weight polyethylene. This means that the distance to the plasticizer inlet is within 50 cm.
  • the extruder it is preferable to uniformly mix the polyolefin resin solution at a temperature at which the polyolefin resin completely melts.
  • the melt-kneading temperature is preferably from (melting point of polyolefin resin +10°C) to (melting point of polyolefin resin +120°C). More preferably, it is from (melting point of polyolefin resin +20°C) to (melting point of polyolefin resin +100°C).
  • the melt-kneading temperature is preferably 140 to 250°C, since the polyethylene resin has a melting point of about 130 to 140°C.
  • the melt-kneading temperature is more preferably 150 to 210°C, still more preferably 160 to 230°C, particularly preferably 170 to 200°C.
  • the melt-kneading temperature is lower, but if the temperature is lower than the above-mentioned temperature, unmelted material will be generated in the extrudate extruded from the die, causing membrane rupture in the subsequent stretching process. It may be the cause. Moreover, if the temperature is higher than the above-mentioned temperature, thermal decomposition of the polyolefin resin becomes severe, and the physical properties of the resulting microporous polyolefin membrane, such as strength and porosity, may be inferior. In addition, decomposition products precipitate on chill rolls, rolls during the stretching process, etc., and adhere to the sheet, leading to deterioration in appearance. Therefore, it is preferable to knead within the above range.
  • the melting point is measured by DSC based on JIS K7121:2012.
  • (b) Formation of gel-like sheet A gel-like sheet is obtained by extruding the melt-kneaded resin solution through a die and cooling it. Cooling allows the microphase of the polyolefin resin separated by the plasticizer to be immobilized.
  • the gel-like sheet is preferably cooled to 10 to 50°C. This is because it is preferable to keep the final cooling temperature below the crystallization end temperature of the polyolefin resin in order to refine the higher-order structure of the gel-like sheet. By making the higher-order structure fine, it becomes easier to uniformly stretch the gel-like sheet in subsequent stretching. Therefore, cooling is preferably performed at a rate of 30° C./min or more until at least the gelling temperature or lower.
  • the cooling rate is less than 30° C./min, the crystallinity will increase and it will be difficult to form a gel-like sheet suitable for stretching.
  • the cooling rate is slow, relatively large crystals are formed, so that the higher-order structure of the gel-like sheet becomes coarse and the gel structure forming it also becomes large.
  • the cooling rate is fast, relatively small crystals are formed, so the higher-order structure of the gel-like sheet becomes denser, which not only facilitates uniform stretching but also improves the strength and elongation of the film.
  • Methods for cooling the gel-like sheet include, for example, a method in which it is brought into direct contact with cold air, cooling water, or other cooling medium, a method in which it is brought into contact with a roll cooled with a refrigerant, and a method in which a casting drum is used.
  • the obtained gel-like sheet is biaxially stretched.
  • the biaxial stretching method any of an inflation method, a simultaneous biaxial stretching method, and a sequential biaxial stretching method can be used. Among these, it is preferable to employ the simultaneous biaxial stretching method or the sequential biaxial stretching method in terms of controlling film forming stability, thickness uniformity, and film rigidity and dimensional stability.
  • the simultaneous biaxial stretching method include a method using a simultaneous biaxial tenter.
  • Examples of the sequential biaxial stretching method include a method using a combination of MD stretching using a roll stretching machine and TD stretching using a tenter, or a method using a combination of tenters.
  • the stretching ratio is preferably 5 times or more in both MD/TD directions.
  • the area magnification for stretching is preferably 25 times or more. By setting the area magnification to 25 times or more, more preferably 36 times or more, still more preferably 49 times or more, and particularly preferably 64 times, uniformity of the film can be easily obtained, and unstretched parts are less likely to remain. A microporous polyolefin membrane excellent in terms of strength and resistance can be obtained. Further, the area magnification is preferably 150 times or less, more preferably 100 times or less. By setting the area magnification of stretching to 150 times or less, it is possible to suppress the occurrence of tears during the production of the microporous polyolefin membrane, improve productivity, suppress the excessive progress of orientation, and improve the melting point of the microporous polyolefin membrane. It is possible to suppress the increase in the shutdown temperature due to the increase in the temperature.
  • the stretching temperature is preferably below the melting point of the gel-like sheet +10°C, and more preferably within the range of (crystal dispersion temperature Tcd of the polyolefin resin) to (melting point of the gel-like sheet +5°C).
  • the polyolefin resin is a polyethylene resin, it has a crystal dispersion temperature of about 90 to 100°C, so the stretching temperature is preferably 90 to 135°C, more preferably 90 to 130°C.
  • the stretching temperature Tcd is determined from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D4065.
  • Plasticizer extraction cleaning
  • the plasticizer (solvent) remaining in the gel sheet is removed using a cleaning solvent. Since the polyolefin resin phase and the solvent phase are separated, a microporous polyolefin membrane can be obtained by removing the solvent.
  • cleaning solvents examples include saturated hydrocarbons such as pentane, hexane, and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; ethers such as diethyl ether and dioxane; ketones such as methyl ethyl ketone; trifluoroethane, etc.
  • examples include chain fluorocarbons.
  • these cleaning solvents have a low surface tension (eg, 24 mN/m or less at 25°C).
  • Examples of the cleaning method include immersing the gel sheet in a cleaning solvent, showering the gel sheet with a cleaning solvent, or a combination thereof.
  • the amount of cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more per 100 parts by mass of the gel sheet.
  • the washing temperature is preferably 15 to 30°C, and if necessary, it is heated to 80°C or lower.
  • the above-mentioned washing is preferably carried out until the amount of plasticizer remaining in the gel sheet, that is, the polyolefin microporous membrane after washing, becomes less than 1% by mass.
  • the polyolefin microporous membrane is dried to remove the solvent in the polyolefin microporous membrane. If the drying is insufficient, the porosity of the polyolefin microporous membrane decreases during the subsequent heat treatment, resulting in poor permeability.
  • a method using a metal heating roll, a method using hot air, etc. can be selected.
  • the dried microporous polyolefin membrane may be stretched (re-stretched) in at least one direction.
  • Re-stretching can be carried out by the tenter method or the like in the same manner as the above-mentioned stretching while heating the polyolefin microporous membrane.
  • the re-stretching may be uniaxial or biaxial stretching. In the case of multi-stage stretching, it is carried out by combining simultaneous biaxial stretching and/or sequential stretching.
  • the re-stretching temperature is preferably below the melting point of the polyolefin resin, and more preferably within the range of (crystal dispersion temperature Tcd of the polyolefin resin - 20°C) to the melting point. Specifically, the temperature is preferably 70 to 140°C, more preferably 110 to 138°C, and still more preferably 120 to 135°C.
  • the re-stretching ratio is preferably 1.01 to 3.0 times.
  • the TD direction is preferably 1.01 to 2.0 times, more preferably 1.2 to 1.8 times, particularly preferably 1.3 to 1.6 times.
  • the stretching is preferably 1.01 to 1.6 times in the MD direction and in the TD direction, respectively.
  • the re-stretching magnification may be different in the MD direction and the TD direction.
  • the relaxation rate in the relaxation treatment is the value obtained by dividing the dimension of the film after the relaxation treatment by the dimension of the film before the relaxation treatment.
  • the relaxation rates in both the MD and TD directions are preferably 1.0 or less, more preferably 0.9 or less, and still more preferably 0.85 or less.
  • microporous polyolefin membrane may be subjected to crosslinking treatment or hydrophilic treatment depending on the intended use.
  • Crosslinking treatment increases the meltdown temperature of the polyolefin microporous membrane.
  • the crosslinking treatment can be performed by irradiating the polyolefin microporous membrane with ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • electron beam irradiation an electron beam dose of 0.1 to 100 Mrad is preferred, and an accelerating voltage of 100 to 300 kV is preferred.
  • the hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, etc.
  • Monomer grafting is preferably carried out after crosslinking treatment.
  • any one selected from nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants can be used, but nonionic surfactants are preferred.
  • the polyolefin microporous membrane is immersed in a solution prepared by dissolving a surfactant in water or a lower alcohol such as methanol, ethanol, or isopropyl alcohol, or the solution is applied to the polyolefin microporous membrane by a doctor blade method. .
  • the microporous polyolefin membrane of the present invention is a multilayer film made by laminating porous layers containing resins other than polyolefin resin by coating or vapor deposition in order to impart functions such as meltdown properties, heat resistance, and adhesive properties. It may also be a porous polyolefin membrane.
  • a heat-resistant layer containing a binder and inorganic particles may be laminated.
  • the binder component constituting the heat-resistant layer for example, acrylic resin, polyvinylidene fluoride resin, polyamideimide resin, polyamide resin, aromatic polyamide resin, polyimide resin, etc. can be used.
  • the inorganic particles constituting the heat-resistant layer for example, particles made of alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon, etc. can be used.
  • the porous layer may be one in which the resin exemplified as the binder is made porous.
  • the polyolefin microporous membrane of the present invention obtained as described above can be used in various applications such as filters, fuel cell separators, and capacitor separators.
  • the microporous polyolefin membrane of the present invention especially when used as a battery separator, not only has low shutdown characteristics and high meltdown characteristics, but also has high strength despite being a thin film, and has high safety functions and output characteristics. Therefore, it can be preferably used as a battery separator for secondary batteries such as electric vehicles that require high energy density, high capacity, and high output.
  • a non-aqueous electrolyte secondary battery includes at least a positive electrode, a negative electrode, an electrolytic solution, and a separator.
  • the separator is arranged to maintain insulation between the positive electrode and the negative electrode.
  • the electrolytic solution consists of an organic solvent and an electrolyte, and these are placed in a container. It is enclosed.
  • the polyolefin microporous membrane of the present invention has excellent filtration accuracy and high permeability when used as a liquid filter, so it can be preferably used as a liquid filter for semiconductor resists that requires high-precision filtration.
  • the microporous polyolefin membrane of the present invention can be used as a liquid filter for a filtration unit in the form of a sheet, a tube, a pleat, or the like. It is preferable to use it in a pleated filtration unit because the filtration area can be increased.
  • a reinforcing membrane made of a mesh or porous material using a resin material on at least one side of the microporous polyolefin membrane of the present invention.
  • the microporous polyolefin membrane of the present invention is laminated with a reinforcing membrane using a heating roll or the like, it can be woven into a pleat shape with creases at peaks and valleys, and then incorporated into a filtration unit for use.
  • liquid paraffin was dropped onto the polyolefin microporous membrane to impregnate it, and then excess liquid paraffin was removed.
  • a polarizer a laser polarized in the MD direction of the polyolefin microporous membrane was incident on the test piece, and the scattered light was collected through an analyzer facing in the MD direction. 3.
  • the ratio I 1130 /I 1060 of the peak intensity I 1130 of the Raman band at 1130 cm ⁇ 1 and the peak intensity I 1060 of the Raman band at 1060 cm ⁇ 1 in the obtained Raman spectrum was defined as the orientation parameter in the MD direction, and the value was calculated.
  • the Raman band at 1130 cm -1 is a band attributed to the C-C stretching vibration of the polyethylene molecular chain in the crystal phase, and since the direction of the Raman tensor of vibration coincides with the molecular chain axis, it is possible to know the orientation state of the molecular chain. I can do it. The larger the value of the orientation parameter, the more highly oriented the crystal molecular chains are. Note that each peak intensity was calculated by obtaining a baseline by linear approximation in the region of 1020 cm -1 to 1160 cm -1 in the Raman spectrum, and performing peak fitting by Gaussian and Lorentz mixed function approximation.
  • ⁇ Average values Lma, Lta of orientation parameter measurement values> The above-mentioned alignment parameters were measured by mapping at a total of 100 locations, 10 points each at 15 ⁇ m intervals in the MD direction and TD direction of the polyolefin microporous membrane.
  • the average value of the measured values of the orientation parameter in the MD direction at 100 locations was defined as Lma
  • the average value of the measured values of the orientation parameter in the TD direction at 100 locations was defined as Lta.
  • Hafnium content (ppm) in polyolefin microporous membrane A microporous polyolefin membrane was weighed, decomposed using sulfuric acid, nitric acid, and perchloric acid, and then heated and dissolved in dilute aqua regia to provide a measurement solution. The hafnium content of the obtained solution was measured by ICP mass spectrometry using a quadrupole ICP mass spectrometer (PerkinElmer NexION 2000).
  • Average pore diameter/maximum pore diameter The following measurements were performed at three different locations in the same microporous polyolefin membrane, the average value of the average pore diameter and the maximum pore diameter was determined, and the average pore diameter was divided by the maximum pore diameter.
  • Film thickness Measure the film thickness at 5 points within a 50 mm x 50 mm area of the microporous polyolefin film using a contact thickness meter (“Lightmatic” VL-50 manufactured by Mitutoyo Co., Ltd., 10.5 mm diameter carbide spherical measuring tip). The average value was taken as the film thickness ( ⁇ m).
  • a force gauge D2-20N manufactured by Imada Co., Ltd.
  • (10)P 150 /P Max A sample for evaluation was prepared by cutting a microporous polyolefin membrane into a piece of 15 mm in the MD direction and 3 mm in the TD direction. After that, using "TMA7100" manufactured by Hitachi High-Technology, the evaluation sample was fixed on the chuck so that the distance between the chucks was 10 mm, and the sample was heated from 30 to 250 °C in constant length mode with an initial load of 9.8 mN. The temperature was increased at a rate of °C/min. The temperature and shrinkage force when the temperature was raised to 200°C were measured at 1 second intervals, and the shrinkage force in the MD direction and the maximum shrinkage force at 150°C were determined from the obtained chart. Then, P 150 /P Max was determined by dividing the shrinkage force at 150° C. by the maximum shrinkage force.
  • the coating solution was applied onto the polyolefin microporous membrane using a wire bar, and dried in a hot air oven set at 50° C. for 1 minute to obtain a laminated film in which a heat-resistant layer was provided on the polyolefin microporous membrane. Note that wire bars were selected and applied so that the thickness of the heat-resistant layer after drying was 3 ⁇ m.
  • a measurement sample and a gasket were placed on the inner bottom of the lower lid of the 2032 type coin cell member in order from the lower lid side.
  • an electrolytic solution (Kishida Chemical Co., Ltd. A solution was prepared by adding 0.3% by mass of a surfactant F-444 (manufactured by DIC) to the above-mentioned coin cell, and 0.1 mL of the solution was poured into the coin cell.
  • a spacer was placed on top of the measurement sample in the hollow part of the gasket, and the sample was allowed to stand for 1 minute under a gauge pressure of -50 kPa twice to impregnate the polyolefin microporous membrane with the electrolytic solution.
  • the above evaluation cell was sandwiched between coaxial contact probes placed in an oven, and the resistance of the cell was measured using an LCR meter (manufactured by Hioki Denki) at an amplitude of 50 mV and a frequency of 1 kHz.
  • the coin cell temperature was monitored by placing a resistance temperature detector in close contact with the top lid of the cell. After raising the coin cell temperature from room temperature to 50°C and leaving it for 10 minutes, the resistance was measured while increasing the temperature to 180°C at a rate of 5°C/min.
  • the temperature at which the resistance of the evaluation cell first exceeded 1 k ⁇ cm 2 was defined as the shutdown temperature of the microporous polyolefin membrane, and the temperature at which the temperature was continued to rise from the shutdown temperature and the resistance reached 1 k ⁇ cm 2 again was defined as the meltdown temperature.
  • the meltdown temperature was defined as the temperature at which the temperature was continued to rise from the shutdown temperature and the resistance reached 1 k ⁇ cm 2 again.
  • two arbitrary locations of the laminated film were cut out, the above measurements were performed on each, and the average value was calculated.
  • safety when used as a battery separator was determined based on the measured meltdown temperature and resistance value at 180° C. according to the following criteria, and A, B, or C was determined to be a pass.
  • the raw materials used in the examples are shown in Tables 1 and 2.
  • the polyolefin resin solution is passed through a filter to remove foreign matter, and then supplied from a twin-screw extruder to a T-die set at 230°C, and the molded product extruded from the T-die is taken up using a cooling roll whose temperature is controlled at 30°C. The mixture was cooled while being taken at a speed of 5 m/min to form a gel-like sheet.
  • the gel-like sheet was simultaneously biaxially stretched 8 times in both the MD direction and the TD direction at 115° C. using a tenter stretching machine.
  • the dried membrane was heat-set at 130° C. for 3 minutes to obtain a microporous polyolefin membrane.
  • the thickness of the obtained microporous polyolefin membrane was 8 ⁇ m. Table 3 shows the blending ratio of each constituent component, manufacturing conditions, evaluation results, etc.
  • Example 2 A microporous polyolefin membrane was obtained by forming a film in the same manner as in Example 1 except for changing the raw material composition and process conditions shown in Table 3. In addition, in Example 6, some unevenness in appearance occurred at the time of forming the gel-like sheet.
  • Comparative Examples 1 to 8 A microporous polyolefin membrane was obtained by forming a film in the same manner as in Example 1, except for changing the raw material composition and process conditions shown in Table 4.
  • Comparative Example 5 appearance unevenness occurred at the time of forming the gel-like sheet, and although it was possible to perform the post-process, the film formability was slightly deteriorated.
  • Comparative Example 6 a large amount of unmelted material was generated in the polyolefin resin solution after melt-kneading, and the gel-like sheet formation was intermittent, and unmelted material was also present in the polyolefin microporous membrane. However, film formability deteriorated.
  • Comparative Example 7 unmelted substances were generated in the polyolefin resin solution after melt-kneading, and although it was possible to carry out the post-process, the film forming properties were slightly deteriorated.
  • the thickness of the polyolefin microporous membrane was controlled by appropriately changing the rotation speed of the gear pump to adjust the discharge amount so as to achieve the thickness described in the table.
  • the polyolefin microporous membranes of Examples 1 to 5 were confirmed to have both excellent mechanical strength and meltdown resistance, and also exhibited excellent membrane quality, ion permeability, foreign matter resistance, and heat resistance as battery separators. had. Further, although excellent mechanical strength and meltdown resistance were confirmed in Example 6, the film uniformity was inferior compared to other Examples. Furthermore, Example 7 was slightly inferior in both mechanical strength and meltdown resistance compared to other Examples.
  • the polyolefin microporous membranes of Comparative Examples 1 to 8 had at least one of the required characteristics deteriorated, indicating that they were not compatible.
  • Comparative Example 6 was formed as a polyolefin microporous membrane, the membrane uniformity was significantly inferior to the other membranes.
  • the microporous polyolefin membrane of the present invention has both excellent mechanical strength and meltdown properties. It also has excellent membrane quality, ion permeability, and foreign object resistance as a battery separator, making it possible to achieve both battery characteristics and battery safety at a high level. Therefore, it can be suitably used in separators for secondary batteries that require high battery capacity. Further, a non-aqueous electrolyte secondary battery having the polyolefin microporous membrane of the present invention as a separator can increase battery capacity by taking advantage of the characteristics of the polyolefin microporous membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

偏光ラマン分光法を用いてMD方向、TD方向にそれぞれ15μm間隔で10点ずつ合計100カ所のMD方向およびTD方向の配向パラメータを測定し、MD方向の100カ所の配向パラメータ測定値の標準偏差をLms、TD方向の100カ所の配向パラメータ測定値の標準偏差をLtsとした際、LmsとLtsの少なくとも一方が0.02以上0.15以下であり、突刺強度が0.4N/μm以上であるポリオレフィン微多孔膜。電池用セパレータとして用いたとき安全性、耐熱性に優れたポリオレフィン微多孔膜を提供する。

Description

ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター
 本発明は、物質の分離、選択透過等に用いられる分離膜、およびアルカリ電池、リチウム二次電池、燃料電池、コンデンサー等電気化学反応装置の隔離材等として広く使用されているポリオレフィン微多孔膜に関する。また、本発明は、非水電解液二次電池、フィルターおよびろ過ユニットに関する。
 ポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータなどとして用いられている。特にノート型パーソナルコンピュータや携帯電話、デジタルカメラなどに広く使用さるリチウムイオン電池用のセパレータとして好適に使用されている。その理由は、ポリオレフィン微多孔膜が優れた膜の機械強度やシャットダウン特性を有していることが挙げられる。特に、リチウムイオン二次電池において、近年は車載用途を中心に高エネルギー密度化、高容量化および高出力化を目指して開発が進められており、それに伴いセパレータへの安全性に対する要求特性も一層高いものとなってきている。
 また、セパレータには電池が異常発熱した際の安全性を確保する機能も求められる。上述したシャットダウン温度はポリオレフィン微多孔膜が溶融して孔を目詰まりさせることで、電流を遮断する機能であり、シャットダウン温度は低い方が好ましい。一方で、シャットダウン後も電池内部の温度は一定時間上昇し続ける。シャットダウン温度よりも高温ではセパレータが穿孔し絶縁が保てなくなるメルトダウン現象が生じる場合があり、このメルトダウンが発生する温度(メルトダウン温度)は高いほど好ましい。
 近年リチウムイオン二次電池は電子機器の小型化や車載用途への展開を中心に電池の高容量化が進んでいる。電池の高容量化に伴い使用される電極材料の熱安定性は低下する傾向にある。高容量電池に使用されるセパレータとしては、耐熱性を高めるために無機粒子とバインダーなどから成る耐熱多孔層をポリオレフィン微多孔膜上に設けた積層膜が現在広く用いられている。一方で積層膜はセパレータの熱収縮を防ぎ、電池端部で電極が露出してしまうようなケースに対しては抑止効果があるものの、セパレータの局所部分にピンホールが空くことでメルトダウンが生じる場合があり、積層膜においても更なるメルトダウン温度の向上が求められている。
 例えば特許文献1にはポリエチレンとポリプロピレンを必須成分とする微多孔膜と、ポリエチレン微多孔膜を積層することで、ポリエチレン微多孔膜の有するシャットダウン特性とポリプロピレン含有層の有する耐熱性を両立した二次電池用セパレータが記載されている。
 また、特許文献2には、耐熱多孔層をコートする際の塗工性や巻き取り性に優れたポリオレフィン微多孔膜について記載されている。
特開2002-321323号公報 特許第6879217号公報
 特許文献1記載の微多孔膜は、ポリエチレンよりも融点の高いポリプロピレンをブレンドすることで耐熱性は向上するものの、ポリエチレンとポリプロピレンの相分離構造により膜強度などセパレータとしての他の基本特性が損なわれる可能性がある。また、耐熱多孔層を微多孔膜上に設けた場合の耐熱性については言及されていない。
 特許文献2に記載の微多孔膜は、耐熱多孔層の塗工性は向上するものの、塗工後の積層膜の耐熱性については改善の余地があった。
 本発明の課題は、上記を解決することにある。すなわち耐熱多孔層を設けて積層膜として電池用セパレータとして用いた場合、電池の異常発熱に対し高い安全性を付与することが可能であり、膜強度に優れることで電池の低抵抗化、高容量化が可能なポリオレフィン微多孔膜を提供することにある。
 上述した課題を解決し、目的を達成するために、本発明のポリオレフィン微多孔膜は、次の構成を有する。
[I]偏光ラマン分光法を用いてMD方向、TD方向にそれぞれ15μm間隔で10点ずつ合計100カ所のMD方向およびTD方向の配向パラメータを測定し、MD方向の100カ所の配向パラメータ測定値の標準偏差をLms、TD方向の100カ所の配向パラメータ測定値の標準偏差をLtsとした際、LmsとLtsの少なくとも一方が0.02以上0.15以下であり、突刺強度が0.4N/μm以上であるポリオレフィン微多孔膜。
[II]MD方向の100カ所の配向パラメータ測定値の平均値をLma、TD方向の100カ所の配向パラメータ測定値の平均値をLtaとした際、LmaとLtaが共に4.0以下である、[I]に記載のポリオレフィン微多孔膜。
[III]昇温速度5℃/minの条件の熱機械分析測定(TMA測定)から得られる横軸を温度、縦軸を応力としたポリオレフィン微多孔膜の温度-応力曲線において、MD方向の最大応力をPmax、150℃の応力をP150とした時、P150/Pmax≧0.6である[I]または[II]に記載のポリオレフィン微多孔膜。
[IV]ゲル浸透クロマトグラフィー法(GPC法)により測定されるポリオレフィン微多孔膜の分子量分布において、分子量100万以上1000万未満の成分の含有量が25質量%以上であり、かつ分子量1000万以上の成分の含有量が1.0質量%以下である、[I]~[III]のいずれかに記載のポリオレフィン微多孔膜。
[V]ハフニウム元素を0.2ppm以上含む[I]~[IV]のいずれかに記載のポリオレフィン微多孔膜。
[VI][I]~[V]のいずれかに記載のポリオレフィン微多孔膜に、さらに耐熱層が積層された積層体。
[VII][I]~[V]のいずれかに記載のポリオレフィン微多孔膜、または[VI]に記載の積層体を用いた、非水電解液二次電池。
[VIII][I]~[VII]のいずれかに記載のポリオレフィン微多孔膜を用いた、フィルター。
[IX][VIII]に記載のフィルターを用いたろ過ユニット。
 本発明によれば耐熱多孔層を設けて電池用セパレータとして用いた場合、電池の異常発熱に対し高い安全性を付与することが可能であり、透過性や膜強度に優れることで、電池の低抵抗化および高容量化が可能なポリオレフィン微多孔膜を提供することができる。
 本発明のポリオレフィン微多孔膜は、偏光ラマン分光法を用いてMD方向、TD方向にそれぞれ15μm間隔で10点ずつ合計100カ所のMD方向およびTD方向の配向パラメータを測定し、MD方向の100カ所の配向パラメータ測定値の標準偏差をLms、TD方向の100カ所の配向パラメータ測定値の標準偏差をLtsとした際、LmsとLtsの少なくとも一方が0.02以上0.15以下であり、より好ましくは0.02以上0.13以下、さらに好ましくは0.02以上0.10以下である。配向パラメータとは、後述する測定方法により、結晶分子鎖の配向度合いをラマン分光測定によって算出した値で示す指標であり、この値が高いほど結晶分子鎖がより高度に配向していることを表している。また、パウチ型電池など、電池内でMD方向およびTD方向に張力がかかりにくい電池用のセパレータとして用いる場合は、LmsとLtsがいずれも0.02以上0.15以下であることが好ましく、より好ましくは0.02以上0.13以下、さらに好ましくは0.02以上0.12以下である。
 LmsおよびLtsを0.15以下とすることにより、高温下におけるフィルムの局所ムラが抑制され、耐熱多孔層を塗工後の耐熱性が向上するため好ましい。ムラ低減の観点からは、LmsおよびLtsは小さいほど好ましいが、0.02未満とするためには、フィルムの延伸速度を低速にする必要があり生産性が低下する場合や、延伸温度を高温にする必要があり強度や透過性が低下し電池用セパレータとして使用できない場合があるため、LmsおよびLtsは0.02以上である必要がある。さらに、フィルターとして用いた際に、LmsおよびLtsが0.15以下であると、ろ過精度の局所ムラが解消され、ろ過抵抗を抑えながら、ろ過流量を多くすることが可能であり、好ましい。LmsおよびLtsを上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましい。
 なお、本発明においては、フィルムの製膜する方向に平行な方向を、製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。また、製膜方向が不明なサンプルについては、偏光ラマン分光法を用いて面内方向の配向パラメータを15°刻みで360°分測定したとき、最も配向の高い方向をMD方向、その直交方向をTD方向とする。
 本発明のポリオレフィン微多孔膜は、単位厚みで換算した突刺強度が0.4N/μm以上である。より好ましくは0.45N/μm以上、さらに好ましくは0.5N/μm以上、最も好ましくは0.55N/μm以上である。突刺強度が0.4N以上であると、薄膜のセパレータとして使用しても捲回時や電池内の異物等による短絡が生じにくくなり、電池の安全性が向上できる。さらに、フィルターとして用いた際に、前記単位厚み換算突刺強度が0.4N/μm以上であると、高空孔率化および薄膜化がしやすくなり、ろ過抵抗を抑えながら、ろ過流量を多くすることが可能であり、好ましい。しかし、突刺強度の高強度化とシャットダウン温度の低温化がトレードオフとなる場合が多く、1N/μmが好ましい。突刺強度を上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましい。
 近年、ポリオレフィン微多孔膜の片面または両面に無機粒子等を含有してなる耐熱層を設けた積層膜を電池用セパレータとして用いる場合があるが、耐熱層を設けても積層膜の耐熱性やメルトダウン温度が十分でない場合があった。発明者らは鋭意検討の結果、ポリオレフィン微多孔膜に微少な配向ムラが存在すると、高温下でムラが増幅され、微短絡が発生することによってメルトダウン温度が低下する場合があることを見出した。一方、耐異物性の向上には、ポリオレフィン微多孔膜の高強度化が必要であるが、高強度化のために大幅に高い延伸倍率で延伸すると配向パラメータのムラが大きくなるため、耐異物性と耐熱性の両立は困難であった。本発明のポリオレフィン微多孔膜では、原料組成や製膜条件を後述する範囲とすることにより、高突刺強度を有しながら配向パラメータのバラツキを低減させ、電池用セパレータとして用いた際に耐異物性と耐熱性を両立したものである。
 本発明のポリオレフィン微多孔膜は、MD方向の100カ所の配向パラメータ測定値の平均値をLma、TD方向の100カ所の配向パラメータ測定値の平均値をLtaとした際、LmaとLtaが共に4.0以下であることが好ましい。LmaとLtaは、より好ましくは3.8以下、さらに好ましくは3.6以下、最も好ましくは3.5以下である。本発明のポリオレフィン微多孔膜は、原料組成や製膜条件を後述する範囲とすることにより、フィブリルをムラ無く均一に開孔させ、配向パラメータが小さくても高強度のポリオレフィン微多孔フィルムを得ることが可能となり、配向パラメータのムラも低減させることができる。LmaとLtaを共に4.0以下とすることにより、高温下におけるフィルムの局所ムラが抑制され、耐熱多孔層を塗工後の耐熱性が向上するため好ましい。LmaおよびLtaを上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、JIS K 3832-1990に基づくパームポロメーターによる測定から得られる平均孔径と最大孔径の比(平均孔径/最大孔径)が0.65以上であることが好ましい。より好ましくは0.67以上、さらに好ましくは0.69以上であり、特に好ましくは0.71以上である。また、(平均孔径/最大孔径)は0.9以下が好ましい。ポリオレフィン微多孔膜の(平均孔径/最大孔径)を上記範囲内とすることで、より均一な孔構造を有することを示し、ポリオレフィン微多孔膜の機械的強度を向上させることができる上に、孔の曲路率も低減するためイオン透過性も向上させることが可能である。さらに、フィルターとして用いた際に、(平均孔径/最大孔径)が0.75N以上であると、フィルム面での孔径の分布が均一であるため、ろ過精度の向上が可能であり、好ましい。前記(平均孔径/最大孔径)を上記の分子量範囲内とするには、ポリオレフィン微多孔膜の原料組成や製膜条件を後述する範囲とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、平均孔径が50nm以下であることが好ましい。平均孔径は、より好ましくは40nm以下、さらに好ましくは30nm以下、最も好ましくは25nm以下である。平均孔径が50nmを超えると、薄膜の高出力電池用セパレータとして使用した際にデンドライトによる微短絡が生じやすくなる場合がある。さらに、フィルターとして用いた際に、平均孔径が20nm以下であると、高精細なろ過が可能となるため好ましい。より好ましくは19nm以下、さらに好ましくは18nm以下である。上記観点からは平均孔径は小さいほど好ましいが、小さすぎるとイオンの透過性が不十分となり、電池の出力特性が低下する場合や、ろ過流量が低下する場合があるため、平均孔径の下限は10nm程度が好ましい。平均孔径を上記範囲とするには、フィルムの原料組成を後述する範囲とし、またフィルム製膜時の延伸条件を後述する範囲内とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、空孔率が30%以上であることが好ましい。空孔率は、より好ましくは35%以上、さらに好ましくは37%以上であり、さらに好ましくは40%以上である。空孔率は、より好ましくは48%以上、さらに好ましくは50%以上である。空孔率を30%以上とすることでポリオレフィン微多孔膜の機械的強度とイオン透過性を維持できるため、電池用セパレータとして用いた時に電池の出力特性と安全性の維持が可能である。さらに、本発明のポリオレフィン微多孔膜をフィルターとして用いた際に、空孔率が45%以上であると、ろ過流量が向上するため好ましい。また空孔率は、60%以下であることがポリオレフィン微多孔膜の機械的強度の点から好ましい。空孔率を上記範囲とするには、ポリオレフィン微多孔膜の原料組成を後述する範囲とし、また、ポリオレフィン微多孔膜製膜時の延伸条件や熱固定条件を後述する範囲内とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、JIS P-8117:2009の王研式試験機法により測定される、100cmの空気を通過させる際の透気抵抗度が厚み1μmに換算して30秒以下であることが好ましい。透気抵抗度は、より好ましくは25秒以下、さらに好ましくは21秒以下である。透気抵抗度が30秒以下であると、イオン透過性を維持でき、電池用セパレータとして用いた際の出力特性が向上する。また、厚み1μm換算の透気抵抗度が5秒以上であることで、強度や耐熱性とのバランスにも優れる。厚み1μm換算の透気抵抗度を上記範囲とするには、微多孔膜の原料組成や積層構成を後述する範囲とし、また、ポリオレフィン微多孔膜製膜時の延伸条件や熱固定条件を後述する範囲内とすることが好ましい。
 本発明のポリオレフィン微多孔膜は厚みが10μm以下であることが好ましい。厚みは、より好ましくは8μm以下、さらに好ましくは5μm以下、最も好ましくは4μm以下である。厚みが10μmを超えると、将来の高容量電池向けセパレータとして用いた際に十分な出力特性やエネルギー密度を得られない場合がある。上記観点から厚みは薄いほど好ましいが、安全性が低下したり、ハンドリングが困難になる場合があるため厚みの下限は2μm程度が好ましい。厚みは他の物性を悪化させない範囲内で、押出機の吐出量、製膜速度、延伸倍率、延伸温度などにより調整可能である。
 本発明のポリオレフィン微多孔膜は、昇温速度5℃/minの条件の熱機械分析測定(TMA測定)から得られる横軸を温度、縦軸を応力としたポリオレフィン微多孔膜の温度-応力曲線において、最大応力をPmax、温度150℃における応力をP150とした時、P150/Pmax≧0.6であることが好ましい。より好ましくは0.7以上、さらに好ましくは0.75以上であり、最も好ましくは0.8以上である。また、P150/Pmaxが0.95以下であることが好ましい。P150/Pmaxが上記範囲内であると、ポリオレフィン微多孔膜が溶融する温度でも分子鎖の絡み合いが保持され、形態を維持することが可能であり、ポリオレフィン微多孔膜上に耐熱層を積層した際に更なる耐メルトダウン特性の向上が可能となる。P150/Pmaxを上記の範囲内とするには、ポリオレフィン微多孔膜に使用する原料やその組成および混練条件を後述する範囲とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、ゲル浸透クロマトグラフィー法(GPC法)により得られる、横軸を分子量、縦軸を検出強度としたポリオレフィン微多孔膜の分子量分布において、全体の成分量を100質量%とした時に分子量1000万以上の成分量が1.0質量%以下であることが好ましい。より好ましくは0.7質量%以下、さらに好ましくは0.5質量%以下、最も好ましくは0.3質量%以下である。
 本発明のポリオレフィン微多孔膜は、ゲル浸透クロマトグラフィー法(GPC法)により得られる、横軸を分子量、縦軸を検出強度としたポリオレフィン微多孔膜の分子量分布において、全体の成分量を100質量%とした時に分子量100万以上1000万未満の成分量が25質量%以上であることが好ましい。より好ましくは27質量%以上、さらに好ましくは30質量%以上、最も好ましくは32質量%以上である。上限としては80質量%以下が好ましく、60質量%以下がさらに好ましい。
 ポリオレフィン微多孔膜の分子量1000万以上の成分量と分子量100万以上1000万未満の成分量を上記範囲内とすることで、微多孔膜全体を延伸初期から均一に延伸することが可能となる。これによって、LmsやLtsを小さく制御可能となり、膜品位を維持したまま、ポリオレフィン微多孔膜の機械的強度を向上させ、また、未延伸部分が減りイオン透過性を向上させることができる。また、分子量100万以上1000万未満の成分量を上記範囲内とすることで、高分子量成分がより均一となり、溶融後も形態維持しやすくなるため、耐メルトダウン耐性が向上しやすくなる。
 分子量1000万以上の成分量と分子量100万以上1000万未満の成分量を上記範囲とするには、ポリオレフィン微多孔膜に使用する原料やその組成および混練条件を後述する範囲とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、ゲル浸透クロマトグラフィー法(GPC法)により得られる、横軸を分子量、縦軸を検出強度としたポリオレフィン微多孔膜の分子量分布において、最大検出強度が分子量10万以上50万以下の領域に存在することが好ましい。
 この最大検出強度は好ましくは分子量10万以上50万以下の領域、より好ましくは20万以上40万以下の領域、さらに好ましくは20万以上30万以下の領域に存在することが好ましい。
 ポリオレフィン微多孔膜の分子量の最大検出強度を上記分子量範囲内とすることで、可塑剤との相溶性の高い比較的低分子量の成分が多くなり、微多孔膜構造の骨格を形成する高分子量成分の可塑剤との相溶を促進するため、ポリオレフィン微多孔膜のフィルム外観等の膜品位を維持しつつ、機械的強度を向上させることが可能となる。
 前記分子量の最大検出強度を上記の分子量範囲内とするには、ポリオレフィン微多孔膜に使用する原料やその組成および混練条件を後述する範囲とすることが好ましい。
 本発明のポリオレフィン微多孔膜は、ハフニウム元素を0.2ppm以上含有することが好ましい。ハフニウム元素含有量はより好ましくは0.5ppm以上、さらに好ましくは0.8ppm以上、最も好ましくは1.0ppm以上である。また、ハフニウム元素含有量は50ppm以下が好ましく、より好ましくは40ppm以下である。
 ポリオレフィン微多孔膜のハフニウム元素含有量が上記範囲内であることで、電池性能に悪影響を与えることなく、ポリオレフィン微多孔膜の分子量分布を上述した範囲に調整しやすい。
 ポリオレフィン微多孔膜のハフニウム元素含有量を上記範囲とするには、ポリオレフィン微多孔膜に使用する原料やその組成および混練条件を後述する範囲とすることが好ましい。
 本発明では、後述する特定のポリエチレンを原料に用いて、原料組成を後述する範囲とし、また、フィルム製膜時の延伸条件や熱固定条件を後述する範囲内とすることで、電池用セパレータとして用いたとき安全性、耐熱性に優れたポリオレフィン微多孔膜を達成した。
 次に本発明のポリオレフィン微多孔膜の原料について説明するが、必ずしもこれに限定されるものではない。
 本発明のポリオレフィン微多孔膜は、ポリオレフィンを主成分とするフィルムである。ここで、本発明において「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味し、より好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは99質量%以上である。
 本発明において原料として用いられるポリオレフィン樹脂は、ポリオレフィンであることが好ましく、ポリオレフィン組成物であってもよい。ポリオレフィンとしては、例えばポリエチレン、ポリプロピレンなどが挙げられ、これらを2種類以上ブレンドして用いても良い。
 本発明のポリオレフィン微多孔膜に用いる原料としては超高分子量ポリエチレン(UHPE)を少なくとも1種類含むことが好ましい。本発明のポリオレフィン微多孔膜の樹脂成分中の超高分子量ポリエチレンの割合は50質量%以上が好ましく、60質量%以上が好ましく、70質量%以上がさらに好ましく、90質量%以上が特に好ましい。
 本発明において原料として用いられる超高分子量ポリエチレンは、エチレンの単独重合体でもよいし、後述のように融点を低下させるために、他のα-オレフィンを含有する共重合体でもよい。他のα-オレフィンとしては例えば、プロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレンが挙げられる。α-オレフィンの存在や種類は、C13-NMRで測定することで確認できる。
 本発明において原料として用いられる超高分子量ポリエチレンは、ゲルパーミエーションクロマトグラフィー(GPC)測定から得られる重量平均分子量(Mw)が80万以上であることが好ましく、100万以上がより好ましく、120万以上がさらに好ましい。また、Mwは200万以下が好ましく、150万以下がより好ましい。Mwが上記範囲内であると、溶融混練によって分子量が調整された後も延伸応力が効率よく伝わり、ポリオレフィン微多孔膜に高強度化に必要な分子量成分を維持することが可能である。
 本発明において原料として用いられる超高分子量ポリエチレンは、GPC測定から得られた分子量分布において、10万以上100万未満の領域と100万以上1000万以下の領域の二つの領域にピークを持つことが好ましい。低分子量側の範囲は10万以上50万以下がより好ましく、高分子量側の範囲は100万以上500万以下がより好ましい。上記両方の分子量範囲にピークがあることで、高強度化を促進するが、可塑剤と相溶しにくい高分子量成分を低分子量成分がサポートし、可塑剤と相溶しやすくすることが可能であり、品位と高強度化の両立が可能となる。
 本発明において原料として用いられる超高分子量ポリエチレンは、GPC測定から得られた分子量分布において、分子量300万における検出強度をK300、分子量700万における検出強度をK700としたとき、その比:K300/K700が2.0以上であることが好ましく、3.0以上がより好ましく、4.0以上がさらに好ましい。上限としては15.0以下が好ましく、10.0以下がより好ましく、6.0以下がさらに好ましい。このK300/K700は高分子量側の分子量均一性を示しており、この値が大きいほどシャープな分布の高分子量成分を有する。この値が範囲内にあることで、溶融混練によって分子量が調整された際もポリオレフィン微多孔膜に高強度化に必要な分子量成分を維持することが可能である。また、高分子量成分の均一性が高くなることでLmsやLtsを小さく制御可能となり、かつ、分子の絡み合いも強固となり、溶融後も形態を維持しやすい。
 本発明において原料として用いられる超高分子量ポリエチレンは、GPC測定から得られた分子量分布において、分子量1000万以上の成分量が4.0%質量以下が好ましく、より好ましくは2.0質量%以下、さらに好ましくは1.0質量%以下である。分子量1000万以上の成分を均一に延伸するには、現在の生産条件よりも大幅に高い延伸倍率が必要であり、不均一な延伸の要因となる。そのため、分子量1000万以上の成分は、高強度化の関与は低い一方で熱収縮悪化の要因なると懸念される。よって、この成分量が上記の範囲内にあることで、溶融混練によって分子量が調整された際も、ポリオレフィン微多孔膜に高強度化に必要な分子量成分を維持することが可能である。
 本発明において原料として用いられる超高分子量ポリエチレンは、メタロセン触媒を用いて重合されたものであることが好ましい。メタロセン触媒を用いて重合されたポリエチレンは、分子量分布が狭く、上記K300/K700や分子量1000万以上の成分量を上述した範囲に調整しやすい。なお、メタロセン触媒を用いて重合されたポリエチレンはその触媒残渣であるHf(ハフニウム)やCr(クロム)などを含む。
 本発明において原料として用いられる超高分子量ポリエチレンは、示差走査熱量計(DSC)から得られる融点が134℃以上であることが好ましく、135℃以上がより好ましく、さらに好ましくは135.5℃以上である。また、融点は、140℃以下が好ましく、137.5℃以下がより好ましく、136.0以下がさらに好ましい。融点が上記範囲内であると、熱固定工程での透過性の悪化やシャットダウン温度の過度な上昇が抑制でき、各種物性の両立が可能となる。
 本発明において原料として用いられる超高分子量ポリエチレンは、示差走査熱量計(DSC)から得られるΔH(J/g)が150J/g以上であることが好ましく、155J/g以上であることがより好ましい。また、ΔHは、200J/g以下が好ましく、190J/g以下がより好ましく、180J/g以下がさらに好ましい。ΔHが上記範囲内であると、熱固定工程での透過性の悪化やシャットダウン温度の過度な上昇が抑制でき、各種物性の両立が可能となる。
 本発明のポリオレフィン微多孔膜は超高分子量ポリエチレン(UHPE)以外のポリオレフィンを含んでもよい。このポリオレフィンとしては超高分子量ポリエチレンとの相溶性の観点からポリエチレンが好ましい。
 本発明において原料として用いられる超高分子量ポリエチレン以外のポリエチレンは、ゲルパーミエーションクロマトグラフィー(GPC)測定から得られる重量平均分子量(Mw)が1万以上が好ましく、5万以上がより好ましい。また、Mwは30万以下が好ましく、20万以下がより好ましい。Mwが上記範囲内であると、高分子量ポリオレフィンが形成する構造を過度に阻害しないため、機械的強度を維持しつつ、シャットダウンや熱収縮特性の更なる向上が可能となる。
 本発明において原料として用いられる超高分子量ポリエチレン以外のポリエチレンは、示差走査熱量計(DSC)から得られる融点が136℃以下であることが好ましく、134℃以下がより好ましく、さらに好ましくは133℃以下である。また、融点は125℃以上が好ましく、130℃以上がより好ましく、131℃以上がさらに好ましい。融点が上記範囲内であると、熱固定工程での透過性の過度な悪化を抑制しつつ、シャットダウン特性を向上でき、各種物性の両立が可能となる。
 本発明において原料として用いられる超高分子量ポリエチレン以外のポリエチレンは、示差走査熱量計(DSC)から得られるΔH(J/g)が180J/g以上であることが好ましく、200J/gであることがより好ましく、220J/gであることがさらに好ましい。また、ΔHは、250J/g以下が好ましく、240J/g以下がより好ましい。ΔHが上記範囲内であると、熱固定工程での透過性の過度な悪化を抑制しつつ、シャットダウン特性を向上でき、各種物性の両立が可能となる。
 また、本発明のポリオレフィン微多孔膜はメルトダウン特性を向上させる目的でポリエチレン以外のポリオレフィンを含有しても良い。ポリエチレン以外のポリオレフィンとしては、特に限定されず、ポリプロピレン、ポリメチルペンテン、ポリブテン、ポリアセタール、スチレン系樹脂、ポリフェニレンエーテルなどを用いることができる。中でも混練性やセパレータとして用いた時の電気的安定性の観点から、ポリプロピレンが好ましい。ポリプロピレンの種類は、単独重合体のほかに、ブロック共重合体、ランダム共重合体も使用することができる。ブロック共重合体、ランダム共重合体には、プロピレン以外の他のα-エチレンとの共重合体成分を含有することができる。当該他のα-エチレンとしては、エチレンが好ましい。ポリプロピレンの添加量の上限値としては、ポリオレフィン樹脂全体を100質量%として、40質量%以下であることが好ましく、35質量%以下がより好ましい。またポリプロピレンの添加量の下限値としては5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることが最も好ましい。ポリプロピレンが上記範囲よりも多い場合は、微多孔膜の孔径が小さくなり透過性が悪化したり、強度が低下したり、シャットダウン温度が上昇したりする場合がある。また上記範囲よりも少ない場合は、主成分であるポリオレフィン樹脂と共連続構造を有さないため、ポリプロピレン添加によるメルトダウン温度向上の効果が発現しにくくなる。
 また添加するポリプロピレンの融点は150℃以上であることが好ましく、より好ましくは155℃以上であり、さらに好ましくは160℃以上である。
 さらにポリプロピレンの分子量は、重量平均分子量5.0×10以上であることが好ましく、より好ましくは10×10以上であり、さらに好ましくは15×10以上である。また重量平均分子量の上限値としては10×10以下であることが好ましく、より好ましくは8.0×10以下であることが好ましく、さらに好ましくは5.0×10以下であり、最も好ましくは3.0×10以下である。ポリプロピレンが上記範囲よりも低分子量である場合は、得られるポリオレフィン微多孔膜の強度が低下する場合がある。ポリプロピレンが上記範囲よりも高分子量である場合は、後述するポリオレフィン微多孔膜の製造工程における溶融混練の際に、粘度が高くなるため、均一に混練する観点において好ましくない。
 その他、本発明のポリオレフィン微多孔膜には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリオレフィン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤としては、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えばBASF社製“Irganox”(登録商標)1330:分子量775.2)、テトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製“Irganox”(登録商標)1010:分子量1177.7)等から選ばれる1種類以上を用いることが好ましい。
 本発明のポリオレフィン微多孔膜は、上述した原料を用い、二軸延伸されることによって得られる。二軸延伸の方法としては、インフレーション法、同時二軸延伸法、逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの高剛性と寸法安定性を制御する点において同時二軸延伸法または逐次二軸延伸法を採用することが好ましい。
 次に本発明のポリオレフィン微多孔膜の製造方法を説明するが、必ずしもこれに限定されるものではない。
 本発明のポリオレフィン微多孔膜は、以下の(a)~(f)の工程からなることが好ましい。
 (a)ポリオレフィン樹脂溶液の調製
 ポリオレフィン樹脂および各種添加剤を可塑剤に加熱溶解させて、ポリオレフィン樹脂溶液を調製する。
 可塑剤としては、ポリオレフィン樹脂を十分に溶解できる溶剤であればよい。延伸ムラを抑え比較的高倍率の延伸を可能とするために、可塑剤としては、室温で液体である液体溶剤が好ましい。液体溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族または芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。なかでも、液体溶剤の含有量が安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤が好ましい。
 液体溶剤の粘度は40℃において20cSt以上200cSt以下であることが好ましい。前記粘度を20cSt以上とすれば、ダイからポリオレフィン樹脂溶液を押し出して得られるシートが不均一になりにくい。一方、前記粘度を200cSt以下とすれば液体溶剤の除去が容易である。
 液体溶剤の粘度は、ウベローデ粘度計を用いて40℃で測定することができる。
 溶融混練状態ではポリオレフィンと混和するが室温では固体の固体溶剤を、液体溶剤に混合して用いてもよい。固体溶剤としては例えば、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。
 可塑剤の配合割合は、ポリオレフィン樹脂と可塑剤との合計を100質量%として50質量%以上が好ましく、70質量%以上がより好ましく、75%以上がさらに好ましい。また、可塑剤の配合割合は、90質量%以下が好ましい。可塑剤を50質量%以上とすることで、ポリオレフィン樹脂溶液をシート状に成形する際の厚み方向の収縮を抑え、成形加工性を向上させることができる。また、可塑剤を90質量%以下とすることで、ポリオレフィン樹脂溶液をシート状に成形する際の口金の出口でのスウエルやネックインが大きくなるのを抑え、シートの成形性、製膜性を向上させることができる。
 ポリオレフィン樹脂溶液の溶融混練は、二軸押出機中で行うことが、高濃度のポリオレフィン樹脂溶液を調製する上で好ましい。
 また、本発明に使用する超高分子量ポリエチレンと可塑剤の相溶性を高めるために、ポリオレフィン樹脂を溶融混練に投入した直後に、可塑剤を多く添加することが好ましい。可塑剤全量のうち、押出機への超高分子量ポリエチレンの投入直後に添加する可塑剤の割合を初期添加割合とする。初期添加割合は添加する可塑剤全量を100質量%として、60質量%以上が好ましく、70質量%以上がより好ましく、特に好ましくは90質量%以上である。なお、押出機への超高分子量ポリエチレン投入直後、とは、二軸押出機における可塑剤の投入口を、超高分子量ポリエチレンの投入口より下流に設ける場合において、超高分子量ポリエチレンの投入口から可塑剤の投入口までの距離が50cm以内にあることを言う。
 押出機中では、ポリオレフィン樹脂が完全に溶融する温度で、ポリオレフィン樹脂溶液を均一に混合することが好ましい。
 溶融混練温度は、(ポリオレフィン樹脂の融点+10℃)~(ポリオレフィン樹脂の融点+120℃)とするのが好ましい。より好ましくは(ポリオレフィン樹脂の融点+20℃)~(ポリオレフィン樹脂の融点+100℃)である。例えば、ポリオレフィン樹脂がポリエチレン樹脂である場合、ポリエチレン系樹脂は約130~140℃の融点を有するので、溶融混練温度は140~250℃が好ましい。溶融混練温度は、より好ましくは150~210℃、さらに好ましくは160~230℃、特に好ましくは170~200℃である。
 樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合がある。また、上述の温度より高いと、ポリオレフィン樹脂の熱分解が激しくなり、得られるポリオレフィン微多孔膜の物性、例えば、強度や空孔率等が劣る場合がある。また、分解物がチルロールや延伸工程上のロールなどに析出し、シートに付着することで外観悪化につながる。そのため、上記範囲内で混練することが好ましい。
 融点は、JIS K7121:2012に基づき、DSCにより測定する。
 溶融混練の後、フィルターにて異物や変性したポリマーを除去することが好ましい。
 (b)ゲル状シートの形成
 溶融混練された樹脂溶液をダイより押し出し、冷却することによりゲル状シートを得る。冷却により、可塑剤によって分離されたポリオレフィン樹脂のミクロ相を固定化することができる。冷却工程においてゲル状シートを10~50℃まで冷却するのが好ましい。これは、最終冷却温度をポリオレフィン樹脂の結晶化終了温度以下とするのが、ゲル状シートの高次構造を細かくする上で好ましいためである。高次構造を細かくすることで、その後の延伸においてゲル状シートの均一延伸が行いやすくなる。そのため、冷却は少なくともゲル化温度以下までは30℃/分以上の速度で行うのが好ましい。冷却速度が30℃/分未満では、結晶化度が上昇し、延伸に適したゲル状シートとなりにくい。一般に冷却速度が遅いと、比較的大きな結晶が形成されるので、ゲル状シートの高次構造が粗くなり、それを形成するゲル構造も大きなものとなる。対して冷却速度が速いと、比較的小さな結晶が形成されるので、ゲル状シートの高次構造が密となり、均一延伸が行いやすくなるのに加え、フィルムの強度および伸度の向上につながる。
 ゲル状シートを冷却する方法としては例えば、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラムを用いる方法等がある。
 (c)延伸
 得られたゲル状シートを二軸延伸する。二軸延伸の方法としては、インフレーション法、同時二軸延伸法、逐次二軸延伸法のいずれも用いることができる。その中でも、製膜安定性、厚み均一性ならびにフィルムの剛性および寸法安定性を制御する点において同時二軸延伸法または逐次二軸延伸法を採用することが好ましい。同時二軸延伸法としては例えば、同時二軸テンターによる方法が挙げられる。また、逐次二軸延伸法としては例えば、ロール延伸機によるMD延伸およびテンターによるTD延伸の組み合わせによる方法、またはテンターとテンターとの組み合わせによる方法が挙げられる。
 延伸倍率は、MD/TDいずれの方向についても5倍以上とすることが好ましい。
 延伸の面積倍率としては、25倍以上が好ましい。面積倍率を25倍以上、より好ましくは36倍以上、さらに好ましくは49倍以上、特に好ましくは64倍とすることで、膜の均一性も得られ易い上に、未延伸部分も残りにくいため、強度、抵抗の観点からも優れたポリオレフィン微多孔膜が得ることができる。また、面積倍率は150倍以下が好ましく、100倍以下がより好ましい。延伸の面積倍率を150倍以下とすることで、ポリオレフィン微多孔膜の製造中に破れが生じるのを抑え、生産性が向上するとともに、配向が過度に進むのを抑え、ポリオレフィン微多孔膜の融点の上昇によるシャットダウン温度の上昇を抑えることができる。
 延伸温度はゲル状シートの融点+10℃以下にするのが好ましく、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ゲル状シートの融点+5℃)の範囲にするのがより好ましい。具体的には、ポリオレフィン樹脂がポリエチレン樹脂である場合は約90~100℃の結晶分散温度を有するので、延伸温度は好ましくは90~135℃であり、より好ましくは90~130℃である。延伸温度を90℃以上とすることで、開孔が十分なものとなり膜厚の均一性が得られやすく、空孔率も高くなる。延伸温度を135℃以下とすることで、シートの融解による孔の閉塞を防ぐことができる。結晶分散温度TcdはASTM D 4065に従って測定した動的粘弾性の温度特性から求める。
 以上のような延伸によりゲル状シートに形成された高次構造に開裂が起こり、結晶相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。ゲル状シートの延伸により、得られるポリオレフィン微多孔膜の機械的強度が向上するとともに、細孔が拡大するので、電池用セパレータとして好適になる。また、可塑剤を除去する前に延伸することによって、ポリオレフィン樹脂が十分に可塑化し軟化した状態であるために、高次構造の開裂がスムーズになり、結晶相の微細化を均一に行うことができる。また、開裂が容易であるために、延伸時のひずみが残りにくく、可塑剤を除去した後に延伸する場合に比べて得られるポリオレフィン微多孔膜の熱収縮率を低くすることができる。
 (d)可塑剤抽出(洗浄)
 ゲル状シート中に残留する可塑剤(溶剤)を、洗浄溶剤を用いて除去する。ポリオレフィン樹脂相と溶剤相とは分離しているので、溶剤の除去によりポリオレフィン微多孔膜が得られる。
 洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素;塩化メチレン、四塩化炭素等の塩素化炭化水素;ジエチルエーテル、ジオキサン等のエーテル類;メチルエチルケトン等のケトン類;三フッ化エタン等の鎖状フルオロカーボンなどがあげられる。これらの洗浄溶剤は低い表面張力(例えば、25℃で24mN/m以下)を有することが好ましい。低い表面張力の洗浄溶剤を用いることにより、微多孔を形成する網状構造が洗浄後に乾燥時に気-液界面の表面張力により収縮が抑制され、空孔率および透過性を有するポリオレフィン微多孔膜が得られる。これらの洗浄溶剤は可塑剤に応じて適宜選択し、単独でまたは複数を混合して用いる。
 洗浄方法としては例えば、ゲル状シートを洗浄溶剤に浸漬する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法を挙げることができる。
 洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100質量部に対して300質量部以上であるのが好ましい。
 洗浄温度は15~30℃が好ましく、必要に応じて80℃以下に加熱する。この時、溶剤の洗浄効果を高める観点、得られるポリオレフィン微多孔膜の物性のTD方向および/またはMD方向の微多孔膜物性が不均一にならないようにする観点、ポリオレフィン微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に接触している時間は長ければ長い方が良い。上述のような洗浄は、洗浄後のゲル状シート、すなわちポリオレフィン微多孔膜中の可塑剤の残存量が1質量%未満になるまで行うのが好ましい。
 (e)乾燥
 乾燥工程でポリオレフィン微多孔膜を乾燥させ、ポリオレフィン微多孔膜中の溶剤を除去する。乾燥が不十分であると、後の熱処理でポリオレフィン微多孔膜の空孔率が低下し、透過性が悪化する。乾燥方法としては、金属加熱ロールを用いる方法や熱風を用いる方法などを選択することができる。
 (f)熱処理/再延伸工程
 乾燥したポリオレフィン微多孔膜を少なくとも一軸方向に延伸(再延伸)してもよい。再延伸は、ポリオレフィン微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。再延伸は一軸延伸でも二軸延伸でもよい。多段延伸の場合は、同時二軸または/および逐次延伸を組み合わせることにより行う。
 再延伸の温度は、ポリオレフィン樹脂の融点以下とすることが好ましく、(ポリオレフィン樹脂の結晶分散温度Tcd-20℃)~融点の範囲内にするのがより好ましい。具体的には、70~140℃が好ましく、110~138℃がより好ましく、さらに好ましくは120~135℃である。
 再延伸の倍率は、一軸延伸の場合、1.01~3.0倍が好ましい。特にTD方向は1.01~2.0倍が好ましく、1.2~1.8倍がより好ましく、1.3~1.6倍が特に好ましい。二軸延伸の場合、MD方向およびTD方向にそれぞれ1.01~1.6倍とするのが好ましい。再延伸の倍率は、MD方向とTD方向で異なってもよい。上述の範囲内で延伸することで、機械強度と抵抗を向上させることができる。また、結晶配向が進んでポリオレフィン微多孔膜の融点が上昇することによるシャットダウン温度の上昇を抑えることができる。
 さらに膜を加熱中にMD方向やTD方向に熱収縮させる緩和処理を施すことも好ましい。緩和処理における緩和率は、緩和処理後の膜の寸法を緩和処理前の膜の寸法で除した値のことである。MDおよびTD方向への緩和率はいずれも、1.0以下であることが好ましく、0.9以下がより好ましく、さらに好ましくは0.85以下である。緩和率を上記範囲とすることで、熱収縮を抑え、しわやたるみも抑えることができる。また、緩和率は0.7以上とすることで、しわの発生や透過性の悪化を抑えることができる。
 (g)その他の工程
 さらに、その他用途に応じて、ポリオレフィン微多孔膜に架橋処理や親水化処理を施すこともできる。
 架橋処理によりポリオレフィン微多孔膜のメルトダウン温度が上昇する。架橋処理は、ポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線を照射することにより施すことができる。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。
 親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
 界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤および両イオン系界面活性剤から選ばれるいずれも使用できるが、ノニオン系界面活性剤が好ましい。界面活性剤を水またはメタノール、エタノール、イソプロピルアルコール等の低級アルコールに溶解してなる溶液中にポリオレフィン微多孔膜を浸漬するか、ポリオレフィン微多孔膜にドクターブレード法により前記溶液を塗布する方法が好ましい。
 本発明のポリオレフィン微多孔膜は、メルトダウン特性や耐熱性、接着性などの機能を付与する目的で、ポリオレフィン樹脂以外の他の樹脂を含む多孔質層をコーティングや蒸着などにより積層して、多層ポリオレフィン多孔質膜としてもよい。
 多孔質層としては例えば、バインダーと無機粒子とを含む耐熱層を積層してもよい。耐熱層を構成するバインダー成分としては、例えば、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などを用いることができる。耐熱層を構成する無機粒子としては例えば、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などからなる粒子を用いることができる。
 多孔質層としては、前記バインダーとして例示された樹脂が多孔質化したものであってもよい。
 以上のようにして得られた本発明のポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータなど様々な用途で用いることができる。
 本発明のポリオレフィン微多孔膜は、特に電池用セパレータとして用いたとき、低シャットダウン特性および高メルトダウン特性を有するだけでなく、薄膜にもかかわらず高強度であるという、高安全性機能と出力特性を両立することから、電気自動車などの高エネルギー密度、高容量および高出力を必要とする二次電池用の電池用セパレータとして好ましく用いることができる。非水電解液二次電池は、正極、負極、電解液およびセパレータを少なくとも備え、正極と負極の間の絶縁を保つようセパレータが配置され、電解液は有機溶媒と電解質からなり、これらを容器に封入したものである。
 また、本発明のポリオレフィン微多孔膜は、液体フィルター用途に用いたとき、ろ過精度と高透過性に優れることから、高精度ろ過が求められる半導体レジスト用向けの液体用フィルターとして好ましく用いることができる。本発明のポリオレフィン微多孔膜は、シート状、管状、プリーツ状などのろ過ユニット用の液体用フィルターとして用いることができる。ろ過面積を大きくできることからプリーツ状ろ過ユニットに用いることが好ましい。プリーツ状ろ過ユニットに組み込む際は、本発明のポリオレフィン微多孔膜の少なくとも片面に樹脂素材を用いたメッシュや多孔質体からなる補強膜を積層することが好ましい。本発明のポリオレフィン微多孔膜を、補強膜と加熱ロールなどで貼り合わせた後、山谷の折り目をつけてプリーツ状に織り込み、ろ過ユニットに組み込んで使用することができる。
 以下、本発明を実施例によりさらに詳細に説明する。ただし、本発明はこれらの例のみに限定されるものではない。
 先ず、測定方法と評価方法について説明する。なお、特に記載がない限りは温度:25±2℃(室温)、湿度:50±10%で実施した。
 (1)ポリオレフィン原料の融点およびΔH
 原料のポリオレフィン原料の融点は、JIS K7121:2012に基づき、示差走査熱量分析(DSC)法により測定した。アルミパンに6.0mgの試料を封入し、ParkinElmer製 PYRIS Diamond DSCを用いて、窒素雰囲気下、温度30℃から230℃まで10℃/minで昇温(1回目の昇温)後、230℃で5分間保持した。続いて、10℃/分の速度で30℃まで冷却し、再度10℃/分の昇温速度で30℃から230℃まで昇温し(2回目の昇温)、各融解吸熱曲線を得た。2回目の昇温で得られた融解吸熱曲線上のピークトップの温度をポリオレフィン原料の融点(℃)とし、融解曲線とベースラインで囲まれた面積から融解エンタルピーであるΔH(J/g)を算出した。
 (2)ポリオレフィン原料およびポリオレフィン微多孔膜の分子量分布
 ポリオレフィン原料やポリオレフィン微多孔膜の分子量分布は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。また、分子量分布から得られたパラメーターの算出方法を下記に示す。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:160℃
・溶媒(移動相):1,2,4-トリクロロベンゼン
・溶媒流速:1.0ml/分
・試料濃度:0.1質量%(溶解条件:160℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた分子量に、ポリエチレン換算係数(0.46)を乗じることにより検量線を作成した。
 (a)分子量1000万以上の成分の割合(質量%)
 上記のように得られた分子量分布を用いて下記式により算出した。具体的には、以下の式の通りである。
分子量1000万以上の成分割の合(質量%)=(分子量1000万以上の成分量)÷(全分子量の成分量)×100。
 (b)分子量100万以上1000万未満の成分割合(質量%)
 上記得られた分子量分布を用いて下記式により算出した。具体的には、以下の式の通りである。
分子量100万以上1000万未満の成分割合(質量%)=(分子量100万以上1000万未満の成分量)÷(全分子量の成分量)×100
 (c)ポリオレフィン原料の分子量の規格化検出強度:K300、K700
 上記のように得られた分子量分布について、検出強度の最大値で全体を規格化した際の分子量300万における検出強度をK300、分子量700万における検出強度をK700とした。
 (3)偏光ラマン分光法
 ポリオレフィン微多孔膜の偏光ラマンスペクトルを顕微ラマン分光装置JASCO NRS-5100を用いて次のように測定し、結晶分子鎖の配向パラメータを算出した。
 〈ラマン測定条件〉
・180°後方散乱配置
・レーザー: 532nm
・回折格子: 2400本/mm
・レンズ: 20倍対物レンズ
・スリット: 100×1000μm
・アパーチャ: φ4000μm
・スポット径:4μm
1.空孔散乱の影響をなくすため、ポリオレフィン微多孔膜に流動パラフィンを滴下し、含浸させた後、余分な流動パラフィンを除去した。
2.偏光子を用いて、ポリオレフィン微多孔膜のMD方向に偏光させたレーザーを試験片に入射させ、散乱光をMD方向に向いた検光子を通して集光した。
3.得られたラマンスペクトルにおける1130cm-1のラマンバンドのピーク強度I1130と1060cm-1のラマンバンドのピーク強度I1060の比I1130/I1060をMD方向の配向パラメータと定義し値を算出した。
 また、偏光子を用いて、ポリオレフィン微多孔膜のTD方向に偏光させたレーザーを試験片に入射させた以外は上記と同様の測定を行い、TD方向の配向パラメータを算出した。なお、偏光子がフィルムの長手方向と平行な方向(0°/0°)をMD方向、垂直な方向(90°/90°)をTD方向とし、ラマンスペクトルを得た。1130cm-1のラマンバンドは結晶相中ポリエチレン分子鎖のC-C伸縮振動に帰属するバンドであり、振動のラマンテンソルの方向が分子鎖軸と一致しているため分子鎖の配向状態を知ることができる。配向パラメータの値が大きいほど結晶分子鎖が高度に配向していることを意味する。なお、各ピーク強度は、ラマンスペクトルにおける1020cm-1以上1160cm-1以下の領域で直線近似によりベースラインを取得し、ガウス、ローレンツ混合関数近似によるピークフィットを行って算出した。
 <配向パラメータ測定値の標準偏差Lms、Lts>
 上述した配向パラメータの測定をポリオレフィン微多孔膜のMD方向、TD方向にそれぞれ15μm間隔で10点ずつ合計100カ所についてマッピング測定を実施した。MD方向の配向パラメータの100カ所の測定値の標準偏差をLms、TD方向の配向パラメータの100カ所の測定値の標準偏差をLtsとした。
 <配向パラメータ測定値の平均値Lma、Lta>
 上述した配向パラメータの測定をポリオレフィン微多孔膜のMD方向、TD方向にそれぞれ15μm間隔で10点ずつ合計100カ所についてマッピング測定を実施した。MD方向の配向パラメータの100カ所の測定値の平均値をLma、TD方向の配向パラメータの100カ所の測定値の平均値をLtaとした。
 (4)ポリオレフィン微多孔膜中のハフニウム含有量(ppm)
 ポリオレフィン微多孔膜を秤量し、硫酸-硝酸-過塩素酸を用いて分解後、希王水で加温・溶解したものを測定溶液とした。得られた溶液について、四重極型ICP質量分析装置(パーキンエルマー社製 NexION 2000)を用いて、ICP質量分析法でハフニウム含有量を測定した。
 (5)平均孔径/最大孔径
 以下の測定を同じポリオレフィン微多孔膜中の異なる箇所で3点行い、平均孔径と最大孔径との平均値を求め、平均孔径を最大孔径で除して算出した。
 JIS K 3832:1990に基づき、パームポロメーター(PMI社製、CFP-1500A)を用いて、DRY-UP、WET-UPの順で、バブルポイント孔径および平均孔径を測定した。WET-UPには表面張力が既知のPMI社製GALWICK(商品名)で十分に浸したポリオレフィン微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。平均孔径については、DRY-UP測定で圧力、流量曲線の1/2の傾きを示す曲線と、WET-UP測定の曲線が交わる点の圧力から孔径を換算した。圧力と平均孔径の換算は下記の数式を用いた。
D=C・Γ/P
ここに、
D:ポリオレフィン微多孔膜の平均孔径(nm)
Γ:液体の表面張力(15.9N/m)
P:圧力(Pa)
C:定数(2.86×10)。
 (6)膜厚
 ポリオレフィン微多孔膜の50mm×50mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製“ライトマチック”VL-50、10.5mmφ超硬球面測定子)を用いて測定荷重0.01Nにより測定し、平均値を膜厚(μm)とした。
 (7)空孔率
 ポリオレフィン微多孔膜から5cm×5cm角を切り取って試験片とし、室温25℃におけるその体積(cm)および質量(g)を測定した。ポリオレフィンの密度0.99g/cmとして、これらの値から、ポリオレフィン微多孔膜の空孔率を次式により算出した。
空孔率(%)=(試験片の体積-試験片の質量/ポリオレフィンの密度)/試験片の体積×100 …(式)。
 (8)単位換算透気抵抗度
 JIS P-8117:2009の王研式試験機法により測定した。王研式透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて測定圧力0.05MPaで、100cmの空気を通過させる際のポリオレフィン微多孔膜の透気抵抗度P(秒)を測定した。そして下記式により、単位厚みに換算した透気抵抗度Pを算出した。
=P/T
ここに、
:単位換算透気抵抗度(秒/μm)
:透気抵抗度(秒)
T:ポリオレフィン微多孔膜の膜厚(μm)。
 (9)単位厚み換算突刺強度
 試験速度を2mm/秒としたことを除いて、JIS Z 1707:2019に準拠して測定した。フォースゲージ(株式会社イマダ製 DS2-20N)を用いて、先端が球面(曲率半径R:0.5mm)の直径1.0mmの針で、ポリオレフィン微多孔膜を25℃の雰囲気下で突刺したときの最大荷重(N)を計測し、下記式から単位厚みに換算した突刺強度を算出した。
単位厚み換算突刺強度(N/μm)=最大荷重(N)/T
T:ポリオレフィン微多孔膜の膜厚(μm)。
 (10)P150/PMax
 ポリオレフィン微多孔膜をMD方向に15mm、TD方向に3mmに切り出して評価用サンプルを作製した。その後、日立ハイテクノロジー社製「TMA7100」を用いて、チャック間距離が10mmになるように評価用サンプルをチャックに固定し、定長モードで初期加重を9.8mNとして30℃から250℃まで5℃/分の速度で昇温させた。200℃まで昇温させた際の温度と収縮力を1秒間隔で測定し、得られたチャートから150℃におけるMD方向の収縮力と最大収縮力を求めた。そして、150℃における収縮力を最大収縮力で除算してP150/PMaxを求めた。
 (11)耐異物特性
 ポリオレフィン微多孔膜について、負極/ポリオレフィン微多孔膜/直径500μmのクロム球/アルミ箔の順にセットした簡易電池に、1.5Vキャパシタおよびデータロガーを接続し、引張試験機(SHIMAZU製“AUTOGRAPH”AGS-X)を用いて、0.3mm/minの条件でプレスし、電池がショートするまでの変位量を測定した。高い変位量でもショートしないサンプルほど耐異物性が良好である。電池がショートするまでの変位量と耐異物性の関係は下記4段階で評価した。
A:変位量(mm)/セパレータ厚み(μm)が0.07以上であった。
B:変位量(mm)/セパレータ厚み(μm)が0.05以上0.07未満であった。
C:変位量(mm)/セパレータ厚み(μm)が0.03以上0.05未満であった。
D:変位量(mm)/セパレータ厚み(μm)が0.03未満であった。
 (12)メルトダウン特性
 アクリルエマルジョン(昭和電工(株)製、“ポリゾール”(登録商標)AT-731、不揮発分47%)、平均粒径0.5μmのアルミナ粒子、およびイオン交換水をそれぞれ2:55:43の質量比率で配合し、酸化ジルコニウムビーズと共にポリプロピレン製の容器に入れ、ペイントシェーカー((株)東洋精機製作所製)で12時間分散させた。次いで、ろ過限界5μmのフィルターでろ過し、塗布液を得た。塗布液をポリオレフィン微多孔膜上にワイヤーバーを用いて塗布し、50℃に設定した熱風オーブンで1分間乾燥させることでポリオレフィン微多孔膜上に耐熱層が設けられた積層膜を得た。なお、耐熱層の乾燥後の厚みは3μmとなるよう、ワイヤーバーを選定し塗工した。
 上記手順で得られた積層膜から切り出した、直径19mmの円形状の測定用サンプルと、2032型コインセルの部材(上蓋、下蓋、ガスケット(PFA製)、スペーサー(直径15.5mm、厚み1.0mmの円柱状)およびウェーブワッシャー)を用意した。上記2032型コインセルの部材は、いずれも宝泉株式会社から購入した。以下、評価用セルの作製手順を示すが、該作業はいずれも露点温度を-35℃以下としたドライルーム内にて行った。
 2032型コインセルの部材の下蓋の内側底部に、下蓋側から順に、測定用サンプル、ガスケットを載置した。次にエチレンカーボネート(EC)およびプロピレンカーボネート(PC)の混合溶媒(EC/PC=50/50[質量比])にLiBFを濃度1mol/Lとなるよう溶解させた電解液(キシダ化学株式会社製)に、界面活性剤F-444(DIC社製)を0.3質量%添加した溶液を調製し、前述のコインセル内に該溶液を0.1mL注液した。次いで、ガスケット中空部の測定用サンプルの上にスペーサーを設置した後、ゲージ圧で-50kPaの環境下、1分間静置する作業を2回行い、ポリオレフィン微多孔膜に電解液を含浸させた。その後、スペーサーの上に、スペーサー側から順に、ウェーブワッシャー、上蓋を載置し、コインセルカシメ機(宝泉株式会社製)で2032型コインセルを密閉して評価用セルを作製した。
 上記評価用セルはオーブン内に設置した同軸コンタクトプローブで挟み、LCRメータ(日置電機製)を用いて、振幅50mV、周波数1kHzにて該セルの抵抗を測定した。コインセル温度は該セルの上蓋に測温抵抗体を密着させてモニタリングした。コインセル温度を室温から50℃に昇温して10分静置した後、5℃/分の速度で180℃まで昇温しながら抵抗を測定した。評価用セルの抵抗が最初に1kΩcmを超える時の温度をポリオレフィン微多孔膜のシャットダウン温度とし、前記シャットダウン温度から昇温を継続し、抵抗が再び1kΩcmとなる温度をメルトダウン温度とした。本測定は積層膜の任意の2箇所を切り出してそれぞれ上記測定を行い、その平均値を算出した。また、測定されたメルトダウン温度と180℃での抵抗値から、下記判定基準で電池用セパレータとして使用した際の安全性を判定し、AまたはBまたはCを合格とした。
A:メルトダウン温度180℃以上、かつ180℃での抵抗値が5kΩcm以上
B:メルトダウン温度180℃以上、かつ180℃での抵抗値が2kΩcm以上5kΩcm未満
C:メルトダウン温度180℃以上、かつ180℃での抵抗値が2kΩcm未満
D:メルトダウン温度180℃未満
実施例に用いた原料を表1、2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [実施例1]
 (混合物の調製)
 超高分子量ポリエチレンとしてUHPEaを100質量%含んでなるポリオレフィン樹脂100質量部に、酸化防止剤テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.5質量部を配合し、混合物を調製した。得られた混合物20質量部を、強混練タイプの二軸押出機(内径58mm、L/D=42)に投入し、二軸押出機のサイドフィーダーから流動パラフィン(40℃における粘度35cSt)80質量部を分割せずに初期添加割合100質量%で供給し、190℃で溶融混練して、ポリオレフィン樹脂溶液を調製した。
 (ゲル状シートの形成)
 前記ポリオレフィン樹脂溶液を、フィルターを通して異物を除去後、二軸押出機から230℃に設定したTダイに供給し、Tダイから押し出される成形体を、30℃に温調した冷却ロールを用いて引き取り速度5m/minで引き取りながら冷却し、ゲル状シートを形成した。
 (延伸)
 前記ゲル状シートを、テンター延伸機を用いて115℃でMD方向およびTD方向ともに8倍に同時二軸延伸した。
 (洗浄・乾燥)
 延伸されたゲル状シートを30cm×30cmのアルミニウム枠板に固定し、25℃に温調した塩化メチレン浴中に浸漬した。塩化メチレン浴中で2分間揺動しながら流動パラフィンを除去した後、室温で風乾し乾燥膜を得た。
 (熱処理)
 前記乾燥膜に130℃で3分、熱固定処理を行い、ポリオレフィン微多孔膜を得た。得られたポリオレフィン微多孔膜の厚みは8μmであった。構成する各成分の配合割合、製造条件、評価結果等を表3に示す。
 (実施例2~8)
 表3で示した原料配合や工程条件に変更した以外は実施例1と同様に製膜し、ポリオレフィン微多孔膜を得た。なお、実施例6はゲル状シートの時点で若干の外観ムラが発生していた。
 (比較例1~8)
 表4で示した原料配合や工程条件に変更した以外は実施例1と同様に製膜し、ポリオレフィン微多孔膜を得た。なお、比較例5はゲル状シートの時点で外観ムラが発生しており、後工程の実施は可能であったが製膜性はやや悪化した。また、比較例6では、溶融混練後のポリオレフィン樹脂溶液の時点で、未溶融物が多量に発生し、ゲル状シートの製膜が断続的であり、ポリオレフィン微多孔膜にも未溶融物が存在し、製膜性は悪化した。さらに、比較例7では、溶融混練後のポリオレフィン樹脂溶液の時点で、未溶融物が発生しており、後工程の実施は可能であったが製膜性はやや悪化した。
 なお、実施例および比較例においてポリオレフィン微多孔膜の厚みの制御は、表に記載の厚みとなるように適宜ギアポンプの回転数を変更して吐出量を調節した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~5のポリオレフィン微多孔膜は、優れた機械的強度と耐メルトダウン耐性との両立を確認でき、電池用セパレータとしても優れた膜品位やイオン透過性、耐異物性、耐熱性を有していた。また、実施例6は優れた機械的強度とメルトダウン耐性を確認できたものの、膜均一性が他の実施例と比べ、劣っていた。また、実施例7は他の実施例と比べ、機械的強度とメルトダウン耐性共に若干劣っていた。
 一方、比較例1~8のポリオレフィン微多孔膜は必要とされる各特性の少なくとも1つが悪化しており、両立されていないことが示された。比較例6については、ポリオレフィン微多孔膜として製膜したものの、膜均一性が他のものより大きく劣っていた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の思想と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本発明のポリオレフィン微多孔膜は、優れた機械的強度とメルトダウン特性を両立している。電池用セパレータとしても優れた膜品位やイオン透過性、耐異物性を有しており、電池特性と電池安全性の高いレベルでの両立が可能となる。したがって、電池高容量化が要求される二次電池用セパレータに好適に用いることができる。また、本発明のポリオレフィン微多孔膜をセパレータとして有する非水電解液二次電池は、ポリオレフィン微多孔膜の特性を活かして、電池高容量化を高めることができる。

Claims (10)

  1. 偏光ラマン分光法を用いてMD方向、TD方向にそれぞれ15μm間隔で10点ずつ合計100カ所のMD方向およびTD方向の配向パラメータを測定し、MD方向の100カ所の配向パラメータ測定値の標準偏差をLms、TD方向の100カ所の配向パラメータ測定値の標準偏差をLtsとした際、LmsとLtsの少なくとも一方が0.02以上0.15以下であり、突刺強度が0.4N/μm以上であるポリオレフィン微多孔膜。
  2. MD方向の100カ所の配向パラメータ測定値の平均値をLma、TD方向の100カ所の配向パラメータ測定値の平均値をLtaとした際、LmaとLtaが共に4.0以下である、請求項1に記載のポリオレフィン微多孔膜。
  3. 昇温速度5℃/minの条件の熱機械分析測定(TMA測定)から得られる横軸を温度、縦軸を応力としたポリオレフィン微多孔膜の温度-応力曲線において、MD方向の最大応力をPmax、150℃の応力をP150とした時、P150/Pmax≧0.6である請求項1または2に記載のポリオレフィン微多孔膜。
  4. ゲル浸透クロマトグラフィー法(GPC法)により測定されるポリオレフィン微多孔膜の分子量分布において、分子量100万以上1000万未満の成分の含有量が25質量%以上であり、かつ分子量1000万以上の成分の含有量が1.0質量%以下である、請求項1または2に記載のポリオレフィン微多孔膜。
  5. ハフニウム元素を0.2ppm以上含む請求項1または2に記載のポリオレフィン微多孔膜。
  6. 請求項1または2に記載のポリオレフィン微多孔膜に、さらに耐熱層が積層された積層体。
  7. 請求項1または2に記載のポリオレフィン微多孔膜を用いた、非水電解液二次電池。
  8. 請求項6に記載の積層体を用いた、非水電解液二次電池。
  9. 請求項1または2に記載のポリオレフィン微多孔膜を用いた、フィルター。
  10. 請求項9に記載のフィルターを用いたろ過ユニット。
PCT/JP2023/010063 2022-03-18 2023-03-15 ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター WO2023176880A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-043407 2022-03-18
JP2022043407 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176880A1 true WO2023176880A1 (ja) 2023-09-21

Family

ID=88023907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010063 WO2023176880A1 (ja) 2022-03-18 2023-03-15 ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター

Country Status (1)

Country Link
WO (1) WO2023176880A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242779A (ja) * 2008-03-13 2009-10-22 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜及び蓄電池用セパレータ
JP2011124177A (ja) * 2009-12-14 2011-06-23 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2012522108A (ja) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 微多孔膜、かかる膜の製造方法、およびバッテリーセパレーターフィルムとしてのかかる膜の使用
JP2014235855A (ja) * 2013-05-31 2014-12-15 ソニー株式会社 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015199828A (ja) * 2014-04-08 2015-11-12 東ソー株式会社 超高分子量ポリエチレン組成物製延伸微多孔膜
JP2017165938A (ja) * 2016-03-11 2017-09-21 東ソー株式会社 超高分子量ポリエチレン組成物製セパレータ
JP2018076476A (ja) * 2016-11-10 2018-05-17 有限会社ケー・イー・イー 高温低熱収縮性ポリオレフィン多層微多孔膜及びその製造方法。
WO2020195380A1 (ja) * 2019-03-28 2020-10-01 東レ株式会社 ポリオレフィン微多孔膜、二次電池用セパレータ、及び二次電池
US20210036292A1 (en) * 2019-07-31 2021-02-04 Ningde Amperex Technology Limited Multilayer separator and device using the same
WO2021033735A1 (ja) * 2019-08-22 2021-02-25 東レ株式会社 ポリオレフィン微多孔膜、積層体、及び電池
JP2021193177A (ja) * 2018-09-25 2021-12-23 旭化成株式会社 高強度セパレータ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242779A (ja) * 2008-03-13 2009-10-22 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜及び蓄電池用セパレータ
JP2012522108A (ja) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 微多孔膜、かかる膜の製造方法、およびバッテリーセパレーターフィルムとしてのかかる膜の使用
JP2011124177A (ja) * 2009-12-14 2011-06-23 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2014235855A (ja) * 2013-05-31 2014-12-15 ソニー株式会社 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015199828A (ja) * 2014-04-08 2015-11-12 東ソー株式会社 超高分子量ポリエチレン組成物製延伸微多孔膜
JP2017165938A (ja) * 2016-03-11 2017-09-21 東ソー株式会社 超高分子量ポリエチレン組成物製セパレータ
JP2018076476A (ja) * 2016-11-10 2018-05-17 有限会社ケー・イー・イー 高温低熱収縮性ポリオレフィン多層微多孔膜及びその製造方法。
JP2021193177A (ja) * 2018-09-25 2021-12-23 旭化成株式会社 高強度セパレータ
WO2020195380A1 (ja) * 2019-03-28 2020-10-01 東レ株式会社 ポリオレフィン微多孔膜、二次電池用セパレータ、及び二次電池
US20210036292A1 (en) * 2019-07-31 2021-02-04 Ningde Amperex Technology Limited Multilayer separator and device using the same
WO2021033735A1 (ja) * 2019-08-22 2021-02-25 東レ株式会社 ポリオレフィン微多孔膜、積層体、及び電池

Similar Documents

Publication Publication Date Title
JP5453272B2 (ja) 微多孔膜およびそのような膜を製造し使用する方法
EP1873193B1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
JP5422562B2 (ja) ポリマー微多孔膜
JP4121846B2 (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
EP3098256B1 (en) Polyolefin microporous membrane and method for producing same
WO2013099607A1 (ja) ポリオレフィン微多孔膜及びその製造方法
WO2007015547A1 (ja) ポリエチレン微多孔膜及びその製造方法並びに電池用セパレータ
JPWO2006137535A1 (ja) ポリオレフィン微多孔膜の製造方法
JP2004196871A (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
CN110382605B (zh) 聚烯烃微多孔膜和使用了该聚烯烃微多孔膜的电池
JP7395827B2 (ja) 多孔性ポリオレフィンフィルム
JP2002284918A (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
JP7207300B2 (ja) 多孔性ポリオレフィンフィルム
JP7547844B2 (ja) 多孔性ポリオレフィンフィルム
JP2004149637A (ja) 微多孔膜及びその製造方法並びに用途
WO2021033735A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
JP5450944B2 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び電池
JP6879217B2 (ja) ポリオレフィン微多孔膜とその製造方法、積層ポリオレフィン微多孔膜、ロール及びポリオレフィン微多孔膜の評価方法
JP2022082461A (ja) ポリオレフィン微多孔膜、電池用セパレータ、及び二次電池
JP2022048093A (ja) ポリオレフィン微多孔膜及び電池セパレータ
WO2023176880A1 (ja) ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター
WO2021033733A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
WO2023176876A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ、非水電解液二次電池およびフィルター
WO2022202095A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
JP2022151659A (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521526

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770833

Country of ref document: EP

Kind code of ref document: A1