WO2021033614A1 - カーボンナノチューブ配合凝集物の製造方法 - Google Patents

カーボンナノチューブ配合凝集物の製造方法 Download PDF

Info

Publication number
WO2021033614A1
WO2021033614A1 PCT/JP2020/030741 JP2020030741W WO2021033614A1 WO 2021033614 A1 WO2021033614 A1 WO 2021033614A1 JP 2020030741 W JP2020030741 W JP 2020030741W WO 2021033614 A1 WO2021033614 A1 WO 2021033614A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
blended
soluble polymer
cnt
mass
Prior art date
Application number
PCT/JP2020/030741
Other languages
English (en)
French (fr)
Inventor
宏史 山本
Original Assignee
三菱商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱商事株式会社 filed Critical 三菱商事株式会社
Priority to EP20853953.6A priority Critical patent/EP4015453A4/en
Priority to CN202080057833.5A priority patent/CN114651033B/zh
Priority to KR1020227007986A priority patent/KR20220088408A/ko
Priority to US17/635,463 priority patent/US12129354B2/en
Publication of WO2021033614A1 publication Critical patent/WO2021033614A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a method for producing agglomerates containing carbon nanotubes.
  • CNTs carbon nanotubes
  • CNT is a carbon crystal having a diameter of several nm to about 500 nm, a length of about 10 ⁇ m to 1000 ⁇ m, a large aspect ratio, and a tubular structure.
  • various types such as single-walled CNTs having a single-walled structure and double-walled double-walled CNTs having two layers, which fall into the category of multi-walled CNTs having a multi-walled structure.
  • both ends are closed, those in which only one end is closed, and those in which both ends are open, and there are several types of rounding structures such as an armchair type.
  • CNT manufacturing methods such as arc discharge type, catalytic vapor phase manufacturing method, laser ablation method and other methods, each of which has advantages and disadvantages.
  • CNT is blended with various synthetic resins, rubbers, and other base materials to impart electrical conductivity, high elasticity, high strength, thermal conductivity, and the like to the base material.
  • CNTs As the opinion released by the IARC (International Agency for Research on Cancer) in 2014, most CNTs are classified as “Group 3" (cannot be classified as carcinogenic), but today However, there is a strong recognition among general users that "but CNT is a dangerous material.”
  • One of the reasons is that CNTs form a fibrous structure similar to asbestos, the bulk density is very low at 1 to 5 g / 100 cc, and a large amount of air is involved, so it is highly scatterable. It is said that the cause is that the risk of suction to asbestos is high.
  • CB carbon black
  • a granulation method such as a molding granulation method is adopted.
  • the primary particles are spherical and form a structure in which the particles are fused, and functional groups such as oxygen and hydrogen are present on the surface of the particles, and they have an affinity for water that functions as a binder, so that the particles are relatively easily granulated. It is possible to do.
  • Patent Document 1 discloses a method of adding CNT to an organic solvent such as acetone and performing ultrasonic dispersion to disperse the CNTs.
  • Patent Document 2 discloses a method of dispersing CNTs in water by using a dispersant composed of a diallylamine-based cationic polymer, an anionic surfactant, and a nonionic surfactant.
  • Patent Document 1 and Patent Document 2 do not report any bulk density or scattering property of the CNT-blended agglutinate obtained when water is used as a solvent.
  • One object of the present invention is to provide a method for efficiently obtaining CNT-blended agglutinates having a high bulk density and low scattering property by using water as a dispersion medium.
  • the present inventors have recently impregnated CNTs with an aqueous solution containing a water-soluble polymer at a predetermined concentration to form wet aggregates, which are then sheared and crushed and then dried to easily and easily scatter with high bulk density. It has been found that CNT-blended aggregates having low properties can be efficiently obtained.
  • the present invention is based on such findings.
  • the method for producing a carbon nanotube-blended agglutinate according to the present invention is (1) Step of preparing an aqueous solution of a water-soluble polymer having a concentration of 0.005 to 3.0% by mass, (2) A step of impregnating the carbon nanotubes with an aqueous solution of the water-soluble polymer at a ratio of 400 to 1000 parts by mass with respect to 100 parts by mass of the carbon nanotubes to prepare wet aggregates. (3) A step of shearing and crushing the wet agglomerate to obtain an agglutinated product, and (4) a step of drying the agglutinated product to obtain a carbon nanotube-blended agglutinating product containing the water-soluble polymer. including.
  • the present invention it is possible to efficiently produce a CNT-blended agglutinate having a high bulk density and a low scattering property while using water as a dispersion medium. Further, since the CNT-blended agglutinate can be produced substantially without using an organic solvent, it is advantageous in reducing the environmental load.
  • a to C are scanning electron microscope (SEM) images of the CNT-blended aggregate of Example 1.
  • A, B and C are 300x, 5000x and 12000x SEM images, respectively.
  • a to C are SEM images of the CNT-blended aggregate of Reference Example 1.
  • A, B and C are 300x, 5000x and 12000x SEM images, respectively.
  • an aqueous solution of a water-soluble polymer having a concentration of 0.01 to 3.0% by mass is prepared (step 1), and 100 mass of carbon nanotubes is prepared.
  • the carbon nanotubes are impregnated with an aqueous solution of the water-soluble polymer at a ratio of 0.1 to 0.25 parts by mass to prepare wet aggregates (step 2), and then the wet aggregates are sheared.
  • the agglomerates of the crushed products are dried (step 4) to obtain CNT-blended agglomerates.
  • the method for producing the CNT-blended agglutinate according to the present invention will be described in detail for each step.
  • Step (1) Preparation step of water-soluble polymer aqueous solution
  • an aqueous solution of a water-soluble polymer is prepared.
  • the water-soluble polymer is not particularly limited as long as CNTs can be dispersed and stabilized in water, but a polymer having a cationic group such as a quaternary ammonium group in the main chain or side chain can be preferably used.
  • a diallylamine-based cationic polymer can be preferably used as the water-soluble polymer.
  • the diallylamine-based cationic polymer include polymers of secondary amine salts such as diallylamine hydrochloride and sulfate, and polymers of quaternary ammonium salts such as polydiallyldialkylammonium chloride and polydiallyldialkylammonium bromide.
  • a polymer of quaternary ammonium salt is preferable, and a polymer of diallyldimethylammonium chloride is particularly preferable.
  • the water-soluble polymer is obtained by polymerizing a monomer having at least one quaternary ammonium group and a polyfunctional monomer having at least one quaternary ammonium group. It may be a copolymer to be used.
  • the mass ratio of the monomer having a quaternary ammonium group to the polyfunctional monomer is preferably 90/10 to 10/90, more preferably 75/25 to 40/60, and further preferably 60/40 to 50. / 50.
  • the monomer having a quaternary ammonium group is preferably the following formula (I):
  • R 1 is H or C 1 to C 4 -alkyl
  • R 2 is H or methyl
  • R 3 is C 1 to C 4 -alkylene
  • R 4 , R 5 and R 6 are independently H or C 1 to C 30 -alkyl
  • X is -O- or -NH-
  • Y is Cl, Br, I, hydrogen sulfate or methyl sulfate. It may be selected from the monomers of (salt).
  • Preferred monomers of formula (I) are R 1 and R 2 being H, respectively, or R 1 being H and R 2 being CH 3 or preferably H as well.
  • Particularly preferred monomers of formula (I) are also [2- (acryloyloxy) ethyl] trimethylammonium chloride, also referred to as dimethylaminoethyl acrylate methchloride (DMA3 * MeCl), or dimethylaminoethyl methacrylate methchloride (DMAEMA * MeCl). It is referred to as trimethyl- [2- (2-methylprop-2-enoyloxy) ethyl] azanium chloride.
  • At least one polyfunctional monomer having no quaternary ammonium group includes acrylate, methacrylic acid, N-vinylpyrrolidone, N-vinylimidazole, and itaconic acid.
  • acrylate methacrylic acid
  • N-vinylpyrrolidone N-vinylimidazole
  • itaconic acid Alternatively, methyl ester or ethyl ester of maleic acid, ethyl acrylate, methyl acrylate and the like can be mentioned.
  • the polyfunctional monomer having no quaternary ammonium group is preferably the following formula (II) :.
  • R 7 is H or C 1 to C 4 -alkyl
  • R 8 is H or methyl
  • R 9 and R 10 are independent of each other, H or C 1 to C 30 -alkyl. Is selected from the monomers represented by).
  • the monomer of the above formula (II) is preferably acrylamide, methacrylamide or dialkylaminoacrylamide.
  • the polyfunctional monomer having no quaternary ammonium group includes the following formula (III): (In the formula, R is H or C 6 to C 50 -alkyl, R'is H or C1 to C4-alkyl, R "is H or methyl. n may be a non-amine-based monomer represented by (an integer from 0 to 100).
  • R is preferably C 8 to C 30 -alkyl, more preferably C 16 to C 22 -alkyl, and R'is preferably H.
  • n is preferably 3 to 50.
  • the non-amine-based monomer of the formula (III) is preferably an aliphatic alcohol ethoxylate or a methacrylate thereof.
  • a plurality of types of monomers of the above formula (I), the above formula (II), and the above formula (III) may be used in the copolymer constituting the water-soluble polymer. Therefore, for example, the R group of the monomer of the above formula (III) may have monomers having different chain lengths such as C 16 and C 18 in the copolymer.
  • the copolymer constituting the water-soluble polymer is preferably selected from dialkylaminoalkyl (meth) acrylate, alkyl (meth) acrylate, hydroxyalkyl (meth) acrylate and combinations thereof. It is a copolymer composed of monomer units.
  • the copolymer is preferably (meth) acrylic acid di C 1 ⁇ C 2 alkyl amino C 1 ⁇ C 2 alkyl, (meth) acrylic acid C 1 ⁇ C 4 alkyl, and (meth) acrylic acid monohydroxy C 2 ⁇ is a C 4 alkyl and copolymers comprising by monomer units are selected from combinations thereof, more preferably (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid It is a dimethylaminoethyl copolymer, more preferably a methyl methacrylate / butyl methacrylate / dimethylaminoethyl methacrylate copolymer.
  • methyl methacrylate / butyl methacrylate / dimethylaminoethyl methacrylate copolymer examples thereof include Eudragit (registered trademark) E100 (Degussa).
  • water-soluble polymers other than those mentioned above include polystyrene derivatives, cationized starch, cationized guar gum, modified polyvinyl alcohol, cationized polyacrylamide, polyamide epichlorohydrin (PAE), melamine resin derivatives, polyvinylamine or derivatives thereof.
  • examples thereof include polymers in which a group (1st to 4th grade ammonium salt, etc.) is introduced into the main chain or side chain.
  • the molecular weight of the water-soluble polymer depends on the type of CNT impregnated with the water-soluble polymer, but from the viewpoint of dispersing and stabilizing the CNT in water, the weight average molecular weight may be about 5,000 to 100,000. Further, from the viewpoint of adhesion (cohesiveness) between the granules when they are formed into wet agglomerates and then sheared and crushed into granules, the weight average molecular weight is preferably 8000 to 50,000.
  • the weight average molecular weight can be measured by a gel permeation chromatography (GPC) method (polystyrene standard) according to a conventional method.
  • GPC gel permeation chromatography
  • the aqueous solution of the water-soluble polymer as described above can be prepared by adding the water-soluble polymer to water and dissolving it.
  • the concentration of the water-soluble polymer in the aqueous solution of the water-soluble polymer is 0.005 to 3.0% by mass. If the concentration of the water-soluble polymer is lower than 0.005% by mass, it is difficult for water to impregnate the CNTs when preparing the wet aggregates containing CNTs, and the wet aggregates containing CNTs cannot be obtained.
  • the concentration of the water-soluble polymer is higher than 3.0% by mass, the obtained CNT-blended wet agglomerates become hard and it becomes difficult for the CNTs to be uniformly dispersed.
  • the preferred water-soluble polymer concentration is 0.01 to 3.0% by mass, more preferably 0.1 to 2.5% by mass.
  • purified water such as distilled water with few impurities, ion-exchanged water, or pure water as the water to be used.
  • Step (2) Preparation step of wet agglomerates
  • the carbon nanotubes are impregnated with an aqueous solution of the water-soluble polymer at a ratio of 700 to 950 parts by mass with respect to 100 parts by mass of the carbon nanotubes to prepare wet aggregates.
  • the CNT used in the present invention is not particularly limited, and may be in any form such as a single-wall CNT having a single-layer structure and a two-layer double-wall CNT that falls into the category of a multi-wall CNT having a multi-layer structure. Further, it is known that the form of CNT obtained differs depending on the production method, but in the present invention, any production method including an arc discharge type, a catalytic vapor phase production method, a laser ablation method, and other methods can be used. It may be obtained.
  • the CNT as a raw material used in the method for producing a CNT-blended agglutinate of the present invention preferably has a fiber diameter of 1 nm or more from the viewpoint of ensuring superiority in physical properties such as electrical and mechanical properties and dispersibility. It is 200 nm, more preferably 1 nm to 150 nm, and even more preferably 1 nm to 100 nm.
  • the fiber length of CNT is preferably 0.1 ⁇ m to 2000 ⁇ m, more preferably 0.1 ⁇ m to 1000 ⁇ m, from the viewpoint of ensuring conductivity, mechanical properties, dispersibility and avoiding fiber cutting. More preferably, it is 0.1 ⁇ m to 500 ⁇ m.
  • the aspect ratio of CNT is usually about 10 to 10000, and a structure in which a hexagonal mesh graphite sheet has a cylindrical shape is preferably used. It may be either a single-walled CNT or a multi-walled CNT, and can be selected according to the final purpose.
  • the method for producing CNTs is also not limited, and is a thermal decomposition method in which a carbon-containing gas is brought into contact with a catalyst, an arc discharge method in which an arc discharge is generated between carbon rods, and laser evaporation in which a carbon target is irradiated with a laser.
  • CNTs doped with metal atoms may be used.
  • these CNTs may be used individually or in combination of a plurality of types.
  • the method of impregnating the CNT with the aqueous solution of the water-soluble polymer obtained as described above is performed by adding the aqueous solution of the water-soluble polymer to the CNT aggregate.
  • the addition of the aqueous solution of the water-soluble polymer may be carried out in one step by a batch method or may be carried out in a plurality of steps, but from the viewpoint of easily and easily producing CNT-blended wet agglomerates, a screw conveyor is used. It is preferable to use and carry out continuously.
  • an aqueous solution of a water-soluble polymer is sent from the middle of the screw conveyor, and the CNTs and the aqueous solution of the water-soluble polymer are mixed in the screw conveyor. May be good.
  • This mixing method is preferable for continuously and efficiently impregnating CNTs with an aqueous solution of a water-soluble polymer, and wet aggregates in which CNTs are uniformly dispersed can be obtained.
  • the speed at which the CNTs are transported in the screw conveyor is not particularly limited, but is, for example, 0.25 to 1.0 kg / min. The amount of the aqueous solution of the water-soluble polymer to be blended will be described later.
  • the aqueous solution of the water-soluble polymer is added to the CNTs at a ratio of 400 to 1000 parts by mass with respect to 100 parts by mass of the CNTs. If the amount of the aqueous solution of the water-soluble polymer added is less than 400 parts by mass, some parts of the obtained wet agglutinate are not impregnated with the aqueous solution of the water-soluble polymer, and thus in the subsequent shearing and crushing step. , Appropriate granules cannot be obtained.
  • the amount of the aqueous solution of the water-soluble polymer added exceeds 1000 parts by mass, the CNTs cannot completely absorb the aqueous solution and become a slurry state, and cannot be crushed in the subsequent shear crushing step.
  • the amount of the water-soluble polymer aqueous solution added is preferably 500 to 950 parts by mass, and more preferably 700 to 900 parts by mass.
  • the wet agglutinin obtained by impregnating the CNT with an aqueous solution of a water-soluble polymer preferably has a water content of 600 to 980 parts by mass, more preferably 700 to 900 parts by mass, based on 100 parts by mass of the CNT. is there.
  • the time required for the impregnation is usually about 1 to 3 minutes, and can be appropriately adjusted by the rotation speed of the screw.
  • the CNT is impregnated with an aqueous solution of a water-soluble polymer to prepare wet agglutinates, it is not necessary to use an organic solvent as a dispersion medium as in the conventional case. Therefore, a recovery device for the organic solvent used is not required, and the CNT-blended agglutinate can be easily and easily produced. It is preferable not to use an organic solvent, but the use is not prohibited, and a small amount of the organic solvent may be contained in the solution of the water-soluble polymer.
  • Step (3) Shearing and crushing step of wet agglomerates
  • the CNT-blended wet agglomerates obtained in the above step (2) are sheared and crushed to obtain agglomerates of the crushed products.
  • the agglomerates of the crushed material are formed by the crushed materials of the wet agglomerates coming into contact with each other and adhering to each other during the shear crushing treatment, and have low scattering property, which is advantageous for safely aligning the CNT-blended agglutinates. It can be used.
  • the shearing and crushing treatment refers to a treatment in which a shearing force is applied to a sample to make the sample finer.
  • Devices used for shear crushing include those in which CNT-blended wet agglomerates introduced by a blade that rotates at high speed and a blade of a fixed cutting head are subdivided, and between two discs that have a large relative velocity.
  • Specific devices used for shear crushing include a comitroll, a colloid mill, an electric mill, a mass colloider, a food processor, a pulper finisher, a rotary cutter mill, a micromeister, a nanochopper, and the like, and a rotary cutter is preferable. It is a mill, more preferably a multi-stage rotary cutter mill.
  • the multi-stage rotary cutter mill is advantageously used to adjust the cutting efficiency by appropriately changing the number of blades in consideration of the particle size of the crushed material of the CNT-blended wet agglomerate and the generation rate of the agglutinating product. be able to.
  • the operating conditions of the apparatus in the shear crushing treatment are not particularly limited, but are preferably set from the viewpoint of efficient production of CNT-blended agglutinates.
  • the temperature in the apparatus during the shearing and crushing treatment is, for example, about 20 ° C. to 90 ° C.
  • the rotation speed of the blade is about 350 to 600 rpm, preferably about 500 to 600 rpm.
  • the shearing and crushing treatment step may be performed once or repeated twice or more.
  • Step (4): Drying step According to one embodiment of the present invention, the agglomerates of the crushed product obtained in the step (3) are dried to obtain carbon nanotube-blended agglomerates.
  • the drying method is not particularly limited, and can be carried out by methods such as steam drying, vacuum drying, and hot air drying.
  • the temperature at this time is 200 ° C or less in the case of a steam dryer, 150 ° C or less in the case of a vacuum dryer, and 100 in the case of hot air drying from the viewpoint of preventing decomposition and denaturation of the water-soluble polymer coating the CNT. °C or less is preferable. Further, before drying with a dryer, if the granulated product is spread on a vat or the like and naturally dried at room temperature in a draft or the like, the subsequent steps can be facilitated.
  • granulation of carbon nanotube-blended agglomerates may be further carried out.
  • the granulators used are roughly divided into horizontal type and vertical type.
  • Most of the horizontal types are continuous type, which are composed of one-stage or multiple-stage drums, granulated with a stirring pin, and continuously dried in a kiln-type drum, or compressed while kneading with two shafts.
  • There are various things such as those that are dried and those that are dried. These are useful because they have a large cost advantage due to their continuous workability and are widely used for general purposes.
  • the vertical type it is divided into a continuous type and a batch type.
  • Some of the continuous types perform the granulation process and the drying process at the same time, which is suitable for mass production. Further, in the batch type, there are some in which the granulation step and the drying step are performed separately, and in the middle of the batch type, filtration or the like is required to collect the granulated product.
  • granulation and drying are generally performed.
  • Typical examples include a fluidized bed granulator, a stirring granulator, a rolling granulator, a spray-drying granulator, and the like, but there are also composite types of these devices.
  • a granulation method using an air flow drying device, a vacuum compression granulation method, a flushing method, and the like can also be mentioned.
  • the method of the present invention does not require a step of removing the organic solvent and can be continuously carried out in a small number of steps, it can be advantageously used for efficiently and quickly producing the CNT-blended agglutinate.
  • the CNT-blended aggregate obtained by the above method is provided.
  • the bulk density of the CNT-blended aggregate is preferably 0.1 to 0.4 g / cm 3 , more preferably 0.15 to 0.3 g / cm 3, and even more preferably 0.15 to 0.3 g / cm 3. It is 0.2 to 0.25 g / cm 3 .
  • the average particle size of the CNT-blended agglomerates is preferably 0.3 to 2.5 mm, more preferably 0.5 to 2.0 mm, and even more preferably 1.0 to 1.5 mm.
  • the average particle size is defined as an average value obtained by calculating the particle size of each of the 100 randomly extracted agglomerates by microscopic observation of the CNT-blended agglutinates.
  • the porosity of the CNT-blended agglutinin is preferably 10 to 35%, more preferably 15 to 30%, and even more preferably 20 to 25%.
  • the CNT-blended agglutinate obtained by the production method of the present invention has a very high bulk density as described above. Therefore, for example, in the kneading process of synthetic resin or the like, the occurrence of bridges in the storage tank is prevented or at the time of supply. It also has the advantage of enabling automatic weighing of plastics, which leads to reductions in transportation and inventory costs.
  • the gist of the present invention is as follows. [1] A method for producing agglomerates containing carbon nanotubes. (1) A step of preparing an aqueous solution of a water-soluble polymer having a concentration of 0.01 to 3.0% by mass. (2) A step of impregnating the carbon nanotubes with an aqueous solution of the water-soluble polymer at a ratio of 400 to 1000 parts by mass with respect to 100 parts by mass of the carbon nanotubes to prepare wet aggregates. (3) A step of shearing and crushing the wet agglomerate to obtain an agglomerate of a crushed product, and (4) a step of drying the agglomerate of the crushed product.
  • a method for producing a carbon nanotube-blended agglutinate which comprises. [2] The method according to [1], wherein the wet agglutination preparation step of the step (1) is continuously carried out using a screw conveyor. [3] The method according to [1] or [2], wherein the wet aggregate has a water content of 680 to 980 parts by mass with respect to 100 parts by mass of carbon nanotubes at room temperature. [4] The method according to any one of [1] to [3], wherein the water-soluble polymer is polydiallyl dimethylammonium chloride. [5] The method according to any one of [1] to [4], wherein the shearing and crushing treatment in the step (2) is continuously performed using a cutter mill.
  • Example 1 The CNT-blended agglutinate was produced using the CNT-blended agglutinating apparatus 1 shown in FIG. First, 500 g of CNT was put into the feeder 2 for the main raw material, and an aqueous solution of a water-soluble polymer in which 4.37 g of a polydialyldimethylammonium chloride polymer (trade name: FPA1000L, manufactured by Senka Co., Ltd.), which is a water-soluble polymer, was dissolved in 3500 g of water. was put into the feeder 3 for dispersion medium.
  • a polydialyldimethylammonium chloride polymer trade name: FPA1000L, manufactured by Senka Co., Ltd.
  • the screw mixer 4 was operated to transfer the CNTs charged into the feeder 2, and the water-soluble polymer aqueous solution was sent from the dispersion medium feeder 3 into the screw mixer 4 through the piping by the liquid feed pump 5. ..
  • the CNTs are impregnated with the aqueous solution of the water-soluble polymer in the screw mixer 4 to obtain wet aggregates (CNTs impregnated with the aqueous solution of the water-soluble polymer), which are continuously supplied into the cutter mill 6. did.
  • the wet agglutinin was continuously sheared and crushed by the cutter mill 6. At this time, the crushed product self-aggregated, and an aggregate of granular crushed product was produced.
  • the agglomerates of the obtained granular crushed products were dried with hot air using a drying device 7 to obtain CNT-blended agglutinates.
  • the physical characteristics (bulk density, porosity, carbon content, particle size) of the obtained CNT-blended agglutinate were measured by the following methods, and the results were as shown in Table 2. Moreover, when the CNT-blended agglutinate was observed with an electron microscope, it was as shown in FIGS. 2A to 2C. In the CNT-blended agglomerates, the formation of bundle agglutination sites between CNTs was not confirmed.
  • the bulk density was determined according to the method for measuring the bulk density of carbon black specified in JIS K 6219.
  • Carbon content The carbon content was determined by subtracting the ash content (%) measured according to JIS K 6218-2 from 100%.
  • the blades of the stirrer were changed to paddle blades, and 300 g of the resin binder solution was added dropwise at a uniform rate for 5 minutes while stirring the dispersion at 1000 rpm. After all the droppings, the obtained mixture was stirred at 600 rpm for about 5 minutes to generate granules in the mixture.
  • granules were separated from the mixture using a 60 mesh sieve.
  • the obtained granules are naturally dried in a draft at room temperature for about 20 hours, and further heated at 90 to 110 ° C. using a vacuum dryer, and the remaining xylene and water are reduced by heating at 150 ° C. for 1 hour. Drying to 5% or less gave CNT-blended aggregates. Since it is prohibited to dissipate xylene to the atmosphere, the entire amount of xylene was recovered by a vacuum cooling trap.
  • the physical characteristics (bulk density, porosity, CNT content, particle size) and production rate of the obtained CNT-blended agglomerates were as shown in Table 3. Moreover, when the CNT-blended agglutinate was observed by SEM, it was as shown in FIGS. 3A to 3C. The formation of bundle aggregation sites between CNTs was confirmed.
  • Example 1 From the results of Tables 2 and 3, in Example 1 in which the water-soluble polymer was added to the dispersion medium (water) and subjected to shearing and crushing treatment, CNTs having a higher CNT content and higher bulk density were compared with Comparative Example 1. It can be seen that the compounded agglomerates are efficiently and continuously produced in a short time. In the method of Example 1, since the CNT-blended agglutinate is produced without using an organic solvent, it is considered that it can be used to reduce the environmental load. Further, in the method of Example 1, CNTs produce wet agglutinations having low scattering properties in a closed system, and continuously shear and crush to rapidly generate bulky agglutinating aggregates. Scattering can be prevented and the risk to safety can be significantly reduced.
  • the present invention it is possible to efficiently produce a CNT-blended agglutinate having a high bulk density and a low scattering property while using water as a dispersion medium.
  • the CNT-blended agglutinate can be produced without substantially using an organic solvent, it is advantageous in reducing the environmental load.
  • workability such as workability and handleability when acquiring CNT-blended agglomerates can be remarkably improved, and the manufacturing process can be shortened without requiring large-scale equipment.
  • CNT-blended agglutinates having a good particle size distribution can be mass-produced at low cost, which is particularly advantageous in industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明のカーボンナノチューブ配合凝集物の製造方法は、(1)0.005~3.0質量%の濃度を有する水溶性ポリマーの水溶液を準備する工程、(2)カーボンナノチューブ100質量部に対して、前記水溶性ポリマーの水溶液を400~1000質量部の割合で前記カーボンナノチューブに含浸させて湿潤凝集物を調製する工程、(3)前記湿潤凝集物を剪断破砕して破砕物の凝集物を得る工程、および(4)前記破砕物の凝集物を乾燥し、前記水溶性ポリマーを含むカーボンナノチューブ配合凝集物を得る工程、を含む。

Description

カーボンナノチューブ配合凝集物の製造方法
 本発明は、カーボンナノチューブ配合凝集物の製造方法に関する。
 近年、カーボンナノチューブ(以下、CNTともいう。)は夢の次世代材料として注目され、帯電防止剤や導電性付与材としての使用はもちろん、タイヤ、キャパシタ、Li電池の導電助剤、繊維強化プラスチックス等への活用に向けた用途開発が進められている。
 CNTは直径が数nm~約500nmで、長さが10μm~1000μm程度であり、アスペクト比が大きく、チューブ状構造の炭素の結晶である。その種類は多岐にわたり、単層構造を有するシングルウオールCNT、多層構造を有するマルチウオールCNTの範疇に入る2層のダブルウオールCNT等がある。また、両端が封鎖されているものから、片末端だけが封鎖されているもの、両末端とも開いているものがあり、また、丸め方の構造にもアームチェア型等いくつか種類がある。
 CNTの製造方法もアーク放電型、触媒気相製造法、レーザーアブレーション法やその他の方法があり、それぞれ一長一短がある。
 一般に、CNTは、種々の合成樹脂やゴム等の基材に配合されることで、基材に電気伝導性や高弾性、高強度、熱伝導性等を付与することが知られている。
 しかしながら、CNTを使用するにあたっては、安全性に対する不安や、CNTがチューブ状で1本1本が絡み合っているためバラバラになり難く、分散性に欠けるとともに、飛散し易く、取り扱い性に欠ける等の課題がある。そのため「夢の素材」と期待された割には実用化が進んでいない。
 CNTの安全性について、IARC(国際がん研究機関)が2014年に発表した見解によれば、殆どのCNTが「グループ3」(発がん性を有するに分類できない)とされているが、今日においても一般ユーザーの間では、「だけどCNTは危険な素材である」との認識が強い。その理由の一つは、CNTがアスベストと同様な繊維状構造を形成していることや、嵩密度が1~5g/100ccと非常に低く、多量の空気を巻き込んでいるため飛散性が高く人への吸引リスクが大きいこと等が原因であると言われている。
 一般に、環境リスクは、化学物質などが環境を経由して、人の健康や動植物の生育、育成に悪影響を及ぼす可能性のことであり、概念的には、「リスク=有害性(毒性)×曝露量(摂取量)」で表され、明らかに有毒な素材でも曝露量が皆無であれば、その素材はほぼ安全で有ると言える。
 曝露量の低減物としては、包装時や輸送時、在庫時、実際の使用時等に粉化飛散せず、合成樹脂のマスターバッチやコンパウンドの混練や成形時等における分散工程では易分散を示す造粒物や凝集物が好ましい。また、粉化しない凝集物であれば当然嵩密度も高くなり、例えば合成樹脂等への混錬工程において、貯蔵タンク内でのブリッジの発生防止や供給時の自動計量化が可能となり、輸送や在庫コストの低減化にもつながる等のメリットもある。
 製品の最終形態を球状粒子としている炭素系粉末としては、世界で1200万トン/年製造販売しているカーボンブラック(以下CBともいう。)がある。CBの嵩密度はCNTほどではないがかなり低いため、一般的には、水をバインダーとしたパン型造粒法、ドラム型造粒法、スクリュー押し出し型造粒法、撹拌型造粒法、圧縮成型造粒法などの造粒方式が採用されている。CBは一次粒子が球状でしかも粒子が融着したストラクチャーを形成しかつ、粒子表面に酸素や水素等の官能基が存在し、バインダーとして機能する水との親和性もあり比較的容易に造粒することが可能である。
 環境への影響を考慮すると、CNTの凝集物や造粒物を製造する際の溶媒としても水を使用することが好ましい。しかしながら、CNTは、結晶構造が発達し表面官能基も少なく、さらに粉体凝集物内にCBよりも多くの空気を巻き込んでいること等から、水との親和性も悪く造粒化は容易ではなかった。そこで、水を溶媒として使用しながらCNTを均一に分散させる種々の手法が従前検討されている。特許文献1では、アセトン等の有機溶媒にCNTを添加し、超音波分散を行うことにより分散させる方法が開示されている。
 また、特許文献2には、ジアリルアミン系カチオン性ポリマー、アニオン性界面活性剤、ノニオン性界面活性剤からなる分散剤を用いて、CNTを水中に分散させる手法が開示されている。
 しかしながら、特許文献1および特許文献2には、水を溶媒として使用した場合に得られるCNT配合凝集物の嵩密度や飛散性については何ら報告されていない。
特開2000-086219号公報 特開2010-241668公報
 本発明は、水を分散媒として用い、嵩密度が高く飛散性の低いCNT配合凝集物を効率的に取得する方法を提供することを一つの目的としている。
 本発明者らは、今般、水溶性ポリマーを所定濃度で含有する水溶液をCNTに含浸させて湿潤凝集物とし、それを剪断破砕処理した後に乾燥することで、簡易かつ簡便に嵩密度が高く飛散性の低いCNT配合凝集物を効率的に取得しうることを見出した。本発明はかかる知見に基づくものである。
 本発明によるカーボンナノチューブ配合凝集物の製造方法は、
(1)0.005~3.0質量%の濃度を有する水溶性ポリマーの水溶液を準備する工程、
(2)カーボンナノチューブ100質量部に対して、前記水溶性ポリマーの水溶液を400~1000質量部の割合で前記カーボンナノチューブに含浸させて湿潤凝集物を調製する工程、
(3)前記湿潤凝集物を剪断破砕して破砕物の凝集物を得る工程、および
(4)前記破砕物の凝集物を乾燥し、前記水溶性ポリマーを含むカーボンナノチューブ配合凝集物を得る工程、
を含む。
 本発明によれば、水を分散媒として用いながら嵩密度が高く飛散性の低いCNT配合凝集物を効率的に製造することができる。また、実質的に有機溶媒を使用することなくCNT配合凝集物を製造できることから、環境負荷を低減する上で有利である。
例1で使用されたカーボンナノチューブ配合凝集物の製造装置の模式図である。 A~Cは、例1のCNT配合凝集物の走査型電子顕微鏡(SEM)画像である。A、BおよびCはそれぞれ、300倍、5000倍および12000倍のSEM画像である。 A~Cは、参考例1のCNT配合凝集物のSEM画像である。A、BおよびCはそれぞれ、300倍、5000倍および12000倍のSEM画像である。
 本発明の一実施形態によれば、CNT配合凝集物の製造方法は、先0.01~3.0質量%の濃度を有する水溶性ポリマーの水溶液を準備し(工程1)、カーボンナノチューブ100質量部に対して、前記水溶性ポリマーの水溶液を0.1~0.25質量部の割合で前記カーボンナノチューブに含浸させて湿潤凝集物を調製し(工程2)、次いで、前記湿潤凝集物を剪断破砕して破砕物の凝集物を得たのち(工程3)、前記破砕物の凝集物を乾燥する(工程4)ことにより、CNT配合凝集物を得ることができる。以下、本発明によるCNT配合凝集物の製造方法を工程毎に詳細に説明する。
[工程(1):水溶性ポリマー水溶液の準備工程]
 本発明の一実施形態において、上記工程(1)では、水溶性ポリマーの水溶液を準備する。水溶性ポリマーとしては、CNTを水中で分散安定化し得る限り特に限定されないが、好ましくは4級アンモニウム基等のカチオン性基を主鎖または側鎖に有するポリマーを使用することができる。
 本発明の一実施形態によれば、水溶性ポリマーとしてはジアリルアミン系カチオンポリマーを好適に使用することができる。ジアリルアミン系カチオンポリマーはジアリルアミンの塩酸塩、硫酸塩などの2級アミン塩のポリマー、ポリジアリルジアルキルアンモニウムクロライド、ポリジアリルジアルキルアンモニウムブロマイド等の4級アンモニウム塩のポリマー等が挙げられるが、これらのうち、4級アンモニウム塩のポリマーが好ましく、ジアリルジメチルアンモニウムクロイドのポリマーが特に好ましい。
 また、本発明の別の実施態様によれば、水溶性ポリマーは、少なくとも1種の4級アンモニウム基を有するモノマーおよび少なくとも1種の4級アンモニウム基を有さない多官能性モノマーの重合により得られるコポリマーであってもよい。4級アンモニウム基を有するモノマーと多官能性モノマーに対する質量比は、好ましくは90/10~10/90であり、より好ましくは75/25~40/60であり、さらに好ましくは60/40~50/50である。
 水溶性ポリマーを構成するコポリマーの構成要素のうち、4級アンモニウム基を有するモノマーは、好ましくは、下記式(I):
Figure JPOXMLDOC01-appb-C000001
 (式(I)において、Rは、HまたはC~C-アルキルであり、Rは、Hまたはメチルであり、Rは、C~C-アルキレンであり、R、RおよびRは、それぞれ独立にHまたはC~C30-アルキルであり、Xは、-O-または-NH-であり、Yは、Cl、Br、I、硫酸水素塩またはメト硫酸塩である。)のモノマーから選択されてもよい。好ましい式(I)のモノマーとしては、RおよびRがそれぞれHであるか、または、RがHでありRがCHまたは好ましくは同様にHである。
 特に好ましい式(I)のモノマーは、ジメチルアミノエチルアクリレートメトクロリド(DMA3*MeCl)とも称される[2-(アクリロイルオキシ)エチル]トリメチルアンモニウムクロリドまたはジメチルアミノエチルメタクリレートメトクロリド(DMAEMA*MeCl)とも称されるトリメチル-[2-(2-メチルプロパ-2-エノイルオキシ)エチル]アザニウムクロリドである。
 水溶性ポリマーを構成するコポリマーの構成要素のうち、少なくとも1種の4級アンモニウム基を有さない多官能性モノマーとしては、アクリル酸、メタクリル酸、N-ビニルピロリドン、N-ビニルイミダゾール、イタコン酸またはマレイン酸のメチルエステルまたはエチルエステル、アクリル酸エチルまたはアクリル酸メチル等が挙げられる。
 また、一実施態様によれば、上記4級アンモニウム基を有さない多官能性モノマーは、好ましくは、下記式(II):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、HまたはC~C-アルキルであり、Rは、Hまたはメチルであり、RおよびR10は、互いに独立に、HまたはC~C30-アルキルである)で表されるモノマーから選択される。
 上記式(II)のモノマーは、好ましくは、アクリルアミド、メタクリルアミドまたはジアルキルアミノアクリルアミドである。
 また、上記した多官能性モノマーにおいて、4級アンモニウム基を有さない多官能性モノマーとしては、下記式(III):
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、HまたはC~C50-アルキルであり、R’は、HまたはC1~C4-アルキルであり、R”は、Hまたはメチルであり、
 nは、0~100の整数である)で表される非アミン系モノマーでもよい。
 上記式(III)の非アミン系モノマーにおいて、Rは、好ましくはC~C30-アルキルであり、より好ましくはC16~C22-アルキルであり、R’は、好ましくはHであり、nは、好ましくは3~50である。
 式(III)の非アミン系モノマーは、好ましくは、脂肪族アルコールエトキシレートまたはそのメタクリレートである。
 上記式(I)、上記式(II)、および上記式(III)のモノマーは各々、水溶性ポリマーを構成するコポリマー中において複数種を用いてもよい。したがって、例えば、上記式(III)のモノマーのR基は、C16およびC18など、異なる鎖長を有するモノマーがコポリマー中に存在してもよい。
 一実施態様によれば、水溶性ポリマーを構成するコポリマーは、好ましくは(メタ)アクリル酸ジアルキルアミノアルキルと、(メタ)アクリル酸アルキル、(メタ)アクリル酸ヒドロキシアルキルおよびこれらの組み合わせから選択されるモノマー単位とから構成されるコポリマーである。より具体的には、上記コポリマーは、好ましくは(メタ)アクリル酸ジC~CアルキルアミノC~Cアルキルと、(メタ)アクリル酸C~Cアルキル、および(メタ)アクリル酸モノヒドロキシC~Cアルキルおよびこれらの組み合わせから選択されるモノマー単位して含んでなるコポリマーであり、より好ましくは(メタ)アクリル酸メチル・(メタ)アクリル酸ブチル・(メタ)アクリル酸ジメチルアミノエチルコポリマーであり、さらに好ましくはメタアクリル酸メチル・メタアクリル酸ブチル・メタアクリル酸ジメチルアミノエチルコポリマーである。このようなメタアクリル酸メチル・メタアクリル酸ブチル・メタアクリル酸ジメチルアミノエチルコポリマーとしては、市販のものを使用してもよく、例えば、オイドラギット(登録商標)E100(デグサ社)が挙げられる。
 上記した以外の水溶性ポリマーとしては、例えば、ポリスチレン誘導体、カチオン化でんぷん、カチオン化グァーガム、変性ポリビニルアルコール、カチオン化ポリアクリルアミド、ポリアミドエピクロロヒドリン(PAE)、メラミン樹脂誘導体、ポリビニルアミンまたはその誘導体、ポリビニルピリジンまたはその誘導体、ポリアミン、ポリメタクリル酸エステル誘導体、ポリアクリル酸エステル誘導体、ポリアクリル酸ナトリウム誘導体、ポリエチレンイミンまたはその誘導体、ポリダドマック、ポリアルキレンポリアミンまたはその誘導体、ポリアリルアミンまたはその誘導体等のカチオン基(1~4級アンモニウム塩等)を主鎖または側鎖に導入されたポリマー等が挙げられる。
 水溶性ポリマーの分子量は、水溶性ポリマーを含浸させるCNTの種類にもよるが、CNTを水中で分散安定化させる観点から、重量平均分子量が5000~100000程度であってもよい。また、湿潤凝集物とした後に剪断破砕して粒状物とした際の粒状物どうしの付着性(凝集性)の観点からは、重量平均分子量が8000~50000であることが好ましい。なお、重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー法(GPC)法(ポリスチレン標準)により、定法に従って測定することができる。
 上記したような水溶性ポリマーの水溶液は、水溶性ポリマーを水に添加して溶解させることにより調製することができる。本発明の製造方法においては、水溶性ポリマーの水溶液中の水溶性ポリマー濃度を0.005~3.0質量%とする。水溶性ポリマー濃度が0.005質量%よりも低いと、CNT配合湿潤凝集物を調製する際にCNTに水が含浸されにくく、CNT配合湿潤凝集物が得られない。一方、水溶性ポリマー濃度が3.0質量%よりも高いと、得られるCNT配合湿潤凝集物が硬くなりCNTが均一分散しにくくなる。好ましい水溶性ポリマー濃度は0.01~3.0質量%であり、0.1~2.5質量%であることがより好ましい。
 使用する水としては、CNT配合凝集物の品質の維持の観点から、不純物の少ない蒸留水やイオン交換水等の精製水、純水が用いることが好ましい。
[工程(2):湿潤凝集物の調製工程]
 次いで、カーボンナノチューブ100質量部に対して、前記水溶性ポリマーの水溶液を700~950質量部の割合で前記カーボンナノチューブに含浸させて湿潤凝集物を調製する。
 本発明において使用するCNTに特に制限はなく、単層構造を有するシングルウオールCNT、多層構造を有するマルチウオールCNTの範疇に入る2層のダブルウオールCNTなどいずれの形態であってもよい。また、CNTは製造方法により得られる形態が異なることが知られているが、本発明においては、アーク放電型、触媒気相製造法、レーザーアブレーション法、その他の方法を含め、いずれの製造方法により得られたものであってもよい。
 本発明のCNT配合凝集物の製造方法に使用される原料としてのCNTは、電気的・機械的な特性や分散性等の物性の優位性を確保する観点から、繊維径は、好ましくは1nm~200nmであり、より好ましくは1nm~150nmであり、さらに好ましくは1nm~100nmである。
 また、CNTの繊維長は、導電性や機械的特性、分散性の確保や繊維の切断の回避の観点から、好ましくは0.1μm~2000μmであり、より好ましくは0.1μm~1000μmであり、さらに好ましくは0.1μm~500μmである。
 CNTのアスペクト比としては、通常10 ~10000程度であり、六角網目状のグラファイトシートが円筒状をなした構造物が好適に用いられる。単層のCNT、多層のCNTいずれでもよく、最終の目的に応じて選択することができる。また、CNTの製造方法に関しても制限されるものではなく、炭素含有ガスを触媒と接触させる熱分解法、炭素棒間にてアーク放電を発生させるアーク放電法、カーボンターゲットにレーザーを照射するレーザー蒸発法、金属微粒子の存在下で炭素源のガスを高温で反応させるCVD 法、一酸化炭素を高圧下で分解するHiPco法等のいずれでもよい。また、金属原子をドープしたCNTでもよい。また、これらのCNTは、単独または複数種を組み合わせて用いてもよい。
 上記のようにして得られた水溶性ポリマーの水溶液をCNTに含浸させる方法としては、CNT集合体に水溶性ポリマーの水溶液を添加することにより行われる。水溶性ポリマーの水溶液の添加は、バッチ式により1工程で行ってもよく、複数工程に分けて行ってもよいが、CNT配合湿潤凝集物を簡易かつ簡便に製造する観点からは、スクリューコンベアを用いて連続的に実施することが好ましい。
 本発明の一実施態様によれば、スクリューコンベアでCNTを輸送しながら、スクリューコンベアの途中から水溶性ポリマーの水溶液を送液し、スクリューコンベア内でCNTと水溶性ポリマーの水溶液とを混合してもよい。この混合方法は、連続的にかつ効率的にCNTに水溶性ポリマーの水溶液を含浸させる上で好ましく、CNTが均一に分散した湿潤凝集物を得ることができる。スクリューコンベア内でCNTを輸送する速度は、特に限定されないが、例えば、0.25~1.0kg/minである。なお、水溶性ポリマーの水溶液の配合量については、後記する。
 湿潤凝集物の調製工程において、水溶性ポリマーの水溶液は、CNT100質量部に対して400~1000質量部の割合でCNTに添加される。水溶性ポリマーの水溶液の添加量が400質量部よりも少ないと、得られた湿潤凝集物中に、CNTが水溶性ポリマーの水溶液で含浸されていない箇所が存在するため、後の剪断破砕工程において、適度な粒状物が得られなくなる。一方、水溶性ポリマーの水溶液の添加量が1000質量部を超えると、CNTが水溶液を吸収しきれずスラリー状態になってしまい、後の剪断破砕工程において破砕できなくなる。好ましい水溶性ポリマー水溶液の添加量は500~950質量部であり、より好ましくは700~900質量部である。
 CNTへの水溶性ポリマーの水溶液の含浸により得られた湿潤凝集物は、室温における含水量がCNT100質量部に対して600~980質量部であることが好ましく、より好ましくは700~900質量部である。湿潤凝集物の含水量を上記範囲とすることにより、剪断破砕工程において、所望の凝集物を得や易くなる。
 スクリューコンベアを用いてCNTに水溶性ポリマーの水溶液を添加(含浸)する場合、その含浸に必要な時間は、通常、1~3分間程度であり、スクリューの回転数により適宜調整することができる。
 上記したように、本発明においては、水溶性ポリマーの水溶液をCNTに含浸させて湿潤凝集物を調製するため、従来のような分散媒としての有機溶剤を使用する必要がない。そのため、使用した有機溶剤の回収装置等も不要となるため、簡易かつ簡便にCNT配合凝集物を製造することができる。なお、有機溶媒は使用しないことが好ましいが、使用を禁止するものではなく、水溶性ポリマーの溶液に少量であれば含まれていてもよい。
[工程(3):湿潤凝集物の剪断破砕工程]
 次いで、上記工程(2)において得られたCNT配合湿潤凝集物を剪断破砕して破砕物の凝集物を得る。破砕物の凝集物は、剪断破砕処理中に湿潤凝集物の破砕物が互いに接触して付着して生成するものであり、飛散性が低く、安全にCNT配合凝集物を整合する上で有利に利用することができる。
 ここで、剪断破砕処理とは、剪断力を試料に加えて試料を微細化する処理をいう。剪断破砕に使用される装置としては、高速で回転する刃と固定されたカッティングヘッドの刃によって投入されたCNT配合湿潤凝集物が細分化されるものや、大きな相対速度を持つ2面のディスク間の間隙に起きるせん断力と衝撃を利用してCNT配合湿潤凝集物の剪断と高速撹拌を同時に行うような装置が挙げられる。剪断破砕に使用される具体的な装置としては、コミトロール、コロイドミル、電動ミル、マスコロイダー、フードプロセッサー、パルパーフィニッシャー、ロータリーカッターミル、ミクロマイスター、ナノチョッパー等が挙げられ、好ましくはロータリーカッターミルであり、より好ましくは多段式のロータリーカッターミルである。多段式のロータリーカッターミルは、CNT配合湿潤凝集物の破砕物の粒度やその凝集物の生成率等を勘案して、刃の枚数を適宜変更して切断効率を調節する上で有利に利用することができる。
 剪断破砕処理における装置の運転条件は、特に限定されないが、効率的なCNT配合凝集物の生産の観点から設定することが好ましい。具体的には、剪断破砕処理時の装置中の温度は、例えば、20℃~90℃程度である。また、刃の回転速度は、350~600rpm程度、好ましくは500~600rpm程度である。
 剪断破砕処理工程は、1回行ってもよく、2回以上繰り返し行ってもよい。
[工程(4):乾燥工程]
 本発明の一実施態様によれば、工程(3)で得られた破砕物の凝集物を乾燥してカーボンナノチューブ配合凝集物を得る。
 乾燥方法は、特に限定されず、蒸気乾燥、真空乾燥、熱風乾燥等の方法で実施することができる。この際の温度としては、CNTを被覆する水溶性ポリマーの分解や変性を防止する観点から、蒸気乾燥器の場合は200℃ 以下、真空乾燥器の場合は150℃以下、熱風乾燥の場合は100℃以下が好ましい。また、乾燥機で乾燥する前に、バット等に造粒物を広げドラフト等で常温、自然乾燥させると後の工程が容易となる。
 また、本発明の一実施態様によれば、カーボンナノチューブ配合凝集物の造粒をさらに実施してもよい。使用される造粒装置は、大きく分けて、横型のものと縦型のものがある。横型のものについては連続式のものが多く、1段または複数段のドラムで構成され撹拌ピンで造粒され、連続式にキルン式のドラム内で乾燥するものや、2軸で混練しつつ圧縮や乾燥をするものなど、種々のものがある。これらについては、その連続作業性によるコストメリットが大きく、汎用的な用途として多く用いられているため有用である。また、縦型の場合、連続式のものとバッチ式のものに分けられる。連続式のものには、造粒工程と乾燥工程を同時に行うものもあり、大量生産に適したものである。また、バッチ式のものについては、造粒工程と乾燥工程を別々に行うものもあり、その途中において、造粒物を回収するためにろ過などを必要とするものもある。
 なお、湿式では造粒と乾燥が行われるようになっているのが一般的である。代表的なものとして、流動層造粒装置、攪拌造粒装置、転動造粒装置、噴霧乾燥造粒装置等があげられるが、これらの装置については、それぞれの複合型等もある。また、気流乾燥装置をもちいる造粒方法や真空圧縮造粒法やフラッシング法などの方法も挙げられる。
 本発明の方法は、有機溶媒の除去工程等が必要なく、少ない工程で連続的に実施しうることから、CNT配合凝集物を効率的かつ迅速に製造する上で有利に利用することができる。
[CNT配合凝集物]
 本発明の一実施態様によれば、上記方法により得られたCNT配合凝集物が提供される。一実施態様によれば、CNT配合凝集物の嵩密度は、好ましくは0.1~0.4g/cmであり、より好ましくは0.15~0.3g/cmであり、さらに好ましくは0.2~0.25g/cmである。
 また、CNT配合凝集物の平均粒径は、好ましくは0.3~2.5mmであり、より好ましくは0.5~2.0mmであり、さらに好ましくは1.0~1.5mmである。なお、平均粒径とは、CNT配合凝集物の顕微鏡観察により、ランダムに抽出した100個の凝集物のそれぞれについて粒径を算出し、平均した値をいうものとする。
 また、CNT配合凝集物の空隙率は、好ましくは10~35%であり、より好ましくは15~30%であり、さら好ましくは20~25%である。
 本発明の製造方法により得られるCNT配合凝集物は、上記のように嵩密度が非常に高く、従って、例えば合成樹脂等への混錬工程において、貯蔵タンク内でのブリッジの発生防止や供給時の自動計量化が可能となり、輸送や在庫コストの低減化にもつながる等のメリットもある。
 本発明の要旨は以下のとおりである。
[1] カーボンナノチューブ配合凝集物の製造方法であって、
(1)0.01~3.0質量%の濃度を有する水溶性ポリマーの水溶液を準備する工程、
(2)カーボンナノチューブ100質量部に対して、前記水溶性ポリマーの水溶液を400~1000質量部の割合で前記カーボンナノチューブに含浸させて湿潤凝集物を調製する工程、
(3)前記湿潤凝集物を剪断破砕して破砕物の凝集物を得る工程、および
(4)前記破砕物の凝集物を乾燥する工程、
を含んでなる、カーボンナノチューブ配合凝集物の製造方法。
[2] 工程(1)の湿潤凝集物調製工程が、スクリューコンベアを用いて連続的に実施される、[1]に記載の方法。
[3] 前記湿潤凝集物は、室温における含水量がカーボンナノチューブ100質量部に対して680~980質量部である、[1]または[2]に記載の方法。
[4] 前記水溶性ポリマーがポリジアリルジメチルアンモニウムクロライドである、[1]~[3]のいずれか一項に記載の方法。
[5] 工程(2)における剪断破砕処理が、カッターミルを用いて連続的に実施される、[1]~[4]のいずれか一項に記載の方法。
[6] 前記カッターミルが、多段式カッターミルである、[5]に記載の方法。
[7] 前記破砕物の平均粒径が0.5~2mmの範囲になるまで、湿潤凝集物の剪断破砕処理を行う、[1]~[6]のいずれか一項に記載の方法。
[8] 工程(4)の乾燥工程が、熱風乾燥により実施される、[1]~[7]のいずれか一項に記載の方法。
[9] 前記カーボンナノチューブ配合凝集物の嵩密度が、0.15~0.30g/cmである、[1]~[8]のいずれか一項に記載の方法。
[10] 前記カーボンナノチューブ配合凝集物の平均粒径が、0.5~2.0mmである、[1]~[9]のいずれか一項に記載の方法。
[11] 前記カーボンナノチューブ配合凝集物の空隙率が、15~30%である、[1]~[10]のいずれか一項に記載の方法。
 以下本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 以下の実験に使用したCNT(商品名:Knanos-100P,100T,210T,300T、Kumoho株式会社製)の物性は、表1に示される通りであった。
Figure JPOXMLDOC01-appb-T000004
[実施例1]
 図1に記載のCNT配合凝集物製造装置1を用いてCNT配合凝集物を製造した。先ず、CNT500gを主原料用フィーダー2に投入し、水3500gに水溶性ポリマーであるポリジアリルジメチルアンモニウムクロライド重合物(商品名:FPA1000L、センカ株式会社製)4.37gを溶解した水溶性ポリマーの水溶液を分散媒用フィーダー3に投入した。
 次に、スクリューミキサー4を作動させて、フィーダー2に投入したCNTを移送しながら、分散媒用フィーダー3から送液ポンプ5により配管を介して水溶性ポリマー水溶液をスクリューミキサー4内に送液した。このようにして、スクリューミキサー4内でCNTに水溶性ポリマーの水溶液を含浸させて、湿潤凝集物(水溶性ポリマー水溶液を含侵させたCNT)を得て、カッターミル6内に連続的に供給した。
 続いて、カッターミル6により湿潤凝集物を連続的に剪断破砕処理した。この際、破砕物は自己凝集し、粒状の破砕物の凝集物が生成した。得られた粒状の破砕物の凝集物を、乾燥装置7を用いて熱風乾燥することにより、CNT配合凝集物を得た。
 得られたCNT配合凝集物について、以下の手法により物性(嵩密度、空隙率、炭素含有率、粒径)を測定したところ、結果は表2に示される通りであった。また、電子顕微鏡によりCNT配合凝集物を観察したところ図2A~Cに示される通りであった。CNT配合凝集物において、CNT同士のバンドル凝集部位の形成は確認されなかった。
(嵩密度)
 嵩密度は、JIS K 6219に規定されるカーボンブラックの嵩密度の測定法に準拠して求めた。
(炭素含有率)
 炭素含有率は、JIS K 6218-2に準拠して測定された灰分(%)を100%から差し引くことにより求めた。
(粒径)
 走査型電子顕微鏡(SEM)により、CNT配合凝集物の形態観察を実施した。観察は300倍のSEM画像を用いて、任意に100個のCNT配合凝集物の外径を計測し、その数平均値をもってCNT配合凝集物の平均粒径(mm)とした。
Figure JPOXMLDOC01-appb-T000005
[比較例1]
 まず、80~90℃に加熱した有機溶剤キシレンに、非水溶性ポリマーであるポリエチレン(ハイワックス320P、三井化学社製)を溶解し、3重量%のポリエチレンを含む樹脂バインダー溶液を作成した。
 次に、CNT50gと純水4950gを10Lのステンレス製丸型容器に入れホモジナイザー型撹拌機を用い6000rpmで30分処理し、分散液を得た。
 次いで、撹拌機の羽根をパドル翼に変更し、1000rpmで分散液を撹拌しながら、上記樹脂バインダー溶液300gを均一速度で5分間滴下した。全て滴下後、得られた混合液を600rpmにて約5分間撹拌し、混合液中に粒状物を生成させた。
 次に、60mesh篩を用いて混合液から粒状物を分離した。得られた粒状物をドラフト内で常温にて約20時間自然乾燥し、さらに真空乾燥機を用いて90~110℃で加熱し、残存するキシレンと水が150℃1時間における加熱減量として0.5%以下になるまで乾燥して、CNT配合凝集物を得た。
 なお、キシレンは、大気放散することは禁止されているため、真空系の冷却トラップにて全量を回収した。
 得られたCNT配合凝集物の物性(嵩密度、空隙率、CNT含有率、粒径)および製造速度は表3に示される通りであった。また、SEMによりCNT配合凝集物を観察したところ図3A~Cに示される通りであった。CNT同士のバンドル凝集部位の形成が確認された。
Figure JPOXMLDOC01-appb-T000006
 表2および表3の結果から、水溶性ポリマーを分散媒(水)に添加し、剪断破砕処理を行った実施例1では、比較例1と比較して、CNT高配合で嵩密度の高いCNT配合凝集物を短時間で効率的に連続して製造していることがわかる。実施例1の方法では、有機溶媒を使用しないでCNT配合凝集物を製造していることから、環境負荷を低減する上で利用しうると考えられる。また、実施例1の方法では、CNTは閉鎖系内で飛散性の低い湿潤凝集物を製造しており、連続的に剪断破砕により迅速に嵩密度の高い凝集物を生成することから、CNTの飛散を防止することができ、安全に対するリスクを大幅に低減できる。
 本発明によれば、水を分散媒として用いながら嵩密度が高く飛散性の低いCNT配合凝集物を効率的に製造することができる。本発明によれば、有機溶媒を実質的に使用することなくCNT配合凝集物を製造できることから、環境負荷を低減する上で有利である。
 また、本発明によれば、CNT配合凝集物を取得する際の加工性・ハンドリング性等の作業性を著しく向上させ、大掛かりな設備を必要とせず製造工程も短縮できる。また、粒度分布も良好なCNT配合凝集物を低原価で量産できることから、工業生産上特に有利である。
1 CNT配合凝集物製造装置
2 主原料用フィーダー
3 分散媒用フィーダー
4 スクリューミキサー
5 送液ポンプ
6 カッターミル
7 乾燥装置

Claims (10)

  1. (1)0.005~3.0質量%の濃度を有する水溶性ポリマーの水溶液を準備する工程、
    (2)カーボンナノチューブ100質量部に対して、前記水溶性ポリマーの水溶液を400~1000質量部の割合で前記カーボンナノチューブに含浸させて湿潤凝集物を調製する工程、
    (3)前記湿潤凝集物を剪断破砕して破砕物の凝集物を得る工程、および
    (4)前記破砕物の凝集物を乾燥し、前記水溶性ポリマーを含むカーボンナノチューブ配合凝集物を得る工程、
    を含んでなる、カーボンナノチューブ配合凝集物の製造方法。
  2.  工程(1)の湿潤凝集物調製工程が、スクリューコンベアを用いて連続的に実施される、請求項1に記載の方法。
  3.  前記湿潤凝集物は、室温における含水量がカーボンナノチューブ100質量部に対して600~980質量部である、請求項1または2に記載の方法。
  4.  前記水溶性ポリマーが、ポリジアリルジメチルアンモニウムクロライドである、請求項1~3のいずれか一項に記載の方法。
  5.  工程(2)における剪断破砕処理が、カッターミルを用いて連続的に実施される、請求項1~4のいずれか一項に記載の方法。
  6.  前記カッターミルが、多段式カッターミルである、請求項5に記載の方法。
  7.  工程(4)の乾燥工程が、熱風乾燥により実施される、請求項1~6のいずれか一項に記載の方法。
  8.  前記カーボンナノチューブ配合凝集物の嵩密度が、0.15~0.30g/cmである、請求項1~7のいずれか一項に記載の方法。
  9.  前記カーボンナノチューブ配合凝集物の平均粒径が、0.5~2.0mmである、請求項1~8のいずれか一項に記載の方法。
  10.  前記カーボンナノチューブ配合凝集物の空隙率が、15~30%である、請求項1~9のいずれか一項に記載の方法。
PCT/JP2020/030741 2019-08-16 2020-08-13 カーボンナノチューブ配合凝集物の製造方法 WO2021033614A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20853953.6A EP4015453A4 (en) 2019-08-16 2020-08-13 METHOD FOR PRODUCING CARBON-NANOTUBE MIXED Aggregates
CN202080057833.5A CN114651033B (zh) 2019-08-16 2020-08-13 碳纳米管配合凝集物的制造方法
KR1020227007986A KR20220088408A (ko) 2019-08-16 2020-08-13 카본나노튜브 배합 응집물의 제조 방법
US17/635,463 US12129354B2 (en) 2019-08-16 2020-08-13 Method for manufacturing carbon nanotube-blended aggregate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149429A JP6714134B1 (ja) 2019-08-16 2019-08-16 カーボンナノチューブ配合凝集物の製造方法
JP2019-149429 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021033614A1 true WO2021033614A1 (ja) 2021-02-25

Family

ID=71104024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030741 WO2021033614A1 (ja) 2019-08-16 2020-08-13 カーボンナノチューブ配合凝集物の製造方法

Country Status (6)

Country Link
EP (1) EP4015453A4 (ja)
JP (1) JP6714134B1 (ja)
KR (1) KR20220088408A (ja)
CN (1) CN114651033B (ja)
TW (1) TWI820344B (ja)
WO (1) WO2021033614A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102323611B1 (ko) * 2021-03-08 2021-11-08 박진규 고인장성 섬유를 이용한 콘크리트 구조물의 보수·보강 공법
JP7126666B1 (ja) 2022-02-01 2022-08-29 株式会社DR.goo カーボン材料造粒物、カーボン材料造粒物の製造方法、および、導電性樹脂組成物
JP2024125746A (ja) * 2023-03-06 2024-09-19 山陽色素株式会社 電極用カーボンナノチューブ含有粉末、電極合剤ペースト、蓄電デバイス用電極及び蓄電デバイス

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414134B2 (ja) * 1983-01-11 1992-03-11 Mitsui Petrochemical Ind
JP2000086219A (ja) 1998-09-11 2000-03-28 Futaba Corp 単層カーボンナノチューブの皮膜を形成する方法及びその方法により皮膜を形成された単層カーボンナノチューブ
JP2004506530A (ja) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー巻き付け単層カーボンナノチューブ
JP2004531442A (ja) * 2001-03-26 2004-10-14 ベン‐グリオン、ユニバーシティ、オブ、ザ、ネジェブ 単一カーボンナノチューブの安定な懸濁液および粉末の製造方法
JP2010241668A (ja) 2009-04-02 2010-10-28 Senka Kk Cnt分散剤及びそれを用いたcnt分散液
JP2011523929A (ja) * 2008-05-28 2011-08-25 バイオニア コーポレーション 炭素ナノチューブ及び金属でなされたナノ複合体及びこれの製造方法
JP2012500458A (ja) * 2008-08-20 2012-01-05 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト カーボンナノチューブを含有し、減少した抵抗を有する複合材料の製造方法
JP2012097133A (ja) * 2010-10-29 2012-05-24 Toyo Ink Sc Holdings Co Ltd カーボンナノチューブ分散体、樹脂組成物および成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999314A (zh) * 2006-12-26 2007-07-18 华东理工大学 表面吸附聚电解质的水溶性碳纳米管及其制备方法
JP2010043169A (ja) * 2008-08-11 2010-02-25 Mikuni Color Ltd ポリマー組成物および導電性材料
JP5829544B2 (ja) * 2012-02-13 2015-12-09 ニッタ株式会社 カーボンナノチューブ集合体およびその製造方法
CN106747572B (zh) * 2017-01-23 2020-08-28 贵阳学院 一种碳纳米管气凝胶的制备方法
JP2019102177A (ja) * 2017-11-29 2019-06-24 日本ゼオン株式会社 カーボンナノチューブ含有異方性導電フィルムおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414134B2 (ja) * 1983-01-11 1992-03-11 Mitsui Petrochemical Ind
JP2000086219A (ja) 1998-09-11 2000-03-28 Futaba Corp 単層カーボンナノチューブの皮膜を形成する方法及びその方法により皮膜を形成された単層カーボンナノチューブ
JP2004506530A (ja) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー巻き付け単層カーボンナノチューブ
JP2004531442A (ja) * 2001-03-26 2004-10-14 ベン‐グリオン、ユニバーシティ、オブ、ザ、ネジェブ 単一カーボンナノチューブの安定な懸濁液および粉末の製造方法
JP2011523929A (ja) * 2008-05-28 2011-08-25 バイオニア コーポレーション 炭素ナノチューブ及び金属でなされたナノ複合体及びこれの製造方法
JP2012500458A (ja) * 2008-08-20 2012-01-05 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト カーボンナノチューブを含有し、減少した抵抗を有する複合材料の製造方法
JP2010241668A (ja) 2009-04-02 2010-10-28 Senka Kk Cnt分散剤及びそれを用いたcnt分散液
JP2012097133A (ja) * 2010-10-29 2012-05-24 Toyo Ink Sc Holdings Co Ltd カーボンナノチューブ分散体、樹脂組成物および成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4015453A4

Also Published As

Publication number Publication date
TW202112657A (zh) 2021-04-01
CN114651033B (zh) 2024-07-02
CN114651033A (zh) 2022-06-21
TWI820344B (zh) 2023-11-01
EP4015453A1 (en) 2022-06-22
KR20220088408A (ko) 2022-06-27
EP4015453A4 (en) 2023-10-25
US20220315730A1 (en) 2022-10-06
JP6714134B1 (ja) 2020-06-24
JP2021031514A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2021033614A1 (ja) カーボンナノチューブ配合凝集物の製造方法
KR101968768B1 (ko) 분쇄 팽창 흑연 응집체, 그의 제조 방법 및 사용 방법
US20100189625A1 (en) Granulated product of carbon nanotube, and method for production thereof
JPH0556372B2 (ja)
CA2515895A1 (en) Reinforced polymer
WO2022265100A1 (ja) 繊維集合体の製造方法及びプリプレグシートの製造方法
WO2020100842A1 (ja) カーボンナノチューブ粒状物およびその製造方法
de Luna et al. Importance of the morphology and structure of the primary aggregates for the dispersibility of carbon nanotubes in polymer melts
US12129354B2 (en) Method for manufacturing carbon nanotube-blended aggregate
JP2011042538A (ja) カーボンナノチューブ樹脂組成物およびその製造方法
JP6694412B2 (ja) 複合樹脂粒子の製造方法、樹脂成形体、及び複合樹脂粒子
JP2018177586A (ja) カーボンナノチューブの造粒方法
TW201938652A (zh) 高度摻合奈米碳管之橡膠粒狀物之製造方法
Peng et al. Electrostatic‐Assembly of Carbon Nanotubes (CNTs) and Polymer Particles in Water: a Facile Approach to Improve the Dispersion of CNTs in Thermoplastics
WO2023042856A1 (ja) ナノカーボン配合凝集物およびその製造方法
WO2024128275A1 (ja) 粒子含有繊維束の製造方法および粒子含有繊維束
JP5464591B2 (ja) 無機微粒子凝集体の製造方法および無機微粒子を含有する樹脂組成物の製造方法
WO2019112011A1 (ja) 発泡体
JP7381498B2 (ja) カーボンナノチューブを含む複合2次粒子及びその製造方法
US11951656B2 (en) Fiber-containing particles with dual-tapered shape
Liu et al. A novel approach in preparing polymer/nano-CaCO 3 composites
JP2024086632A (ja) 繊維束の製造方法
JPH10139920A (ja) カーボンブラック含有成型体の製造方法
TW200300023A (en) Method for producing nanopowder capable of avoiding secondary coagulation and dispersive masterbatch thereof
JP2013108017A (ja) 樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022104058

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020853953

Country of ref document: EP

Effective date: 20220316