WO2021033489A1 - モータ制御装置およびモータ制御方法 - Google Patents

モータ制御装置およびモータ制御方法 Download PDF

Info

Publication number
WO2021033489A1
WO2021033489A1 PCT/JP2020/028537 JP2020028537W WO2021033489A1 WO 2021033489 A1 WO2021033489 A1 WO 2021033489A1 JP 2020028537 W JP2020028537 W JP 2020028537W WO 2021033489 A1 WO2021033489 A1 WO 2021033489A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor control
control device
harmonic component
frequency
electric motor
Prior art date
Application number
PCT/JP2020/028537
Other languages
English (en)
French (fr)
Inventor
友博 福村
林峰 蘭
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to DE112020003940.4T priority Critical patent/DE112020003940T5/de
Priority to CN202080057939.5A priority patent/CN114270694A/zh
Priority to US17/633,969 priority patent/US20220294378A1/en
Priority to JP2021540687A priority patent/JPWO2021033489A1/ja
Publication of WO2021033489A1 publication Critical patent/WO2021033489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics

Definitions

  • the present invention relates to, for example, a motor control device and a motor control method for an electric motor used in an electric vehicle, a hybrid vehicle, or the like.
  • the current flowing through the electric motor contains harmonic components in addition to the fundamental wave component. Torque ripple is generated due to this harmonic component, which causes vibration and noise. Therefore, in controlling the electric motor, it is important to suppress the occurrence of ripples appearing in the output torque.
  • Patent Document 1 prepares an induced voltage ripple table using a voltage on the dq axis that cancels torque ripple components other than the fundamental sinusoidal wave from the induced voltage waveform obtained by magnetic field analysis of the motor, and sets the rotation angle of the motor. Accordingly, a motor control device for reducing the torque ripple of the motor by adding the voltage on the dq axis read from the table to the dq axis voltage command is disclosed.
  • Patent Document 2 extracts the torque ripple component of the motor, learns and tabulates the compensation current for suppressing the torque ripple based on this, and applies the compensation current to the inverter of the motor to torque ripple for each frequency component.
  • the torque ripple suppression system that suppresses the above is disclosed.
  • the fundamental wave becomes 800 Hz, and its 6th harmonic reaches 4.8 kHz.
  • the upper limit of the switching frequency of the inverter is about 20 kHz due to an increase in switching loss, iron loss of the motor, and the like. Further, since the switching frequency is limited by the frequency of the switching element used, it is about 10 kHz when an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor) is used.
  • IGBT Insulated Gate Bipolar Transistor
  • the switching frequency of the inverter is 10 to 20 kHz
  • the above-mentioned 4.8 kHz harmonic cannot be generated as the harmonic component to be superimposed.
  • the switching frequency is 10 kHz
  • the frequency determined based on the Nyquist frequency according to the sampling theorem is 1 kHz
  • the inverter cannot handle harmonics of 1 kHz or more (the above-mentioned 4.8 kHz sixth harmonic). Since it is difficult to reproduce the ideal sinusoidal signal waveform to be applied, there is a problem that torque ripple cannot be reduced.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to suppress torque ripple by making it possible to superimpose high-frequency harmonic components exceeding the switching frequency of an inverter in a motor control device.
  • the first exemplary invention of the present application is a motor control device for driving an electric motor, which converts a power source and a voltage input from the power source into a predetermined voltage, and converts the converted voltage into a predetermined frequency. It is characterized by including a first power conversion unit that superimposes components and outputs the power, and a second power conversion unit that converts the output from the first power conversion unit into the driving power of the electric motor.
  • the second exemplary invention of the present application is a vehicle, and includes an electric motor for driving the vehicle and means for driving and controlling the electric motor by the motor control device according to the first exemplary invention. It is characterized by.
  • An exemplary third invention of the present application is a motor control method for an electric motor driven by receiving electric power from a power source, which includes a signal generation step of generating a signal of a predetermined frequency component and input from the power source.
  • torque ripple in an electric motor can be suppressed by superimposing high-frequency harmonic components without being limited by the switching frequency of the switching element used in the inverter.
  • FIG. 1 is a block diagram showing an overall configuration of a motor control device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an operation example of the electric motor in the motor control device according to the embodiment.
  • FIG. 3A is an output voltage waveform of a conventional DCDC converter in which harmonic components are not superimposed.
  • FIG. 3B is an output voltage waveform of a DCDC converter in which harmonic components are superimposed.
  • FIG. 4A is a conventional inverter output voltage waveform in which harmonic components are not superimposed in the DCDC converter.
  • FIG. 4B is an inverter output voltage waveform when harmonic components are superimposed in the DCDC converter.
  • FIG. 5A shows the torque ripple in the conventional example in which the harmonic component is not superimposed in the DCDC converter.
  • FIG. 5B shows the torque ripple when harmonic components are superimposed in the DCDC converter.
  • FIG. 1 is a block diagram showing an overall configuration of a motor control device according to an embodiment of the present invention.
  • the motor control device is mounted on, for example, a vehicle whose drive source is an electric motor.
  • the motor control device 1 shown in FIG. 1 has, for example, a motor control unit 10 that functions as a drive control unit for an electric motor 15 that is a three-phase brushless DC motor.
  • the motor control unit 10 includes an external battery BT, a DCDC converter 31, an inverter 23, and the like.
  • the DCDC converter 31 is a converter that is arranged between the external battery BT and the inverter 23 and is capable of stepping up and down the input voltage. That is, the DCDC converter 31 boosts or lowers the voltage V bat supplied from the external battery BT via the power supply relay 24 by switching and controlling the built-in semiconductor element, and inverts the voltage V dc after the boost or step down. Supply to 23.
  • the semiconductor switching element used in the DCDC converter 31 for example, a switching element made of a wide bandgap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) can be adopted. This makes it possible to reduce the size of the DCDC converter 31.
  • a wide bandgap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN)
  • the motor control device 10 removes torque ripple due to the 6th harmonic component of the fundamental frequency of PWM control or a high frequency component that is an integral multiple of the 6th harmonic component that appears in the output shaft torque of the electric motor 15. Therefore, the DCDC converter 31 has a high-frequency harmonic signal (for example, a 6nth harmonic component, n is an integer of 1 or more) generated by the harmonic signal generation unit 35 in the control unit (CPU) 30. .) Is entered.
  • a high-frequency harmonic signal for example, a 6nth harmonic component, n is an integer of 1 or more
  • the switching control unit 33 of the DCDC converter 31 performs DC / DC power conversion according to a predetermined voltage command value, and converts the 6nth harmonic component input from the harmonic signal generation unit 35 into the output Vdc from the DCDC converter 31. Control to overlap.
  • the switching frequency of the switching control unit 33 is, for example, 150 to 300 kHz.
  • the control unit (CPU) 30 includes, for example, a microprocessor operated by a control program (software) stored in a memory (not shown).
  • the CPU 30 adjusts the amplitude and phase of the 6nth-order frequency component superimposed on the output of the DCDC converter 31 by the harmonic signal generation unit 35 to match the amplitude and phase of the 6nth-order harmonic component of the drive frequency of the electric motor 15. Has a function as.
  • the signal of the frequency component generated according to the harmonic component (6nth harmonic component) to be reduced in torque ripple can be superimposed on the output of the DCDC converter, whereby the motor can be superposed.
  • a remarkable reduction effect of torque ripple can be obtained in the control device.
  • the inverter 23 functions as a motor drive circuit that generates alternating current that drives the electric motor 15 from the voltage on which the 6nth harmonic component is superimposed, which is supplied from the DCDC converter 31.
  • the power relay 24 is configured to be able to cut off the electric power from the battery BT, and can also be configured by a semiconductor relay.
  • the PWM signal generation unit 21 generates ON / OFF control signals (PWM signals) of a plurality of semiconductor switching elements (FETs 1 to 6) constituting the inverter 23 according to a voltage command value described later. These semiconductor switching elements correspond to each phase (a phase, b phase, c phase) of the electric motor 15.
  • the switching element is also called a power element, and for example, a switching element such as a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is used.
  • MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the motor drive current supplied from the inverter 23 as a motor drive circuit to the electric motor 15 is detected by a current detection unit 25 composed of current sensors (not shown) arranged corresponding to each phase.
  • the current detection unit 25 detects, for example, the direct current flowing through the shunt resistor for detecting the motor drive current by using an amplifier circuit including an operational amplifier or the like.
  • the output signal (current detection signal) from the current detection unit 25 is input to the A / D conversion unit (ADC) 27.
  • the ADC 27 converts an analog current value into a digital value by its A / D conversion function, and the three-phase currents Ia, Ib, and Ic obtained by the conversion are input to the coordinate conversion unit 28.
  • the coordinate conversion unit 28 has a three-phase / two-phase conversion function, and the current Id on the d-axis and the current on the q-axis are obtained from the rotation angle ⁇ and the three-phase currents Ia, Ib, and Ic detected by the rotation angle sensor 29. Calculate Iq. That is, the coordinate conversion unit 28 calculates the d-axis current and the q-axis current based on the actual current.
  • the current command value calculation unit 12 obtains a current command value (target current value) from the externally indicated torque Tq. Specifically, the current command value calculation unit 12 calculates the d-axis command current Id * , which is a magnetic field component, and the q-axis command current Iq * , which is a torque component, based on the indicated torque Tq. Then, the subtractor 13a calculates the difference between the q-axis command current Iq * and the q-axis current Iq (referred to as Dq), and the subtractor 13b calculates the difference between the d-axis command current Id * and the d-axis current Id (with Dd). ) Is calculated.
  • the PI control units 16a and 16b obtain the voltage command values of the d-axis and the q-axis so that the difference between the current command value of the d-axis and the q-axis and the detected current value becomes zero. Then, the coordinate conversion unit 17 calculates the motor applied voltage V * from the voltage command value and the rotation angle of the electric motor 15.
  • Dq is input to the PI control unit 16a
  • Dd is input to the PI control unit 16b.
  • the PI control unit 16a performs PI (proportional + integration) control so as to converge Dq to zero, and calculates the q-axis voltage command value Vq *, which is the command value of the q-axis voltage.
  • the PI control unit 16b calculates the d-axis voltage command value Vd * , which is the command value of the d-axis voltage, by performing PI (proportional + integration) control so as to converge Dd to zero.
  • the q-axis voltage command value Vq * and the d-axis voltage command value Vd * are input to the coordinate conversion unit 17 having a two-phase / three-phase conversion function.
  • the coordinate conversion unit 17 converts Vq * and Vd * into voltage command values Va * , Vb * , and Vc * , which are voltage command values for each of the three phases, based on the rotation angle ⁇ .
  • the converted voltage command values Va * , Vb * , and Vc * are input to the PWM signal generation unit 21.
  • the PWM signal generation unit 21 generates a drive signal (PWM signal) of the electric motor 15 based on these current command values.
  • the DCDC converter 31 may have a built-in harmonic signal generation unit 35. Further, a noise removing filter may be arranged between the DCDC converter 31 and the inverter 23. In that case, the output voltage on which the harmonic component from the DCDC converter 31 is superimposed is indirectly input to the inverter 23 via the filter.
  • FIG. 2 is a flowchart showing drive / control (operation example) of the electric motor in the motor control device according to the present embodiment.
  • the motor control device 10 calculates the angular velocity ⁇ of the electric motor 15 based on the electric angle (rotation angle) ⁇ detected by the rotation angle sensor 51 in step S11 of FIG. In the following step S13, the motor current is detected.
  • the current detection signal from the current detection unit 25 is A / D converted by the ADC 27 to obtain the three-phase currents Ia, Ib, and Ic as digital values.
  • step S15 the rotation angles ⁇ detected in step S11 by the three-phase / two-phase conversion by the coordinate conversion unit 28 and the three-phase currents Ia, Ib, and Ic obtained in step S13 show the currents Id and q on the d-axis. Calculate the current Iq on the axis.
  • step S17 after the d-axis command current Id * and the q-axis command current Iq * are calculated by the current command value calculation unit 12 based on the indicated torque Tq, the q-axis command current Iq * and the above q-axis current Iq are combined. PI control is performed on the difference between the two, and the q-axis voltage command value Vq * , which is the command value of the q-axis voltage, is calculated. Further, PI control is performed on the difference between the d-axis command current Id * and the above-mentioned d-axis current Id, and the d-axis voltage command value Vd * , which is the command value of the d-axis voltage, is calculated.
  • step S19 3 is based on the q-axis voltage command value Vq * and d-axis voltage command value Vd * calculated in step S17 and the rotation angle ⁇ by the two-phase / three-phase conversion in the coordinate conversion unit 17.
  • the voltage command values Va * , Vb * , and Vc * which are the voltage command values for each phase, are obtained.
  • the sixth harmonic component of the fundamental frequency which is the main component of the higher-order torque ripple component, or a high-frequency component that is an integral multiple of the fundamental frequency is removed.
  • step S21 the CPU 30 of the motor control device 10 matches the amplitude and phase of the 6nth harmonic component of the drive frequency of the electric motor 15 with the output voltage Vdc of the DCDC converter as represented by the following equation (1). Adjusts the amplitude and phase of the 6nth harmonic (n is an integer of 1 or more) in.
  • V dc V dc0 + V dc6n sin (6n ⁇ + ⁇ )... (1)
  • V dc0 is the voltage of the fundamental wave
  • V dc6n is the voltage (amplitude) of the 6nth harmonic
  • is the electric angle of the rotor of the electric motor 15
  • is the phase.
  • the amplitude V dc6n and the phase ⁇ of the equation (1) are calculated by using a method conventionally known as a method of suppressing torque ripple. For example, it is calculated based on the voltage and phase of the sixth harmonic component on the dq axis to be added to the dq axis voltage command based on the externally indicated torque Tq. Alternatively, the voltage and phase of the sixth harmonic component may be tuned (adjusted) according to the magnitude of the torque ripple generated by the electric motor.
  • step S23 the voltage obtained by superimposing the 6nth harmonic component represented by the above equation (1) in the DCDC converter 31 is applied to the inverter 23 as the output voltage Vdc from the DCDC converter 31.
  • the CPU 30 controls so that the order n of the 6nth frequency component increases as the rotation speed (angular velocity ⁇ ) of the electric motor 15 increases.
  • step S25 the voltage command values Va * , Vb * , and Vc * for each of the three phases obtained in step S19 are input to the PWM signal generation unit 21.
  • the PWM signal generation unit 21 generates a drive signal (PWM signal) of the electric motor 15 based on those current command values.
  • the harmonic component that is difficult to superimpose on the inverter 23 can be superposed on the DCDC converter 31, and the 6nth harmonic component, which is the target harmonic component for torque ripple reduction, is superposed on the fundamental wave component.
  • the output voltage of the DCDC converter 31 is supplied to the inverter 23. Therefore, since the output power of the DCDC converter 31 on which the 6nth harmonic component is superimposed serves as the driving power source for the electric motor 15, it is possible to obtain the effect of reducing the torque ripple caused by the 6nth harmonic component in the electric motor 15. it can.
  • FIGS. 3 to 5 simulate the effects of not superimposing the harmonic component on the output voltage and superimposing the sixth harmonic component on the output voltage in the DCDC converter, and show them in comparison.
  • FIG. 3A is an output voltage waveform of a conventional DCDC converter in which harmonic components are not superimposed
  • FIG. 3B is an output voltage waveform of a DCDC converter 31 in which harmonic components are superimposed.
  • the horizontal axis is time.
  • the harmonic component here, the 6th harmonic component
  • the voltage on which the 6th harmonic component is superimposed on the fundamental wave component Vdc described above. Is output.
  • FIG. 4A is a conventional inverter output voltage waveform in which the harmonic component is not superimposed in the DCDC converter
  • FIG. 4B is a simulation result of the inverter output voltage waveform when the harmonic component is superimposed in the DCDC converter 31.
  • the horizontal axis is time.
  • FIG. 5A is a simulation result of torque ripple in the conventional example in which the harmonic component is not superimposed in the DCDC converter
  • FIG. 5B is a simulation result of torque ripple when the harmonic component is superimposed in the DCDC converter 31.
  • the horizontal axis is time.
  • the motor control device When the motor control device according to the present embodiment is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, it is possible to reduce the torque ripple in the electric motor that is the power source of these vehicles.
  • the motor control device is a DCDC converter and a DCDC converter that converts a voltage input from a power source into a predetermined voltage, superimposes a harmonic component in a high frequency region on the converted voltage, and outputs the voltage.
  • the DCDC converter is not limited by the upper limit of the switching frequency of the inverter, and the power with the harmonic components superimposed on it. It can drive an electric motor.
  • the frequency of the superimposed harmonic component can be adjusted to the upper limit of the switching frequency of the DCDC converter instead of the upper limit of the switching frequency of the inverter, thereby reducing the torque ripple caused by the harmonic component of the electric motor. Is possible.
  • the superimposed harmonic component as the 6nth harmonic component
  • the 6nth order torque ripple which is a factor of torque ripple
  • the torque ripple can be significantly reduced at high rotation of the electric motor. Is obtained.
  • the inverter control method and carrier frequency can be changed by simply adding a configuration for superimposing harmonic components to the existing power conversion configuration. Therefore, the cost and size of the motor control device for reducing torque ripple can be reduced.
  • the 6nth harmonic component to be superimposed is a frequency (for example, 1 kHz) determined based on the Nyquist frequency according to the sampling theorem for the carrier frequency (switching frequency) of the PWM drive signal in the inverter control in the inverter 23.
  • the output in which the 6nth harmonic component is superimposed is supplied to the inverter 23 in the DCDC converter 31 to suppress the torque ripple of the electric motor, and if the 6nth harmonic component is 1 kHz or less, as in the conventional case.
  • Harmonic components may be superimposed on the current or voltage command to the inverter to suppress the torque ripple of the electric motor.
  • Motor control device 10: Motor control unit, 12: Current command value calculation unit, 15: Electric motor, 16a, 16b: PI control unit, 17, 28: Coordinate conversion unit, 21: PWM signal generation unit, 23: Inverter, 24: Power supply relay, 25: Current detector, 27: A / D converter (ADC), 29: Rotation angle sensor, 30: CPU, 31: DCDC converter, 33: Switching control unit, 35: Harmonic signal Generator, BT: External battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

高い周波数領域の高調波成分を重畳可能にしてトルクリップルを抑制する。DCDCコンバータ31において、電源(外部バッテリBT)より入力した電圧を所定電圧に変換し、変換後の電圧に対して、高調波信号生成部35で生成された高調波成分を重畳して、それを電動モータ15の駆動用電力としてインバータ23に出力する。これにより、インバータ23のスイッチング周波数の上限に制限されることなく高調波成分が重畳された信号により電動モータ15を駆動できる。

Description

モータ制御装置およびモータ制御方法
 本発明は、例えば、電気自動車、ハイブリッド車両等に使用する電動モータのモータ制御装置およびモータ制御方法に関する。
 電動モータに流れる電流には、基本波成分の他に高調波成分が含まれている。この高調波成分に起因してトルクリップルが発生し、それが振動、騒音の要因となる。そのため、電動モータの制御において、出力トルクに現れるリップルの発生を抑制することが重要になる。
 インバータによって電動モータを駆動する際、そのインバータからの交流信号に対して、基本波に加えて交流電流の整数倍の高調波成分を重畳して電動モータのトルクリップルを抑制する技術が従来より知られている。
 例えば特許文献1は、モータの磁界解析で求めた誘起電圧波形から基本正弦波以外のトルクリップル成分を相殺するdq軸上の電圧をテーブルとした誘起電圧リップルテーブルを用意し、モータの回転角度に応じて、テーブルから読み出したdq軸上の電圧をdq軸電圧指令に加算してモータのトルクリップルを低減するモータ制御装置を開示している。
 特許文献2は、モータのトルクリップル成分を抽出し、これをもとにトルクリップルを抑制するための補償電流を学習してテーブル化し、補償電流をモータのインバータに与えて周波数成分毎のトルクリップルを抑制するトルクリップル抑制システムを開示している。
特開2008-219966号公報 特開2011-50118号公報
 近年におけるモータの高速化に伴い、基本波に加えて重畳させる高調波成分の周波数帯域が非常に高くなっている。そのため、上記の特許文献1,2に記載されているように、インバータへの電流あるいは電圧指令に高調波成分を重畳して電動モータのトルクリップルを抑制しようとしても、インバータのスイッチング周波数では高調波を生成できず、トルクリップル抑制に対応できないという問題がある。
 例えば、4極対のモータが12000rpmで回転する場合、基本波は800Hzとなり、その6次高調波は4.8kHzに達する。それに対して、インバータはスイッチングロス、モータの鉄損の増加等により、スイッチング周波数の上限は20kHz程度となる。また、スイッチング周波数は、使用するスイッチング素子の周波数で制限されるため、絶縁ゲート型バイポーラトランジスタ(IGBT: Insulated Gate Bipolar Transistor)を使用した場合、10kHz程度となる。
 インバータのスイッチング周波数が10~20kHzでは、標本化定理より、重畳させる高調波成分として上記のような4.8kHzの高調波を生成できないことが分かる。例えば、スイッチング周波数が10kHzの場合、標本化定理によるナイキスト周波数をもとに決定される周波数が1kHzとなり、インバータにおいて1kHz以上の高調波(上記の4.8kHzの6次高調波)に対応できず、印加したい理想的な正弦波信号波形の再現が困難であるためトルクリップルを低減できないという問題がある。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、モータ制御装置において、インバータのスイッチング周波数を超える高周波の高調波成分を重畳可能にしてトルクリップルを抑制することである。
 上記の目的を達成し、上述した課題を解決する一手段として以下の構成を備える。すなわち、本願の例示的な第1の発明は、電動モータを駆動するモータ制御装置であって、電源と、前記電源より入力した電圧を所定電圧に変換するとともに該変換後の電圧に所定の周波数成分を重畳して出力する第1電力変換部と、前記第1電力変換部からの出力を前記電動モータの駆動用電力に変換する第2電力変換部とを備えることを特徴とする。
 本願の例示的な第2の発明は、車両であって、車両駆動用の電動モータと、上記例示的な第1の発明に係るモータ制御装置により前記電動モータを駆動制御する手段とを備えることを特徴とする。
 本願の例示的な第3の発明は、電源より電力供給を受けて駆動される電動モータのモータ制御方法であって、所定の周波数成分の信号を生成する信号生成工程と、前記電源より入力した電圧を所定電圧に変換するとともに該変換後の電圧に前記所定の周波数成分を重畳して出力する第1電力変換工程と、前記第1電力変換工程で得た出力を前記電動モータの駆動用電力に変換する第2電力変換工程と、を備えることを特徴とする。
 本発明によれば、インバータに使用するスイッチング素子のスイッチング周波数に制限されずに高周波の高調波成分を重畳して、電動モータにおけるトルクリップルを抑制することができる。
図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。 図2は、実施形態に係るモータ制御装置における電動モータの動作例を示すフローチャートである。 図3Aは、高調波成分が重畳されていない従来のDCDCコンバータの出力電圧波形である。 図3Bは、高調波成分を重畳したDCDCコンバータの出力電圧波形である。 図4Aは、DCDCコンバータにおいて高調波成分を重畳しない、従来のインバータ出力電圧波形である。 図4Bは、DCDCコンバータにおいて高調波成分を重畳したときのインバータ出力電圧波形である。 図5Aは、DCDCコンバータにおいて高調波成分を重畳しない従来例におけるトルクリップルを示す。 図5Bは、DCDCコンバータにおいて高調波成分を重畳したときのトルクリップルを示す。
 以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。なお、モータ制御装置は、例えば、電動モータを駆動源とする車両に搭載される。
 図1に示すモータ制御装置1は、例えば3相ブラシレスDCモータである電動モータ15の駆動制御部として機能するモータ制御部10を有する。モータ制御部10は、外部バッテリBT、DCDCコンバータ31、インバータ23等を含んで構成される。
 DCDCコンバータ31は、外部バッテリBTとインバータ23との間に配置され、入力電圧の昇圧および降圧が可能なコンバータである。すなわち、DCDCコンバータ31は、内蔵する半導体素子をスイッチング制御することで、電源リレー24を介して外部バッテリBTより供給された電圧Vbatを昇圧あるいは降圧し、昇圧あるいは降圧後の電圧Vdcをインバータ23に供給する。
 DCDCコンバータ31において使用する半導体スイッチング素子として、例えば、シリコンカーバイド(SiC)、窒化ガリウム(GaN)等のワイドバンドギャップ半導体からなるスイッチング素子を採用することができる。これにより、DCDCコンバータ31の小型化が可能になる。
 モータ制御装置10では、電動モータ15の出力軸トルクに現れる、PWM制御の基本周波数の6次高調波成分、あるいはその整数倍の高周波成分によるトルクリップルを除去する。そのため、DCDCコンバータ31には、制御部(CPU)30内の高調波信号生成部35で生成された高周波の高調波信号(例えば、6n次高調波成分であり、nは1以上の整数である。)が入力される。
 DCDCコンバータ31のスイッチング制御部33は、所定の電圧指令値に従って直流/直流電力変換を行うとともに、高調波信号生成部35より入力された6n次高調波成分をDCDCコンバータ31からの出力Vdcに重畳するように制御する。
 スイッチング制御部33のスイッチング周波数は、例えば150~300kHzである。このようにスイッチング周波数の高いDCDCコンバータを使用することで、電動モータ15の駆動用として供給される電圧に高い周波数の高調波成分を重畳できる。
 制御部(CPU)30は、例えば、不図示のメモリに格納された制御プログラム(ソフトウェア)によって動作するマイクロプロセッサからなる。CPU30は、高調波信号生成部35によって、DCDCコンバータ31の出力に重畳する6n次の周波数成分の振幅と位相を、電動モータ15の駆動周波数の6n次高調波成分の振幅と位相に合わせる調整部としての機能を有する。
 このような調整部を設けたことにより、トルクリップル低減の対象とする高調波成分(6n次高調波成分)に合せて生成した周波数成分の信号をDCDCコンバータの出力に重畳でき、それにより、モータ制御装置においてトルクリップルの顕著な低減効果を得ることができる。
 インバータ23は、DCDCコンバータ31より供給された、6n次高調波成分が重畳された電圧から、電動モータ15を駆動する交流を生成するモータ駆動回路として機能する。なお、電源リレー24は、バッテリBTからの電力を遮断可能に構成され、半導体リレーで構成することもできる。
 PWM信号生成部21は、後述する電圧指令値にしたがって、インバータ23を構成する複数の半導体スイッチング素子(FET1~6)のON/OFF制御信号(PWM信号)を生成する。これらの半導体スイッチング素子は、電動モータ15の各相(a相、b相、c相)に対応している。
 スイッチング素子(FET)はパワー素子とも呼ばれ、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を用いる。
 モータ駆動回路としてのインバータ23より電動モータ15に供給されるモータ駆動電流は、各相に対応して配置した電流センサ(不図示)からなる電流検出部25で検出される。電流検出部25は、例えばモータ駆動電流検出用のシャント抵抗に流れる直流電流を、オペアンプ等からなる増幅回路を用いて検出する。
 電流検出部25からの出力信号(電流検出信号)は、A/D変換部(ADC)27に入力される。ADC27は、そのA/D変換機能によりアナログ電流値をデジタル値に変換し、変換により得られた3相電流Ia,Ib,Icは、座標変換部28に入力される。
 座標変換部28は3相/2相変換機能を有し、回転角センサ29で検出された回転角度θと3相電流Ia,Ib,Icより、d軸上の電流Idとq軸上の電流Iqを演算する。すなわち、座標変換部28は実電流をもとにd軸電流とq軸電流を演算する。
 電流指令値演算部12は、外部よりの指示トルクTqから電流指令値(目標電流値)を求める。具体的には、電流指令値演算部12は、指示トルクTqをもとに、磁界成分であるd軸指令電流Idと、トルク成分であるq軸指令電流Iqを演算する。そして、減算器13aは、q軸指令電流Iqとq軸電流Iqの差分(Dqとする)を演算し、減算器13bは、d軸指令電流Idとd軸電流Idの差分(Ddとする)を演算する。
 PI制御部16a,16bは、電流制御部として、d軸とq軸の電流指令値と検出電流値との差分をゼロにするようにd軸とq軸の電圧指令値を求める。そして、座標変換部17は、この電圧指令値と電動モータ15の回転角度とからモータ印加電圧Vを演算する。
 すなわち、上記のDqはPI制御部16aに入力され、DdはPI制御部16bに入力される。PI制御部16aは、Dqをゼロに収束させるようにPI(比例+積分)制御を行って、q軸電圧の指令値であるq軸電圧指令値Vqを算出する。同様に、PI制御部16bは、Ddをゼロに収束させるようにPI(比例+積分)制御を行うことで、d軸電圧の指令値であるd軸電圧指令値Vdを算出する。
 q軸電圧指令値Vqとd軸電圧指令値Vdは、2相/3相変換機能を有する座標変換部17に入力される。座標変換部17は、回転角度θに基づいて、Vq,Vdを3相の各相毎の電圧指令値である電圧指令値Va,Vb,Vcに変換する。変換後の電圧指令値Va,Vb,Vcは、PWM信号生成部21に入力される。PWM信号生成部21は、これらの電流指令値に基づいて電動モータ15の駆動信号(PWM信号)を生成する。
 なお、DCDCコンバータ31が高調波信号生成部35を内蔵する構成としてもよい。また、DCDCコンバータ31とインバータ23との間にノイズ除去用のフィルタを配置してもよい。その場合、DCDCコンバータ31からの高調波成分が重畳された出力電圧は、フィルタを介して間接的にインバータ23へ入力されることになる。
 次に、本実施形態に係るモータ制御装置における電動モータの駆動・制御方法について説明する。図2は、本実施形態に係るモータ制御装置における電動モータの駆動・制御(動作例)を示すフローチャートである。
 モータ制御装置10は、図2のステップS11において、回転角センサ51で検出した電気角(回転角度)θに基づいて電動モータ15の角速度ωを算出する。続くステップS13においてモータ電流を検出する。ここでは、上述したように電流検出部25からの電流検出信号をADC27でA/D変換して、デジタル値としての3相電流Ia,Ib,Icを得る。
 ステップS15において、座標変換部28による3相/2相変換によって、ステップS11で検出した回転角度θと、ステップS13で得た3相電流Ia,Ib,Icより、d軸上の電流Idとq軸上の電流Iqを演算する。
 ステップS17において、電流指令値演算部12により指示トルクTqをもとにd軸指令電流Idとq軸指令電流Iqを演算した後、q軸指令電流Iqと上記のq軸電流Iqとの差分に対してPI制御を行って、q軸電圧の指令値であるq軸電圧指令値Vqを算出する。さらに、d軸指令電流Idと上記のd軸電流Idとの差分に対してPI制御を行い、d軸電圧の指令値であるd軸電圧指令値Vdを算出する。
 ステップS19において、座標変換部17における2相/3相変換により、上記ステップS17で演算されたq軸電圧指令値Vqおよびd軸電圧指令値Vdと、回転角度θとに基づいて、3相の各相毎の電圧指令値である電圧指令値Va,Vb,Vcを求める。
 次に、電動モータの出力軸トルクに現れるトルクリップル(高次の振動成分)を除去するための処理を行う。ここでは、高次のトルクリップル成分の主たる成分である、基本周波数の6次高調波成分、あるいはその整数倍の高周波成分を除去する。
 そのためモータ制御装置10のCPU30は、ステップS21において、電動モータ15の駆動周波数の6n次高調波成分の振幅と位相に合わせて、下記の式(1)で表すようにDCDCコンバータの出力電圧Vdcにおける6n次高調波(nは1以上の整数)の振幅と位相を調整する。
 Vdc=Vdc0+Vdc6nsin(6nθ+α) …(1)
 ここで、Vdc0は基本波の電圧、Vdc6nは6n次高調波の電圧(振幅)、θは電動モータ15の回転子の電気角度、αは位相である。
 式(1)の振幅Vdc6n、位相αは、トルクリップルを抑制する方法として従来より知られている方法を用いて算出する。例えば、外部からの指示トルクTqに基づき、dq軸電圧指令に加算するdq軸上の6次高調波成分の電圧、位相をもとに算出する。あるいは、電動モータで発生するトルクリップルの大きさに応じて、6次高調波成分の電圧と位相をチューニング(調整)してもよい。
 ステップS23では、DCDCコンバータ31において上記の式(1)に示す6n次高調波成分を重畳した電圧を、DCDCコンバータ31からの出力電圧Vdcとしてインバータ23に印加する。CPU30は、電動モータ15の回転速度(角速度ω)が高くなるにしたがい、6n次周波数成分の次数nが大きくなるように制御する。
 ステップS25において、ステップS19で求めた3相の各相毎の電圧指令値Va,Vb,VcをPWM信号生成部21に入力する。PWM信号生成部21は、それらの電流指令値に基づいて電動モータ15の駆動信号(PWM信号)を生成する。
 その結果、インバータ23での重畳が困難な高調波成分を、DCDCコンバータ31において重畳可能になり、トルクリップル低減の対象とする高調波成分である6n次高調波成分が基本波成分に重畳されたDCDCコンバータ31の出力電圧がインバータ23に供給される。よって、6n次高調波成分が重畳されたDCDCコンバータ31の出力電力が電動モータ15の駆動用電源となるので、電動モータ15において6n次高調波成分に起因するトルクリップルの低減効果を得ることができる。
 次に、本実施形態に係るモータ制御装置におけるトルクリップルの低減効果について説明する。図3~図5は、DCDCコンバータにおいて出力電圧に高調波成分を重畳しない場合と、出力電圧に6次高調波成分を重畳した場合の効果をシミュレーションし、それらを対比して示している。
 図3Aは、高調波成分が重畳されていない従来のDCDCコンバータの出力電圧波形であり、図3Bは、高調波成分を重畳したDCDCコンバータ31の出力電圧波形である。図3A、図3Bにおいて横軸は時間である。
 図3Bから分かるように、DCDCコンバータ31において高調波成分(ここでは、6次高調波成分)を重畳することで、基本波成分に6次高調波成分が重畳された電圧(上述したVdc)が出力される。
 図4Aは、DCDCコンバータにおいて高調波成分を重畳しない、従来のインバータ出力電圧波形であり、図4Bは、DCDCコンバータ31において高調波成分を重畳したときのインバータ出力電圧波形のシミュレーション結果である。図4A、図4Bにおいて横軸は時間である。
 図5Aは、DCDCコンバータにおいて高調波成分を重畳しない、従来例におけるトルクリップルのシミュレーション結果であり、図5Bは、DCDCコンバータ31において高調波成分を重畳したときのトルクリップルのシミュレーション結果である。図5A、図5Bにおいて横軸は時間である。
 図5Bより、DCDCコンバータ31において高調波成分を重畳することで、図5Aの従来例と比べてトルクリップルの低減効果が顕著に現れることが分かる。
 本実施形態に係るモータ制御装置を、例えば電気自動車、ハイブリッド車両等の車両に搭載した場合、これらの車両の動力源となる電動モータにおけるトルクリップルを低減することが可能となる。
 以上説明したように本実施形態に係るモータ制御装置は、電源より入力した電圧を所定電圧に変換し、変換後の電圧に高い周波数領域の高調波成分を重畳して出力するDCDCコンバータと、DCDCコンバータからの出力電力を電動モータの駆動用電力に変換するインバータを備えた構成とすることで、インバータのスイッチング周波数の上限に制限されることなく、DCDCコンバータにおいて高調波成分が重畳された電力により電動モータを駆動できる。
 すなわち、重畳する高調波成分の周波数を、インバータのスイッチング周波数の上限ではなく、DCDCコンバータのスイッチング周波数の上限に合せることができ、それにより電動モータの高調波成分に起因するトルクリップルを低減することが可能となる。
 その結果、モータのトルクリップルに起因するモータ制御装置の振動、騒音を低減できる。特にスイッチング周波数の高い車載用のDCDCコンバータで高調波成分を重畳する構成としたことで、高周波数のトルクリップルに伴うモータ駆動騒音の軽減において顕著な効果を得ることができる。
 また、重畳する高調波成分を6n次高調波成分とすることで、トルクリップルの要因となる6n次のトルクリップルを効果的に低減できる。つまり、トルクリップル低減の対象とする高調波成分(6n次高調波成分)に合せた周波数成分の信号をDCDCコンバータの出力に重畳できるので、電動モータの高回転時においてトルクリップルの顕著な低減効果が得られる。
 さらには、昇圧型あるいは降圧型のいずれのDCDCコンバータにおいても既存の電力変換構成に、高調波成分を重畳するための構成を付加するのみで、インバータの制御方法およびキャリア周波数(スイッチング周波数)の変更も不要となることから、トルクリップル低減のためのモータ制御装置の低コスト化、小型化ができる。
 本発明は上述した実施形態に限定されず、適宜、変更が可能である。例えば、重畳しようとする6n次高調波成分が、インバータ23でのインバータ制御におけるPWM駆動信号のキャリア周波数(スイッチング周波数)に対する標本化定理によるナイキスト周波数をもとに決定された周波数(例えば、1kHz)以上の場合、DCDCコンバータ31において6n次高調波成分を重畳した出力をインバータ23に供給して、電動モータのトルクリップルを抑制し、6n次高調波成分が1kHz以下であれば、従来のようにインバータへの電流あるいは電圧指令に高調波成分を重畳して電動モータのトルクリップルを抑制するようにしてもよい。
1:モータ制御装置、10:モータ制御部、12:電流指令値演算部、15:電動モータ、16a,16b:PI制御部、17,28:座標変換部、21:PWM信号生成部、23:インバータ、24:電源リレー、25:電流検出部、27:A/D変換部(ADC)、29:回転角センサ、30:CPU、31:DCDCコンバータ、33:スイッチング制御部、35:高調波信号生成部、BT:外部バッテリ
 

Claims (16)

  1.  電動モータを駆動するモータ制御装置であって、
     電源と、
     前記電源より入力した電圧を所定電圧に変換するとともに該変換後の電圧に所定の周波数成分を重畳して出力する第1電力変換部と、
     前記第1電力変換部からの出力を前記電動モータの駆動用電力に変換する第2電力変換部と、
    を備えるモータ制御装置。
  2.  前記所定の周波数成分は前記電動モータの駆動周波数の高調波成分をもとに生成される請求項1に記載のモータ制御装置。
  3.  前記高調波成分は6n次高調波成分(nは1以上の整数)である請求項2に記載のモータ制御装置。
  4.  前記重畳する周波数成分の振幅と位相を、前記電動モータの駆動周波数の高調波成分の振幅と位相に合わせる調整部をさらに備える請求項1~3のいずれか1項に記載のモータ制御装置。
  5.  前記第1電力変換部は、前記電源より入力した電圧を所定電圧に昇圧あるいは降圧する請求項1に記載のモータ制御装置。
  6.  前記第1電力変換部はDCDCコンバータであり、前記第2電力変換部はインバータである請求項1~5のいずれか1項に記載のモータ制御装置。
  7.  前記DCDCコンバータは、炭化ケイ素系材料、窒化ガリウム系材料からなるワイドバンドギャップ半導体によって形成された半導体スイッチング素子を有する請求項6に記載のモータ制御装置。
  8.  前記DCDCコンバータのスイッチング周波数は150~300kHzである請求項7に記載のモータ制御装置。
  9.  前記第1電力変換部は、前記6n次高調波成分が、前記インバータのスイッチング周波数に対する標本化定理によるナイキスト周波数をもとに決定された周波数以上の場合、該6n次高調波成分を重畳する請求項6に記載のモータ制御装置。
  10.  前記決定された周波数は1kHzである請求項9に記載のモータ制御装置。
  11.  車載用として車両に搭載される請求項1~10のいずれか1項に記載のモータ制御装置。
  12.  請求項1~11のいずれか1項に記載のモータ制御装置を搭載した車両。
  13.  電源より電力供給を受けて駆動される電動モータのモータ制御方法であって、
     所定の周波数成分の信号を生成する信号生成工程と、
     前記電源より入力した電圧を所定電圧に変換するとともに該変換後の電圧に前記所定の周波数成分を重畳して出力する第1電力変換工程と、
     前記第1電力変換工程で得た出力を前記電動モータの駆動用電力に変換する第2電力変換工程と、
    を備えるモータ制御方法。
  14.  前記所定の周波数成分は前記電動モータの駆動周波数の高調波成分をもとに生成される請求項13に記載のモータ制御方法。
  15.  前記高調波成分は6n次高調波成分(nは1以上の整数)である請求項14に記載のモータ制御方法。
  16.  前記信号生成工程において、前記重畳する周波数成分の振幅と位相を、前記電動モータの駆動周波数の高調波成分の振幅と位相に合わせる調整処理を行う請求項13~15のいずれか1項に記載のモータ制御方法。
     
PCT/JP2020/028537 2019-08-21 2020-07-22 モータ制御装置およびモータ制御方法 WO2021033489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020003940.4T DE112020003940T5 (de) 2019-08-21 2020-07-22 Motorsteuervorrichtung und Motorsteuerverfahren
CN202080057939.5A CN114270694A (zh) 2019-08-21 2020-07-22 马达控制装置和马达控制方法
US17/633,969 US20220294378A1 (en) 2019-08-21 2020-07-22 Motor control device and motor control method
JP2021540687A JPWO2021033489A1 (ja) 2019-08-21 2020-07-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-151274 2019-08-21
JP2019151274 2019-08-21

Publications (1)

Publication Number Publication Date
WO2021033489A1 true WO2021033489A1 (ja) 2021-02-25

Family

ID=74660857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028537 WO2021033489A1 (ja) 2019-08-21 2020-07-22 モータ制御装置およびモータ制御方法

Country Status (5)

Country Link
US (1) US20220294378A1 (ja)
JP (1) JPWO2021033489A1 (ja)
CN (1) CN114270694A (ja)
DE (1) DE112020003940T5 (ja)
WO (1) WO2021033489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023920A1 (ja) * 2022-07-26 2024-02-01 三菱電機株式会社 インバータ制御装置、モータ駆動装置、送風機及び空気調和機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077596A1 (ja) * 2015-11-04 2017-05-11 三菱電機株式会社 車両用モータ制御装置および車両用モータ制御方法
JP2017181034A (ja) * 2016-03-28 2017-10-05 日産自動車株式会社 磁石温度推定方法、及び、磁石温度推定装置
JP2018093603A (ja) * 2016-12-01 2018-06-14 日産自動車株式会社 磁石温度推定システム、及び、モータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330652B2 (ja) 2007-02-28 2013-10-30 三菱重工業株式会社 永久磁石モータ制御装置
JP5434368B2 (ja) 2009-08-25 2014-03-05 株式会社明電舎 電動機のトルク脈動抑制システム
ES2876279T3 (es) * 2011-01-18 2021-11-12 Daikin Ind Ltd Aparato de conversión de potencia
MX2014003618A (es) * 2011-09-30 2014-06-23 Mitsubishi Electric Corp Dispositivo y metodo de control para motor electrico, y sistema de accionamiento de vehiculo y motor en el cual el dispositivo y metodo de control son aplicados.
JP6064207B2 (ja) * 2012-12-17 2017-01-25 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP2021097512A (ja) * 2019-12-17 2021-06-24 トヨタ自動車株式会社 電動機を備えた車両の制御装置
DE102021107143A1 (de) * 2021-03-23 2022-09-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betrieb eines Antriebsstranges eines Kraftfahrzeugs, Antriebsstrang sowie Kraftfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077596A1 (ja) * 2015-11-04 2017-05-11 三菱電機株式会社 車両用モータ制御装置および車両用モータ制御方法
JP2017181034A (ja) * 2016-03-28 2017-10-05 日産自動車株式会社 磁石温度推定方法、及び、磁石温度推定装置
JP2018093603A (ja) * 2016-12-01 2018-06-14 日産自動車株式会社 磁石温度推定システム、及び、モータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023920A1 (ja) * 2022-07-26 2024-02-01 三菱電機株式会社 インバータ制御装置、モータ駆動装置、送風機及び空気調和機

Also Published As

Publication number Publication date
DE112020003940T5 (de) 2022-06-02
US20220294378A1 (en) 2022-09-15
JPWO2021033489A1 (ja) 2021-02-25
CN114270694A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US9257931B2 (en) Power conversion apparatus
JP4988329B2 (ja) 永久磁石モータのビートレス制御装置
JP4905777B2 (ja) 交流交流直接変換器の制御装置
JP5915751B2 (ja) マトリクスコンバータ
TW200935716A (en) Motor control device and control method thereof
WO2008047438A1 (fr) Contrôleur vectoriel d'un moteur synchrone à aimant permanent
WO2018139295A1 (ja) インバータ制御装置
JPWO2008139518A1 (ja) 電力変換装置
JP2002354826A (ja) インバータ制御方法およびその装置
JP6390489B2 (ja) インバータの制御装置
JP2009044897A (ja) 信号抽出回路及びそれを含む系統連系インバータ装置
JP5813934B2 (ja) 電力変換装置
CN107615642B (zh) 逆变器控制装置
JP6848622B2 (ja) 電力変換器及びその制御装置
WO2021033489A1 (ja) モータ制御装置およびモータ制御方法
CN114208020B (zh) 交流旋转电机的控制装置及电动助力转向装置
WO2013007107A1 (zh) 一种电机变频调速系统
JP2010063221A (ja) モータ制御装置
JP2009273302A (ja) 電動モータの制御装置
JP2008259380A (ja) 交流交流直接変換器の制御装置
JP7111026B2 (ja) 電動機駆動システムおよび電動機駆動システムにおけるインバータ制御方法
JP5961949B2 (ja) 電力変換装置
JP7413926B2 (ja) 制御装置及び電力変換装置
JP2004120854A (ja) 電動機の制御装置
JP2012039716A (ja) モータ制御装置及びモータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540687

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20855410

Country of ref document: EP

Kind code of ref document: A1