WO2022265100A1 - 繊維集合体の製造方法及びプリプレグシートの製造方法 - Google Patents

繊維集合体の製造方法及びプリプレグシートの製造方法 Download PDF

Info

Publication number
WO2022265100A1
WO2022265100A1 PCT/JP2022/024337 JP2022024337W WO2022265100A1 WO 2022265100 A1 WO2022265100 A1 WO 2022265100A1 JP 2022024337 W JP2022024337 W JP 2022024337W WO 2022265100 A1 WO2022265100 A1 WO 2022265100A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
producing
stirring
fiber assembly
Prior art date
Application number
PCT/JP2022/024337
Other languages
English (en)
French (fr)
Inventor
一輝 辻川
健 石川
純 松井
勝司 池田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202280041902.2A priority Critical patent/CN117480288A/zh
Priority to JP2023530434A priority patent/JPWO2022265100A1/ja
Priority to EP22825088.2A priority patent/EP4357496A1/en
Publication of WO2022265100A1 publication Critical patent/WO2022265100A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/12Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft
    • B29B7/16Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft with paddles or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/106Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary using rotary casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • B29B7/286Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring properties of the mixture, e.g. temperature, density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/905Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/02Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fibres, slivers or rovings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/163Coating, i.e. applying a layer of liquid or solid material on the granule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the present invention relates to a method for manufacturing a fiber assembly and a method for manufacturing a prepreg sheet.
  • a fiber-reinforced resin composition is obtained by mixing and dispersing carbon fibers in various resins
  • a plurality of carbon fibers are sized in advance in order to facilitate handling of the carbon fibers and improve workability in the steps of mixing and dispersing.
  • a carbon fiber aggregate obtained by granulating with an agent or the like is used.
  • the carbon fiber aggregate has excellent workability when producing a fiber-reinforced resin composition; stable supply in a feeder; excellent fiber dispersibility in a matrix; excellent physical property improvement effect of the resulting resin composition; is required.
  • a carbon fiber aggregate satisfying such required properties a carbon fiber aggregate having a predetermined average particle diameter and surface-coated with an emulsion-based sizing agent containing an epoxy compound as a main component, or a carbon fiber aggregate bundled with a predetermined sizing agent
  • a carbon fiber chopped strand having a circular or elliptical cross section and having a predetermined compactness is disclosed (for example, Patent Document 1).
  • recycled carbon fibers can be quantitatively and stably supplied to an extruder, etc. by a feeder, and carbon fiber aggregates can be easily and uniformly dispersed in a resin matrix by an extruder, etc.
  • a carbon fiber aggregate comprising carbon fibers and an epoxy resin-based sizing agent and having a predetermined bulk density and the like manufactured by a wet extrusion granulation method is disclosed as a provision of (for example, Patent Document 2).
  • Patent Document 3 As a method for efficiently producing an entangled body composed of carbon fiber short fibers, a method for producing a carbon fiber entangled body by a stirring granulation method in which curved carbon fibers and flexible spheres are stirred together has been disclosed. (for example, Patent Document 3).
  • the present invention includes the following aspects [1] to [45].
  • the following [1] to [45] may be referred to as "first aspect of the present invention”.
  • a method for producing a fiber aggregate which comprises putting a plurality of fibers and a fiber treatment agent into a stirring vessel, and stirring and granulating the mixture of the fibers and the fiber treatment agent with a stirring blade.
  • a method for producing a fiber assembly wherein the fibers contain carbon fibers, and the fibers are granulated so as to be aligned.
  • Horizontally rotating stirring blades and vertically rotating auxiliary stirring blades are arranged in a stirring vessel, and stirring is performed by the horizontally rotating stirring blades and the vertically rotating auxiliary stirring blades.
  • the fiber treatment agent is a liquid, and which includes a step of evaporating the liquid contained in the fiber treatment agent.
  • a method for producing a fiber aggregate to obtain a body. [33] The method for producing a fiber assembly according to [32], wherein the fibers include carbon fibers.
  • a plurality of cotton-like carbon fibers, a resin, and water are put into a stirring vessel, and the plurality of carbon fibers, the resin, and the water are stirred by a stirring blade arranged in the stirring vessel to form granules.
  • a method for manufacturing a fiber assembly in which carbon fibers are aligned [36] The method for producing a fiber assembly in which carbon fibers are arranged according to [35], wherein a raw material containing a plurality of flocculated carbon fibers and a carbonized resin is added. [37] The method for producing a fiber assembly in which carbon fibers are aligned according to [35] or [36], wherein a raw material containing a plurality of flocculent carbon fibers and glass fibers is added.
  • the present invention also includes the following aspects [1a] to [25a]. [1a] to [25a] below may be referred to as "I of the first aspect of the present invention”.
  • [4a] The method for producing a fiber aggregate according to any one of [1a] to [3a], wherein the peripheral speed of the tip of the stirring blade is 1 to 20 m/sec.
  • [5a] A method for producing a fiber aggregate, comprising agitating fibers and a fiber treatment agent using a Henschel mixer to granulate them.
  • [6a] A method for producing a fiber aggregate, comprising agitating fibers and a fiber treatment agent using a granulator to granulate them.
  • [7a] The method for producing a fiber assembly according to any one of [1a] to [6a], wherein the fiber treatment agent has a surface tension of 120 mN/m or less at 23°C.
  • [16a] The method for producing a fiber assembly according to any one of [1a] to [15a], wherein the fiber treatment agent contains at least one selected from solvents, clay minerals, polymers, and surfactants.
  • the fiber treatment agent contains at least one selected from solvents, clay minerals, polymers, and surfactants.
  • [18a] The method for producing a fiber assembly according to any one of [1a] to [17a], wherein the fiber treatment agent is a liquid, and which includes a step of evaporating the liquid contained in the fiber treatment agent.
  • [19a] The method for producing a fiber assembly according to any one of [1a] to [18a], wherein the fiber assembly has a spheroidal shape or a strand shape.
  • [20a] The method for producing a fiber aggregate according to any one of [1a] to [19a], wherein the fibers are granulated so as to be aligned.
  • [21a] A method for producing a fiber assembly, which comprises putting fibers and a liquid fiber treatment agent into a stirring tank, and stirring the mixture of the fibers and the fiber treatment agent with a stirring blade to granulate the mixture.
  • [22a] The method for producing a fiber assembly according to [21a], wherein the fibers have an average fiber length of 1 to 100 mm.
  • [23a] The method for producing a fiber assembly according to [21a] or [22a], wherein 5 to 120 parts by mass of the fiber treatment agent is added to 100 parts by mass of the fibers.
  • [24a] The method for producing a fiber assembly according to any one of [21a] to [23a], wherein the fiber assembly has a spheroidal shape or a strand shape.
  • the manufacturing method of the fiber aggregate according to any one of the above.
  • the present invention also includes the following aspects [1b] to [20b]. [1b] to [20b] below may be referred to as the "second aspect of the present invention”.
  • [1b] A method for producing a fiber assembly, which comprises putting fibers and a fiber treatment agent into a rolling tank and rotating the rolling tank to granulate the fibers.
  • [2b] The method for producing a fiber assembly according to [1b], wherein the fiber treatment agent has a surface tension of 120 mN/m or less at 23°C.
  • [3b] The method for producing a fiber assembly according to [1b] or [2b], wherein the fiber treatment agent has a viscosity of 10 Pa ⁇ s or less at 23°C.
  • [4b] The method for producing a fiber assembly according to any one of [1b] to [3b], wherein the rolling tub is a pan-shaped rotating body.
  • [5b] The method for producing a fiber assembly according to any one of [1b] to [3b], wherein the tumbling tank is a drum-type rotating body.
  • [6b] The method for producing a fiber assembly according to [4b] or [5b], wherein the moving speed of the cylindrical side wall of the rotor is 0.20 to 1.60 m/s.
  • [7b] The method for producing a fiber aggregate according to any one of [1b] to [3b], which has a side wall to which the tumbling tank is fixed, and a rotating container that horizontally rotates within the side wall.
  • [8b] The method for producing a fiber assembly according to [7b], wherein the peripheral speed of the rotating container is 1 to 20 m/s.
  • [9b] The method for producing a fiber assembly according to any one of [1b] to [8b], wherein the fibers have an average fiber length of 1 to 100 mm.
  • [10b] The method for producing a fiber assembly according to any one of [1b] to [9b], wherein 5 to 120 parts by mass of the fiber treatment agent is used with respect to 100 parts by mass of the fibers.
  • [11b] The method for producing a fiber assembly according to any one of [1b] to [10b], wherein the fibers include carbon fibers.
  • [12b] The method for producing a fiber assembly according to any one of [1b] to [10b], wherein the fibers contain glass fibers.
  • the present invention also includes the following aspects [1c] to [16c]. [1c] to [16c] below may be referred to as the "third aspect of the present invention”.
  • [1c] A method for producing a fiber assembly, which comprises granulating by growing particles by liquid-crosslinking the fibers while applying a strain rate to the fibers and the fiber treatment agent.
  • [2c] The method for producing a fiber assembly according to [1c], wherein the strain rate is 1 [1/s] or more and 700 [1/s] or less.
  • [3c] Manufacture of the fiber assembly according to [1c] or [2c], wherein the operation of imparting a strain rate is an operation of imparting a shear rate by moving a stirring blade to bring the fibers and the fiber treatment agent into contact with each other.
  • [4c] The method for producing a fiber aggregate according to [1c] or [2c], wherein the operation of applying the strain rate is an operation of applying the vibration rate by vibrating a container containing the fibers and the fiber treatment agent.
  • [5c] The method for producing a fiber assembly according to [1c] or [2c], wherein the operation of applying the strain rate is an operation of rotating a container containing the fibers and the fiber treatment agent to apply the rotational speed.
  • [6c] The fiber assembly according to [1c] or [2c], wherein the operation of imparting a strain rate is an operation of imparting an airflow shear rate by blowing gas into a container containing the fibers and the fiber treatment agent. Production method.
  • [10c] The method for producing a fiber assembly according to any one of [1c] to [9c], wherein the fibers include at least one type of fiber selected from the group consisting of carbon fibers, glass fibers, and organic fibers.
  • [11c] The method for producing a fiber assembly according to any one of [1c] to [10c], wherein the fiber assembly has a spheroidal shape or a strand shape.
  • [12c] The method for producing a fiber assembly according to any one of [1c] to [11c], wherein the fibers are granulated so as to be aligned.
  • a fiber assembly comprising granulating by growing particles by liquid-bridging the fibers while applying a shear rate by bringing the fibers and the fiber treatment agent into contact with each other by moving a stirring blade. manufacturing method.
  • Method Manufacture of a fiber aggregate comprising granulating by growing particles by liquid-bridging the fibers while performing an operation of rotating a container containing fibers and a fiber treatment agent to give a rotation speed.
  • the present invention also includes the following aspects [1d] to [17d]. [1d] to [17d] below may be referred to as the "fourth aspect of the present invention”.
  • Condition (1) A binary image is obtained by using image analysis software to binarize the image obtained by photographing the fiber bundle left still on the white plate from the vertical direction on the side opposite to the plate as a reference. The binary image is contoured to obtain the fiber bundle contours. The diameter of Feret is obtained from the obtained contour, and is defined as the major axis length A. Let A′ be the major axis length of the ellipse obtained by elliptical approximation of the binary image.
  • [2d] The fiber bundle according to [1d], wherein the major axis length A of the fiber bundle is 3 to 30 mm.
  • [3d] The fiber bundle according to [1d] or [2d], wherein the average fiber length of the fibers in the fiber bundle is shorter than the long axis.
  • [4d] The fiber bundle according to any one of [1d] to [3d], wherein the fibers in the fiber bundle have an average fiber length of 2 to 12 mm.
  • [5d] The fiber bundle according to any one of [1d] to [4d], wherein the fibers present on the surface of the fiber bundle are curved and oriented along the outline of an ellipsoid.
  • the fiber bundle has a major axis, a minor axis 1 and a minor axis 2, and the length B of the minor axis 1 is longer than the length C of the minor axis 2 of [1d] to [5d].
  • the fiber bundle has a long axis to short axis ratio of 1 (B/A) of 2 to 12 and a long axis to short axis of 2 ratio (C/A) of 1 to 6.
  • a fiber assembly comprising a fiber bundle containing a plurality of fibers and a resin or solvent, wherein the fiber bundle has an ellipsoidal shape and A/A specified by the following condition (1) A fiber assembly in which the number ratio of fiber bundles W having ' of 0.75 to 0.93 is 50% or more.
  • a fiber assembly produced by the present invention for example, a carbon fiber assembly, with improved handling workability, quantitative and stable supply is performed by a feeder, and the original physical property improvement effect of carbon fiber is exhibited.
  • a fiber reinforced resin composition and a prepreg sheet can be produced.
  • FIG. 1 is a diagram showing an embodiment of a stirring blade of a stirring vessel used in the method for producing a fiber aggregate according to the first aspect of the present invention.
  • Fig. 1a is a horizontal sectional view of a stirring vessel; 1b is shown in FIG. 1a is a cross-sectional view taken along line bb of FIG.
  • FIG. 2 is a schematic diagram showing an embodiment of a pan granulator used in the method for producing a fiber assembly according to the second aspect of the present invention.
  • Fig. 2a is a side view
  • Fig. Figure 2b shows the internal structure of the granulation pan.
  • FIG. 1 is a diagram showing an embodiment of a stirring blade of a stirring vessel used in the method for producing a fiber aggregate according to the first aspect of the present invention.
  • FIG. 2 is
  • FIG. 3A is a cross-sectional view showing a stationary side wall of a tumbling tank and a rotating vessel used in the method for manufacturing a fiber assembly according to the second aspect of the present invention.
  • FIG. 3B is an internal see-through perspective view showing an embodiment of a tumbling agitation granulator used in the method for producing a fiber assembly according to the first aspect of the present invention.
  • FIG. 4 is a photograph showing an example of the form of recycled fibers.
  • FIG. 5 is a photograph showing an example of the morphology of virgin fibers.
  • Fig. 6a-6d are enlarged photographs showing the ends of SACFB, respectively.
  • FIG. 7 is an enlarged photograph showing the ends of chopped carbon fiber bundles.
  • FIG. 8 is a conceptual diagram of a sheet prepreg manufacturing apparatus.
  • FIG. 9 is an image of the fiber bundle obtained in Example 1.
  • FIG. 10 is a diagram showing the outline of the fiber bundle obtained in Example 1.
  • FIG. 11 is a diagram showing an approximate ellipse of the fiber bundle obtained in Example 1.
  • FIG. 12 is an image of the fiber bundle obtained in Experimental Example 3.
  • FIG. 13 is an image of the fiber bundle obtained in Experimental Example 4.
  • first aspect to third aspect of the present invention In the method for manufacturing a fiber assembly according to the first aspect of the present invention, at least carbon fibers are used as fibers, a plurality of fibers and a fiber treatment agent are put into a stirring tank, and a mixture of the fibers and the fiber treatment agent is stirred with a stirring blade. is a method of producing a fiber aggregate by granulating so that the fibers are aligned by stirring with. According to this aspect, it is possible to obtain a fiber assembly in which the fibers are evenly aligned even when raw material fibers having a long fiber length are used.
  • An example of a fiber aggregate is a self-assembled carbon fiber bundle.
  • Granulation may aggregate a plurality of fibers to form one granular unit.
  • a Henschel mixer or granulator can be used as the stirring granulator.
  • the following steps 1 to 4 are performed. 1. 2. Wetting the fiber with a fiber treatment agent; 2. contacting the wet fibers; Process in which liquid bridges occur between fibers oriented in the same direction 4.1. ⁇ 3. A process in which the fiber bundle grows by repeating the above process. By applying a stirring force to the mixture of the fiber and the fiber treatment agent, the fiber treatment agent is efficiently attached to the fiber surface and the contact and orientation of the fibers are promoted. be able to.
  • a fiber aggregate is produced by putting fibers and a fiber treatment agent into a tumbling tank and granulating them by rotating the tumbling tank.
  • the method Also in this method of manufacturing a fiber assembly, the following steps 1 to 4 are performed. 1. 2. Wetting the fiber with a fiber treatment agent; 2. contacting the wet fibers; Process in which liquid bridges occur between fibers oriented in the same direction 4.1. ⁇ 3. A process in which the fiber bundle grows by repeating the above process.
  • the fiber treatment agent is efficiently attached to the fiber surface, and the fibers are separated from each other. It can promote contact and orientation.
  • granulation is performed by liquid-bridging the fibers to grow particles while applying a strain rate to the fibers and the fiber treatment agent.
  • a method for manufacturing a fiber assembly Also in this method of manufacturing a fiber assembly, the following steps 1 to 4 are performed. 1. 2. Wetting the fiber with a fiber treatment agent; 2. contacting the wet fibers; Process in which strong liquid bridges are generated between fibers oriented in the same direction 4.1. ⁇ 3. A process in which the fiber bundle grows by repeating the step of growing the fiber bundle. By applying a strain rate at this time, the fiber treatment agent can be efficiently adhered to the fiber surface, and the contact and orientation of the fibers can be promoted.
  • strain rate liquid bridge
  • self-assembled carbon fiber bundles are as follows.
  • the blowing speed of the airflow is the maximum speed. If the object is moving, the maximum speed can also be obtained by filming the movement with a video camera and deriving the distance that the set reference point moves per unit time from image processing.
  • Liquid bridge It refers to the presence of liquid in narrow gaps between powder particles and solid surfaces, or between particles. Since the liquid bridges formed between the particles are subjected to a negative pressure due to capillary force, the particles are fixed by the attraction (liquid bridge force).
  • the liquid bridge in the present invention refers to a liquid bridge that occurs in the gap between fibers, and the liquid bridge force when the fibers are in contact so as to cross each other is weak because it acts at a point, and when the fibers are in parallel contact. The liquid bridge force is strong because it acts as a line. The liquid bridges that occur in the fibers occur continuously in the length direction of the fibers. The effect of changing and orienting in the same direction can also be expected.
  • a SACFB is one aspect of a fiber assembly, and is formed through a process in which a plurality of short carbon fibers self-aggregate to form a bundle. All of the short carbon fibers may be monofilaments prior to forming the SACFB. That is, a SACFB can be formed by aggregating a plurality of carbon fiber filaments into a bundle. In another example, a SACFB may be formed by agglomerating a plurality of fine carbon fiber bundles, each consisting of a small number of filaments, eg, less than 100 filaments.
  • the SACFB may be formed by agglomerating a plurality of carbon fiber monofilaments and a plurality of fine carbon fiber bundles. At the end of the SACFB, as illustrated in FIGS. 6(a) to 6(d), the positions of the tips of the plurality of carbon fibers forming the bundle are irregular.
  • a bottomed cylindrical stirring vessel 1 has a rotating shaft 2 on its central axis, and from this rotating shaft 2, a plurality of (three in Fig. 1a) propeller-shaped stirring blades are attached. Those that extend radially at even intervals are preferred. A disk-shaped stirring blade perpendicular to the rotating shaft may be used. A disc with undulations and protrusions is also acceptable.
  • the stirring blade 3 is bent at an angle ⁇ in the middle of its longitudinal direction.
  • the stirring blades are not limited to curved blades as described above, and straight plate-shaped blades may also be used.
  • the stirring impeller may be arcuately bent.
  • Some stirring granulators are equipped with auxiliary stirring blades (choppers) for auxiliary stirring on the walls of the stirring tank. Any type of agitator granulator can be used in the first aspect of the invention.
  • the stirring vessel of the stirring granulator may be equipped with a scraper on the bottom or side. Granulation efficiency can be improved by providing a scraper in the stirring vessel.
  • the rotation direction condition of the stirring granulator is such that the peripheral speed of the tip of the stirring blade (3a part in Fig. 1a) (hereinafter simply referred to as “peripheral speed”) is in the range of 1 to 20 m / sec. is preferred. If the peripheral speed is 1 m/sec or more, it is possible to stir the mixed fiber particles while circulating them in the stirring tank. If the peripheral speed is 20 m/sec or less, it is possible to make the particle shape of the fiber assembly uniform.
  • the peripheral speed of the stirring blade is more preferably 4 to 12 m/sec, even more preferably 4 to 8 m/sec.
  • the peripheral speed of the chopper is preferably in the range of 5-30 m/sec.
  • the stirring time of the stirring granulator there is no particular limitation on the stirring time of the stirring granulator, and the stirring may be performed for a period of time during which a desired fiber aggregate can be obtained.
  • the temperature during stirring is not particularly limited, and the stirring can be carried out at room temperature. A rise in the temperature of the container or mixture due to the effects of agitation is permissible.
  • the fiber treatment agent is liquid when granulated, and the type of fiber treatment agent, stirring time, The temperature during stirring can also be adjusted.
  • the agitation conditions are adjusted so as to obtain not spherical carbon fiber balls in which the fibers are crimped, but fiber aggregates in a straight state. Carbon fiber balls are likely to be formed when fiber treatment agents, especially liquids, are not included at all, or when a large amount of liquid is added and fibers are agitated to obtain aggregates, or when the average fiber length of the raw material is 1 mm or less.
  • the stirring granulator may be any granulator having a cylindrical container and stirring blades rotatable by a rotating shaft.
  • the stirring impeller include a paddle type, propeller type, turbine type, anchor type, ribbon type, and the like.
  • SP Granulator Denalton
  • High Speed Mixer Earth Technica
  • Vertical Granulator Panrex
  • Redige Mixer Moatsubo
  • Super Mixer Kawata
  • Power Kneader Feuji Paudal
  • Henschel Mixer Mitsubishi Mixer
  • Universal Mixer Shinagawa Kogyosho
  • Spartan Leuser Feuji Paudal
  • Bite Mix Hosokawa Micron
  • Combined type granulators of agitating granulator and fluidized bed granulator include Multiplex granulator (Powrex), Spiracoater (Powrex), Spiraflow (Freund), New Marumerizer (Fuji Paudal). .
  • the stirring tank has a horizontally rotating stirring blade (agitator) and a vertically rotating auxiliary stirring blade (chopper), and the horizontally rotating stirring blade and the vertically rotating auxiliary stirring blade are used. Efficient stirring granulation can be performed by stirring with a stirring blade. Auxiliary stirring blades rotating in the vertical direction have the role of crushing granules that have become too large and uniformizing the size of the fiber aggregates.
  • the raw materials before being put into the stirring granulator may be raw materials that have not undergone wet mixing. That is, it is possible to put a plurality of fibers in a dry state as a raw material, instead of a fiber aggregate in a wet state, directly into a stirring tank and stir them.
  • the timing of completion of granulation is not particularly limited, but it is preferable that the fiber aggregates are formed to the extent that the particle size distribution can be specified.
  • ⁇ Drying process> In the method for producing a fiber assembly according to the first aspect of the present invention, after stirring and granulating as described above, it is preferable to perform a drying step of evaporating the liquid derived from the fiber treatment agent contained in the obtained granules. .
  • the conditions for the drying process also vary depending on the type of fiber treatment agent used. Drying may be performed using a dryer at 50 to 150° C. for about 1 to 5 hours.
  • the sieve mesh is arranged so as to partition the inner space of the container in the longitudinal direction.
  • the fiber assembly is supplied from one end in the longitudinal direction of the slanted container, and is discharged from the other end of the container by moving vertically downward in the container. Due to the vibration of the container, large fiber aggregates remain on the screen, and small fiber aggregates pass through the screen and fall below the screen.
  • a classified fiber assembly is obtained by collecting the fiber assembly on the sieve and the fiber assembly under the sieve.
  • the mesh shape and mesh size of the sieve are adjusted so that the fiber aggregate can be sieved to a desired size.
  • the mesh shape is preferably rectangular or rhombic.
  • the mesh shape may be square or circular.
  • sieves include vibrating screens (Dalton), finger screens (Taiyo Machinery).
  • the classification process can also be used after applying it to the raw material fibers to increase the uniformity of the fibers.
  • ⁇ Rolling tank> As the tumbling tank used in the second aspect of the present invention, a pan-type rotating body or a drum-type rotating body can be used.
  • the bread granulator of FIG. 2 is configured such that a granulation pan 11 rolls on a rolling shaft 12 .
  • 13 is a motor
  • 14 is a speed reducer
  • 15 is a pan support
  • 16 is a machine base
  • 17 is a suppression angle adjusting device.
  • An arm 21 having a sprayer 22 and a scraper 23 is provided in the granulation pan.
  • the moving speed of the cylindrical side wall of such a rotating body is preferably 0.20-1.60 m/s, more preferably 0.50-1.00 m/s. If the moving speed of the cylindrical side wall is equal to or higher than the above lower limit, it is possible to make the shape of the fiber assembly uniform while moving the fiber mixture upward by centrifugal force and crushing it by the impact caused by sliding down. If the moving speed of the cylindrical side wall is equal to or less than the above upper limit, the centrifugal force acts appropriately and the fiber mixture moves upward, and crushing and granulation by sliding down are efficiently performed, so productivity can be improved.
  • the tumbling tank preferably has a fixed side wall 31 and a rotating container 32 that rotates horizontally within the side wall.
  • the peripheral speed of the rotating container is preferably 1 to 20 m/s, more preferably 5 to 10 m/s. If the outer peripheral speed of the rotating vessel is equal to or higher than the above lower limit, the movement of the fiber mixture in the circumferential direction and the collision with the wall surface due to the centrifugal force occur continuously, and the shape of the fiber assembly is made uniform by crushing and granulation. is possible. If the outer peripheral speed of the rotating container is equal to or less than the above upper limit, the centrifugal force acts appropriately and balances with the gravity applied to the fiber mixture, and crushing and granulation are efficiently performed, so that productivity can be improved.
  • the tumbling granulator may be any granulator having a rotatable container, and a cylindrical container can be used.
  • the rotatable container has the role of a rolling tank and a stirring tank by being equipped with the stirring blades described above, and can be used for stirring granulation as a mode of a rolling stirring granulator described later.
  • Cylindrical containers include pan types such as regular pans, multi-level pans, irregular pans, parabolic pans, double pans, truncated cone pans, and drum types.
  • tumbling granulator examples include pan-type granulator (Nippon Spindle), Spiracoater (Okada Seiko), Spiral Flow (Freund Corporation), and New Marumerizer (Fuji Paudal).
  • a tumbling agitator granulator is described with reference to FIG. 3B.
  • one aspect of the tumbling agitation granulator consists of a rotatable container 40 containing raw material fibers and a fiber treatment agent, and a central axis 41 of the container 40 inside the container 40 .
  • a rotating shaft portion 42 is arranged parallel to the center axis 41 at a more eccentric position.
  • the rotating shaft part 42 is preferably rotatable in a direction opposite to the rotating direction of the container 40 . By rotating in the opposite direction, the impact force between the stirring impeller and the fiber assembly increases, and strong shearing makes it possible to straighten the fibers in a short period of time.
  • the rotating shaft portion 42 may rotate in the same direction as the container 40 .
  • the rotating direction of the stirring blade is opposite to the rotating direction of the container, the number of filaments contained in the fiber assembly tends to be small, and the distribution of the number and shape of the filaments contained in the fiber assembly tends to be uniform.
  • the direction of rotation is the same as the direction of rotation of the container, the number of filaments contained in one fiber assembly is large, and the fibers tend to be easily gathered.
  • Rotating shaft 42 extends to the vicinity of bottom plate 43 of container 40 and has stirring blades 44 that move within the region of the mixture of fibers and fiber treatment agent. Rotation of the container 40 circulates the mixture, and rotation of the stirring blades 44 imparts shear to the mixture to make the fibers uniform.
  • the blades of the stirring blades 44 can be applied in the mode described for the stirring granulator.
  • a scraper 45 is provided on the side of the container 40 .
  • the interior of container 40 may be provided with scrapers on the sides, bottom, or both. The scraper 45 can scrape off the adhering raw material.
  • the tip peripheral speed is 1 m/sec or more, it is possible to straighten the fibers in a short time and increase the density of the fiber assembly. On the other hand, if the tip peripheral speed is 30 m/sec or less, it is possible to make the particle shape of the fiber assembly uniform.
  • the peripheral speed of the stirring blade 44 can be 10 to 20 m/sec or 1 to 8 m/sec.
  • the strain rate applied to the fibers and the fiber treatment agent is preferably 1 [1/s] or more and 700 [1/s] or less. If the strain rate is equal to or higher than the above lower limit, the fibers are easily oriented. If the strain rate is equal to or less than the above upper limit, uniform particles (fiber bundles) can be obtained.
  • the strain rate is preferably 10 to 500 [1/s], particularly preferably 20 to 200 [1/s].
  • the height of the preparation when the fiber is put into the container is 1/50 or more of the container height and 2 times or less of the container height. If the charged height is equal to or higher than the above lower limit, the fibers are easily oriented. Uniform particles (fiber bundles) can be obtained if the feed height is equal to or less than the above upper limit.
  • the charging height is preferably at least 1/10 of the height of the container and below the height of the container, more preferably at least 1/5 of the height of the container and 4/5 of the height of the container.
  • the amount of strain given to the fiber and fiber treatment agent is preferably 5,000 [-] or more and 230,000 [-] or less. If the amount of strain is equal to or higher than the above lower limit, it is easy to orient the fibers. Uniform particles (fiber bundles) can be obtained if the amount of strain is equal to or less than the above upper limit.
  • the strain amount is preferably from 5,000 to 100,000 [-], more preferably from 5,000 to 20,000 [-].
  • the agitating granulator is as described in the method for producing a fiber aggregate according to the first aspect of the present invention, and its preferred aspect, agitating conditions, etc. are also as described above.
  • the strain rate is the peripheral speed of the outermost diameter of the stirring blade (peripheral speed of the tip 3a of the stirring blade 3) [m/s], and the charging height of the stirring blade in the stirring tank 3 and the raw material. It is obtained as a value divided by [m].
  • Strain rate [/s] Peripheral speed of stirring blade [m/s]/Preparation height [m]
  • v (2 ⁇ /T)Acos(2 ⁇ t/T)
  • the strain rate is obtained by dividing the maximum velocity (v) [m/s] generated by vibration by the feed height.
  • Strain rate [/s] maximum speed generated by vibration [m/s] / preparation height [m] Any method may be used to measure the amplitude and period.
  • the set value of the shaker itself may be used, or the vibration itself may be photographed with a video camera and obtained from the amplitude and period through image processing.
  • the blowing speed of the airflow is the maximum speed.
  • the fibers used for manufacturing the fiber assembly (hereinafter sometimes referred to as "raw fibers") contain carbon fibers. As long as the raw material fiber contains carbon fiber, it may further contain inorganic fiber or organic fiber other than carbon fiber.
  • inorganic fibers other than carbon fibers include glass fibers, carbon fibers, boron fibers, silicon carbide fibers, silicon nitride fibers, alumina fibers, stainless steel fibers, and piano wires.
  • Organic fibers include chemical fibers and natural fibers.
  • Natural fibers include plant fibers such as cotton, hemp, kenaf, bamboo cotton, bamboo rayon, and rayon, and animal fibers such as wool and silk.
  • the raw material fibers are not limited to virgin fibers, but may be recycled fibers.
  • recycled fibers include fibers obtained by decomposing a matrix using heat, a subcritical fluid, or a supercritical fluid, and fibers obtained by cutting scraps of a fiber base material. The matrix can be completely removed until the recycled fiber is flocculated. If there is a resin residue that cannot be completely removed, it may be removed by heat treatment in an oxidizing atmosphere.
  • the raw material fiber is a collection of a plurality of discontinuous fibers (short fibers), and may be flocculated or aligned. If the monofilaments are collected to such an extent that they do not scatter, the efficiency of conversion to a fiber assembly will be high.
  • the discontinuous fibers may be obtained by cutting a bundle of continuous fibers, or fibers in a discontinuous form may be used.
  • the continuous fibers may be tows, or may be taken from prepregs, molded articles, or the like. For example, recycled fibers obtained by decomposing a matrix with heat are in a dry, cotton-like state immediately after being heated.
  • a sizing agent or FRP matrix resin may be attached to the raw material fibers.
  • the amount of residual resin in raw material fibers such as carbon fibers is, for example, in the range of 0.01 to 10%.
  • the fiber diameter of raw material fibers such as carbon fibers.
  • the fiber diameter of the raw material fiber is a normal fiber diameter, for example, in the range of 5 ⁇ m to 20 ⁇ m.
  • the bulk density of raw material fibers is, for example, in the range of 0.01 to 0.90 g/cm 3 . If the bulk density of the raw material fibers is in the range of 0.01 to 0.040 g/cm 3 , it can easily be converted into a fiber aggregate having a bulk density higher than that of the raw material fibers.
  • the fiber treatment agent is not particularly limited as long as it can granulate fibers into a fiber aggregate.
  • the fiber treatment agent may be liquid.
  • Examples of fiber treatment agents include solvents, organic compounds dissolved in solvents, organic compounds mechanically dispersed in solvents, organic compounds dispersed in solvents with surfactants, and solvents added. A material whose viscosity has been lowered by heating can be used. From the viewpoint of being able to form liquid bridges between fibers at room temperature, the fiber treatment agent is preferably liquid at room temperature.
  • solvents examples include organic solvents such as alcohols, ketones and hydrocarbons, and water.
  • Granulation accelerators include organic thickeners such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), xanthan gum, guar gum, starch, polyvinyl alcohol, polyacrylamide, polyethylene glycol and polyethylene oxide; montmorillonite, saponite, hectorite. , smectite clay minerals such as bentonite, beidellite, nontronite, sauconite, stevenside, laponite and synthetic smectite, and inorganic thickeners such as white carbon such as hydrous silica, anhydrous silica and hydrous silicate.
  • the fiber treatment agent may contain one or more selected from solvents, clay minerals, resins and surfactants to form liquid bridges between fibers, facilitate orientation of the fibers, and improve fiber assembly. It is preferable from the viewpoint of improving the bulk density of and uniformizing the particle shape. From the viewpoint of safety, the fiber treatment agent includes water, an organic compound dissolved in water, an organic compound mechanically dispersed in water, and an organic compound dispersed in water with a surfactant. is preferred. A polymer may be included as one aspect of the resin.
  • solvents examples include alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, organic solvents such as hydrocarbons such as hexane, cyclohexane, benzene, toluene and styrene, and water. Water is preferable from the viewpoint of forming a liquid bridge.
  • Clay minerals include montmorillonite, saponite, hectorite, bentonite, beidellite, nontronite, sauconite, stevenside, laponite, and synthetic smectite.
  • resins examples include ABS resin, vinylidene chloride latex, vinyl chloride resin, butadiene resin, fluorine resin, polyacetal, polyamide resins such as nylon 6 and nylon 66, boarylate, polyetherimide, polyetheretherketone, polyethylene, and polyethylene oxide.
  • polyesters such as polyethylene terephthalate and polybutylene terephthalate; thermoplastic resins such as polycarbonate, polystyrene, polysulfone, polyvinyl ether, polyphenylene oxide, polyphenylene sulfide, polypropylene, methacrylic resin; Thermosetting resins such as saturated polyester resins, furan resins, polyimides, polyurethanes, melamine resins, urea resins; Synthetic rubber such as; From the viewpoint of maintaining the shape of the fiber bundle, the resin preferably contains at least one selected from epoxy resins, urethane resins, and polyamide resins.
  • thermoplastic resins such as polycarbonate, polystyrene, polysulfone, polyvinyl ether, polyphenylene oxide, polyphenylene sulfide, polypropylene, methacrylic resin
  • Thermosetting resins such as saturated polyester resins, furan resins, polyimides, polyurethanes,
  • surfactants examples include anionic surfactants such as alkyl ether carboxylates, cationic surfactants such as aliphatic quaternary ammonium salts and imidazolinium salts, amphoteric surfactants such as carboquine betaine type, poly Nonionic surfactants such as oxyethylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, polyethylene glycol fatty acid esters, and the like can be mentioned.
  • anionic surfactants such as alkyl ether carboxylates
  • cationic surfactants such as aliphatic quaternary ammonium salts and imidazolinium salts
  • amphoteric surfactants such as carboquine betaine type
  • poly Nonionic surfactants such as oxyethylene alkyl ethers, polyoxyethylene glycerin fatty acid esters, polyethylene glycol fatty acid esters, and the like can be mentioned.
  • the fiber treatment agent preferably has one or both of the following physical properties (1) and (2).
  • (1) Surface tension at 23°C is 120 mN/m or less
  • Viscosity at 23°C is 10 Pa s or less
  • the surface tension of the fiber treatment agent at 23° C. is 120 mN/m or less, liquid bridges can be formed between fibers, and the fibers can be easily moved and oriented.
  • the surface tension of the fiber treatment agent at 23° C. can be 110 mN/m or less, 100 mN/m or less, 90 mN/m or less, 72 mN/m or less, 60 mN/m or less, 50 mN/m or less, or 40 mN/m or less.
  • the surface tension of the fiber treatment agent at 23° C. can be 10 mN/m or more, 15 mN/m or more, 20 mN/m or more, or 30 mN/m or more.
  • the surface tension at 23° C. is a value measured by a plate method (perpendicular plate method).
  • a fiber treatment agent having a surface tension within the above range at the stirring temperature can be used. If the surface tension of the fiber treatment agent is equal to or higher than the above lower limit, an appropriate capillary negative pressure is applied to the liquid bridges connecting the fibers, and the fibers are adsorbed and oriented to obtain a dense fiber assembly. If the surface tension is equal to or less than the above upper limit, the fiber treatment agent will appropriately wet the fiber surface, liquid bridges will efficiently occur, and the fiber granulation efficiency will be excellent.
  • the viscosity of the fiber treatment agent at 23° C. is 10 Pa ⁇ s or less, it is possible to make the particle shape of the fiber assembly uniform.
  • the viscosity of the fiber treatment agent at 23° C. can be 8 Pa ⁇ s or less, 5 Pa ⁇ s or less, 2 Pa ⁇ s or less, or 0.5 Pa ⁇ s or less.
  • the viscosity of the fiber treatment agent at 23° C. can be 0.0001 Pa ⁇ s or more.
  • the viscosity at 23° C. is a value measured with a B-type rotational viscometer.
  • the viscosity of the fiber treatment agent is equal to or less than the above upper limit, friction between the fibers is moderately generated, whereby a uniform fiber assembly with a regular shape can be obtained.
  • the fiber treatment agent wets and spreads on the surface of the fiber, so that liquid bridges are efficiently generated and the effect of granulating the fiber is excellent.
  • the surface tension of the fiber treatment agent at 23°C can be adjusted, for example, by mixing a surfactant or solvent.
  • the viscosity of the fiber treatment agent at 23° C. can be adjusted, for example, by mixing a granulation accelerator or solvent.
  • the amount of the fiber treatment agent used is at least the above lower limit, an appropriate amount of liquid bridges are generated between the fibers, promoting the flow and adsorption of the fibers and allowing them to be appropriately oriented, thereby obtaining a dense fiber assembly. be able to.
  • the amount of the fiber treatment agent used is equal to or less than the above upper limit, it is possible to obtain a fiber assembly that maintains the particle shape without disappearing liquid bridges between fibers and without being slurried. It is more preferable to use 20 to 80 parts by mass of the fiber treatment agent per 100 parts by mass of the fibers.
  • the amount of the fiber treatment agent per 100 parts by mass of the fiber is 5 to 12 mm from the viewpoint of facilitating drying and adjusting the size of the fiber assembly to be suitable for pellets. It is preferable to use 50 parts by mass, more preferably 10 to 40 parts by mass.
  • the amount of the fiber treatment agent is 20 to 20 to 100 parts by mass of the fiber. It is preferable to use 120 parts by mass, more preferably 30 to 80 parts by mass.
  • the fiber treatment agent may be put into the agitating granulator in its entirety together with the fiber, may be intermittently divided, or may be put in continuously.
  • ⁇ Fiber assembly> by granulating fibers and a fiber treatment agent, a fiber aggregate having a high bulk density in which the fibers are aligned while maintaining the length without cutting the fibers is produced. be able to.
  • the average fiber length of the fibers in the fiber assembly is preferably 1-100 mm, particularly preferably 2-50 mm.
  • the average fiber length of the fibers in the fiber assembly is preferably 2 to 12 mm when used for a fiber-reinforced resin composition (pellets) used for extrusion molding.
  • the average fiber length of the fibers of the fiber assembly is preferably 12 to 50 mm when used for a fiber-reinforced resin composition (prepreg) used for press molding.
  • the shape of the obtained fiber assembly is not particularly limited, but in the application as reinforcing fibers, it is preferably in the shape of a spheroid or strand.
  • An example of a prolate sphere is an ellipsoid, and the diameter of the thickest part is 0.1 mm to 10 mm, the length of the long axis is longer than the average fiber length of the fibers in the fiber assembly, 3 mm to 150 mm,
  • the cross-sectional shape can be circular, elliptical, or the like.
  • the shape of the fiber aggregate when used for pellets is a spheroid shape from the viewpoint of feed efficiency to the kneader, the diameter of the thickest part is 2 mm to 7 mm, and the length of the major axis is the length of the fiber in the fiber aggregate. and the ratio (long axis length/average fiber length) is preferably 1.1 to 5.0 times and 3 mm to 18 mm.
  • the shape of the fiber assembly when used for the prepreg is a strand shape from the viewpoint of facilitating the distribution and uniform deposition of the fiber assembly, the diameter of the thickest part is 2 mm to 10 mm, and the bundle length is in the fiber assembly. It is preferable that the ratio (bundle length/average fiber length) is 1.1 times to 3.0 times and 12 mm to 150 mm.
  • the long axis of this fiber assembly is preferably longer than the average fiber length of the fibers contained in the fiber assembly.
  • the bulk density of the fiber assembly can be, for example, 0.03-0.7 g/cm 3 .
  • the bulk density is preferably 0.1 g/cm 3 or more, particularly preferably 0.2 g/cm 3 or more, from the viewpoint of the transport efficiency of the fiber assembly, although it varies depending on the raw material fibers used.
  • the bulk density can be 0.1 g/cm 3 or more and less than 0.3 g/cm 3 and 0.1 g/cm 3 or more and 0.29 g/cm 3 or less. can.
  • the bulk density can be 0.3 g/cm 3 to 0.6 g/cm 3 .
  • the bulk density is preferably 0.15 g/cm 3 or more, particularly preferably 0.2 g/cm 3 or more, because the amount that can be fed at one time can be increased.
  • the angle of repose of the fiber assembly is preferably 60° or less, more preferably 50° or less.
  • the bulk density and angle of repose of the fiber assembly, which can be 10° or more, are measured by the methods described in Examples below.
  • the fiber content in the fiber assembly can be, for example, 10-99% by mass. When used for pellet production, the fiber content in the fiber assembly can be, for example, 80-99% by mass. When the fiber assembly is directly put into a mold or the like and used for molding, the fiber content in the fiber assembly can be, for example, 10 to 70% by mass. When the fiber assembly contains a resin, it is preferably contained in an amount of 0.1 to 20 parts by mass, particularly 0.5 to 10 parts by mass, per 100 parts by mass of the fibers in the fiber assembly.
  • the fiber aggregate, particularly the carbon fiber aggregate, produced by the method for producing a fiber aggregate according to the first aspect of the present invention is a fiber reinforced fiber such as various prepregs (random, unidirectional), pellets, and stampable sheets as reinforcing fibers. It can be effectively used for a resin composition molding material.
  • a method for producing a prepreg sheet includes stacking a plurality of fiber aggregates produced by the method for producing a fiber aggregate described above.
  • a prepreg that can be manufactured using SACFB as a fiber aggregate is a sheet prepreg.
  • a sheet prepreg can be manufactured through the following first to fourth steps.
  • First step A step of applying a liquid thermosetting resin composition to each surface of the first protective film and the second protective film.
  • Second step depositing a plurality of short carbon fiber bundles containing SACFB on the surface of the first protective film coated with the liquid thermosetting resin composition to form a carbon fiber mat.
  • Third step The second protective film is laminated to the first protective film with the carbon fiber mat sandwiched therebetween so that the surfaces coated with the liquid thermosetting resin composition face each other to form a laminate.
  • Fourth step impregnating the carbon fiber mat with the liquid thermosetting resin composition by pressing the laminate to obtain a sheet prepreg.
  • the first protective film and the second protective film are synthetic resin films, and the material can be appropriately selected from polyolefins such as polyethylene and polypropylene, polyvinylidene chloride, vinyl chloride resin, polyamide, and the like.
  • the first protective film and the second protective film may be multilayer films.
  • the specifications of the first protective film and the second protective film may be the same or different.
  • a carbon fiber mat is formed by depositing a plurality of short carbon fiber bundles containing SACFB on the surface of the first protective film coated with the liquid thermosetting resin composition, for example, by spraying. Form.
  • the amount of the liquid thermosetting resin composition applied to the first protective film and the second protective film in the first step and the basis weight of the carbon fiber mat formed on the first protective film in the second step are the sheets to be manufactured. Adjust in consideration of the basis weight and fiber content of the prepreg.
  • the prepreg is aged until the liquid thermosetting resin composition has a sufficiently high viscosity.
  • the first protective film and the second protective film may be carrier films unwound from rolls.
  • a long sheet prepreg can be continuously manufactured using a sheet prepreg manufacturing apparatus whose conceptual diagram is shown in FIG.
  • the sheet prepreg manufacturing apparatus shown in FIG. 8 has a section for applying a liquid thermosetting resin composition to the first protective film unwound from the roll, and a section for scattering carbon fiber bundles on the first protective film to deposit a carbon fiber mat.
  • a press molding method can be preferably used as a molding method when manufacturing a CFRP product using a prepreg using SACFB, but it is not limited.
  • this molding method for example, a molding method other than the press molding method, such as an autoclave molding method, can be used.
  • the fiber bundle according to the fourth aspect of the present invention contains a plurality of carbon fibers and a resin or solvent, the fiber bundle has an ellipsoidal shape, A'/A specified by the following condition (1) is 0.75 to 0.93.
  • the fiber bundle according to the fourth aspect is one aspect of the fiber assembly.
  • Condition (1) A binary image is obtained by binarizing the image obtained by photographing the fiber bundle left still on the white plate from the side opposite to the vertical direction plate using image analysis software. The binary image is contoured to obtain the fiber bundle contours. The diameter of Feret is obtained from the obtained contour, and is defined as the major axis length A. Let A′ be the major axis length of the ellipse obtained by elliptical approximation of the binary image.
  • the cross-sectional shape of the fiber bundle cut in the same direction as the major axis becomes elliptical or circular.
  • the cross-sectional shape tends to have corners and protruding fibers at the tip of the major axis of the cross-sectional shape.
  • A'/A When A'/A is 0.93 or less, the fiber bundle is oriented in the flow direction and easily flows in the feeder, and the fiber bundle is arranged so that the gap in the feeder is reduced. can be supplied continuously.
  • A'/A can be, for example, 0.93 or less, 0.92 or less, or 0.91 or less.
  • A'/A can be, for example, 0.75 or more, 0.80 or more, 0.81 or more, or 0.85 or more.
  • the major axis length A of the fiber bundle W is preferably 3 mm or longer, more preferably 4 mm or longer. From the viewpoint of preventing bridging, the major axis length A can be 30 mm or less and 25 mm or less.
  • Condition (1) can be implemented, for example, by the following method.
  • the average fiber length of the fibers in the fiber bundle W is preferably 1-100 mm, particularly preferably 2-50 mm. When used for pellet production, the average fiber length of the fibers in the fiber bundle W is preferably 2 to 12 mm.
  • the average fiber length is preferably a weighted average fiber length, which can be measured by the method described in Examples below.
  • the average fiber length of the fibers can be shorter than the major axis A and can be in the relationship of 0.2 ⁇ A to 0.8 ⁇ A mm.
  • the number of filaments contained in the fiber bundle W can be, for example, 8000 or more and 800000 or less. Since the number of filaments is larger at the center of the long axis of the fiber bundle W than at the end of the long axis, the fiber bundle W can have an ellipsoidal shape.
  • the fibers in the fiber bundle W are aligned to form a fiber bundle.
  • the fibers present on the surface of the fiber bundle are preferably curved and oriented along the contour of the ellipsoid.
  • the ellipsoid has a major axis, a minor axis 1 and a minor axis 2, with the length B of minor axis 1 being equal to the minor axis 2 in order to prevent the fiber bundle from occluding at the constriction of a hopper, for example, in a feeder.
  • B is longer than the length C of and close to the length C of the minor axis 2 .
  • B is preferably 3.0 times or less, 2.0 times or less, and can be 1.1 times or more, for example, 1.5 times or more, as large as C from the viewpoint of preventing bridging.
  • B is preferably 1 mm or more, more preferably 2 mm or more, from the viewpoint of supply amount control.
  • B is usually 9 mm or less, preferably 8 mm or less, more preferably 6 mm or less.
  • C is preferably 0.5 mm or more, more preferably 1 mm or more.
  • C is usually 6 mm or less, preferably 4 mm or less, more preferably 3 mm or less.
  • the ratio (B/A) of the long axis to 1 short axis can be 2-12, and the ratio (C/A) of the long axis to 2 short axes can be 1-6.
  • the fiber aggregate preferably has a number ratio of fiber bundles W of 45% or more, more preferably 50% or more, even more preferably 60% or more, and particularly preferably 80% or more. .
  • the number percentage can be less than 100%.
  • the number ratio is obtained by extracting 100 to 10000 fiber bundles from the fiber assembly and dividing the number of fiber bundles W in the extracted fiber assembly by the extracted number.
  • a fiber bundle with a width of 4.5 cm 3 to 450 cm 3 was scooped from the fiber assembly with a weighing container, placed on a white plate so that the scooped fiber bundles did not overlap, and the multiple arranged fiber bundles were photographed with a digital camera.
  • A'/A of each fiber bundle can be obtained by using the image analysis method of condition (1) for the image obtained by the above. It is preferable to extract the fiber bundles from the fiber assembly from which aggregates of a plurality of fiber bundles and fine powder have been removed.
  • the fiber bundle W is obtained by spontaneously bundling the short fibers by mixing cotton made of short fibers with a liquid. Specifically, it can be produced by granulation such as tumbling granulation, stirring granulation, and fluidized bed granulation. For example, cotton made of short carbon fibers and a liquid are put into an agitating granulator and stirred at a stirring blade (agitator) rotation speed of 120 to 470 rpm and a chopper rotation speed of 2000 to 3000 rpm to obtain A'/A. It can be a specific range.
  • the liquid is preferably used in an amount of 5 to 120 parts by mass, more preferably 20 to 80 parts by mass, based on 100 parts by mass of the fiber.
  • the components constituting the liquid can use the resins and solvents described above.
  • Examples of a granulating agitator suitably used for producing the fiber bundle W include the agitating granulator shown in FIG. . The same applies to the specific stirring granulator, stirring conditions, and the like.
  • the peripheral speed (hereinafter simply referred to as “peripheral speed”) of the tip of the stirring blade (3a part in Fig. 1a) is in the range of 1 to 20 m / sec. is preferred. If the peripheral speed is 1 m/sec or more, it is possible to stir the mixed fiber particles while circulating them in the stirring tank. If the peripheral speed is 20 m/sec or less, it is possible to make the particle shape of the fiber assembly uniform.
  • the peripheral speed of the stirring blade is more preferably 4 to 12 m/sec, even more preferably 4 to 8 m/sec.
  • the rotation speed of the stirring blade can be set at 30-1800 rpm.
  • the rotation speed of the chopper can be set between 800 and 5000 rpm. As long as the fibers are not cut, A'/A tends to decrease as the rotation speed of the stirring blade and chopper increases.
  • the agitating granulator has three agitating blades radially extending from a central rotating shaft as shown in FIG.
  • the inclination angles ⁇ of the stirring blades are as follows.
  • ⁇ Viscosity> The viscosity of the fiber treatment agent at 23° C. was measured using a B-type rotational viscometer (Brookfield: LVDV-1 Pri, spindle S61). A value measured at 50 rpm was used as a representative viscosity value.
  • a fiber bundle obtained as a fiber assembly is placed on a horizontally held white plate, and photographed from the vertical direction opposite to the white plate using a digital microscope VHX-6000 and ring illumination at a magnification of 20 times. did.
  • a photographed image of the fiber bundle in Example 1 is shown in FIG.
  • a photographed image of the fiber bundle in Comparative Example 1 is shown in FIG.
  • the photographed image was subjected to Otsu's binarization (Make Binary) using ImageJ (Wayne Rasband) to obtain a binary image.
  • This binary image was subjected to contour extraction (Analyze Particles, Outlines) to obtain the contour of one fiber bundle.
  • the profile of the fiber bundle in Example 1 is shown in FIG.
  • a Feret's Diameter was obtained from the obtained contour and defined as the major axis length A.
  • the length A′ of the major axis (Major) of the ellipse obtained by elliptical approximation (Analyze Particles, Ellipses) of the contour by the method of least squares was obtained.
  • the major axis ratio A'/A was determined by dividing A' by A.
  • the approximate ellipse in Example 1 is shown in FIG.
  • a fiber bundle obtained as a fiber assembly was placed on a horizontally held white plate, and the length in the direction perpendicular to the major axis was measured with a vernier caliper.
  • the fiber bundle is placed on a horizontally held white board, and the height in the vertical direction perpendicular to the long axis is measured with a height gauge and designated as C.
  • a fiber bundle obtained as a fiber assembly is placed on a horizontally held white plate, and photographed from the vertical direction opposite to the white plate using a digital microscope VHX-6000 and ring illumination at a magnification of 20 times. did.
  • a photographed image of the fiber bundle in Example 1 is shown in FIG.
  • a photographed image of the fiber bundle in Comparative Example 1 is shown in FIG.
  • the photographed image was subjected to Otsu's binarization (Make Binary) using ImageJ (Wayne Rasband) to obtain a binary image.
  • This binary image was subjected to contour extraction (Analyze Particles, Outlines) to obtain the contour of one fiber bundle.
  • the profile of the fiber bundle in Example 1 is shown in FIG.
  • a Feret's Diameter was obtained from the obtained contour and defined as the major axis length A.
  • F be the point that bisects the major axis
  • Y and Y' be the intersection of the perpendicular to the major axis at F and the contour
  • B be the straight line connecting Y and Y'
  • S ⁇ ⁇ A / 2 ⁇ B/2
  • S' The area ratio S'/S was obtained by dividing S' by S.
  • ⁇ Number ratio of fiber bundles W (0.75-0.93 number ratio)> 111 fiber bundles were randomly extracted from a plurality of fiber bundles, and the number ratio was obtained by dividing the number of fiber bundles with A'/A of 0.75 to 0.93 by 111. A'/A was obtained in the same manner as ⁇ major axis ratio A'/A> except that the digital microscope was replaced with a digital camera.
  • ⁇ Weight distribution of carbon fiber aggregate 300 fiber bundles are randomly extracted from a plurality of fiber bundles, and the weight of each is measured. A number average and a weight average are calculated from the 300 measurement results. The weight distribution of the carbon fiber aggregate was determined by dividing the weight average by the number average.
  • Example 1 As carbon fibers, cotton-like recycled carbon fibers (average fiber length: 2.5 mm, bulk density: 0.034 g/cm 3 ) obtained by a pyrolysis method were used. First, 1200 g of this carbon fiber is put into a stirring granulator (trade name: SP Granulator SPG25T, manufactured by Dalton, device volume: 25 liters, inclination angle ⁇ of stirring blade: 30°, diameter of stirring blade: 396 mm). The mixture was stirred for a minute to defibrate.
  • a stirring granulator trade name: SP Granulator SPG25T, manufactured by Dalton, device volume: 25 liters, inclination angle ⁇ of stirring blade: 30°, diameter of stirring blade: 396 mm.
  • the granules were dried in a box-type dryer at 120° C. for 2 hours to obtain carbon fiber aggregates having a short diameter of 1.5 mm and a long axis of 12 mm.
  • the peripheral speed of the stirring blade was 8.3 m/s, the feed height of the raw material was 0.28 m, and the strain rate was 30 [1/s].
  • the strain amount was 10,600.
  • the average fiber length, bulk density, etc. of the carbon fibers in the carbon fiber aggregate were measured by the method described above, and the results are shown in Table 1. In addition, the appearance of the carbon fiber assembly was observed, and the state of the carbon fibers pulled together was investigated.
  • This fiber assembly had a major axis ratio (A'/A) of 0.91, an area ratio (S'/S) of 0.92, a particle density of 0.71 g/cm 3 and an angle of repose of 54°. .
  • This fiber assembly is fed to a screw feeder (manufactured by Labtech Engineering Co., Ltd., single A shaft, a feeder diameter of ⁇ 33, and a screw diameter of ⁇ 25) was operated at 10 rpm. When measured four times every 36 seconds, the discharge amount was 1.74 g on average and the standard deviation was 0.09 g. The ratio of the number of fiber bundles having A'/A in the range of 0.75 to 0.93 was 58%. The fiber assembly of Example 1 could be discharged more stably than the fiber assembly of Comparative Example 1 described later.
  • Example 2 In the method for producing the carbon fiber aggregate of Example 1 above, virgin carbon fiber (trade name: Pyrofil Chopped Fiber TR03CM, manufactured by Mitsubishi Chemical Corporation, cut length 3.1 mm, bulk density 0.706 g / cm A spheroidal carbon fiber aggregate having a minor axis of 1.5 mm and a major axis of 12 mm was obtained in the same manner as in Example 1, except that the amount of water used as the fiber treatment agent was changed to 180 g instead of 3 ).
  • the fiber treatment agent (mixture of water and dispersion liquid 1) used in this example has a surface tension of 38.4 mN/m at 23°C and a viscosity of 0.0029 Pa ⁇ s at 23°C.
  • the peripheral speed of the stirring blade was 8.3 m/s, the feed height of the raw material was 0.014 m, and the strain rate was 613 [1/s].
  • the strain amount was 220,700.
  • the obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • This fiber assembly had a major axis ratio (A'/A) of 0.80, an area ratio (S'/S) of 0.78, a particle density of 0.83 g/cm 3 and an angle of repose of 50°. .
  • This fiber assembly is fed to a screw feeder (manufactured by Labtech Engineering Co., Ltd., single A shaft, feeder diameter ⁇ 33, screw diameter ⁇ 25) was operated at 10 rpm, and the discharge amount when measured four times every 36 seconds was 2.28 g on average and the standard deviation was 2.48 g.
  • the fiber assembly of Example 2 was able to discharge a larger amount than the fiber assembly of Comparative Example 1 described later.
  • Example 3 In the method for producing the carbon fiber aggregate of Example 1, the recycled carbon fibers were replaced with virgin carbon fibers (trade name: Pyrofil Chopped Fiber TR03CM, manufactured by Mitsubishi Chemical Corporation, cut length 3.1 mm, bulk density 0.706 g/cm 3 ). In the same manner as in Example 1, except that 250 g of dispersion 2 (anionic polyamide solution, solid content concentration 40% by mass) was used instead of 3000 g, and 200 g of water was used. A shaped carbon fiber aggregate was obtained.
  • the fiber treatment agent (mixture of water and dispersion liquid 2) had a surface tension of 59.0 mN/m at 23°C and a viscosity of 0.0022 Pa ⁇ s at 23°C.
  • the obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1. The obtained carbon fiber aggregate was harder than the carbon fiber aggregate of Example 1 and tended to keep its shape.
  • Example 4 Recycled carbon fiber (average fiber length 2 .5 mm, bulk density 0.03 g/cm 3 ), 140 g of water as a fiber treatment agent, and 20 g of dispersion liquid 1 (polyester emulsion, solid content concentration of 40% by mass) were mixed together. Peripheral speed of stirring blade: 13 m/sec) for 3 minutes to granulate. The granules were dried in a box dryer at 120° C. for 2 hours to obtain an ellipsoidal carbon fiber aggregate. The obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 5 Virgin carbon fiber (trade name: Pyro Fill chopped fiber TR03CM, Mitsubishi Chemical Co., Ltd., cut length 3.1 mm, bulk density 0.706 g/cm 3 ) and 40 g of water as a fiber treatment agent were added, and the stirring blade was stirred at 1200 rpm (peripheral speed of the stirring blade: 13 m / sec) for 3 minutes to granulate. The granules were dried in a box dryer at 120° C. for 2 hours to obtain an ellipsoidal carbon fiber aggregate. The obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Virgin carbon fiber (trade name: Pyrofil Chopped Fiber TR03CM) was used instead of a tumbling agitating granulator (trade name: Intensive Mixer R05T, Eirich Co., Ltd., device volume: 40 liters, rotor type: star type).
  • the mixed liquid was charged and stirred for 3 minutes at a speed of 29 rpm in the mixing pan (peripheral speed of the rotating vessel: 0.8 m/sec) and 560 rpm in the stirring rotor (peripheral speed of the stirring blade: 8 m/sec) to granulate.
  • the direction of rotation of the stirring rotor was opposite to that of the mixing pan.
  • the granules were dried in a box dryer at 120° C. for 2 hours to obtain an ellipsoidal carbon fiber aggregate.
  • the obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • the obtained carbon fiber aggregate was harder than the carbon fiber aggregate of Example 1 and tended to retain its shape.
  • Example 7 Recycled carbon fiber (average fiber length 6.0 mm, bulk A liquid obtained by mixing 6000 g of a density of 0.15 g/cm 3 , 350 g of water as a fiber treatment agent, and 700 g of dispersion liquid 2 (anionic polyamide solution, solid content concentration of 40% by mass) was added and stirred for 6 minutes. Grained.
  • the rotation speed of the mixing pan was 29 rpm (peripheral speed of rotating container: 0.8 m/sec).
  • the rotational speed of the stirring rotor was 1120 rpm (peripheral speed of stirring blade: 16 m/sec) for the first 3 minutes and 140 rpm (peripheral speed of stirring blade: 2 m/sec) for the next 3 minutes.
  • the direction of rotation of the stirring rotor was opposite to that of the mixing pan.
  • the granules were dried in a box dryer at 120° C. for 2 hours to obtain an ellipsoidal carbon fiber aggregate.
  • the obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • the obtained carbon fiber aggregate was harder than the carbon fiber aggregate of Example 1 and tended to retain its shape.
  • Example 8 The carbon fiber aggregate obtained in Example 7 above is put into a vibrating sieve (trade name: vibrating sieve 401C, manufactured by Dalton, sieve mesh: 5 mesh, linear 0.8 mm, mesh opening 4.3 mm), and the amplitude It was vibrated at 35 Hz, and the classified matter that passed through the sieve was collected to obtain an ellipsoidal carbon fiber aggregate.
  • the obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1. In feed evaluation, the fiber assembly of Example 8 was able to discharge a larger amount than the fiber assembly of Example 7.
  • Example 3 The granulator was replaced with an extrusion granulator (trade name: pelleter double EXDF (pre-extrusion type), manufactured by Dalton, screen diameter 6 mm), and virgin carbon fiber (trade name: Pyrofil Chopped Fiber TR03CM, Mitsubishi Chemical Co., Ltd.) was used. 100 g of water, 1000 g of water, which is a fiber treatment agent, and 10 g of polyacrylamide (trade name: Acryprimer GA1055L , manufactured by Mitsubishi Chemical Corporation), and 200 kg /h and extruded to granulate. The granules were dried in a box dryer at 120° C. for 2 hours to obtain an amorphous carbon fiber aggregate. The shape of the amorphous carbon fiber aggregate is shown in FIG. The obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 4 instead of the granulator being a rolling granulator (pan type, internal dimensions of rotating container ⁇ 240 ⁇ 75 mm), 50 g of recycled carbon fiber (average fiber length 2.5 mm, bulk density 0.03 g/cm 3 ) and fiber treatment A liquid obtained by mixing 37.5 g of water as an agent and 2.5 g of dispersion 1 (polyester emulsion, solid content concentration of 40% by mass) was added, and the inclination angle was 45 ° and the rotation speed was 60 rpm (peripheral speed of side wall surface 0.75 m / It was granulated by rolling for 6 minutes at the speed of s). The granules were dried in a box dryer at 120° C. for 2 hours to obtain an amorphous carbon fiber aggregate. The shape of the amorphous carbon fiber aggregate is shown in FIG. The obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 5 The granulator was replaced with a vibration granulator (cylindrical closed container, container internal dimensions ⁇ 80 ⁇ 200 mm), and 50 g of recycled carbon fiber (average fiber length 2.5 mm, bulk density 0.03 g/cm 3 ) and fiber treatment A liquid obtained by mixing 37.5 g of water and 2.5 g of dispersion liquid 1 (polyester emulsion, solid content concentration of 40% by mass), which is an agent, was added and granulated by manually vibrating for 30 seconds (frequency: 2 Hz, amplitude: 200 mm). . The granules were dried in a box dryer at 120° C. for 2 hours to obtain an amorphous carbon fiber aggregate. The obtained carbon fiber aggregate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • an ellipsoidal carbon fiber aggregate could not be obtained within a specific period of time.
  • an ellipsoidal carbon fiber aggregate may be obtained by lengthening the treatment time.
  • the methods of Examples 1 to 8 were superior to the methods of Experimental Examples 3 to 5 in that ellipsoidal carbon fiber aggregates were obtained efficiently in a short time.
  • Example 9 As the carbon fiber, virgin carbon fiber (cut product of TR50S15L manufactured by Mitsubishi Chemical Corporation, fiber length 25 mm) was used. First, 1000 g of this carbon fiber is put into a stirring granulator (trade name: SP Granulator SPG25T, manufactured by Dalton, device volume: 25 liters, inclination angle of stirring blade ⁇ : 30°), stirred for 1 minute, and dissolved. made it fibrous Next, 400 g of water, which is a fiber treatment agent, was put into a stirring granulator and stirred for 7 minutes to granulate. The peripheral speed of the tip of the stirring blade was 4 m/s for the first minute, 8 m/s for the next 3 minutes, and 4 m/s for the next 3 minutes. The granules were dried in a vibrating hot air dryer at 110° C. for 30 minutes to obtain a strand-like carbon fiber aggregate. Table 2 shows the evaluation results of the obtained carbon fiber aggregates.
  • Example 10 In the method for producing a carbon fiber aggregate of Example 9, the same as Example 9 except that the fiber treatment agent was replaced with a mixed liquid of 375 g of water and 25 g of dispersion liquid 1 (polyester emulsion, solid content concentration 40% by mass). Then, a strand-like carbon fiber aggregate was obtained. Table 2 shows the evaluation results of the obtained carbon fiber aggregates.
  • Example 11 In the method for producing the carbon fiber aggregate of Example 9 above, the virgin carbon fiber is recycled carbon fiber (a flocculent carbon obtained by pyrolyzing SMC made of short carbon fiber TR50S15L manufactured by Mitsubishi Chemical Corporation and vinyl ester resin In the same manner as in Example 9, except that the fiber treatment agent was replaced with 750 g of water and 50 g of dispersion liquid 1 (polyester emulsion, solid content concentration 40% by mass) instead of 1000 g of fiber, fiber length 25 mm). A shaped carbon fiber aggregate was obtained. Table 2 shows the evaluation results of the obtained carbon fiber aggregates.
  • Example 12 Recycled carbon fiber (Mitsubishi Chemical Corporation TR50S15L short carbon 3000 g of cotton-like carbon fiber (fiber length 25 mm) obtained by pyrolyzing SMC consisting of fiber and vinyl ester resin, 1950 g of water as a fiber treatment agent, and dispersion liquid 1 (polyester emulsion, solid content concentration 40% by mass) A liquid mixed with 450 g was added and stirred for 9 minutes to granulate. The rotation speed of the mixing pan was 29 rpm (peripheral speed of rotating container: 0.8 m/sec).
  • the rotational speed of the stirring rotor was 1120 rpm (peripheral speed of stirring blade: 16 m/sec) for the first 6 minutes and 140 rpm (peripheral speed of stirring blade: 2 m/sec) for the next 3 minutes.
  • the direction of rotation of the stirring rotor was the opposite direction to the mixing pan for the first 6 minutes, and the same direction as the mixing pan for the next 3 minutes.
  • the granules were dried in a box-type dryer at 120° C. for 2 hours to obtain a strand-like carbon fiber aggregate. Table 2 shows the evaluation results of the obtained carbon fiber aggregates.
  • Example 6 The granulator was replaced with a rolling granulator (pan type, internal dimensions of rotating container ⁇ 240 ⁇ 75 mm), and SMC made of recycled carbon fiber (Mitsubishi Chemical Company TR50S15L short carbon fiber and vinyl ester resin was thermally decomposed.
  • the granules were dried in a box dryer at 120° C. for 2 hours to obtain an amorphous carbon fiber aggregate.
  • Table 2 shows the evaluation results of the obtained carbon fiber aggregates.
  • Example 7 The granulator was replaced with a vibrating granulator (cylindrical closed container, container internal dimensions ⁇ 80 ⁇ 200 mm), and SMC made of recycled carbon fiber (Mitsubishi Chemical Company TR50S15L short carbon fiber and vinyl ester resin was thermally decomposed.
  • the granules were dried in a box dryer at 120° C. for 2 hours to obtain an amorphous carbon fiber aggregate.
  • Table 2 shows the evaluation results of the obtained carbon fiber aggregates.
  • the obtained fiber assembly has the following effects. ⁇ The fibers that make up the fiber assembly are oriented in one direction, making it difficult to form bridges in the feeder. ⁇ Because the fibers are not easily cut during the granulation process, and the fiber length of the fibers in the fiber assembly is not excessively shortened compared to the fiber length of the fibers used, the original effect of the fibers used in the production of the fiber assembly is effective. can be demonstrated in ⁇ Because the bulk density of the fiber assembly is high, the handling workability and blending efficiency of the fiber assembly are good.
  • stirring tank 2 rotating shaft 3 stirring blade 11 granulation pan 12 rolling shaft 21 arm 22 spray 23 scraper 40 container 44 stirring blade 45 scraper

Abstract

複数の繊維と繊維処理剤とを撹拌槽に投入し、該繊維と繊維処理剤との混合物を撹拌翼によって撹拌して造粒することを含む繊維集合体の製造方法であって、該繊維が炭素繊維を含み、該繊維が引き揃うように造粒する、繊維集合体の製造方法。炭素繊維を含む複数の繊維と液体とを撹拌槽に投入し、該繊維と液体との混合物を撹拌翼によって撹拌することにより直接長球形状又はストランド形状の繊維集合体を得る、繊維集合体の製造方法。

Description

繊維集合体の製造方法及びプリプレグシートの製造方法
 本発明は、繊維集合体の製造方法及びプリプレグシートの製造方法に関する。
 炭素繊維は、樹脂等のマトリックスに混合、分散させて、高強度、高剛性、低比重、高電気伝導性、高耐摩耗性等の機械的ないし電気的特性を改善するための、工業的に重要な材料として様々な用途に使用されてきた。
 一般に、炭素繊維を各種樹脂に混合、分散させて繊維強化樹脂組成物を得る場合、炭素繊維の取り扱いを容易にして混合、分散の工程における作業性を高めるために、あらかじめ複数の炭素繊維をサイジング剤等により造粒してなる炭素繊維集合体が用いられている。
 炭素繊維集合体には、繊維強化樹脂組成物を製造する際の優れた作業性;フィーダーでの安定供給性;マトリクス中における優れた繊維分散性;得られる樹脂組成物の優れた物性改善効果;が要求される。
 このような要求特性を満たす炭素繊維集合体として、所定の平均粒径を有し、エポキシ化合物を主成分とするエマルジョン系サイジング剤で表面被覆された炭素繊維集合体や、所定のサイジング剤で集束されるとともに、所定の緻密度を有する、断面が円形あるいは楕円形の炭素繊維チョップドストランドが開示されている(例えば特許文献1)。
 また、リサイクル炭素繊維から、フィーダーにより押出機等へ定量的で安定した供給が可能であり、さらに押出機等により炭素繊維を樹脂マトリクス中に容易に均一に分散させることが可能な炭素繊維集合体を提供するものとして、炭素繊維及びエポキシ樹脂系サイジング剤からなり、湿式押出造粒法により製造された所定の嵩密度等を有する炭素繊維集合体が開示されている(例えば特許文献2)。
 また、炭素繊維の短繊維からなる絡合体を効率的に製造する方法として、曲状炭素繊維と柔軟性球体とを共に撹拌する撹拌造粒法により炭素繊維絡合体を製造する方法が開示されている(例えば特許文献3)。
特開平4-170435号公報 特開2020-196882号公報 特開2000-220066号公報
 本発明の目的の一つは、繊維を切断することなく、長さを保ったまま繊維が引き揃った嵩密度が高い繊維集合体を製造することができる繊維集合体の製造方法を提供することである。
 本発明の他の目的は、この繊維集合体を用いたプリプレグシートの製造方法を提供することである。
 本発明者は、撹拌槽を用いて繊維と繊維処理剤を撹拌造粒することにより、上記課題を解決することができることを見出した。
 即ち、本発明は以下の[1]~[45]の態様を含む。以下の[1]~[45]を「本発明の第1態様」と称す場合がある。
[1] 複数の繊維と繊維処理剤とを撹拌槽に投入し、該繊維と該繊維処理剤との混合物を撹拌翼によって撹拌して造粒することを含む繊維集合体の製造方法であって、該繊維が炭素繊維を含み、該繊維が引き揃うように造粒する、繊維集合体の製造方法。
[2] 乾燥した綿状の前記複数の繊維を前記撹拌槽に投入する、[1]に記載の繊維集合体の製造方法。
[3] 水平方向に回転する撹拌翼と垂直方向に回転する補助撹拌翼とが攪拌槽内に配置され、該水平方向に回転する撹拌翼と該垂直方向に回転する補助撹拌翼とにより攪拌する、[1]又は[2]に記載の繊維集合体の製造方法。
[4] 前記繊維処理剤を前記撹拌槽に投入する前に、該撹拌槽内で前記撹拌翼によって前記複数の炭素繊維を撹拌して解繊する、[1]~[3]のいずれかに記載の繊維集合体の製造方法。
[5] 前記撹拌槽がスクレーパーを備え、攪拌槽を回転させる、[1]~[4]のいずれかに記載の繊維集合体の製造方法。
[6] 前記撹拌翼が回転方向に傾斜を有しており、前記撹拌翼の回転方向後面と前記撹拌槽底面との挟角が1~60°である、[1]~[5]のいずれかに記載の繊維集合体の製造方法。
[7] 前記撹拌槽が軸周りに回転可能な回転軸を備え、複数枚の前記撹拌翼が、該回転軸から放射状に延在する、[1]~[6]のいずれかに記載の繊維集合体の製造方法。
[8] 前記撹拌翼先端の周速が1~20m/秒となるように撹拌翼を回転させることを含む、[1]~[7]のいずれかに記載の繊維集合体の製造方法。
[9] 撹拌翼の回転方向が攪拌槽の回転方向と逆方向となるように撹拌した後、撹拌翼の回転方向が攪拌槽の回転方向と同一方向となるように撹拌する、[5]~[8]のいずれかに記載の繊維集合体の製造方法。
[10] 周速が1.2m/秒以下となるように攪拌槽を回転させることを含む、[5]または[9]に記載の繊維集合体の製造方法。
[11] 前記繊維処理剤の23℃における表面張力が120mN/m以下である、[1]~[10]のいずれかに記載の繊維集合体の製造方法。
[12] 前記繊維処理剤の23℃における粘度が10Pa・s以下である、[1]~[11]のいずれかに記載の繊維集合体の製造方法。
[13] 前記繊維処理剤が水を含む、[1]~[12]のいずれかに記載の繊維集合体の製造方法。
[14] 前記繊維処理剤が、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリウレタン樹脂、及びポリアミド樹脂から選ばれる1種以上の樹脂を含む、[1]~[13]のいずれかに記載の繊維集合体の製造方法。
[15] 前記繊維処理剤を前記繊維100質量部に対して10~40質量部投入する、[1]~[14]のいずれかに記載の繊維集合体の製造方法。
[16] 前記繊維処理剤が液体であり、該繊維処理剤に含まれる液体を蒸発させる工程を含む、[1]~[15]のいずれかに記載の繊維集合体の製造方法。
[17] 前記繊維が更にガラス繊維を含む、[1]~[16]のいずれかに記載の繊維集合体の製造方法。
[18] 前記繊維が更に有機繊維を含む、[1]~[17]のいずれかに記載の繊維集合体の製造方法。
[19] 前記繊維の平均繊維長が12~50mmである、[1]~[18]のいずれかに記載の繊維集合体の製造方法。
[20] 前記繊維の平均繊維長が2~12mmである、[1]~[19]のいずれかに記載の繊維集合体の製造方法。
[21] 前記繊維集合体を構成する複数の繊維の先端の位置が不揃いである、[1]~[20]のいずれかに記載の繊維集合体の製造方法。
[22] 前記繊維集合体の長軸の長さは、前記繊維集合体に含まれる繊維の平均繊維長より長い、[1]~[21]のいずれかに記載の繊維集合体の製造方法。
[23] 前記繊維集合体が、長球形状又はストランド形状である、[1]~[22]のいずれかに記載の繊維集合体の製造方法。
[24] 前記撹拌槽に投入前の繊維の平均繊維長Xに対する前記繊維集合体中の繊維の平均繊維長Yの比(Y/X)が0.55以上である、[1]~[23]のいずれかに記載の繊維集合体の製造方法。
[25] ヘンシェルミキサーを使用して撹拌することにより造粒する、[1]~[24]のいずれかに記載の繊維集合体の製造方法。
[26] グラニュレーターを使用して撹拌することにより造粒する、[1]~[24]のいずれかに記載の繊維集合体の製造方法。
[27] 前記繊維処理剤の23℃における表面張力が15mN/m以上である、[1]~[26]のいずれかに記載の繊維集合体の製造方法。
[28] 前記繊維処理剤の23℃における粘度が0.0001Pa・s以上である、[1]~[27]のいずれかに記載の繊維集合体の製造方法。
[29] 繊維集合体のフィラメント数が8000以上800000以下である、[1]~[28]のいずれかに記載の繊維集合体の製造方法。
[30] 前記繊維の嵩密度が0.01~0.040g/cmである、[1]~[29]のいずれかに記載の繊維集合体の製造方法。
[31] 前記繊維と前記繊維処理剤に与えるひずみ速度が、1[1/s]以上700[1/s]以下である、[1]~[30]のいずれかに記載の繊維集合体の製造方法。
[32] 複数の繊維と、液体を含む繊維処理剤とを撹拌槽に投入し、繊維と繊維処理剤との混合物を撹拌翼によって撹拌して液架橋させることにより直接繊維が引き揃った繊維集合体を得る、繊維集合体の製造方法。
[33] 前記繊維が炭素繊維を含む、[32]に記載の繊維集合体の製造方法。
[34] 乾燥した綿状の前記複数の繊維を前記撹拌槽に投入する、[32]または[33]に記載の繊維集合体の製造方法。
[35] 綿状の複数の炭素繊維と樹脂と水とを撹拌槽に投入し、前記攪拌槽に配置された撹拌翼によって前記複数の炭素繊維と前記樹脂と前記水とを撹拌して造粒する、炭素繊維が引き揃えられた繊維集合体の製造方法。
[36] 前記綿状の複数の炭素繊維と更に樹脂炭化物を含む原料を投入する、[35]に記載の炭素繊維が引き揃えられた繊維集合体の製造方法。
[37] 前記綿状の複数の炭素繊維と更にガラス繊維を含む原料を投入する、[35]または[36]に記載の炭素繊維が引き揃えられた繊維集合体の製造方法。
[38] [1]~[37]のいずれかに記載の繊維集合体の製造方法で得られた繊維集合体を複数堆積させることを含む、プリプレグシートの製造方法。
[39] [1]~[37]のいずれかに記載の繊維集合体の製造方法で得られた繊維集合体を樹脂とともに混練することを含む、ペレットの製造方法。
[40] 複数の炭素繊維と有機バインダーとからなり、嵩密度が0.1~0.29g/cm であるか、もしくは安息角が60°以下であり、長軸の長さが3mm~18mmの長球形状である、炭素繊維集合体。
[41] 前記炭素繊維集合体を構成する複数の繊維の先端の位置が不揃いである、[40]に記載の炭素繊維集合体。
[42] 前記炭素繊維集合体の長軸の長さは、前記炭素繊維集合体に含まれる繊維の平均繊維長より長い、[40]または[41]に記載の炭素繊維集合体。
[43] 前記炭素繊維集合体が樹脂炭化物を含む、[40]~[42]のいずれかに記載の炭素繊維集合体。
[44] 前記炭素繊維集合体がガラス繊維を含む、[40]~[43]のいずれかに記載の炭素繊維集合体。
[45] 前記有機バインダーがエポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリウレタン樹脂、及びポリアミド樹脂から選ばれる1種以上の樹脂を含む、[40]~[44]のいずれかに記載の炭素繊維集合体。
 本発明には、以下の[1a]~[25a]の態様も含まれる。以下の[1a]~[25a]を「本発明の第1態様のI」と称す場合がある。
[1a] 繊維と繊維処理剤とを撹拌槽に投入し、繊維と繊維処理剤との混合物を撹拌翼によって撹拌することにより造粒することを含む、繊維集合体の製造方法。
[2a] 前記撹拌翼が回転方向に傾斜を有しており、該撹拌翼の回転方向後面と前記撹拌槽底面との挟角が1~60°である、[1a]に記載の繊維集合体の製造方法。
[3a] 複数枚の前記撹拌翼が、前記撹拌槽内の回転軸から放射状に延在する、[1a]又は[2a]に記載の繊維集合体の製造方法。
[4a] 前記撹拌翼先端の周速が1~20m/秒である、[1a]~[3a]のいずれかに記載の繊維集合体の製造方法。
[5a] 繊維と繊維処理剤とをヘンシェルミキサーを使用して撹拌することにより造粒する、繊維集合体の製造方法。
[6a] 繊維と繊維処理剤とをグラニュレーターを使用して撹拌することにより造粒する、繊維集合体の製造方法。
[7a] 前記繊維処理剤の23℃における表面張力が120mN/m以下である、[1a]~[6a]のいずれかに記載の繊維集合体の製造方法。
[8a] 前記繊維処理剤の23℃における粘度が10Pa・s以下である、[1a]~[7a]のいずれかに記載の繊維集合体の製造方法。
[9a] 前記繊維の平均繊維長が1~100mmである、[1a]~[8a]のいずれかに記載の繊維集合体の製造方法。
[10a] 前記繊維処理剤を前記繊維100質量部に対して5~120質量部投入する、[1a]~[9a]のいずれかに記載の繊維集合体の製造方法。
[11a] 前記繊維が炭素繊維を含む、[1a]~[10a]のいずれかに記載の繊維集合体の製造方法。
[12a] 前記繊維がガラス繊維を含む、[1a]~[10a]のいずれかに記載の繊維集合体の製造方法。
[13a] 前記繊維が有機繊維を含む、[1a]~[10a]のいずれかに記載の繊維集合体の製造方法。
[14a] 前記繊維が炭素繊維と有機繊維とを含む、[1a]~[10a]のいずれかに記載の繊維集合体の製造方法。
[15a] 前記繊維が炭素繊維とガラス繊維とを含む、[1a]~[10a]のいずれかに記載の繊維集合体の製造方法。
[16a] 前記繊維処理剤は、溶剤、粘土鉱物、ポリマー、及び界面活性剤から選ばれる少なくとも1種を含む、[1a]~[15a]のいずれかに記載の繊維集合体の製造方法。
[17a] 前記撹拌槽に投入前の繊維の平均繊維長Xに対する前記繊維集合体中の繊維の平均繊維長Yの比(Y/X)が0.55以上である、[1a]~[16a]のいずれかに記載の繊維集合体の製造方法。
[18a] 前記繊維処理剤が液体であり、該繊維処理剤に含まれる液体を蒸発させる工程を含む、[1a]~[17a]のいずれかに記載の繊維集合体の製造方法。
[19a] 前記繊維集合体が、長球形状又はストランド形状である、[1a]~[18a]のいずれかに記載の繊維集合体の製造方法。
[20a] 前記繊維が引き揃うように造粒する、[1a]~[19a]のいずれかに記載の繊維集合体の製造方法。
[21a] 繊維と液体である繊維処理剤とを撹拌槽に投入し、繊維と繊維処理剤との混合物を撹拌翼によって撹拌することにより造粒することを含む、繊維集合体の製造方法。
[22a] 前記繊維の平均繊維長が1~100mmである、[21a]に記載の繊維集合体の製造方法。
[23a] 前記繊維処理剤を前記繊維100質量部に対して5~120質量部投入する、[21a]または[22a]に記載の繊維集合体の製造方法。
[24a] 前記繊維集合体が、長球形状又はストランド形状である、[21a]~[23a]のいずれかに記載の繊維集合体の製造方法。
[25a] 前記撹拌槽に投入前の繊維の平均繊維長Xに対する前記繊維集合体中の繊維の平均繊維長Yの比(Y/X)が0.55以上である、[21a]~[24a]のいずれかに記載の繊維集合体の製造方法。
 本発明には、以下の[1b]~[20b]の態様も含まれる。以下の[1b]~[20b]を「本発明の第2態様」と称す場合がある。
[1b] 繊維と繊維処理剤とを転動槽に投入し、転動槽を回転させることにより造粒することを含む、繊維集合体の製造方法。
[2b] 前記繊維処理剤の23℃における表面張力が120mN/m以下である、[1b]に記載の繊維集合体の製造方法。
[3b] 前記繊維処理剤の23℃における粘度が10Pa・s以下である、[1b]又は[2b]に記載の繊維集合体の製造方法。
[4b] 前記転動槽がパン型の回転体である、[1b]~[3b]のいずれかに記載の繊維集合体の製造方法。
[5b] 前記転動槽がドラム型の回転体である、[1b]~[3b]のいずれかに記載の繊維集合体の製造方法。
[6b] 前記回転体の円筒側壁の移動速度が0.20~1.60m/sである、[4b]又は[5b]に記載の繊維集合体の製造方法。
[7b] 前記転動槽が固定された側壁と、該側壁内を水平方向に回転する回転容器とを有する、[1b]~[3b]のいずれかに記載の繊維集合体の製造方法。
[8b] 前記回転容器の外周速が1~20m/sである、[7b]に記載の繊維集合体の製造方法。
[9b] 前記繊維の平均繊維長が1~100mmである、[1b]~[8b]のいずれかに記載の繊維集合体の製造方法。
[10b] 前記繊維処理剤を前記繊維100質量部に対して5~120質量部用いる、[1b]~[9b]のいずれかに記載の繊維集合体の製造方法。
[11b] 前記繊維が炭素繊維を含む、[1b]~[10b]のいずれかに記載の繊維集合体の製造方法。
[12b] 前記繊維がガラス繊維を含む、[1b]~[10b]のいずれかに記載の繊維集合体の製造方法。
[13b] 前記繊維が有機繊維を含む、[1b]~[10b]のいずれかに記載の繊維集合体の製造方法。
[14b] 前記繊維が炭素繊維と有機繊維とを含む、[1b]~[10b]のいずれかに記載の繊維集合体の製造方法。
[15b] 前記繊維が炭素繊維とガラス繊維とを含む、[1b]~[10b]のいずれかに記載の繊維集合体の製造方法。
[16b] 前記繊維処理剤は、溶剤、粘土鉱物、ポリマー、及び界面活性剤から選ばれる少なくとも1種を含む、[1b]~[15b]のいずれかに記載の繊維集合体の製造方法。
[17b] 前記撹拌槽に投入前の繊維の平均繊維長Xに対する前記繊維集合体中の繊維の平均繊維長Yの比(Y/X)が0.55以上である、[1b]~[16b]のいずれかに記載の繊維集合体の製造方法。
[18b] 前記繊維処理剤が液体であり、前記繊維処理剤に含まれる液体を蒸発させる工程を含む、[1b]~[17b]のいずれかに記載の繊維集合体の製造方法。
[19b] 前記繊維集合体が、長球形状又はストランド形状である、[1b]~[18b]のいずれかに記載の繊維集合体の製造方法。
[20b] 前記繊維が引き揃うように造粒する、[1b]~[19b]のいずれかに記載の繊維集合体の製造方法。
 本発明には、以下の[1c]~[16c]の態様も含まれる。以下の[1c]~[16c]を「本発明の第3態様」と称す場合がある。
[1c] 繊維と繊維処理剤とにひずみ速度を与える操作をしながら繊維同士を液架橋させて粒子を成長させることにより造粒することを含む、繊維集合体の製造方法。
[2c] 前記ひずみ速度が1[1/s]以上700[1/s]以下である、[1c]に記載の繊維集合体の製造方法。
[3c] 前記ひずみ速度を与える操作が、繊維と繊維処理剤とに撹拌翼を動かして接触させることによりせん断速度を与える操作である、[1c]又は[2c]に記載の繊維集合体の製造方法。
[4c] 前記ひずみ速度を与える操作が、繊維と繊維処理剤を投入した容器を振動させることにより振動速度を与える操作である、[1c]又は[2c]に記載の繊維集合体の製造方法。
[5c] 前記ひずみ速度を与える操作が、繊維と繊維処理剤を投入した容器を回転させることにより回転速度を与える操作である、[1c]又は[2c]に記載の繊維集合体の製造方法。
[6c] 前記ひずみ速度を与える操作が、繊維と繊維処理剤を投入した容器内に気体を吹き込むことにより気流せん断速度を与える操作である、[1c]又は[2c]に記載の繊維集合体の製造方法。
[7c] 前記繊維処理剤を前記繊維の全量100質量部に対して5~120質量部用いる、[1c]~[6c]のいずれかに記載の繊維集合体の製造方法。
[8c] 前記繊維の平均繊維長が1~100mmである、[1c]~[7c]のいずれかに記載の繊維集合体の製造方法。
[9c] 前記繊維処理剤は、溶剤、粘土鉱物、ポリマー、及び界面活性剤から選ばれる少なくとも1種を含む、[1c]~[8c]のいずれかに記載の繊維集合体の製造方法。
[10c] 前記繊維が炭素繊維、ガラス繊維、及び有機繊維からなる群より選ばれる少なくとも1種の繊維を含む、[1c]~[9c]のいずれかに記載の繊維集合体の製造方法。
[11c] 前記繊維集合体が、長球形状又はストランド形状である、[1c]~[10c]のいずれかに記載の繊維集合体の製造方法。
[12c] 前記繊維が引き揃うように造粒する、[1c]~[11c]のいずれかに記載の繊維集合体の製造方法。
[13c] 繊維と繊維処理剤とに撹拌翼を動かして接触させることによりせん断速度を与える操作をしながら繊維同士を液架橋させて粒子を成長させることにより造粒することを含む、繊維集合体の製造方法。
[14c] 繊維と繊維処理剤を投入した容器を振動させることにより振動速度を与える操作をしながら繊維同士を液架橋させて粒子を成長させることにより造粒することを含む、繊維集合体の製造方法。
[15c] 繊維と繊維処理剤を投入した容器を回転させることにより回転速度を与える操作をしながら繊維同士を液架橋させて粒子を成長させることにより造粒することを含む、繊維集合体の製造方法。
[16c] 繊維と繊維処理剤を投入した容器内に気体を吹き込むことにより気流せん断速度を与える操作をしながら繊維同士を液架橋させて粒子を成長させることにより造粒することを含む、繊維集合体の製造方法。
 本発明には以下の[1d]~[17d]の態様も含まれる。以下の[1d]~[17d]を「本発明の第4態様」と称す場合がある。
[1d] 複数の炭素繊維と、樹脂または溶剤とを含む繊維束であって、前記繊維束は楕円体形状であり、下記条件(1)で特定されるA’/Aが0.75~0.93である、繊維束。
条件(1):白色板上に静置した繊維束を基準に板と反対側の鉛直方向から撮影して得られた画像を画像解析ソフトを用いて二値化し二値画像を得る。二値画像を輪郭抽出して繊維束の輪郭を得る。得られた輪郭からフェレー径を求め長軸長さAとする。前記二値画像を楕円近似して得られる楕円の長軸長さをA’とする。
[2d] 前記繊維束の長軸長さAが3~30mmである、[1d]に記載の繊維束。
[3d] 前記繊維束中の繊維の平均繊維長が長軸より短い、[1d]または[2d]に記載の繊維束。
[4d] 前記繊維束中の繊維の平均繊維長が2~12mmである、[1d]~[3d]のいずれかに記載の繊維束。
[5d] 前記繊維束中の表面に存在する繊維が、楕円体の輪郭に沿って湾曲して配向している、[1d]~[4d]のいずれかに記載の繊維束。
[6d] 前記繊維束は、前記長軸と短軸1と短軸2とを有し、短軸1の長さBは短軸2の長さCより長い、[1d]~[5d]のいずれかに記載の繊維束。
[7d] 前記繊維束は、Bが1~9mm、Cが0.5~6mmである、[1d]~[6d]のいずれかに記載の繊維束。
[8d] 前記繊維束は、短軸1に対する長軸の比(B/A)が2~12、短軸2に対する長軸の比(C/A)が1~6である、[1d]~[7d]のいずれかに記載の繊維束。
[9d] BはCの1.5倍以上である、[1d]~[8d]のいずれかに記載の繊維束。
[10d] 下記の式(2)で表される繊維束の粒子密度が0.3~1.8g/cmである、[1d]~[9d]のいずれかに記載の繊維束。
 粒子密度=G/(4πabc/3)…式(2)
(式(2)中、Gは繊維束の質量、aはA/2、bはB/2、cはC/2を表す。)
[11d] 前記繊維束が樹脂炭化物を含む、[1d]~[10d]のいずれかに記載の繊維束。
[12d] 前記繊維束がガラス繊維を含む、[1d]~[11d]のいずれかに記載の繊維束。
[13d] 前記繊維が樹脂を含む、[1d]~[12d]のいずれかに記載の繊維束。
[14d] 前記樹脂が、エポキシ樹脂、ウレタン樹脂、およびポリアミド樹脂から選ばれる少なくとも1種を含む、[13d]に記載の繊維束。
[15d] 複数の繊維と、樹脂または溶剤とを含む繊維束からなる繊維集合体であって、前記繊維束のうち、楕円体形状であり、且つ下記条件(1)で特定されるA/A’が0.75~0.93である繊維束Wの個数割合が50%以上である、繊維集合体。
条件(1):白色板上に静置した繊維束を、繊維束を基準に板と反対側の鉛直方向から撮影して得られた画像を画像解析ソフトを用いて二値化し二値画像を得る。二値画像を輪郭抽出して繊維束の輪郭を得る。得られた輪郭からフェレー径を求め長軸長さAとする。前記二値画像を楕円近似して得られる楕円の長軸長さをA’とする。
[16d] 嵩密度が0.1~0.8g/cmである、[15d]に記載の繊維集合体。
[17d] 安息角が60°以下である、[15d]または[16d]に記載の繊維集合体。
 本発明の好ましい実施形態によれば、繊維を切断することなく、長さを保ったまま繊維が引き揃った嵩密度が高い繊維集合体を得ることができる。しかも、嵩密度の低いリサイクル繊維に対しても、高度に配向した緻密な繊維集合体の形態とすることができる。このため、繊維強化樹脂ペレットなどの各種フィーダーを利用する設備において繊維同士のブリッジを起こすことなく、効率的な供給が可能となる。
 本発明により製造された繊維集合体、例えば炭素繊維集合体を用いて、改善された取り扱い作業性のもとに、フィーダーにより定量かつ安定供給を行って、炭素繊維本来の物性改善効果を発揮する繊維強化樹脂組成物及びプリプレグシートを製造することができる。
図1は本発明の第1態様の繊維集合体の製造方法で使用される撹拌槽の撹拌翼の実施の形態を示す図である。Fig.1aは撹拌槽の水平方向断面図、Fig.1bはFig.1aのb-b線に沿う断面図である。 図2は、本発明の第2態様の繊維集合体の製造方法において使用されるパン造粒機の実施の形態を示す模式図である。Fig.2aは側面図、Fig.2b図は造粒パンの内部構造示す図である。 図3Aは、本発明の第2態様の繊維集合体の製造方法において使用される転動槽の固定側壁と回転容器を示す断面図である。 図3Bは、本発明の第1態様の繊維集合体の製造方法において使用される転動撹拌造粒機の実施の形態を示す内部透視斜視図である。 図4はリサイクル繊維の形態例を示す写真である。 図5はバージン繊維の形態例を示す写真である。 Fig.6a~6dは、それぞれ、SACFBの末端を示す拡大写真である。 図7は、チョップド炭素繊維束の末端を示す拡大写真である。 図8は、シートプリプレグ製造装置の概念図である。 図9は、実施例1で得られた繊維束を撮影した画像である。 図10は、実施例1で得られた繊維束の輪郭を示す図である。 図11は、実施例1で得られた繊維束の近似楕円を示す図である。 図12は、実験例3で得られた繊維束を撮影した画像である。 図13は、実験例4で得られた繊維束を撮影した画像である。
 以下に本発明の実施の形態を詳細に説明する。
[本発明の第1態様~第3態様]
 本発明の第1態様に係る繊維集合体の製造方法は、繊維として少なくとも炭素繊維を用い、複数の繊維と繊維処理剤とを撹拌槽に投入し、繊維と繊維処理剤との混合物を撹拌翼によって撹拌することにより、該繊維が引き揃うように造粒して繊維集合体を製造する方法である。本態様によれば繊維長の長い原料繊維を用いた場合でも繊維が引き揃った繊維集合体を得ることができる。繊維集合体の一例としては、自己組織化炭素繊維束が挙げられる。造粒によって、複数の繊維を凝集させて1つの粒状単位を形成し得る。
 本発明の第1態様において、攪拌造粒機としてヘンシェルミキサー又はグラニュレーターを用いることができる。
 本発明の第1態様のIに係る繊維集合体の製造方法では、下記1~4の工程を経る。
 1.繊維を繊維処理剤で濡らす工程
 2.濡れた繊維同士を接触させる工程
 3.同一方向に配向した繊維どうしに液架橋が発生する工程
 4.1.~3.を繰り返すことにより繊維束が成長する工程
 繊維と繊維処理剤との混合物に撹拌による力を加えることにより、繊維処理剤を効率的に繊維表面に付着させ、また繊維同士の接触や配向を促進することができる。
 本発明の第2態様に係る繊維集合体の製造方法は、繊維と繊維処理剤とを転動槽に投入し、転動槽を回転させることにより造粒することで、繊維集合体を製造する方法である。
 この繊維集合体の製造方法においても、下記1~4の工程を経る。
 1.繊維を繊維処理剤で濡らす工程
 2.濡れた繊維同士を接触させる工程
 3.同一方向に配向した繊維どうしに液架橋が発生する工程
 4.1.~3.を繰り返すことにより繊維束が成長する工程
 繊維と繊維処理剤との混合物に回転による遠心力と滑落による衝突力を加えることにより、繊維処理剤を効率的に繊維表面に付着させ、また繊維同士の接触や配向を促進することができる。
 本発明の第3態様に係る繊維集合体の製造方法は、繊維と繊維処理剤とにひずみ速度を与える操作をしながら繊維同士を液架橋させて粒子を成長させることにより造粒することで、繊維集合体を製造する方法である。
 この繊維集合体の製造方法においても、下記1~4の工程を経る。
 1.繊維を繊維処理剤で濡らす工程
 2.濡れた繊維同士を接触させる工程
 3.同一方向に配向した繊維どうしに強い液架橋が発生する工程
 4.1.~3.を繰り返すことにより繊維束が成長する工程
 この際にひずみ速度を与えることにより、繊維処理剤を効率的に繊維表面に付着させ、また繊維同士の接触や配向を促進することができる。
 本願発明において、ひずみ速度、液架橋、及び自己組織化炭素繊維束の定義は以下の通りである。
<ひずみ速度>
 本発明におけるひずみ速度とは、造粒工程において、単位時間に繊維が移動する最大の速度を代表長さで除した値と定義する。
 ひずみ速度[1/s]=最大速度[m/s]/代表長さ[m]
 ここで代表長さとは容器に繊維を投入した際の仕込み高さであり、投入した繊維の重量を繊維の嵩密度で除して、さらに容器の平均断面積で除した値として算出する。
 仕込み高さ[m]=繊維の重量[kg]/繊維の嵩密度[kg/m]/容器の平均断面積[m
 平均断面積は容器の内容量[m]を、回転軸もしくは振動軸に沿った容器の内面の高さで除した値である。
 例えば、攪拌翼の回転で造粒する攪拌造粒の場合には、最大の速度は攪拌翼の外周速となる。容器の回転で造粒する転動造粒の場合には、容器の外周速が最大の速度となる。振動で造粒する場合には、振動の振幅と周期とから算出した速度が最大の速度となる。流動層で造粒する場合には気流の吹き出し速度が最大の速度となる。最大の速度は、物体が移動するものであれば、ビデオカメラで動作を撮影し、設定した基準点が単位時間あたりに移動する距離を画像処理から導き出して求めることもできる。
<ひずみ量>
 ひずみ量はひずみ速度に処理時間を乗じることによって得られる。このひずみ量も造粒の目安になる。
 ひずみ量[-]=ひずみ速度×処理時間[s]
<液架橋>
 粉体粒子と固体表面、あるいは粒子同士などの接触部の狭い空隙に液体が存在することをいう。粒子間に形成された液架橋には毛管力に起因した負圧かかるため、粒子同士に引力(液架橋力)が加わり固定化された状態となる。本発明における液架橋は、繊維と繊維の空隙に生じる液架橋を指しており、繊維が交差するように接触した際の液架橋力は点で作用するため弱く、繊維が平行に接触した際の液架橋力は線で作用するため強いものとなる。繊維に生じる液架橋は繊維の長さ方向に連続して生じるため繊維同士が平行でない場合であっても、液体の表面張力の働きによって、液体の表面積が最小になるように繊維自らが角度を変えて同一方向に配向する作用も期待できる。
<自己組織化炭素繊維束(SACFB)>
 SACFBは、繊維集合体の一態様であり、複数の短尺炭素繊維が自ら束をなすように集合する過程を経て形成される。SACFBを形成する前の段階において、複数の短尺炭素繊維は、全部がモノフィラメントであってもよい。つまり、SACFBは、複数の炭素繊維フィラメントが束をなすように凝集することによって形成され得る。他の一例において、SACFBは、それぞれが例えば100本未満という少数のフィラメントからなる複数の微細炭素繊維束が凝集することによって形成されてもよい。あるいは、SACFBは、複数の炭素繊維モノフィラメントと複数の微細炭素繊維束が凝集されることによって形成されていてもよい。SACFBの末端では、図6(a)~(d)に例示するように、束を構成する複数の炭素繊維の先端の位置が不揃いである。
<撹拌槽・撹拌条件>
 以下に本発明の第1態様の繊維集合体の製造方法に好適に用いられる撹拌造粒機について、図1を参照して説明する。
 本発明の第1態様の繊維集合体の製造方法で用いる撹拌造粒機は、Fig.1aに示されるように、有底円筒形状の撹拌槽1の中心軸上に回転軸2を有し、この回転軸2から、複数枚(Fig.1aでは3枚)のプロペラ状の撹拌翼が均等間隔で放射状に延在するものが好ましい。回転軸に垂直な円盤状の撹拌翼であってもよい。起伏および突起のある円盤でもよい。
 撹拌翼3は、Fig.1bに示すように、撹拌槽1の底面1Aに対して回転方向に傾斜して設けられている。回転方向Rに対して後面となる面3Aと撹拌槽1の底面1Aとの挟角(以下単に「傾斜角」と称す場合がある。)θは1~60゜の範囲であることが好ましい。撹拌翼3の傾斜角θが1゜以上であれば、繊維混合粒を撹拌槽内で循環させながら撹拌することが可能である。撹拌翼3の傾斜角θが60゜以下であれば、撹拌翼への抵抗を抑えて装置に負荷がかからない範囲で回転速度を調整することが可能である。傾斜角θは10~50゜であることがより好ましく、20~40゜であることが更に好ましい。
 Fig.1aでは、撹拌翼3がその長手方向の中ほどにおいて、角度αで屈曲している。撹拌翼はこのように屈曲したものに限らず、直線的な板状のものがあってもよい。撹拌翼は円弧状に屈曲したものであってもよい。
 撹拌造粒機には、撹拌槽壁面に補助的な撹拌を行うための補助撹拌翼(チョッパー)が設けられたものもある。本発明の第1態様ではいずれのタイプの撹拌造粒機を用いることもできる。
 また、撹拌造粒機の撹拌槽は、底面又は側面にスクレーパーを備えるものであってもよい。撹拌槽にスクレーパーを備えることで、造粒効率を高めることができる。
 撹拌造粒機による回転方向条件は、撹拌翼先端(Fig.1aの3a部)の周速(以下、単に「周速」と称す。)が1~20m/秒の範囲となるようにすることが好ましい。周速が1m/秒以上であれば、繊維混合粒を撹拌槽内で循環させながら撹拌することが可能である。周速が20m/秒以下であれば、繊維集合体の粒子形状を均一にすることが可能である。撹拌翼の周速は4~12m/秒であることがより好ましく、4~8m/秒であることが更に好ましい。チョッパーの周速は、5~30m/秒の範囲となるようにすることが好ましい。
 撹拌造粒機による撹拌時間には特に制限はなく、所望の繊維集合体が得られる時間、撹拌を行えばよい。
 撹拌するときの温度は特に制限はなく、室温で行うことができる。撹拌の影響による容器や混合物の温度上昇は許容される。
 造粒するときには繊維処理剤は液体であり、繊維集合体として粒子の状態(造粒された状態)を保持する段階で繊維処理剤が固形となるように、繊維処理剤の種類、撹拌時間、撹拌するときの温度などを調整することもできる。
 攪拌条件は、繊維が捲縮した球形のカーボンファイバーボールではなく、引き揃った状態の繊維集合体が得られるように調整する。繊維処理剤、特に液体を全く含まない、または多量に投入して繊維を攪拌して集合体を得る場合や原料の平均繊維長が1mm以下となる場合には、カーボンファイバーボールになりやすい。
 撹拌造粒機は、円筒形容器と回転軸により回転可能な撹拌翼を有する造粒機であればよい。
 撹拌翼としてはパドル型、プロペラ型、タービン型、アンカー型、リボン型等が例示できる。
 撹拌造粒機としては、SPグラニュレーター(ダルトン)、ハイスピードミキサー(アーステクニカ)、バーチカルグラニュレーター(パウレック)、レーディゲミキサー(マツボー)、スーパーミキサー(カワタ)、パワーニーダー(不二パウダル)、ヘンシェルミキサー(三井三池)、万能混合撹拌機(品川工業所)、スパルタンリューザー(不二パウダル)、バイトミックス(ホソカワミクロン)等の回分式撹拌造粒機械、フレキソミックス(ホソカワミクロン)、モデュロミックス(ホソカワミクロン)等の連続式撹拌造粒機が挙げられる。
 撹拌造粒機と流動層造粒機の複合型造粒機として、マルチプレックスグラニュレーター(パウレック)、スピラコーター(パウレック)、スパイラフロー(フロイント産業)、ニューマルメライザー(不二パウダル)が挙げられる。
 撹拌槽は、撹拌翼として水平方向に回転する撹拌翼(アジテーター)と垂直方向に回転する補助撹拌翼(チョッパー)とを有するものを用い、水平方向に回転する撹拌翼と垂直方向に回転する補助撹拌翼とで撹拌することで、効率的な撹拌造粒を行うことができる。垂直方向に回転する補助撹拌翼は大きくなりすぎた造粒物を砕き、繊維集合体の大きさを均一にする役割がある。
 攪拌造粒機に投入する前の原料は湿式混合を経ていない原料としてもよい。すなわち、湿った状態の繊維凝集体ではなく、乾燥した状態の複数の繊維を原料として直接攪拌槽に投入して撹拌することができる。造粒の完了時期は特に制限されないが、粒度分布を特定できる程度に繊維集合体が形成されている状態であることが好ましい。
<乾燥工程>
 本発明の第1態様の繊維集合体の製造方法では、上記のように撹拌造粒した後、得られた造粒物に含まれる繊維処理剤由来の液体を蒸発させる乾燥工程を行うことが好ましい。
 乾燥工程の条件は、用いた繊維処理剤の種類によっても異なる。乾燥は、乾燥機を用いて50~150℃で1~5時間程度行えばよい。
 乾燥設備としては、箱型乾燥機、ベルトコンベア乾燥機、トンネル乾燥機、固定タンク撹拌乾燥機、ドラム回転乾燥機、ロータリーキルン、流動層乾燥機、撹拌熱風乾燥機、気流乾燥機、赤外線乾燥機、マイクロ波乾燥機、真空乾燥機等が挙げられる。自然乾燥であってもよい。
<分級工程>
 複数の繊維集合体を分級して複数の繊維集合体の均一性を高めることができる。分級に用いる篩は、振動機構と、振動機構に結合された容器と、容器の内部空間を区画する篩網とを備える構成とすることができる。容器が円筒形状の場合は、円筒の開口部が垂直方向を向くように配置する。容器の一端の開口部に篩網を配置して、篩網上に繊維集合体を供給する。繊維集合体が外周に向かうように容器を振動させて大きな繊維集合体を篩網上から排出、小さな繊維集合体を篩網下へ落下させて分級する。
 容器がトラフ形状の場合は、篩網は容器の内部空間を長手方向に区画するように配置される。傾斜をつけた容器の長手方向一端から繊維集合体を供給し、繊維集合体を垂直方向上方から下方に向かうように容器内を移動させて容器のもう一方の端部から排出させる。容器の振動により、大きな繊維集合体は篩網上に残り、小さな繊維集合体は網目を抜けて篩網下へ落下する。篩網上の繊維集合体と篩網下の繊維集合体をそれぞれ採取することで分級された繊維集合体が得られる。
 篩網は繊維集合体を所望の大きさに篩い分けできるように網目形状や目開きを調整する。繊維集合体が楕円体形状の場合には、網目形状は長方形あるいは菱形であることが好ましい。網目形状は正方形や円形であってもよい。
 例えば、篩としては、振動ふるい(ダルトン)、フィンガースクリーン(太洋マシナリー)が挙げられる。分級工程は、原料繊維に適用して繊維の均一性を高めてから使用することもできる。
<転動槽>
 本発明の第2態様において用いられる転動槽としては、パン型の回転体又はドラム型の回転体が挙げられる。
 図2は、本発明の第2態様の繊維集合体の製造方法において使用されるパン造粒機の実施の形態を示す模式図である。Fig.2aはパン造粒機の側面図である。Fig.2bは造粒パンの内部構造示す図である。
 図3Aは、第2態様の繊維集合体の製造方法において使用される転動槽の固定側壁と回転容器を示す断面図である。
 図3Bは、本発明の第2態様の繊維集合体の製造方法において使用される転動撹拌造粒機の実施の形態を示す内部透視斜視図である。
 図2のパン造粒機は、造粒パン11が転動軸12により転動するように構成されている。13はモーター、14は減速機、15はパン支え、16は機台、17は抑角調整装置である。
 造粒パン内にはスプレー22、スクレーパー23を有するアーム21が設けられている。
 このような回転体の円筒側壁の移動速度は0.20~1.60m/sであることが好ましく、0.50~1.00m/sであることが好ましい。円筒側壁の移動速度が上記下限以上であれば、遠心力により繊維混合物を上方まで移動させ滑落による衝撃で破砕しながら繊維集合体の形状を均一にすることが可能である。円筒側壁の移動速度が上記上限以下であれば、遠心力が適度に働き繊維混合物が上方まで移動し滑落による破砕と造粒が効率よく行われるため生産性を高めることが可能である。
 図3Aに示すように、転動槽は、固定された側壁31と、該側壁内を水平方向に回転する回転容器32とを有するものが好ましい。この場合、回転容器の外周速は1~20m/sであることが好ましく、5~10m/sであることがより好ましい。回転容器の外周速が上記下限以上であれば、繊維混合物の周方向への移動と遠心力による壁面への衝突が連続的に生じて破砕と造粒により繊維集合体の形状を均一にすることが可能である。回転容器の外周速が上記上限以下であれば、遠心力が適度に働き繊維混合物にかかる重力とのバランスが取れて破砕と造粒が効率よく行われるため生産性を高めることが可能である。
 転動造粒機は、回転可能な容器を有する造粒機であればよく、円筒容器を用いることができる。回転可能な容器は、先に説明した撹拌翼を備えることにより、転動槽と攪拌槽の役割を有することとなり、後述の転動撹拌造粒機の態様として攪拌造粒に使用できる。
 円筒容器としては通常型パン、多段パン、不規則パン、パラボラパン、二重パン、截頭円錐パン等のパン型、およびドラム型が挙げられる。
 転動造粒機としては、パン型造粒機(日本スピンドル)、スピラコーター(岡田精工)、スパイラルフロー(フロイント産業)、ニューマルメライザー(不二パウダル)が挙げられる。
<転動撹拌造粒機>
 転動撹拌造粒機について、図3Bを参照して説明する。転動撹拌造粒機の一態様は、図3Bに示されるように、原料繊維や繊維処理剤を内部に収納して回転可能な容器40と、容器40の内部で且つ容器40の中心軸線41より偏心した位置に中心軸線41と平行に回転軸部42とが配置されている。回転軸部42は、容器40の回転方向と逆方向に回転可能であることが好ましい。逆方向に回転することにより、撹拌翼と繊維集合体との衝撃力が増し、強いせん断により短時間で繊維を引き揃えることが可能である。回転軸部42の回転方向は容器40と同一方向に回転してもよい。撹拌翼の回転方向が容器の回転方向と逆方向である場合、繊維集合体に含まれるフィラメント数が少なく、繊維集合体に含まれるフィラメント数や形状の分布が均一になる傾向がある。容器の回転方向と同一方向である場合、繊維集合体1つに含まれるフィラメント数が多く、繊維がまとまりやすい傾向がある。撹拌翼の回転方向が容器の回転方向と逆方向となるように撹拌した後、撹拌翼の回転方向が容器の回転方向と同一方向となるように撹拌すると、フィラメント数が少なく均一な分布の繊維集合体どうしの液架橋が進むと考えられる。これにより、均一、且つ嵩密度の高い繊維集合体を得ることができる。回転軸部42は、容器40の底板43の近傍まで延びて、繊維と繊維処理剤との混合物の領域内で運動する撹拌翼44を有する。容器40の回転により混合物を循環し、撹拌翼44の回転により混合物にせん断を与えて繊維を引き揃えることが可能である。撹拌翼44の羽根は、撹拌造粒機で説明した態様が適用できる。容器40の側面にスクレーパー45を具備している。容器40の内部の側面、底面、またはその両方にスクレーパーを具備してもよい。スクレーパー45により付着した原料をかき落とすことができる。
 転動撹拌造粒機の回転条件については、容器40の周速(容器周速)は0.4~1.2m/秒の範囲とすることができる。周速が0.4m/秒以上であれば、繊維混合粒を撹拌槽内で循環させながら撹拌することが可能である。一方、周速が1.2m/秒以下であれば、繊維混合粒を効率よく撹拌翼やスクレーパーに接触させることができ、処理時間を短くすることが可能である。周速は0.5~1.0m/秒や0.7~0.9m/秒とすることができる。撹拌翼44の撹拌翼先端の周速(先端周速)が1~30m/秒の範囲となるようにすることが好ましい。先端周速が1m/秒以上であれば、短時間で繊維を引き揃えて繊維集合体の密度を高めることが可能である。一方、先端周速が30m/秒以下であれば、繊維集合体の粒子形状を均一にすることが可能である。撹拌翼44の周速は10~20m/秒や1~8m/秒とすることができる。
 転動撹拌造粒機は、容器と回転軸により回転可能な撹拌翼を有する造粒機であればよく、撹拌翼としてはパドル型、プロペラ型、タービン型、アンカー型、リボン型等が例示できる。転動撹拌造粒機としては、インテンシブミキサー(アイリッヒ)、傾胴式転動撹拌造粒機(キタガワ)が挙げられる。
<ひずみ速度>
 本発明の第3態様に係る繊維集合体の製造方法において、繊維と繊維処理剤に与えるひずみ速度は、1[1/s]以上700[1/s]以下であることが好ましい。ひずみ速度が上記下限以上であれば繊維を配向させやすい。ひずみ速度が上記上限以下であれば均一な粒子(繊維束)が得られる。ひずみ速度は、特に10~500[1/s]、とりわけ20~200[1/s]であることが好ましい。
 容器に繊維を投入した際の仕込み高さは、容器高さの1/50以上、容器高さの2倍以下が好ましい。仕込み高さが上記下限以上であれば繊維を配向させやすい。仕込み高さが上記上限以下であれば均一な粒子(繊維束)が得られる。仕込み高さは、特に容器高さの1/10以上、容器高さ以下、とりわけ容器高さの1/5以上、容器高さの4/5が好ましい。
 繊維と繊維処理剤に与えるひずみ量は、5,000[-]以上230,000[-]以下であることが好ましい。ひずみ量が上記下限以上であれば繊維を配向させやすい。ひずみ量が上記上限以下であれば均一な粒子(繊維束)が得られる。ひずみ量は、特に5,000~100,000[-]、とりわけ5,000~20,000[-]であることが好ましい。
 繊維と繊維処理剤にひずみ速度を与える操作としては、特に制限はないが、具体的には以下のような方法が挙げられる。
(1)繊維と繊維処理剤とに撹拌翼を動かして接触させることによりせん断速度を与える操作(撹拌造粒)
 具体的には、撹拌造粒機の、図1に示すような撹拌翼3を有する撹拌槽1内に繊維と繊維処理剤を投入して撹拌する方法が挙げられる。
 この撹拌造粒機については、前述の本発明の第1態様の繊維集合体の製造方法における説明の通りであり、その好ましい態様や撹拌条件等についても前述の通りである。
 撹拌造粒を行う場合、ひずみ速度は、攪拌翼最外径の周速(撹拌翼3の先端3aの周速)[m/s]を、撹拌槽3内の攪拌翼と原料の仕込み高さ[m]で除した値として求められる。
 ひずみ速度[/s]=攪拌翼の周速[m/s]/仕込み高さ[m]
(2)繊維と繊維処理剤を投入した容器を振動させることにより振動速度を与える操作(振動による造粒)
 具体的には、繊維と繊維処理剤とを密閉可能な容器に投入する。密閉可能な容器はどのようなものでも構わないが、円筒形でねじ込み蓋のついたもの用いることができる。密閉容器を、ふるい振とう機などに設置し、一定時間振動を加える。この際の振動の振幅Aと周期Tを用いて、単振動を仮定して下記式にて速度(v)を求める。tは経過時間でありt=0、T/2などで最大速度が得られる。
 v=(2π/T)Acos(2πt/T)
 振動による造粒を行う場合、ひずみ速度は、振動で生じる最大速度(v)[m/s]を仕込み高さで除した値で求められる。
 ひずみ速度[/s]=振動で生じる最大の速度[m/s]/仕込み高さ[m]
 振幅と周期の測定方法は、いかなる方法で測定してもよい。振とう機そのものの設定値を用いてもよいし、ビデオカメラで振動そのものを撮影し、画像処理から振幅と周期から求めることでもよい。
(3)繊維と繊維処理剤を投入した容器を回転する操作により回転速度を与える操作(転動造粒)
 具体的には、本発明の第2態様の繊維集合体の製造方法の説明で挙げた図2に示すパン造粒機を用いる方法が挙げられる。
 このような転動造粒において、ひずみ速度はパン外周の周速[m/s]をパンの外周長で除した値に該当する。
 ひずみ速度[/s]=パン外周の周速[m/s]/パンの外周長[m]
(4)繊維と繊維処理剤を投入した容器内に気体を吹き込むことにより気流せん断速度を与える操作(流動層造粒)
 具体的には、流動層造粒法は、造粒室の下部から気体を送り込み、原料粉粒体を空中に巻き上げることにより粒子が流動する状態になる層を形成してから、造粒液体を噴霧して、凝集または被覆により粒状物に成長させる方法である。
 このような流動層造粒では、気流の吹き出し速度が最大の速度となる。これを仕込み高さで除してひずみ速度と定義する。
 ひずみ速度[/s]=吹き出し速度[m/s]/仕込み高さ[m]
<繊維>
 繊維集合体の製造に用いる繊維(以下、「原料繊維」と称す場合がある。)は、炭素繊維を含むものである。原料繊維は、炭素繊維を含むものであれば、更に炭素繊維以外の無機繊維や有機繊維を含むものであってもよい。
 炭素繊維以外の無機繊維としては、ガラス繊維、カーボン繊維、ボロン繊維、炭化ケイ素繊維、窒化ケイ素繊維、アルミナ繊維、ステンレス繊維、ピアノ線等が挙げられる。
 有機繊維としては、化学繊維、天然繊維が挙げられる。
 化学繊維としては、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリ乳酸繊維等のポリエステル系繊維;ナイロン6繊維、ナイロン66繊維等のポリアミド系繊維;ポリアクリル系繊維;ポリプロピレン繊維等のポリオレフィン系繊維;ポリフェニレンサルファイド繊維;ポリカーボネート繊維等が挙げられる。
 天然繊維としては、綿(コットン)、麻、ケナフ、バンブーコットン、バンブーレーヨン、レーヨン等の植物繊維、ウール、シルク等の動物繊維が挙げられる。
 これらの繊維は1種のみを用いてもよく、2種以上を混合して用いてもよい。
 これらの繊維のうち、特に繊維強化樹脂組成物としての製造に有用で、比強度及び比弾性率が高い繊維強化樹脂組成物を提供可能であることから、少なくとも炭素繊維を用いることが好ましい。原料繊維に占める炭素繊維の割合は70質量%以上、特に90~100質量%であることが好ましい。
 原料繊維は、バージン繊維に限らず、リサイクル繊維であってもよい。特に第1態様によれば、リサイクル繊維からも、繊維を切断することなく、長さを保ったまま繊維が引き揃った嵩密度が高い炭素繊維集合体を製造することができる。リサイクル繊維としては、熱、亜臨界流体または超臨界流体を用いてマトリックスを分解させて得られる繊維や、繊維基材の端材を切断して得られる繊維などが挙げられる。リサイクル繊維は綿状となるまで、マトリックスを完全に除去することができる。除去し切れない樹脂残渣がある場合には、酸化性雰囲気下で熱処理することにより除去してもよい。
 原料繊維は、不連続繊維(短尺繊維)が複数本集合したものであり、綿状であってもよいし、引き揃っていてもよい。モノフィラメントが飛散しない程度にまとまっていれば繊維集合体への変換効率が高くなる。不連続繊維は、連続した繊維の束を切断して得てもよいし、不連続である形態の繊維を用いてもよい。連続した繊維はトウでもよいし、プリプレグや成形品等から取り出したものであってもよい。
 例えば熱によりマトリックスを分解させて得られるリサイクル繊維は、加熱直後は乾燥した綿状の繊維の状態である。攪拌造粒を使用することで、繊維リサイクルの工程から繊維の形態を変更することなく繊維が引き揃った繊維集合体を得ることができる。攪拌翼の回転により繊維同士の絡まりや、樹脂炭化物などの付着物を取り除くことができるためである。
 図4はリサイクル繊維の形態の例を示す。リサイクル繊維は、繊維がランダムに重なった繊維のかたまりとなっている。
 図5はバージン繊維の形態の例を示す。バージン繊維は、繊維が引き揃えられた繊維束のかたまりとなっている。
 攪拌造粒機等で撹拌する前に原料繊維を解繊してもよい。例えば、繊維処理剤を撹拌槽に投入する前に、撹拌槽内で液体を含まない繊維を撹拌翼によって撹拌することで原料繊維を解繊する。撹拌翼の回転による作用で樹脂炭化物などの付着物で結合した繊維を解してより小さい単位の繊維とすることで、繊維処理剤を加えた後の撹拌翼による撹拌で繊維を引き揃えやすくできる。同時に、繊維集合体の均一性を向上させることができる。
 原料繊維には、サイジング剤やFRPのマトリックス樹脂が付着していてもよい。
 炭素繊維等の原料繊維の樹脂残渣量は、例えば0.01~10%の範囲である。
 炭素繊維等の原料繊維の繊維径については特に制限はない。原料繊維の繊維径は、通常の繊維径、例えば5μm~20μmの範囲である。原料繊維の嵩密度は、例えば0.01~0.90g/cmの範囲である。原料繊維の嵩密度が0.01~0.040g/cm範囲であれば、原料繊維より嵩密度が大きい繊維集合体に変換しやすい。
 炭素繊維等の原料繊維の平均繊維長は1~100mmであることが好ましく、特に2~50mmであることが好ましい。押出成形に用いる繊維強化樹脂組成物(ペレット)に使用する場合、原料繊維の平均繊維長は2~12mmであることが好ましい。プレス成形に用いる繊維強化樹脂材料(プリプレグ)に使用する場合、原料繊維の平均繊維長は12~50mmであることが好ましく、プリプレグ製造時に繊維集合体を散布して均一に堆積させやすくする観点から12~30mmであることがより好ましい。原料繊維の繊維長が上記下限以上であれば、繊維強化樹脂組成物の強度を十分に高めることができ、かつ、繊維配向を高度に制御することが可能である。原料繊維の平均繊維長が上記上限以下であれば、繊維集合体を製造する際の装置への絡まりを抑えて生産効率を高めることができ、かつ、繊維集合体の粒子形状を均一に制御することが可能である。
 平均繊維長は、加重平均繊維長を採用することが好ましい。平均繊維長は、後述の実施例の項に記載の方法で測定することができる。顕微鏡観察により撮影した画像をimageJなどの画像処理ソフトを用いて2値化処理を行い、繊維長を算出することもできる。
<繊維処理剤>
 繊維処理剤としては繊維を造粒して繊維集合体とすることができるものであればよく、特に制限はない。繊維処理剤は、液体であってもよい。繊維処理剤としては、例えば、溶剤、溶剤に有機化合物を溶解させたもの、溶剤に有機化合物を機械的に分散させたもの、溶剤に有機化合物を界面活性剤により分散させたもの、溶剤を加温して粘度を低下させたもの等を用いることができる。繊維処理剤は、室温で繊維同士の液架橋を形成することができる観点から、室温において液体であることが好ましい。
 ここで有機化合物としては、以下のようなものなどが挙げられる。
 デンプン、シクロデキストリン、アミノ酸、ペプチド、たん白質、天然ゴム、大豆油、ヤシ油等の天然化合物;
 ABS樹脂、塩化ビニリデン系ラテックス、塩化ビニル樹脂、ブタジエン樹脂、フッ素樹脂、ポリアセタール、ナイロン6,ナイロン66等のポリアミド、ボリアリレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエチレン、ポリエチレンオキシド、ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル、ポリカーボネート、ポリスチレン、ポリサルホン、ポリビニルエーテル、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリプロピレン、メタクリル樹脂等の熱可塑性樹脂、該樹脂の前駆体及び単量体、該樹脂の変性物;
 エポキシ樹脂、キシレン樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、フラン樹脂、ポリイミド、ポリウレタン、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂、該樹脂の前駆体及び単量体、該樹脂の変性物;
 スチレン・ブタジエンラテックス、ブタジエンラテックス、ネオプレン・ブタジエンラテックス、クロロプレンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、アクリルゴム等の合成ゴム;
 ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリス-(2-メトキシエトキシ)ビニルシラン、γ-グリシドキシプロピルトリメトキシシラン、3-(トリメトキシシリル)プロピルメタクリレート、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシラン系カップリング剤;
 イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルバイロホスフェート)オキシアセテートチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート等のチタニウム系カップリング剤:
 繊維処理剤としては、具体的には、以下のようなものが挙げられる。
 溶剤としては、アルコール類、ケトン類、炭化水素類等の有機溶媒、水が例示できる。
 造粒促進剤としては、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、キサンタンガム、グアガム、でんぷん、ポリビニルアルコール、ポリアクリルアミド、ポリエチレングリコールおよびポリエチレンオキサイド等の有機系増粘剤;モンモリロナイト、サポナイト、ヘクトライト、ベントナイト、ベイデライト、ノントロナイト、サウコナイト、ステベンサイド、ラポナイトおよび合成スメクタイト等のスメクタイト粘土鉱物、含水シリカ、無水シリカおよび含水シリケート等のホワイトカーボン等の無機系増粘剤が挙げられる。
 サイジング剤としては、未ケン化のポリ酢酸ビニル、部分ケン化PVA、完全ケン化PVA、変性PVA(イタコン酸変性、フタール酸変性、アクリル酸変性等)等のポリビニルアルコール(PVA);酢酸ビニルとエチレン、マレイン酸、クロトン酸、またはアクリル酸との共重合体;メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体;コーンスターチ、可溶性澱粉等の澱粉誘導体;ポリアクリル酸ソータ、ポリアクリルアマイド等のアクリル系重合体;ゴムラテックス、エポキシ樹脂、ポリウレタンが挙げられる。
 繊維処理剤としては、溶剤、粘土鉱物、樹脂及び界面活性剤から選ばれる1種又は2種以上を含むことが、繊維間に液架橋を形成して、繊維を配向しやすくし、繊維集合体の嵩密度向上と粒子形状均一化の観点から好ましい。繊維処理剤としては、安全性の面から水、及び水に有機化合物を溶解させたもの、水に有機化合物を機械的に分散させたもの、水に有機化合物を界面活性剤により分散させたものが好ましい。樹脂の一態様としてポリマーを含み得る。
 溶媒としては、メタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ヘキサン、シクロヘキサン、ベンセン、トルエン、スチレン等の炭化水素類等の有機溶媒、及び水が挙げられる。液架橋を形成させる観点からは水が好ましい。
 粘土鉱物としては、モンモリロナイト、サポナイト、ヘクトライト、ベントナイト、ベイデライト、ノントロナイト、サウコナイト、ステベンサイド、ラポナイトおよび合成スメクタイト等が挙げられる。
 樹脂としては、ABS樹脂、塩化ビニリデン系ラテックス、塩化ビニル樹脂、ブタジエン樹脂、フッ素樹脂、ポリアセタール、ナイロン6,ナイロン66等のポリアミド樹脂、ボリアリレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエチレン、ポリエチレンオキシド、ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル、ポリカーボネート、ポリスチレン、ポリサルホン、ポリビニルエーテル、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリプロピレン、メタクリル樹脂等の熱可塑性樹脂;エポキシ樹脂、キシレン樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、フラン樹脂、ポリイミド、ポリウレタン、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂;スチレン・ブタジエンラテックス、ブタジエンラテックス、ネオプレン・ブタジエンラテックス、クロロプレンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、アクリルゴム等の合成ゴム;等が挙げられる。繊維束形状保持する観点から、樹脂が、エポキシ樹脂、ウレタン樹脂、およびポリアミド樹脂から選ばれる少なくとも1種を含むことが好ましい。
 界面活性剤としては、アルキルエーテルカルボン酸塩等の陰イオン界面活性剤、脂肪族4級アンモニウム塩、イミダゾリニウム塩等の陽イオン界面活性剤、カルボキンベタイン型等の両性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル等の非イオン界面活性剤が挙げられる。
 繊維処理剤は、下記(1),(2)のいずれか一方又は双方の物性を有するものが好ましい。
(1) 23℃における表面張力が120mN/m以下
(2) 23℃における粘度が10Pa・s以下
 繊維処理剤の23℃における表面張力が120mN/m以下であれば、繊維間に液架橋を形成することができ、繊維の移動を容易にして繊維を配向させることが可能である。繊維処理剤の23℃における表面張力は、110mN/m以下、100mN/m以下、90mN/m以下、72mN/m以下、60mN/m以下、50mN/m以下、40mN/m以下とすることができる。一方、繊維処理剤の23℃における表面張力は10mN/m以上、15mN/m以上、20mN/m以上、30mN/m以上とすることができる。
 ここで、23℃における表面張力はプレート法(垂直板法)により測定された値である。加温して造粒するときは、撹拌するときの温度での上記表面張力の範囲の繊維処理剤を使用できる。
 繊維処理剤の表面張力が上記下限以上であれば、繊維同士をつなぐ液架橋部分に適切な毛管負圧が加わり、繊維同士が吸着して配向し、緻密な繊維集合体を得ることができる。表面張力が上記上限以下であれば、繊維処理剤が繊維表面に適度に濡れて、液架橋が効率よく発生し、繊維の造粒効率に優れる。
 繊維処理剤の23℃における粘度が10Pa・s以下であれば繊維集合体の粒子形状を均一にすることが可能である。繊維処理剤の23℃における粘度は8Pa・s以下、5Pa・s以下、2Pa・s以下、0.5Pa・s以下とすることができる。一方、繊維処理剤の23℃における粘度は0.0001Pa・s以上とすることができる。
 ここで23℃における粘度はB型回転粘度計により測定された値である。加温して造粒するときは、撹拌するときの温度での上記粘度張力の範囲の繊維処理剤を使用できる。
 繊維処理剤の粘度が上記上限以下であれば、繊維同士の摩擦が適度に発生し、これにより形状の整った均一な繊維集合体を得ることができる。また、繊維処理剤が繊維表面に濡れ広がることで、液架橋が効率よく発生し、繊維の造粒効果に優れる。
 繊維処理剤の23℃における表面張力は、例えば界面活性剤や溶媒の混合により調整することができる。
 繊維処理剤の23℃における粘度は、例えば造粒促進剤や溶媒の混合により調整することができる。
 このような繊維処理剤は、繊維100質量部に対して5~120質量部用いることが好ましい。繊維処理剤の使用量が上記下限以上であれば、繊維間に適度な量の液架橋が発生し、繊維の流動と吸着を促して適切に配向させることができ、緻密な繊維集合体を得ることができる。繊維処理剤の使用量が上記上限以下であれば、繊維間の液架橋が消滅することなくスラリー化せずに粒子形状を保った繊維集合体を得ることができる。繊維処理剤は、繊維100質量部に対して20~80質量部用いることがより好ましい。原料繊維の平均繊維長が2~12mmである場合は、乾燥を容易にできる観点と繊維集合体をペレットに適した大きさに調整できる観点から繊維処理剤は繊維100質量部に対して5~50質量部用いることが好ましく、10~40質量部用いることがより好ましい。原料繊維の平均繊維長が12~50mmである場合は、乾燥を容易にできる観点と繊維集合体をプリプレグに適した大きさに調整できる観点から繊維処理剤は繊維100質量部に対して20~120質量部用いることが好ましく、30~80質量部用いることがより好ましい。
 繊維処理剤は、繊維と共にその全量を撹拌造粒機に一括して投入してもよく、間欠的に分割投入してもよく、連続的に投入してもよい。
<繊維集合体>
 本発明の第1態様によれば、繊維と繊維処理剤を造粒することによって、繊維を切断することなく、長さを保ったまま繊維が引き揃った嵩密度が高い繊維集合体を製造することができる。
 繊維集合体中の繊維の平均繊維長は1~100mmであることが好ましく、特に2~50mmであることが好ましい。繊維集合体の繊維の平均繊維長は、押出成形に用いる繊維強化樹脂組成物(ペレット)に使用する場合は2~12mmであることが好ましい。繊維集合体の繊維の平均繊維長はプレス成形に用いる繊維強化樹脂組成物(プリプレグ)に使用する場合は12~50mmであることが好ましい。
 繊維の長さ維持の程度としては、繊維集合体の均一性が高まることから、撹拌槽に投入前の原料繊維の平均繊維長Xに対する繊維集合体中の繊維の平均繊維長Yの比(Y/X)が0.55以上であることが好ましく、0.70以上であることがより好ましく、0.80以上であることが更に好ましく、0.90以上であることが特に好ましい。この比(Y/X)は、1以下とすることができる。
 得られる繊維集合体の形状には特に制限はないが、強化繊維としての用途において、長球形状又はストランド形状であることが好ましい。
 長球形状としては、楕円体が一例として挙げられるが、最も太い部分の直径が0.1mm~10mm、長軸の長さは繊維集合体中の繊維の平均繊維長より長く、3mm~150mm、断面形状は、円形、楕円形等とすることができる。ペレットに用いる場合の繊維集合体の形状は、混練機へのフィード効率の観点から長球形状であって、最も太い部分の直径が2mm~7mm、長軸の長さは繊維集合体中の繊維の平均繊維長より長く、その比(長軸の長さ/平均繊維長)は1.1倍~5.0倍、3mm~18mmとすることが好ましい。プリプレグに用いる場合の繊維集合体の形状は、繊維集合体を散布して均一に堆積させやすくする観点からストランド形状であって、最も太い部分の直径が2mm~10mm、束長は繊維集合体中の繊維の平均繊維長より長く、その比(束長/平均繊維長)は1.1倍~3.0倍、12mm~150mmとすることが好ましい。
 この繊維集合体の長軸は、当該繊維集合体に含まれる繊維の平均繊維長より長いことが好ましい。
 繊維集合体の嵩密度は、例えば0.03~0.7g/cmとすることができる。用いた原料繊維により異なるが、繊維集合体の輸送効率の観点から、嵩密度は0.1g/cm以上が好ましく、0.2g/cm以上が特に好ましい。繊維含有量が少ない成形品の用途であれば、嵩密度は、0.1g/cm以上0.3g/cm未満、0.1g/cm以上0.29g/cm以下とすることができる。強度が求められる成形品の用途であれば、嵩密度は、0.3g/cm~0.6g/cmとすることができる。一度にフィードできる量を増加可能であることから、いずれの場合であっても、嵩密度は0.15g/cm以上が好ましく、0.2g/cm以上が特に好ましい。繊維集合体の安息角は、60°以下が好ましく、50°以下がより好ましい。10°以上とすることができる
 繊維集合体の嵩密度および安息角は、後述の実施例の項に記載の方法で測定される。
 繊維集合体中の繊維含有率は、例えば、10~99質量%とすることができる。ペレット製造に使用する場合は、繊維集合体中の繊維含有率は、例えば80~99質量%とすることができる。繊維集合体をそのまま成形型等に投入して成形に利用する場合は、繊維集合体中の繊維含有率は、例えば10~70質量%とすることができる。繊維集合体に樹脂が含まれる場合は、繊維集合体中の繊維100質量部に対して0.1~20質量部、特に0.5~10質量部含有されていることがより好ましい。
<用途>
 本発明の第1態様の繊維集合体の製造方法により製造された繊維集合体、特に炭素繊維集合体は、強化繊維として各種のプリプレグ(ランダム、一方向)、ペレット、スタンパブルシートなどの繊維強化樹脂組成物成形材料に有効に用いることができる。
<プリプレグシートの製造方法>
 プリプレグシートの製造方法は、前述の繊維集合体の製造方法により製造された繊維集合体を複数堆積させることを含む。
 繊維集合体としてのSACFBを用いて製造し得るプリプレグの一例は、シートプリプレグである。好適例では、次の第一ステップ~第四ステップを経てシートプリプレグを製造することができる。
 第一ステップ:第一保護フィルムと第二保護フィルムのそれぞれの表面に液状熱硬化性樹脂組成物を塗布するステップ。
 第二ステップ:第一保護フィルムの液状熱硬化性脂組成物が塗布された表面の上に、SACFBを含む複数の短尺炭素繊維束を堆積させて炭素繊維マットを形成するステップ。
 第三ステップ:第二保護フィルムを、炭素繊維マットを間に挟んで、液状熱硬化性樹脂組成物が塗布された面同士が互いに向き合うように第一保護フィルムに貼り合わせて積層体を形成するステップ。
 第四ステップ:積層体を加圧することによって炭素繊維マットを液状熱硬化性樹脂組成物で含浸させ、シートプリプレグを得るステップ。
 第一保護フィルムと第二保護フィルムは合成樹脂フィルムであり、その材料は、ポリエチレンやポリプロピレンのようなポリオレフィン、ポリ塩化ビニリデン、塩化ビニル樹脂、ポリアミド等から適宜選択することができる。第一保護フィルムと第二保護フィルムは多層フィルムであってもよい。第一保護フィルムと第二保護フィルムの仕様は同じであってもよいし、異なっていてもよい。
 第二ステップでは、第一保護フィルムの液状熱硬化性樹脂組成物が塗布された表面上に、SACFBを含む複数の短尺炭素繊維束を、例えば散布という方法によって堆積させることで、炭素繊維マットを形成する。
 第一ステップで第一保護フィルム及び第二保護フィルムに塗布する液状熱硬化性樹脂組成物の量と、第二ステップで第一保護フィルム上に形成する炭素繊維マットの目付は、製造すべきシートプリプレグの目付と繊維含有率を考慮して調整する。
 液状熱硬化性樹脂組成物に増粘剤が配合されているときは、第四ステップの後で、液状熱硬化性樹脂組成物の粘度が十分に高くなるまでプリプレグを熟成させる。
 上記の手順において、第一保護フィルムと第二保護フィルムはロールから巻き出されるキャリアフィルムであってもよい。
 好適例では、図8に概念図を示すシートプリプレグ製造装置を用いて、長尺のシートプリプレグを連続的に製造することができる。
 図8に示すシートプリプレグ製造装置は、ロールから巻き出される第一保護フィルムに液状熱硬化性樹脂組成物を塗布するセクション、第一保護フィルム上に炭素繊維束を散布して炭素繊維マットを堆積させるセクション、ロールから巻き出される第二保護フィルムに液状熱硬化性樹脂組成物を塗布するセクション、第一保護フィルムに第二保護フィルムを貼り合わせて積層体とするセクション、積層体を加圧するセクション、積層体を巻き取るセクションを有している。
 SACFBを用いたプリプレグを用いてCFRP製品を製造するときの成形方法としては、プレス成形法を好ましく用いることができるが、限定するものではない。この成形方法としては、例えばオートクレーブ成形法のようなプレス成形法以外の成形方法を用いることもできる。
[本発明の第4態様]
 以下に本発明の第4態様の実施の形態について説明する。
 本発明の第4態様に係る繊維束(以下、「繊維束W」と記載する場合がある。)は、複数の炭素繊維と、樹脂または溶剤とを含み、繊維束は楕円体形状であり、下記条件(1)で特定されるA’/Aが0.75~0.93である。第4態様に係る繊維束は、繊維集合体の一態様である。
条件(1):白色板上に静置した繊維束を、鉛直方向板と反対側から撮影して得られた画像を画像解析ソフトを用いて二値化し二値画像を得る。二値画像を輪郭抽出して繊維束の輪郭を得る。得られた輪郭からフェレー径を求め長軸長さAとする。前記二値画像を楕円近似して得られる楕円の長軸長さをA’とする。
 A’/Aは1に近づくにつれ、繊維束を長軸と同一の方向に切断したときの断面形状が楕円形状若しくは円形状に近くなる。A’/Aは値が小さくなるにつれ前記断面形状の長軸の先端に角部や突出した繊維を持つ形状に近くなる傾向がある。A’/Aが0.75以上であると、繊維束が多数存在した状態(複数の繊維集合体)としたときに、該繊維束同士が滑りやすくなり、混練機へ繊維束を投入するためのフィーダー内の特にホッパーで繊維束が互いに支え合って落下を阻害するブリッジを抑制することができる。A’/Aが0.93以下であると、繊維束が流動方向に配向してフィーダー内で流動しやすくなり、フィーダー内で隙間が少なくなるように繊維束が配置されることから、一定量を継続的に供給できるようになる。
 A’/Aは、例えば、0.93以下、0.92以下、0.91以下とすることができる。A’/Aは、例えば、0.75以上、0.80以上、0.81以上、0.85以上とすることができる。
 樹脂成形品の機械物性の観点から、繊維束Wの長軸長さAは3mm以上が好ましく、4mm以上がより好ましい。ブリッジ発生防止の観点から、長軸長さAは30mm以下、25mm以下とすることができる。
 輪郭の長軸と短軸から求められる仮想楕円の面積S’と楕円近似して得られる楕円の面積Sの比(S’/S)は、0.70~1.06、0.80~0.92とすることができる。
 条件(1)は、例えば、以下の方法で実施できる。
 デジタルマイクロスコープVHX-6000とリング照明とを用いて20倍の倍率で繊維束を撮影する。繊維束は水平に保持された白色板上に自然に配置して安定した態勢で、白色板と反対の鉛直方向から撮影する。画像解析は、ソフト(ImageJ)を用いて大津の二値化処理(Make Binary)により二値画像を得る。この二値画像を輪郭抽出(Analyze Particles、Outlines)し、一つの繊維束の輪郭を得る。得られた輪郭からフェレー径(Feret’s Diameter)を求める。輪郭を最小二乗法により楕円近似(Analyze Particles、Ellipses)して得られる楕円の長軸(Major)の長さA’を得る。
 繊維束W中の繊維の平均繊維長は1~100mmであることが好ましく、特に2~50mmであることが好ましい。ペレット製造に使用する場合は繊維束W中の繊維の平均繊維長は2~12mmであることが好ましい。平均繊維長は、加重平均繊維長を採用することが好ましく、後述の実施例の項に記載の方法で測定することができる。繊維の平均繊維長は、長軸Aより短くすることができ、0.2×A~0.8×Ammの関係とすることができる。
 繊維束Wに含まれるフィラメント数は、例えば8000以上800000以下とすることができる。繊維束Wの長軸の中心の方が長軸の末端よりフィラメント数が多いことで楕円体形状をなすことができる。繊維束W中の繊維は、引き揃えられて繊維束を形成している。繊維束中の表面に存在する繊維は、楕円体の輪郭に沿って湾曲して配向していることが好ましい。
 楕円体は、長軸と短軸1と短軸2とを有し、フィーダー内の例えばホッパーの狭窄部で繊維束が閉塞しないようにするために、短軸1の長さBは短軸2の長さCより長く、かつ短軸2の長さCに近いことが好ましい。Bは、ブリッジ発生防止の観点からCの3.0倍以下、2.0倍以下が好ましく、1.1倍以上、例えば1.5倍以上とすることができる。
 具体的な長さとしては、Bは供給量制御の観点から、1mm以上が好ましく、2mm以上がより好ましい。Bはブリッジ発生防止の観点から、通常9mm以下で、8mm以下が好ましく、6mm以下がより好ましい。
 Cは供給量制御の観点から、0.5mm以上が好ましく、1mm以上がより好ましい。Cはブリッジ発生防止の観点から、通常6mm以下で、4mm以下が好ましく、3mm以下がより好ましい。
 短軸1に対する長軸の比(B/A)は2~12、短軸2に対する長軸の比(C/A)は1~6とすることができる。
 下記の式(2)で表される繊維束の粒子密度は、0.3~1.8g/cmとすることができる。
 粒子密度=G/(4πabc/3)…式(2)
(式(2)中、Gは繊維束の質量、aはA/2、bはB/2、cはC/2を表す。)
 繊維集合体としては、フィード効率を改善する観点から、繊維束Wの個数割合が45%以上であることが好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。個数割合は100%未満とすることができる。
 個数割合は、繊維集合体から繊維束を100~10000個抽出し、抽出した繊維集合体中の繊維束Wの個数を抽出した個数で除することで求められる。繊維集合体から繊維束W4.5cm~450cmを計量容器ですくい取り、すくい取った繊維束が重ならないように白色板上に配置し、デジタルカメラで配置された複数の繊維束を撮影して得られた画像を条件(1)の画像解析方法を使用して各々の繊維束のA’/Aを求めることができる。複数の繊維束が凝集した凝集物および微粉が除かれた状態の繊維集合体から繊維束を抽出することが好ましい。
<繊維束Wの製造方法>
 繊維束Wは、短尺繊維からなる綿を、液体と混合することにより、短尺繊維を自発的にバンドル化させることで得られる。具体的には、転動造粒、撹拌造粒、流動層造粒等の造粒により製造することができる。例えば、撹拌造粒機に短尺の炭素繊維からなる綿と液体とを投入し、撹拌翼(アジテーター)の回転速度120~470rpm、チョッパーの回転速度2000~3000rpmで攪拌することによりA’/Aを特定範囲とすることができる。液体は、繊維100質量部に対して5~120質量部用いることが好ましく、特に20~80質量部用いることがより好ましい。液体を構成する成分は先に述べた樹脂や溶剤を用いることができる。
 繊維束Wの製造に好適に用いられる造粒撹拌機としては、本発明の第1態様に係る繊維集合体の製造方法における撹拌造粒機として前述した図1に示す撹拌造粒機が挙げられる。その具体的な撹拌造粒機や撹拌条件等についても同様である。
 撹拌造粒機による回転方向条件については、撹拌翼先端(Fig.1aの3a部)の周速(以下、単に「周速」と称す。)が1~20m/秒の範囲となるようにすることが好ましい。周速が1m/秒以上であれば、繊維混合粒を撹拌槽内で循環させながら撹拌することが可能である。周速が20m/秒以下であれば、繊維集合体の粒子形状を均一にすることが可能である。撹拌翼の周速は4~12m/秒であることがより好ましく、4~8m/秒であることが更に好ましい。
 撹拌翼の回転速度は30~1800rpmに設定することができる。チョッパーの回転速度は800~5000rpmに設定することができる。繊維を切断しない範囲で、撹拌翼とチョッパーの回転速度が大きいほどA’/Aが小さくなる傾向がある。
 以下、本発明を実施例を用いてより具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
[撹拌造粒機]
 以下の実施例1~4において、撹拌造粒機は、図1に示すように撹拌翼3枚が中心の回転軸から放射状に延在するものである。撹拌翼の傾斜角θはそれぞれ以下の通りである。
[測定・評価方法]
 各種の測定・評価方法は以下の通りとした。
<表面張力>
 繊維処理剤の23℃での表面張力を、自動表面張力計(協和界面科学:CBVP-A3、プレート法)を用いて測定した。
<粘度>
 繊維処理剤の23℃での粘度を、B型回転粘度計(ブルックフィールド:LVDV-1 Pri、スピンドルS61)を用いて測定した。50rpmで測定した値を粘度の代表値とした。
<平均繊維長>
 1つの繊維集合体をエタノール中に浸漬して単繊維になるまで解し、ろ紙上に移して乾燥させ、デジタルマイクロスコープ(キーエンス:HX-6000-2)にて撮像し、内蔵されるソフトウェアにて繊維長を計測した。各試料について、100本をカウントし、平均繊維長(加重平均繊維長)を算出した。加重平均繊維長は長さに重みづけするように、測定長の二乗の総和を測定長の総和で除して求めた(加重平均繊維長L=Σl/Σl)
<嵩密度>
 φ50mmの容器に複数の繊維集合体を100mL入れ、3cmの高さから10回タッピングし繊維集合体を沈着させ、その体積と重量から嵩密度を算出した。JISZ2512およびJISR1628に準じて測定した。
<長軸比A’/A>
 繊維集合体として得られた繊維束を水平に保持された白色板上に配置して、白色板と反対の鉛直方向からデジタルマイクロスコープVHX-6000とリング照明とを用いて20倍の倍率で撮影した。実施例1における繊維束の撮影画像を図9に示す。比較例1における繊維束の撮影画像を図12に示す。撮影した画像は、ImageJ(Wayne Rasband)を用いて大津の二値化処理(Make Binary)して二値画像を得た。この二値画像を輪郭抽出(Analyze Particles、Outlines)し、一つの繊維束の輪郭を得た。実施例1における繊維束の輪郭を図10に示す。得られた輪郭からフェレー径(Feret’s Diameter)を求め長軸長さAとした。輪郭を最小二乗法により楕円近似(Analyze Particles、Ellipses)して得られる楕円の長軸(Major)の長さA’を得た。A’をAで除して長軸比A’/Aを求めた。実施例1における近似楕円を図11に示す。
<BおよびC>
繊維集合体として得られた繊維束を水平に保持された白色板上に配置して、長軸と直行する方向の長さをノギスで測長しBとた。繊維束を水平に保持された白色板上に配置して、長軸と直行する鉛直方向の高さをハイトゲージで測長しCとする。
<面積比S’/S>
 繊維集合体として得られた繊維束を水平に保持された白色板上に配置して、白色板と反対の鉛直方向からデジタルマイクロスコープVHX-6000とリング照明とを用いて20倍の倍率で撮影した。実施例1における繊維束の撮影画像を図9に示す。比較例1における繊維束の撮影画像を図12に示す。撮影した画像は、ImageJ(Wayne Rasband)を用いて大津の二値化処理(Make Binary)して二値画像を得た。この二値画像を輪郭抽出(Analyze Particles、Outlines)し、一つの繊維束の輪郭を得た。実施例1における繊維束の輪郭を図10に示す。得られた輪郭からフェレー径(Feret’s Diameter)を求め長軸長さAとした。長軸を二等分する点をF、Fにおける長軸に対する垂線と輪郭の交点をYおよびY’、YとY’を結んだ直線を短軸Bとして、式(S=π×A/2×B/2)から求めた面積をSとした。輪郭を最小二乗法により楕円近似(Analyze Particles、Ellipsesを選択)して得られる楕円の面積(Area)をS’とした。S’をSで除して面積比S’/Sを求めた。
<安息角>
 φ95mmの水平に保持された円板上に高さ100mmの位置から繊維束200gを自然落下させ、10秒経過した後の繊維束の堆積高さを計測した。円板の半径をR、積層高さをTとして、安息角θ=tan-1(T/R)を求めた。
<繊維束Wの個数割合(0.75-0.93個数割合)>
 複数の繊維束から無作為に繊維束111個を抽出し、A’/Aが0.75~0.93である繊維束の個数を111で除して個数割合を求めた。デジタルマイクロスコープをデジタルカメラに代えた以外は<長軸比A’/A>と同様にA’/Aを求めた。
<炭素繊維集合体の重量分布>
 複数の繊維束から無作為に繊維束300本を抽出し、それぞれの重量を測定する。300本の測定結果から数平均と重量平均を算出する。重量平均を数平均で除して炭素繊維集合体の重量分布を求めた。
[製造例1:分散液1]
 下記の種類と配合量の(A)成分、(B)成分、(C)成分を、80~100℃にてプラネタリーミキサーとホモミキサーで混練、混合した。その後、混練を維持した状態で80℃に降温し、引き続き、下記(D)成分の水溶液を少量ずつ添加した。この工程で、内容物の粘度は徐々に上昇した。(D)成分の水溶液を全て投入した後、10分間、充分に混練しながら60℃まで降温した。次に、脱イオン水を少量ずつ滴下して転相点を通過した後、滴下する水量を増加した。最終的に有効成分含量40質量%程度の水分散液1を得た。
 (A)片末端アクリル変性ビスフェノールAエポキシ樹脂(35質量部)(三菱ケミカル社製 EP828ベース)
 (B)脂肪族系ウレタンアクリレートオリゴマー(30質量部)(サートマー社製 CN-9788)
 (C)ビスフェノールAのエチレンオキシド2モル付加物無水フマル酸エステル(20質量部)
 (D)日本乳化材(株)社製 ニューコール723SF(15質量部)
[実施例1]
 炭素繊維として、熱分解法により得られた綿状のリサイクル炭素繊維(平均繊維長2.5mm、嵩密度0.034g/cm)を用いた。まず、この炭素繊維1200gを撹拌造粒機(商品名:SPグラニュレーターSPG25T、ダルトン社製、装置容積:25リットル、撹拌翼の傾斜角θ:30゜、攪拌翼直径396mm)に投入し、1分間撹拌して解繊させた。次いで、繊維処理剤である水900gと分散液1(固形分濃度40質量%)60gを混合した液体(23℃の表面張力:39.5mN/m,23℃の粘度:0.0017Pa・s)を、撹拌造粒機に投入し、撹拌翼400rpm(撹拌翼の周速:8m/秒)、チョッパー3000rpmの速度で6分間撹拌して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、短径1.5mm、長軸12mmの長球形状の炭素繊維集合体を得た。
 攪拌翼の周速は8.3m/s、原料の仕込み高さは0.28mで、ひずみ速度は30[1/s]であった。またひずみ量は10,600であった。
 得られた炭素繊維集合体について、前述の方法で炭素繊維集合体中の炭素繊維の平均繊維長と嵩密度等を測定し、結果を表1に示した。
 また、炭素繊維集合体の外観を観察し、炭素繊維の引き揃い状態を調べ、結果を表1に示した。
 この繊維集合体の長軸比(A’/A)は0.91、面積比(S’/S)は0.92、粒子密度は0.71g/cm、安息角は54°であった。
 この繊維集合体をホッパー(逆四角錐形、投入口長さ120mm、投入口幅200mm、排出口長さ120mm、排出口幅35mm、ホッパー角度35°)を有するスクリューフィーダー(Labtech Engineering社製、単軸、フィーダー径φ33、スクリュー径φ25)に投入し、10rpmで運転したところ、36秒毎に4回計測した際の排出量は平均1.74g、標準偏差は0.09gであった。A’/Aが0.75~0.93の範囲に入る繊維束の個数割合は58%であった。
 実施例1の繊維集合体は後掲の比較例1の繊維集合体に比較して安定して排出することができた。
[実施例2]
 上記の実施例1の炭素繊維集合体の製造方法において、リサイクル炭素繊維をバージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)に代えて、繊維処理剤の水の使用量を180gとした以外は実施例1と同様にして、短径1.5mm、長軸12mmの長球形状の炭素繊維集合体を得た。
 本実施例で用いた繊維処理剤(水と分散液1の混合物)の23℃の表面張力は38.4mN/m、23℃の粘度は0.0029Pa・sである。
 攪拌翼の周速は8.3m/s、原料の仕込み高さは0.014mで、ひずみ速度は613[1/s]であった。ひずみ量は220,700であった。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
 この繊維集合体の長軸比(A’/A)は0.80、面積比(S’/S)は0.78、粒子密度は0.83g/cm、安息角は50°であった。
 この繊維集合体をホッパー(逆四角錐形、投入口長さ120mm、投入口幅200mm、排出口長さ120mm、排出口幅35mm、ホッパー角度35°)を有するスクリューフィーダー(Labtech Engineering社製、単軸、フィーダー径φ33、スクリュー径φ25)に投入し、10rpmで運転したところ、36秒毎に4回計測した際の排出量は平均2.28g、標準偏差は2.48gであった。
 実施例2の繊維集合体は後掲の比較例1の繊維集合体に比較して多くの量を排出することができた。
[実施例3]
 実施例1の炭素繊維集合体の製造方法において、リサイクル炭素繊維をバージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)3000gに代えて、分散液1を分散液2(アニオン性ポリアミド溶液、固形分濃度40質量%)250gに代えて、水の使用量を200gとした以外は実施例1と同様にして、楕円体状の炭素繊維集合体を得た。繊維処理剤(水と分散液2の混合物)の23℃の表面張力は59.0mN/m、23℃の粘度は0.0022Pa・sであった。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。得られた炭素繊維集合体は、実施例1の炭素繊維集合体よりも硬く形状を保ちやすい傾向があった。
[実施例4]
 造粒装置を撹拌造粒機(商品名:ヘンシェルミキサーFM10B、三井三池製作所社製、装置容積:9リットル、撹拌翼の傾斜角θ:30゜)に代えて、リサイクル炭素繊維(平均繊維長2.5mm、嵩密度0.03g/cm)200gと、繊維処理剤である水140gと分散液1(ポリエステルエマルション、固形分濃度40質量%)20gを混合した液体を投入し、撹拌翼1200rpm(撹拌翼の周速:13m/秒)の速度で3分間撹拌して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
[実施例5]
 造粒装置を撹拌造粒機(商品名:ヘンシェルミキサーFM10B、三井三池製作所社製、装置容積:9リットル、撹拌翼の傾斜角θ:30゜)に代えて、バージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)200gと、繊維処理剤である水40gを投入し、撹拌翼1200rpm(撹拌翼の周速:13m/秒)の速度で3分間撹拌して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
[実施例6]
 造粒装置を転動撹拌造粒機(商品名:インテンシブミキサーR05T、アイリッヒ社製、装置容積:40リットル、ロータタイプ:スター型)に代えて、バージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)6000gと、繊維処理剤である水200gと分散液2(アニオン性ポリアミド溶液、固形分濃度40質量%)700gを混合した液体を投入し、混合パン29rpm(回転容器の周速:0.8m/秒)、撹拌ロータ560rpm(撹拌翼の周速:8m/秒)の速度で3分間撹拌して造粒した。撹拌ロータの回転方向は、混合パンと逆方向とした。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。得られた炭素繊維集合体は実施例1の炭素繊維集合体よりも硬く形状を保ちやすい傾向があった。
[実施例7]
 造粒装置を転動撹拌造粒機(商品名:インテンシブミキサーR05T、アイリッヒ社製、装置容積:40リットル、ロータタイプ:スター型)に代えて、リサイクル炭素繊維(平均繊維長6.0mm、嵩密度0.15g/cm)6000gと、繊維処理剤である水350gと分散液2(アニオン性ポリアミド溶液、固形分濃度40質量%)700gを混合した液体を投入し、6分間撹拌して造粒した。混合パンの回転数は29rpm(回転容器の周速:0.8m/秒)とした。撹拌ロータの回転数は、最初の3分間を1120rpm(撹拌翼の周速:16m/秒)、次の3分間を140rpm(撹拌翼の周速:2m/秒)とした。撹拌ロータの回転方向は、混合パンと逆方向とした。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。得られた炭素繊維集合体は実施例1の炭素繊維集合体よりも硬く形状を保ちやすい傾向があった。
[実施例8]
 上記の実施例7で得た炭素繊維集合体を、振動篩(商品名:振動ふるい401C、ダルトン社製、篩網:5メッシュ、線形0.8mm、目開き4.3mm)に投入し、振幅35Hzで振動させて、篩網を通過した分級物を回収し、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。フィード評価において、実施例8の繊維集合体は実施例7の繊維集合体に比較して多くの量を排出することができた。
[実験例1]
 造粒装置を転動造粒機(パン型、回転容器内寸法φ240×75mm)に代えて、バージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)50gと、繊維処理剤である水10gを投入し、傾斜角度45°、回転数60rpm(側壁面周速0.75m/s)の速度で6分間転動して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
[実験例2]
 造粒装置を振動造粒機(円筒型密閉容器、容器内寸法φ80×200mm)に代えて、バージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)50gと、繊維処理剤である水10gを投入し、手動で30秒間振動(周波数2Hz、振幅200mm)して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、楕円体状の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
[実験例3]
 造粒装置を押出造粒機(商品名:ペレッターダブルEXDF(前押出型)、ダルトン社製、スクリーン径6mm)に代えて、バージン炭素繊維(商品名:パイロフィルチョップドファイバーTR03CM、三菱ケミカル社製、カット長3.1mm、嵩密度0.706g/cm)100gと、繊維処理剤である水1000g、及びポリアクリルアミド(商品名:アクリプライマーGA1055L、三菱ケミカル社製)10gと混合し、200kg/hで押し出して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、不定形の炭素繊維集合体を得た。不定形の炭素繊維集合体の形状は図12に示す。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
[実験例4]
 造粒装置を転動造粒機(パン型、回転容器内寸法φ240×75mm)に代えて、リサイクル炭素繊維(平均繊維長2.5mm、嵩密度0.03g/cm)50gと、繊維処理剤である水37.5gと分散液1(ポリエステルエマルション、固形分濃度40質量%)2.5gを混合した液体を投入し、傾斜角度45°、回転数60rpm(側壁面周速0.75m/s)の速度で6分間転動して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、不定形の炭素繊維集合体を得た。不定形の炭素繊維集合体の形状は図13に示す。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
[実験例5]
 造粒装置を振動造粒機(円筒型密閉容器、容器内寸法φ80×200mm)に代えて、リサイクル炭素繊維(平均繊維長2.5mm、嵩密度0.03g/cm)50gと、繊維処理剤である水37.5gと分散液1(ポリエステルエマルション、固形分濃度40質量%)2.5gを混合した液体を投入し、手動で30秒間振動(周波数2Hz、振幅200mm)して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、不定形の炭素繊維集合体を得た。
 得られた炭素繊維集合体について、実施例1と同様に評価を行って結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 実験例3~5の方法では、特定の時間内では楕円体形状の炭素繊維集合体が得られなかった。実験例3~5の方法において、例えば、処理時間を長くすることで楕円体形状の炭素繊維集合体が得られる可能性がある。しかしながら、短時間で効率的に楕円体形状の炭素繊維集合体が得られる点で実験例3~5の方法より、実施例1~8の方法の方が優れる結果となった。
[実施例9]
 炭素繊維として、バージン炭素繊維(三菱ケミカル社製TR50S15Lの切断品、繊維長25mm)を用いた。まず、この炭素繊維1000gを撹拌造粒機(商品名:SPグラニュレーターSPG25T、ダルトン社製、装置容積:25リットル、撹拌翼の傾斜角θ:30゜)に投入し、1分間撹拌して解繊させた。次いで、繊維処理剤である水400gを、撹拌造粒機に投入し、7分間撹拌して造粒した。撹拌翼先端の周速は、最初の1分間を4m/s、次の3分間を8m/s、次の3分間を4m/sとした。この造粒物を110℃の振動式熱風乾燥機で30分乾燥させて、ストランド状の炭素繊維集合体を得た。
 得られた炭素繊維集合体の評価結果を表2に示す。
[実施例10]
 上記の実施例9の炭素繊維集合体の製造方法において、繊維処理剤を水375gと分散液1(ポリエステルエマルション、固形分濃度40質量%)25gの混合液体に代えた以外は実施例9と同様にして、ストランド状の炭素繊維集合体を得た。
 得られた炭素繊維集合体の評価結果を表2に示す。
[実施例11]
 上記の実施例9の炭素繊維集合体の製造方法において、バージン炭素繊維をリサイクル炭素繊維(三菱ケミカル社製TR50S15Lの短尺炭素繊維とビニルエステル樹脂からなるSMCを熱分解して得た綿状の炭素繊維、繊維長25mm)1000gに代えて、繊維処理剤を水750gと分散液1(ポリエステルエマルション、固形分濃度40質量%)50gの混合液体に代えた以外は実施例9と同様にして、ストランド状の炭素繊維集合体を得た。
 得られた炭素繊維集合体の評価結果を表2に示す。
[実施例12]
 造粒装置を転動撹拌造粒機(商品名:インテンシブミキサーR05T、アイリッヒ社製、装置容積:40リットル、ロータタイプ:スター型)に代えて、リサイクル炭素繊維(三菱ケミカル社製TR50S15Lの短尺炭素繊維とビニルエステル樹脂からなるSMCを熱分解して得た綿状の炭素繊維、繊維長25mm)3000gと、繊維処理剤である水1950gと分散液1(ポリエステルエマルション、固形分濃度40質量%)450gを混合した液体を投入し、9分間撹拌して造粒した。混合パンの回転数は29rpm(回転容器の周速:0.8m/秒)とした。撹拌ロータの回転数は、最初の6分間を1120rpm(撹拌翼の周速:16m/秒)、次の3分間を140rpm(撹拌翼の周速:2m/秒)とした。撹拌ロータの回転方向は、最初の6分間を混合パンと逆方向、次の3分間を混合パンと同一方向とした。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、ストランド状の炭素繊維集合体を得た。
 得られた炭素繊維集合体の評価結果を表2に示す。
[実施例12の変形例]
 撹拌ロータの回転方向は、最初の3分間を混合パンと逆方向、次の6分間を混合パンと同一方向とする以外は実施例12と同様にして得られた炭素繊維集合体は、実施例12の炭素繊維集合体と比較して嵩密度は大きくなり、炭素繊維集合体の重量分布の値は大きくなる。
[実験例6]
 造粒装置を転動造粒機(パン型、回転容器内寸法φ240×75mm)に代えて、リサイクル炭素繊維(三菱ケミカル社製TR50S15Lの短尺炭素繊維とビニルエステル樹脂からなるSMCを熱分解して得た綿状の炭素繊維、繊維長25mm)50gと、繊維処理剤である水37.5gと分散液1(ポリエステルエマルション、固形分濃度40質量%)2.5gを混合した液体を投入し、傾斜角度45°、回転数60rpm(側壁面周速0.75m/s)の速度で6分間転動して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、不定形の炭素繊維集合体を得た。
 得られた炭素繊維集合体の評価結果を表2に示す。
[実験例7]
 造粒装置を振動造粒機(円筒型密閉容器、容器内寸法φ80×200mm)に代えて、リサイクル炭素繊維(三菱ケミカル社製TR50S15Lの短尺炭素繊維とビニルエステル樹脂からなるSMCを熱分解して得た綿状の炭素繊維、繊維長25mm)50gと、繊維処理剤である水37.5gと分散液1(ポリエステルエマルション、固形分濃度40質量%)2.5gを混合した液体を投入し、手動で30秒間振動(周波数2Hz、振幅200mm)して造粒した。この造粒物を120℃の箱型乾燥機で2時間乾燥させて、不定形の炭素繊維集合体を得た。
 得られた炭素繊維集合体の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、実施例によれば、繊維を切断することなく、長さを保ったまま繊維が引き揃った嵩密度が高い炭素繊維集合体を製造することができることが分かる。得られた繊維集合体は、以下のような効果を奏する。
 ・繊維集合体を構成する繊維が一方向に配向しており、フィーダー内でブリッジを形成し難い。
 ・造粒過程で繊維が切断され難く、繊維集合体中の繊維の繊維長が用いた繊維の繊維長に対して過度に短くならないため、繊維集合体の製造に用いた繊維本来の効果を有効に発揮できる。
 ・繊維集合体の嵩密度が高いため、繊維集合体の取り扱い作業性と配合効率が良好である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年6月18日付で出願された日本特許出願2021-101844、日本特許出願2021-101845、及び日本特許出願2021-101846と、2021年10月26日付で出願された日本特許出願2021-174789と、2021年11月22日付で出願された日本特許出願2021-189657とに基づいており、その全体が引用により援用される。
 1 撹拌槽
 2 回転軸
 3 撹拌翼
 11 造粒パン
 12 転動軸
 21 アーム
 22 スプレー
 23 スクレーパー
 40 容器
 44 撹拌翼
 45 スクレーパー

Claims (25)

  1.  複数の繊維と繊維処理剤とを撹拌槽に投入し、該繊維と該繊維処理剤との混合物を撹拌翼によって撹拌して造粒することを含む繊維集合体の製造方法であって、該繊維が炭素繊維を含み、該繊維が引き揃うように造粒する、繊維集合体の製造方法。
  2.  乾燥した綿状の前記複数の繊維を前記撹拌槽に投入する、請求項1に記載の繊維集合体の製造方法。
  3.  水平方向に回転する撹拌翼と垂直方向に回転する補助撹拌翼とが攪拌槽内に配置され、該水平方向に回転する撹拌翼と該垂直方向に回転する補助撹拌翼とにより攪拌する、請求項1に記載の繊維集合体の製造方法。
  4.  前記繊維処理剤を前記撹拌槽に投入する前に、該撹拌槽内で前記撹拌翼によって前記複数の繊維を撹拌して解繊する、請求項1に記載の繊維集合体の製造方法。
  5.  前記撹拌槽がスクレーパーを備え、攪拌槽を回転させる、請求項1に記載の繊維集合体の製造方法。
  6.  前記撹拌翼が回転方向に傾斜を有しており、前記撹拌翼の回転方向後面と前記撹拌槽底面との挟角が1~60°である、請求項1に記載の繊維集合体の製造方法。
  7.  前記撹拌槽が軸周りに回転可能な回転軸を備え、複数枚の前記撹拌翼が、該回転軸から放射状に延在する、請求項1に記載の繊維集合体の製造方法。
  8.  前記撹拌翼先端の周速が1~20m/秒となるように撹拌翼を回転させることを含む、請求項1に記載の繊維集合体の製造方法。
  9.  撹拌翼の回転方向が攪拌槽の回転方向と逆方向となるように撹拌した後、撹拌翼の回転方向が攪拌槽の回転方向と同一方向となるように撹拌する、請求項5に記載の繊維集合体の製造方法。
  10.  周速が1.2m/秒以下となるように攪拌槽を回転させることを含む、請求項5に記載の繊維集合体の製造方法。
  11.  前記繊維処理剤の23℃における表面張力が120mN/m以下である、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  12.  前記繊維処理剤の23℃における粘度が10Pa・s以下である、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  13.  前記繊維処理剤が水を含む、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  14.  前記繊維処理剤が、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリウレタン樹脂、及びポリアミド樹脂から選ばれる1種以上の樹脂を含む、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  15.  前記繊維処理剤を前記繊維100質量部に対して10~40質量部投入する、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  16.  前記繊維処理剤が液体を含み、該繊維処理剤に含まれる液体を蒸発させる工程を含む、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  17.  前記繊維が更にガラス繊維を含む、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  18.  前記繊維が更に有機繊維を含む、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  19.  前記繊維の平均繊維長が12~50mmである、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  20.  前記繊維の平均繊維長が2~12mmである、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  21. 繊維集合体を構成する複数の繊維の先端の位置が不揃いである、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  22.  前記繊維集合体の長軸の長さは、前記繊維集合体に含まれる繊維の平均繊維長より長い、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  23.  前記繊維集合体が、長球形状又はストランド形状である、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  24.  前記撹拌槽に投入前の繊維の平均繊維長Xに対する前記繊維集合体中の繊維の平均繊維長Yの比(Y/X)が0.55以上である、請求項1~10のいずれか1項に記載の繊維集合体の製造方法。
  25.  請求項1~10のいずれか1項に記載の繊維集合体の製造方法で得られた繊維集合体を複数堆積させることを含む、プリプレグシートの製造方法。

     
PCT/JP2022/024337 2021-06-18 2022-06-17 繊維集合体の製造方法及びプリプレグシートの製造方法 WO2022265100A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280041902.2A CN117480288A (zh) 2021-06-18 2022-06-17 纤维集合体的制造方法和预浸料片的制造方法
JP2023530434A JPWO2022265100A1 (ja) 2021-06-18 2022-06-17
EP22825088.2A EP4357496A1 (en) 2021-06-18 2022-06-17 Method for producing fiber assembly and method for producing prepreg sheet

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2021101844 2021-06-18
JP2021-101844 2021-06-18
JP2021101846 2021-06-18
JP2021-101845 2021-06-18
JP2021-101846 2021-06-18
JP2021101845 2021-06-18
JP2021-174789 2021-10-26
JP2021174789 2021-10-26
JP2021189657 2021-11-22
JP2021-189657 2021-11-22

Publications (1)

Publication Number Publication Date
WO2022265100A1 true WO2022265100A1 (ja) 2022-12-22

Family

ID=84527134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024337 WO2022265100A1 (ja) 2021-06-18 2022-06-17 繊維集合体の製造方法及びプリプレグシートの製造方法

Country Status (3)

Country Link
EP (1) EP4357496A1 (ja)
JP (1) JPWO2022265100A1 (ja)
WO (1) WO2022265100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048416A1 (ja) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 炭素繊維束コンポジットの製造方法および炭素繊維コンポジットシートの製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275139A (ja) * 1989-05-29 1991-12-05 Kawasaki Steel Corp 球状繊維塊活性炭およびその製造方法
JP2000220066A (ja) * 1999-01-25 2000-08-08 Donakku:Kk 炭素繊維絡合体及びその製造方法
JP3452363B2 (ja) * 1994-08-05 2003-09-29 アクゾ ノーベル ナムローゼ フェンノートシャップ カーボンファイバーペレットの製造法、それから得られた高密度流線形ペレット、及び該ペレットを使用する強化熱可塑性樹脂の製造法
JP2006265751A (ja) * 2005-03-22 2006-10-05 Bussan Nanotech Research Institute Inc 炭素繊維結合体およびこれを用いた複合材料
JP2014167078A (ja) * 2013-02-28 2014-09-11 Panasonic Corp 断熱材成形用組成物、成形体及び成形体の製造方法
JP2014221848A (ja) * 2013-05-13 2014-11-27 ダイセルポリマー株式会社 繊維強化樹脂組成物
JP2020047601A (ja) * 2019-12-13 2020-03-26 三菱ケミカル株式会社 炭素材、及び、非水系二次電池
JP2020196882A (ja) * 2019-05-31 2020-12-10 カーボンファイバーリサイクル工業株式会社 炭素繊維集合体
JP2021101846A (ja) 2019-12-25 2021-07-15 富士フイルムビジネスイノベーション株式会社 情報処理装置及びプログラム
JP2021101845A (ja) 2019-12-25 2021-07-15 株式会社大一商会 遊技機
JP2021101844A (ja) 2019-12-25 2021-07-15 株式会社大一商会 遊技機
JP2021174789A (ja) 2020-04-20 2021-11-01 ニチコン株式会社 電解コンデンサ用セパレータの製造方法および電解コンデンサ
JP2021189657A (ja) 2020-05-28 2021-12-13 パナソニックIpマネジメント株式会社 住宅プラン提案システム、及び、住宅プラン提案方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275139A (ja) * 1989-05-29 1991-12-05 Kawasaki Steel Corp 球状繊維塊活性炭およびその製造方法
JP3452363B2 (ja) * 1994-08-05 2003-09-29 アクゾ ノーベル ナムローゼ フェンノートシャップ カーボンファイバーペレットの製造法、それから得られた高密度流線形ペレット、及び該ペレットを使用する強化熱可塑性樹脂の製造法
JP2000220066A (ja) * 1999-01-25 2000-08-08 Donakku:Kk 炭素繊維絡合体及びその製造方法
JP2006265751A (ja) * 2005-03-22 2006-10-05 Bussan Nanotech Research Institute Inc 炭素繊維結合体およびこれを用いた複合材料
JP2014167078A (ja) * 2013-02-28 2014-09-11 Panasonic Corp 断熱材成形用組成物、成形体及び成形体の製造方法
JP2014221848A (ja) * 2013-05-13 2014-11-27 ダイセルポリマー株式会社 繊維強化樹脂組成物
JP2020196882A (ja) * 2019-05-31 2020-12-10 カーボンファイバーリサイクル工業株式会社 炭素繊維集合体
JP2020047601A (ja) * 2019-12-13 2020-03-26 三菱ケミカル株式会社 炭素材、及び、非水系二次電池
JP2021101846A (ja) 2019-12-25 2021-07-15 富士フイルムビジネスイノベーション株式会社 情報処理装置及びプログラム
JP2021101845A (ja) 2019-12-25 2021-07-15 株式会社大一商会 遊技機
JP2021101844A (ja) 2019-12-25 2021-07-15 株式会社大一商会 遊技機
JP2021174789A (ja) 2020-04-20 2021-11-01 ニチコン株式会社 電解コンデンサ用セパレータの製造方法および電解コンデンサ
JP2021189657A (ja) 2020-05-28 2021-12-13 パナソニックIpマネジメント株式会社 住宅プラン提案システム、及び、住宅プラン提案方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048416A1 (ja) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 炭素繊維束コンポジットの製造方法および炭素繊維コンポジットシートの製造方法

Also Published As

Publication number Publication date
EP4357496A1 (en) 2024-04-24
JPWO2022265100A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101681472B1 (ko) 중합체 펠릿의 고착 방지 처리 방법
WO2022265100A1 (ja) 繊維集合体の製造方法及びプリプレグシートの製造方法
CN100448919C (zh) 制备吸水树脂的方法以及犁形混合设备
JP6364068B2 (ja) 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法
WO2011099586A1 (ja) 吸水性樹脂粉末の製造方法
CN1572818A (zh) 吸水树脂的筛分方法
Krishna et al. Preparation of coconut shell nanoparticles by wet-stirred media milling
EP4015453A1 (en) Method for producing carbon-nanotube-blended aggregates
EP0462298A1 (en) Agglomerated reinforcing fibers and process of making the same
JP2011042538A (ja) カーボンナノチューブ樹脂組成物およびその製造方法
KR0156564B1 (ko) 구상 비닐 클로라이드 수지 과립 및 이의 제조방법
CN117480288A (zh) 纤维集合体的制造方法和预浸料片的制造方法
JP2020055258A (ja) 微粒子群含有体
JP2018177586A (ja) カーボンナノチューブの造粒方法
JP7034748B2 (ja) バイオマスナノファイバー乾燥体の製造方法およびバイオマスナノファイバー樹脂複合体の製造方法
US7566497B2 (en) Method for forming pigment pseudoparticles
RU2586979C1 (ru) Способ получения композиций из полимера и наноразмерных наполнителей
JP5464591B2 (ja) 無機微粒子凝集体の製造方法および無機微粒子を含有する樹脂組成物の製造方法
JP5093430B2 (ja) 洗剤添加用粒子群の製造方法
CN114917831B (zh) 一种适用于微细粉末形成球形颗粒簇团的装置及使用方法
JP4232459B2 (ja) ペースト加工用塩化ビニル系樹脂の製造方法
Rochima et al. The dispersion of fine chitosan particles by beads-milling
JP3206067B2 (ja) 顆粒レジンの製造方法
JP2020055257A (ja) 微粒子群の製造方法及び該製造方法で製造される微粒子群
JP2020055256A (ja) 複数の微粒子群の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530434

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022825088

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022825088

Country of ref document: EP

Effective date: 20240118