WO2021025164A1 - 非水系電解液及び非水系電解液電池 - Google Patents

非水系電解液及び非水系電解液電池 Download PDF

Info

Publication number
WO2021025164A1
WO2021025164A1 PCT/JP2020/030504 JP2020030504W WO2021025164A1 WO 2021025164 A1 WO2021025164 A1 WO 2021025164A1 JP 2020030504 W JP2020030504 W JP 2020030504W WO 2021025164 A1 WO2021025164 A1 WO 2021025164A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
general formula
aqueous electrolyte
Prior art date
Application number
PCT/JP2020/030504
Other languages
English (en)
French (fr)
Inventor
英司 中澤
Original Assignee
三菱ケミカル株式会社
Muアイオニックソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, Muアイオニックソリューションズ株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP20850586.7A priority Critical patent/EP4012814A4/en
Priority to CN202080056205.5A priority patent/CN114207901B/zh
Priority to JP2021537411A priority patent/JPWO2021025164A1/ja
Priority to KR1020227005631A priority patent/KR20220035244A/ko
Publication of WO2021025164A1 publication Critical patent/WO2021025164A1/ja
Priority to US17/591,329 priority patent/US20220158244A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • X is a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR o R p R q. Shown; each of Ro to R q has a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a carbon number which may have a substituent.
  • ⁇ A2> The content of the compound having the Si—O structure represented by the general formula (A) or (B) is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte solution.
  • ⁇ A3> The content of the compound having a Si—N structure represented by the general formula ( ⁇ ) is 0.01 mass ppm or more and 0.5 mass% or less with respect to the total amount of the non-aqueous electrolyte solution, ⁇ A1. > Or ⁇ A2>.
  • the non-aqueous electrolyte solution The non-aqueous electrolyte solution.
  • the non-aqueous electrolytic solution further contains one or more selected from a fluorinated salt, a fluorosilane compound, an unsaturated cyclic carbonate, a cyclic carbonate having a fluorine atom, and an oxalate salt.
  • a fluorinated salt a fluorosilane compound
  • an unsaturated cyclic carbonate a cyclic carbonate having a fluorine atom
  • an oxalate salt ⁇ A1> The non-aqueous electrolyte solution according to any one of ⁇ A5>.
  • ⁇ A7> A non-aqueous electrolyte battery including a positive electrode and a negative electrode capable of occluding and releasing metal ions, and a non-aqueous electrolyte battery, wherein the non-aqueous electrolyte solution is described in any one of ⁇ A1> to ⁇ A6>.
  • a non-aqueous electrolyte solution for a non-aqueous electrolyte battery having a positive electrode and a negative electrode capable of storing and releasing metal ions which is an alkali metal salt, a non-aqueous solvent, a general formula (A2) or a general formula (B2). It contains at least one compound having a Si—O structure represented by the above, and at least one compound having a Si—N structure represented by the general formula (Z) or the general formula (Y).
  • the content of the compound having a Si—N structure represented by the general formula (Z) or the general formula (Y) is 0.01 mass ppm or more and 0.5 mass% with respect to the total amount of the non-aqueous electrolyte solution.
  • ⁇ B4> Represented by the general formula (A2) or the general formula (B2) with respect to the content of the compound having a Si—N structure represented by the general formula (Z) or the general formula (Y) in the non-aqueous electrolyte solution.
  • the non-aqueous electrolyte solution contains a compound represented by the general formula (B2), and in the formula (B2), at least one of R 25 or R 26 is a vinyl group or an allyl group.
  • Non-aqueous electrolyte solution is described in any of ⁇ B1> to ⁇ B6>, which is a silyl group represented by ⁇ SiR x R y R z.
  • the non-aqueous electrolytic solution further contains one or more selected from a fluorinated salt, a fluorosilane compound, an unsaturated cyclic carbonate, a cyclic carbonate having a fluorine atom, and an oxalate salt.
  • a fluorinated salt a fluorosilane compound
  • an unsaturated cyclic carbonate a cyclic carbonate having a fluorine atom
  • an oxalate salt ⁇ B1>
  • ⁇ B9> A non-aqueous electrolyte battery including a positive electrode and a negative electrode capable of occluding and releasing metal ions, and a non-aqueous electrolyte battery, wherein the non-aqueous electrolyte solution is described in any one of ⁇ B1> to ⁇ B8>.
  • non-aqueous electrolyte battery that is excellent in suppressing the amount of gas generated during the initial conditioning of the non-aqueous electrolyte battery and a non-aqueous electrolyte battery that generates a small amount of gas during the initial conditioning.
  • R 89 represents a hydrogen atom or a silyl group represented by ⁇ SiR 8 R 9 R 10 ;
  • R 8 to R 10 each independently have a hydrogen atom, a halogen atom and a substituent.
  • R 11 has a hydrogen atom and a substituent.
  • a hydrocarbon group having 1 to 12 carbon atoms may be used, or a silyl group represented by ⁇ SiR d R e R f ; R d to R f independently contain a hydrogen atom, a halogen atom, and a substituent. Indicates a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or an alkoxy group having 1 to 12 carbon atoms which may have a substituent; Y has a hydrogen atom, a halogen atom, and a substituent.
  • the non-aqueous electrolyte solution according to the present invention A has at least one Si—O structure selected from the compound represented by the general formula (A) and the compound represented by the general formula (B) described below.
  • a compound represented by the general formula ( ⁇ ) Contains a compound having an O structure (hereinafter, also referred to as “a compound represented by the general formula ( ⁇ )”).
  • the compound represented by the general formula (A) or (B) localized on the surface of the active material and the compound represented by the general formula ( ⁇ ) also interact with each other to be a localized compound. It is presumed that the amount of the positive electrode active material and / or the negative electrode active material fixed on the surface of the negative electrode active material is also improved.
  • the compound represented by the general formula ( ⁇ ) and the compound represented by the general formula (A) or (B), which are localized on the electrodes at the time of initial charging, are electrochemically decomposed and become complex. Form an insulating film. It is presumed that this composite film suppresses the side reaction of the electrolytic solution during the initial conditioning and suppresses gas generation.
  • OCV is the potential difference between the positive electrode and the negative electrode.
  • the electrode potential changes.
  • a high OCV at the time of pouring is considered to mean that the amount of the compound constituting the electrolytic solution adsorbed on the electrode is large. Since the electrolytic solution according to the embodiment of the present invention has a large amount of the compound adsorbed on the electrode after injection, it is presumed that the battery OCV after injection is high.
  • the present inventor has found that the amount of gas generated in the initial conditioning can be predicted by confirming the OCV at the time of injecting liquid. In the examples described later, the height of OCV and the amount of gas generated do not always match, but a correlation can be seen. It is considered that the properties of the composite film formed differ depending on the compound to be combined.
  • the non-aqueous electrolyte solution according to one embodiment of the present invention is represented by at least one of the compounds having a Si—O structure represented by the following general formula (A) or (B), that is, represented by the general formula (A). It is characterized by containing a compound having at least one Si—O structure selected from the compound and the compound represented by the following general formula (B).
  • R 1 to R 5 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be used;
  • X is a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR o R p R q.
  • each of Ro to R q has a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a carbon number which may have a substituent. It indicates 1-12 alkoxy group; n if .n represents an integer of 0 to 5 is 2 or more, plural R 4 may be the same or different and each a plurality of R 5 are the same It may be different.)
  • R 1 to R 5 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be used.
  • a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent or an alkoxy group having 1 to 12 carbon atoms which may have a substituent is preferable, and a substituent is particularly preferable. It is a hydrocarbon group having 1 to 12 carbon atoms which may have a group or an alkoxy group having 1 to 12 carbon atoms which may have a substituent.
  • the "hydrocarbon group” may have a branched structure and / or a cyclic structure, and may be any of a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group and the like. It should be good.
  • the hydrocarbon group has a substituent, the number of carbons contained in the substituent is not included in the number of carbon atoms.
  • at least one of R 1 to R 3 is a hydrocarbon group having a carbon-carbon unsaturated bond and having 2 to 12 carbon atoms, and the compound represented by the general formula (A) is suitable for the electrode surface. It is preferable from the viewpoint that it tends to be localized.
  • Examples of the hydrocarbon group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond include an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms, which will be described later.
  • an alkenyl group having 2 to 12 carbon atoms or an alkynyl group having 2 to 12 carbon atoms is preferable from the viewpoint that the compound represented by the general formula (A) tends to be more preferably localized on the electrode surface. ..
  • Particularly preferred is an alkenyl group having 2 to 12 carbon atoms.
  • R 1 to R 3 according to the general formula (A) may be the same or different, but it is preferable that at least two or more of them are the same in that the compound can be easily synthesized, and all three are the same. Is more preferable from the above-mentioned viewpoint.
  • R 4 and R 5 according to the general formula (A) may be the same or different, but it is preferable that they are the same in that the compound can be easily synthesized.
  • n is 2 or more, that is, when a plurality of R 4 and R 5 are present, the R 4 may be the same or different, but the same makes it easier to synthesize the compound. It is preferable in that it is.
  • the R 5 may be each independently identical or different, but it is preferred in terms synthesis of compounds can be easily be identical.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Preferably, it is a fluorine atom in terms of having few electrochemical side reactions.
  • the hydrocarbon group having 1 to 12 carbon atoms is preferably a hydrocarbon group having 1 to 6 carbon atoms, and particularly preferably a hydrocarbon group having 1 to 4 carbon atoms. Specific examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group and an aryl group.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, n-pentyl group, hexyl group, heptyl group, octyl group and nonyl group. , Decyl group and the like.
  • methyl group, ethyl group, n-propyl group, n-butyl group, tert-butyl group, n-pentyl group and hexyl group are preferable, and methyl group, ethyl group, n-propyl group and n-butyl group are more preferable.
  • the above-mentioned alkyl group is preferable because the compound represented by the general formula (A) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • alkenyl group examples include a vinyl group, an allyl group, a metharyl group, a 2-butenyl group, a 3-methyl2-butenyl group, a 3-butenyl group, a 4-pentenyl group and the like.
  • a vinyl group, an allyl group, a metalyl group, a 2-butenyl group, more preferably a vinyl group, an allyl group, a metalyl group, and particularly preferably a vinyl group or an allyl group can be mentioned.
  • the above-mentioned alkenyl group is preferable because the compound represented by the general formula (A) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • alkynyl group examples include an ethynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group and the like.
  • ethynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group are more preferable
  • 2-propynyl group and 3-butynyl group are more preferable
  • 2-propynyl group is particularly preferable.
  • the above-mentioned alkynyl group is preferable because the compound represented by the general formula (A) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • the aryl group include a phenyl group and a tolyl group. Of these, a phenyl group is preferable from the viewpoint that the compound represented by the general formula (A) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • Specific examples of the aralkyl group include a benzyl group and a phenethyl group.
  • the alkoxy group having 1 to 12 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms, and particularly preferably an alkoxy group having 1 to 4 carbon atoms.
  • alkoxy group having 1 to 12 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an isopropoxy group and the like.
  • methoxy group and the ethoxy group are preferably concentrated on the surface of the active material with less steric hindrance of the compound represented by the general formula (A).
  • R r is an alkyl group having 1 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl having 2 to 10 carbon atoms. Indicates a group. When R r is an alkylene group, it may be bonded to a part of the substituted hydrocarbon group to form a ring.
  • X represents a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent or a silyl group represented by ⁇ SiR o R p R q .
  • Examples of the hydrocarbon group having 1 to 12 carbon atoms include those described in R 1 ⁇ R 5.
  • -R o to R q in the silyl group represented by SiR o R p R q are hydrocarbon groups having 1 to 12 carbon atoms, which may independently have a hydrogen atom, a halogen atom, and a substituent.
  • an alkoxy group having 1 to 12 carbon atoms which may have a substituent is shown.
  • a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent or an alkoxy group having 1 to 12 carbon atoms which may have a substituent is preferable, and a substituent is particularly preferable. It is a hydrocarbon group having 1 to 12 carbon atoms which may have a group.
  • all of the halogen atom, the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and the alkoxy group having 1 to 12 carbon atoms which may have a substituent are R 1 to R. It is synonymous with what is specified in 5 . The same applies to the preferred embodiment.
  • R 1 to R 3 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent.
  • R 6 to R 7 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms; k represents an integer of 3 to 6.
  • the plurality of R 6s may be the same or different, and the plurality of R 7s are the same. It may be different.
  • R 6 to R 7 according to the general formula (B) each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. It represents an alkoxy group having 1 to 12 carbon atoms which may be used.
  • the plurality of R 6s may be the same or different, and the plurality of R 7s may be the same or different.
  • R 6 to R 7 according to the general formula (B) may be the same or different, but it is preferable that they are the same because the compound can be easily synthesized.
  • a plurality of R 6 may be different even in the same, but all 3-6 R 6 present the same in one molecule of the compound It is preferable because it is easy to synthesize.
  • a plurality of R 7 (R 7 present in the repeating unit) is respectively may be the same or different and that all the 3-6 R 7 present in the molecule is identical compounds It is preferable because it is easy to synthesize.
  • all of the halogen atom, the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and the alkoxy group having 1 to 12 carbon atoms which may have a substituent are R 1 to R. It is synonymous with what is specified in 5 .
  • k is usually an integer of 3 to 6, and 3 or 4 is preferable.
  • At least one selected from the compound represented by the general formula (A) and the compound represented by the general formula (B) is used, but the general formula (A) or the general formula is used.
  • Specific examples of the compound represented by the formula (B) include compounds having the following structures.
  • the compounds represented by the general formula (A) or (B) are preferably the following compounds.
  • the compounds represented by the general formula (A) or (B) are more preferably the following compounds.
  • Examples of the compound represented by the general formula (A) or (B) particularly preferably include the following compounds.
  • the non-aqueous electrolyte solution according to one embodiment of the present invention may contain one kind of compound having a Si—O structure represented by the general formula (A) or the general formula (B), or may contain two or more kinds. You may.
  • the total content of the compounds having a Si—O structure represented by the general formula (A) or (B) with respect to the total amount of the non-aqueous electrolyte solution according to the embodiment of the present invention is usually 0.001% by mass or more. It is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and usually 10% by mass or less, preferably 8% by mass or less.
  • NMR nuclear magnetic resonance
  • R 89 represents a hydrogen atom or a silyl group represented by ⁇ SiR 8 R 9 R 10 ; R 8 to R 10 each independently have a hydrogen atom, a halogen atom and a substituent.
  • a hydrocarbon group having 1 to 12 carbon atoms which may have, or an alkoxy group having 1 to 12 carbon atoms which may have a substituent;
  • R 11 has a hydrogen atom and a substituent.
  • a hydrocarbon group having 1 to 12 carbon atoms may be used, or a silyl group represented by ⁇ SiR d R e R f ;
  • R d to R f independently contain a hydrogen atom, a halogen atom, and a substituent.
  • Y has a hydrogen atom, a halogen atom, and a substituent. and optionally carbon atoms 1 be ⁇ 12 hydrocarbon group, an alkoxy group which has carbon atoms 1 be ⁇ 12 have a substituent, group represented by -NR g -SiR h R i R j , or Indicates a group represented by -NR g- H; R g indicates a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent; R h to R j are respectively.
  • a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or an alkoxy group having 1 to 12 carbon atoms which may have a substituent is shown.
  • 11 and R g may be combined with each other to form a ring.
  • R 89 , R 8 to R 11 , R g , Y and the like will be described.
  • R 89 represents a hydrogen atom or a silyl group represented by ⁇ SiR 8 R 9 R 10 , and R 8 to R 10 independently have a hydrogen atom, a halogen atom and a substituent.
  • a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent or an alkoxy group having 1 to 12 carbon atoms which may have a substituent is shown.
  • -SiR 8 R 9 In the silyl group represented by R 10 , R 8 to R 10 are each independently a hydrocarbon group having 1 to 12 carbon atoms which may have a hydrogen atom, a halogen atom and a substituent.
  • an alkoxy group having 1 to 12 carbon atoms which may have a substituent which may have a substituent.
  • a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent and an alkoxy group having 1 to 12 carbon atoms which may have a substituent are preferable, and a substituent is particularly preferable. It is a hydrocarbon group having 1 to 12 carbon atoms which may be used. When the hydrocarbon group has a substituent, the number of carbons contained in the substituent is not included in this carbon number. Further, it is preferable that at least one of R 8 to R 10 is an alkyl group having 1 to 12 carbon atoms from the viewpoint that the compound according to the general formula ( ⁇ ) tends to be suitably localized on the electrode surface. ..
  • R 8 to R 10 are alkyl groups having 1 to 12 carbon atoms.
  • R 8 to R 10 according to the general formula ( ⁇ ) may be the same or different, but preferably at least two or more are the same in that the compound can be easily synthesized, and all three are the same. It is more preferable from the above-mentioned viewpoint.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom. Preferably, it is a fluorine atom in terms of having few electrochemical side reactions.
  • the hydrocarbon group having 1 to 12 carbon atoms is preferably a hydrocarbon having 1 to 6 carbon atoms, and particularly preferably a hydrocarbon having 1 to 4 carbon atoms.
  • hydrocarbon group examples include an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group and an aryl group.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, n-pentyl group, hexyl group, heptyl group, octyl group and nonyl group. , Decyl group and the like.
  • methyl group, ethyl group, n-propyl group, n-butyl group, tert-butyl group, n-pentyl group and hexyl group are preferable, and methyl group, ethyl group, n-propyl group and n-butyl group are more preferable.
  • the above-mentioned alkyl group is preferable because the compound represented by the general formula ( ⁇ ) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • alkenyl group examples include a vinyl group, an allyl group, a metharyl group, a 2-butenyl group, a 3-methyl2-butenyl group, a 3-butenyl group, a 4-pentenyl group and the like.
  • a vinyl group, an allyl group, a metalyl group, a 2-butenyl group, more preferably a vinyl group, an allyl group, a metalyl group, and particularly preferably a vinyl group or an allyl group can be mentioned.
  • the above-mentioned alkenyl group is preferable because the compound represented by the general formula ( ⁇ ) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • alkynyl group examples include an ethynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group and the like.
  • ethynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group are more preferable
  • 2-propynyl group and 3-butynyl group are more preferable
  • 2-propynyl group is particularly preferable.
  • the above-mentioned alkynyl group is preferable because the compound represented by the general formula ( ⁇ ) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • the aryl group examples include a phenyl group and a tolyl group. Of these, a phenyl group is preferable from the viewpoint that the compound represented by the general formula ( ⁇ ) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • Specific examples of the aralkyl group include a benzyl group and a phenethyl group.
  • the alkoxy group having 1 to 12 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms, and particularly preferably an alkoxy group having 1 to 4 carbon atoms.
  • alkoxy group having 1 to 12 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an isopropoxy group and the like.
  • the methoxy group and the ethoxy group are preferable because they have less steric hindrance to the compound and are suitably concentrated on the surface of the active material.
  • R s is an alkyl group having 1 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl having 2 to 10 carbon atoms. Indicates a group. When R s is an alkylene group, it may be bonded to a part of the substituted hydrocarbon group to form a ring.
  • R d to R f in the silyl group represented by ⁇ SiR d R e R f are hydrocarbons having 1 to 12 carbon atoms which may independently have a hydrogen atom, a halogen atom and a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may have a group or a substituent.
  • the halogen atom, the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and the alkoxy group having 1 to 12 carbon atoms which may have a substituent are all R 8 to R. It is synonymous with what is specified in 10 .
  • the hydrocarbon group has a substituent, the number of carbons contained in the substituent is not included in this carbon number.
  • Y according to the general formula ( ⁇ ) has a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and 1 to 12 carbon atoms which may have a substituent. Shows an alkoxy group, a group represented by -NR g- SiR h R i R j or a group represented by -NR g- H, where R g is a hydrogen atom and the number of carbon atoms which may have a substituent.
  • R h to R j each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be possessed.
  • the halogen atom, the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and the alkoxy group having 1 to 12 carbon atoms which may have a substituent are all R 8 to R. It is synonymous with the one specified in 10 .
  • -NR g- SiR h In the group represented by R i R j , R g is synonymous with that specified by R 11 .
  • R g is a hydrocarbon group having 1 to 12 carbon atoms which may have a hydrogen atom or a substituent.
  • a hydrocarbon group having from 1 to 12 carbon atoms which may have a substituent has the same meaning as defined in R 11.
  • a hydrocarbon group having 1 to 12 carbon atoms which may have a hydrogen atom and a substituent is preferable
  • a hydrocarbon atom and a hydrocarbon group having 1 to 12 carbon atoms are more preferable
  • a hydrogen atom and a hydrocarbon group having 1 to 12 carbon atoms are preferable.
  • the hydrocarbon group of 6 is more preferable
  • the hydrocarbon group having a hydrogen atom and 1 to 4 carbon atoms is particularly preferable.
  • the compound represented by the general formula ( ⁇ ) is preferably a compound represented by the general formula ( ⁇ 1) described later or a compound represented by the general formula ( ⁇ 2).
  • R 8 to R 10 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be used.
  • R 11 is represented by a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or ⁇ SiR d R e R f .
  • R d to R f each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent.
  • Y' has a hydrocarbon atom, a halogen atom and a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent and a substituent. It may indicate an alkoxy group having 1 to 12 carbon atoms or a group represented by ⁇ NR g ⁇ SiR h R i R j.
  • R g may have a hydrogen atom or a substituent and may have 1 to 12 carbon atoms. Twelve hydrocarbon groups are shown.
  • R h to R j each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent.
  • R 11 and R g may be bonded to each other to form a ring.
  • R 8 ⁇ R 11, and R g ⁇ R j correspond respectively to R 8 ⁇ R 11, R g ⁇ R j of formula ( ⁇ ), Y 'is out of Y of formula (alpha),
  • R i R j Corresponds to the group represented by R i R j .
  • Specific examples of the compound having a Si—N structure represented by the general formula ( ⁇ 1) include a compound having the following structure.
  • the following compounds are particularly preferable.
  • R 111 represents a hydrogen atom and a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • Y has a hydrogen atom, a halogen atom and a substituent.
  • R 111 is a hydrocarbon group having 1 to 12 carbon atoms which may have a hydrogen atom or a substituent among R 11 of the formula ( ⁇ )
  • R g is R of the formula ( ⁇ ).
  • Y may have a hydrogen atom, a halogen atom, or a substituent in Y of the formula ( ⁇ ), even if it has a hydrocarbon group having 1 to 12 carbon atoms or a substituent.
  • the R 111 according to the general formula ( ⁇ 2) may have a hydrogen atom and a substituent.
  • a hydrocarbon group having a number of 1 to 12 is preferable, a hydrocarbon group having a hydrogen atom and a carbon number of 1 to 12 is more preferable, and a hydrocarbon group having a hydrogen atom and a carbon number of 1 to 6 is particularly preferable.
  • Examples of the compound represented by the general formula ( ⁇ 2) particularly preferably include the following compounds.
  • the total content of the compound represented by the general formula ( ⁇ ) with respect to the total amount of the non-aqueous electrolyte solution according to the embodiment of the present invention is not particularly limited, but is preferably 0.01 mass ppm or more. It is more preferably 0.1% by mass or more, further preferably 1.0% by mass or more, particularly preferably 10% by mass or more, and preferably 0.5% by mass or less, more preferably less than 0.5% by mass. , More preferably 0.4% by mass or less, more preferably 0.3% by mass or less, more preferably 0.2% by mass or less, more preferably 0.1% by mass or less, more preferably 0.05% by mass or less. , More preferably 0.03% by mass or less.
  • the concentration of the compound represented by the general formula ( ⁇ ) in the active material proceeds suitably. However, it is possible to manufacture a battery that generates less gas during initial conditioning. When two or more compounds represented by the general formula ( ⁇ ) are used, the total amount thereof shall be the content of the compound represented by the general formula ( ⁇ ).
  • the ratio of the mass of the content of the compound represented by the general formula (A) or the general formula (B) to the content of the compound represented by the general formula ( ⁇ ) in the non-aqueous electrolyte solution is not particularly limited.
  • the above ratio is the general formula (A) with respect to the content of the compound represented by the general formula ( ⁇ 1).
  • the ratio of the total content of the compound represented by the general formula (B) is shown.
  • the total content of the compound represented by the general formula ( ⁇ 2) with respect to the total amount of the non-aqueous electrolyte solution according to the embodiment of the present invention is not particularly limited, but is preferably 0.01 mass ppm or more. It is more preferably 0.1% by mass or more, further preferably 1.0% by mass or more, particularly preferably 10% by mass or more, and preferably 0.50% by mass or less, more preferably 0.2% by mass. % Or less, more preferably 0.1% by mass or less, particularly more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
  • the concentration of the compound represented by the general formula ( ⁇ 2) in the active material proceeds suitably.
  • the ratio of the mass of the content of the compound represented by the general formula (A) or the general formula (B) to the content of the compound represented by the general formula ( ⁇ 2) in the non-aqueous electrolyte solution is not particularly limited.
  • Identification of the compound represented by the general formula ( ⁇ ) and measurement of the content in the non-aqueous electrolyte solution are performed by nuclear magnetic resonance (NMR) spectroscopy.
  • NMR nuclear magnetic resonance
  • the method of incorporating the compound represented by the general formula ( ⁇ ) and the compound represented by the general formula (A) or (B) into the electrolytic solution is not particularly limited. In addition to the method of directly adding the compound to the electrolytic solution, a method of generating the compound in a battery or an electrolytic solution can be mentioned.
  • the compound represented by the general formula (Z) or the general formula (Y) and the compound represented by the general formula (A2) or (B2), which are localized on the electrode at the time of initial charging, are electrochemically obtained. It decomposes to form a composite insulating film. It is presumed that this composite film suppresses the side reaction of the electrolytic solution during the initial conditioning and suppresses gas generation.
  • the non-aqueous electrolyte solution of the present invention is characterized by containing a compound having a Si—O structure represented by the following general formula (A2) or (B2).
  • R 12 to R 16 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be used;
  • X' is a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR o2 R p2 R q2.
  • Each of Ro2 to Rq2 independently has a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a carbon which may have a substituent. Indicates an alkoxy group of numbers 1-12; n'indicates an integer of 0-5; at least one of R 12 -R 14 is a carbon-carbon unsaturated bond having a carbon-carbon unsaturated bond of 2-12 carbon atoms. When n'is 2 or more, the plurality of R 15s may be the same or different, and the plurality of R 16s may be the same or different.)
  • n ' is 2 or more, i.e., if R 15 and R 16 there are a plurality
  • the R 15 may each independently identical or different, but it is the same, the synthesis of Compound It is preferable because it is easy.
  • the R 16s may be the same or different, but it is preferable that they are the same in that the compound can be easily synthesized.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • it is a fluorine atom in terms of having few electrochemical side reactions.
  • methyl group, ethyl group, n-propyl group, n-butyl group, tert-butyl group, n-pentyl group and hexyl group are preferable, and methyl group, ethyl group, n-propyl group and n-butyl group are more preferable.
  • the above-mentioned alkyl group is preferable because the compound according to the general formula (A2) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • the aryl group examples include a phenyl group and a tolyl group. Of these, a phenyl group is preferable from the viewpoint that the compound according to the general formula (A2) tends to be localized near the surface of the positive electrode active material and / or the negative electrode active material.
  • Specific examples of the aralkyl group include a benzyl group and a phenethyl group.
  • the alkoxy group having 1 to 12 carbon atoms is preferably an alkoxy group having 1 to 6 carbon atoms, and more preferably an alkoxy group having 1 to 4 carbon atoms.
  • X' represents a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent or a silyl group represented by ⁇ SiR o2 R p2 R q2 .
  • examples of the hydrocarbon group having 1 to 12 carbon atoms and the alkoxy group having 1 to 12 carbon atoms include those described in R 1 to R 3 .
  • -R o2 to R q2 in the silyl group represented by SiR o2 R p2 R q2 are hydrocarbon groups having 1 to 12 carbon atoms which may independently have a hydrogen atom, a halogen atom and a substituent.
  • R 17 to R 5 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. It represents an alkoxy group having 1 to 12 carbon atoms, where k'is an integer of 3 to 6. At least one of R 17 or R 18 is a hydrocarbon having a carbon-carbon unsaturated bond and has 2 to 12 carbon atoms. It is a hydrogen group.
  • the plurality of R 17s may be the same or different, and the plurality of R 18s may be the same or different.
  • R 17 to R 18 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. It represents an alkoxy group having 1 to 12 carbon atoms which may be used.
  • each of the plurality of R 17 (R 17 present in the repeating unit) may be different even in the same, (R 18 present in the repeating unit) a plurality of R 18 may be respectively identical It may be different. That is, it may also being the same or different each 3-6 R 17 present in one molecule, at each other, is identical 3-6 R 18 present in the molecule It may or may not be different.
  • the total content of the compounds represented by the general formula (A2) or (B2) with respect to the total amount of the non-aqueous electrolyte solution of the present invention is usually 0.001% by mass or more, preferably 0.01% by mass or more. It is more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, and usually 10% by mass or less, preferably 8% by mass or less, more preferably 6.0% by mass or less, and further. It is preferably 4.0% by mass or less, particularly preferably 3.0% by mass or less, particularly preferably 2.5% by mass or less, and most preferably 2.0% by mass or less.
  • the concentration of the compound in the active material proceeds suitably, and at the time of initial conditioning. It is possible to manufacture a battery that generates less gas.
  • the identification of the compound represented by the general formula (A2) or (B2) and the measurement of the content in the non-aqueous electrolyte solution are performed by nuclear magnetic resonance (NMR) spectroscopy.
  • R 19 to R 21 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be used. Among them, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent and an alkoxy group having 1 to 12 carbon atoms which may have a substituent are preferable, and a substituent is particularly preferable. It is a hydrocarbon group having 1 to 12 carbon atoms which may be used.
  • R 19 to R 21 is an alkyl group having 1 to 12 carbon atoms from the viewpoint that the compound according to the general formula (Z) can be preferably adsorbed on the electrode surface.
  • R 19 to R 21 according to the general formula (Z) may be the same or different, but preferably at least two or more of them are the same in that the compound can be easily synthesized, and all three are the same. It is more preferable from the above-mentioned viewpoint.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Preferably, it is a fluorine atom in terms of having few electrochemical side reactions.
  • the hydrocarbon group having 1 to 12 carbon atoms is preferably a hydrocarbon having 1 to 6 carbon atoms, and particularly preferably a hydrocarbon having 1 to 4 carbon atoms.
  • methyl group, ethyl group, n-propyl group, n-butyl group, tert-butyl group, n-pentyl group and hexyl group are preferable, and methyl group, ethyl group, n-propyl group and n-butyl group are more preferable.
  • the above-mentioned alkyl group is preferable because the compound represented by the general formula (Z) tends to be localized near the surface of the positive electrode and / or the negative electrode active material.
  • alkenyl group examples include a vinyl group, an allyl group, a metharyl group, a 2-butenyl group, a 3-methyl2-butenyl group, a 3-butenyl group, a 4-pentenyl group and the like.
  • a vinyl group, an allyl group, a metalyl group, a 2-butenyl group, more preferably a vinyl group, an allyl group, a metalyl group, and particularly preferably a vinyl group can be mentioned.
  • the above-mentioned alkenyl group is preferable because the compound represented by the general formula (Z) tends to be localized in the vicinity of the surface of the positive electrode and / or the negative electrode active material.
  • alkoxy group having 1 to 12 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an isopropoxy group and the like.
  • the methoxy group and the ethoxy group are preferable in that the compound represented by the general formula (Z) has less steric hindrance and is suitably concentrated on the surface of the active material.
  • R u is an alkyl group having 1 to 10 carbon atoms, alkylene group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or alkynyl of 2 to 10 carbon atoms Indicates a group. If R u is an alkylene group may form a ring bonded to a portion of the hydrocarbon group is substituted.
  • R 22 to R 23 according to the general formula (Z) are a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR x R y R z. Is shown.
  • a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent or a silyl group represented by ⁇ SiR x R y R z is preferable. Further, it is preferable that at least one of R 22 to R 23 is a silyl group represented by ⁇ SiR x R y R z in that the polarity of the compound represented by the general formula (Z) is lowered.
  • the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent is synonymous with that defined by R 19 to R 21 .
  • R x to R z in the silyl group represented by ⁇ SiR x R y R z are hydrocarbons having 1 to 12 carbon atoms which may independently have a hydrogen atom, a halogen atom and a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may have a group or a substituent.
  • all of the halogen atom, the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, and the alkoxy group having 1 to 12 carbon atoms which may have a substituent are R 19 to R. It is synonymous with the one specified in 21 .
  • Specific examples of the compound having a Si—N structure represented by the general formula (Z) include a compound having the following structure.
  • R 24 represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR a R b R c .
  • R a to R c independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or 1 to 12 carbon atoms which may have a substituent.
  • R 25 to R 26 each independently have a hydrogen atom, a halogen atom, and a hydrocarbon group having 1 to 12 carbon atoms, which may have a substituent, and a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 3 to 6.
  • the plurality of R 25s may be the same or different, and the plurality of R 26s may be the same. May be different.
  • R 24 represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR a R b R c .
  • the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent is synonymous with that specified in R 22 to R 23 .
  • the silyl group represented by ⁇ SiR a R b R c is synonymous with the silyl group represented by ⁇ SiR x R y R z described above.
  • R 25 to R 26 independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or 1 to 12 carbon atoms which may have a substituent.
  • halogen atom the hydrocarbon group having 1 to 12 carbon atoms which may have a substituent
  • the alkoxy group having 1 to 12 carbon atoms which may have a substituent are all R 19 to R 21. It is synonymous with what is specified in.
  • R 25 present in the repeating unit a plurality of R 25 may be the each be the same or different, even a plurality of R 26 (R 26 present in the repeating unit) is the same It may be different. That is, each of the 3 to 6 R 25s existing in one molecule may be the same or different from each other, and each of the 3 to 6 R 26s existing in one molecule is the same as each other. It may or may not be different.
  • R 25 to R 26 according to the general formula (Y) may be the same or different, but it is preferable that they are the same because the compound can be easily synthesized.
  • l represents an integer of 3 to 6.
  • l is preferably 3 or 4.
  • Specific examples of the compound having a Si—N structure represented by the general formula (Y) include a compound having the following structure.
  • the total content of the compounds having a Si—N structure represented by the general formula (Z) or the general formula (Y) with respect to the total mass of the non-aqueous electrolyte solution of the present invention is not particularly limited, but is preferably 0. It is 01 mass ppm or more, more preferably 0.1 mass ppm or more, further preferably 1.0 mass ppm or more, particularly preferably 10 mass ppm or more, and preferably less than 0.5 mass%. It is more preferably 0.4% by mass or less, further preferably 0.3% by mass or less, particularly still more preferably 0.2% by mass or less, and particularly preferably 0.1% by mass or less.
  • the compound can be concentrated in the active material. It is possible to produce a battery that proceeds favorably and generates less gas during initial conditioning.
  • the identification of the compound represented by the general formula (Z) or the general formula (Y) and the measurement of the content in the non-aqueous electrolyte solution are performed by nuclear magnetic resonance (NMR) spectroscopy.
  • the mass ratio of is usually 1.0 or more, preferably 2.0 or more, more preferably 3.0 or more, while usually 10,000 or less, preferably 7,000 or less, more preferably. It is 4000 or less, more preferably 2000 or less, particularly preferably 1000 or less, and particularly preferably 500 or less.
  • the above ratio is the Si—N structure represented by the general formula (Z) or the general formula (Y).
  • the ratio of the total content of the compounds represented by the general formula (A2) and the general formula (B2) to the content of the compound having is shown.
  • the above ratio has a Si—N structure represented by the general formula (Z) and the general formula (Y).
  • the ratio of the content of the compound represented by the general formula (A2) or the general formula (B2) to the total content of the compound is shown.
  • the electrolytic solution of the present invention contains a compound having a Si—N structure represented by the general formula (Z) or the general formula (Y), or a Si—O structure represented by the general formula (A2) or (B2).
  • the method of containing the compound having is not particularly limited. In addition to the method of directly adding the compound to the electrolytic solution, a method of generating the compound in a battery or an electrolytic solution can be mentioned.
  • the content of the compound means the content at the time of producing the non-aqueous electrolyte solution, at the time of injecting the non-aqueous electrolyte solution into the battery, or at the time of shipment as the battery.
  • the non-aqueous electrolyte solution according to the present invention C is a non-aqueous electrolyte solution for a non-aqueous electrolyte battery having a positive electrode and a negative electrode capable of storing and releasing metal ions, and the non-aqueous electrolyte solution is an alkali metal salt or a non-aqueous electrolyte solution.
  • R 12 to R 16 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Indicates an alkoxy group having 1 to 12 carbon atoms which may be used; X is a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR o R p R q. Indicates; each of Ro to R q independently has a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a hydrocarbon group which may have a substituent.
  • n represents an integer of 0 to 5; at least one of R 12 to R 14 is a hydrocarbon group having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond n.
  • the plurality of R 15s may be the same or different, and the plurality of R 16s may be the same or different.
  • R 17 to R 18 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. May indicate an alkoxy group having 1 to 12 carbon atoms; k'indicates an integer of 3 to 6; at least one of R 17 or R 18 is a hydrocarbon having 2 to 12 carbon atoms having a carbon-carbon unsaturated bond. It is a hydrogen group.
  • the plurality of R 17s may be the same or different, and the plurality of R 18s may be the same or different.
  • R 89 represents a hydrogen atom or a silyl group represented by ⁇ SiR 8 R 9 R 10 ;
  • R 8 to R 10 each independently have a hydrogen atom, a halogen atom and a substituent.
  • R 11 has a hydrogen atom and a substituent.
  • a hydrocarbon group having 1 to 12 carbon atoms may be used, or a silyl group represented by ⁇ SiR d R e R f ;
  • R d to R f independently contain a hydrogen atom, a halogen atom, and a substituent.
  • Y has a hydrogen atom, a halogen atom, and a substituent. and optionally carbon atoms 1 be ⁇ 12 hydrocarbon group, an alkoxy group which has carbon atoms 1 be ⁇ 12 have a substituent, group represented by -NR g -SiR h R i R j , or Indicates a group represented by -NR g- H; R g indicates a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent; R h to R j are respectively.
  • a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or an alkoxy group having 1 to 12 carbon atoms which may have a substituent is shown. 11 and R g may be combined with each other to form a ring.
  • R 19 to R 21 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent.
  • R 22 to R 23 each independently have a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or -SiR.
  • R x to R z are independently hydrogen atoms, halogen atoms, and hydrocarbon groups having 1 to 12 carbon atoms which may have substituents, respectively.
  • R 22 and R 23 may be bonded to each other to form a ring.
  • R 24 represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a silyl group represented by ⁇ SiR a R b R c ;
  • R a to R c independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or 1 to 12 carbon atoms which may have a substituent.
  • Twelve alkoxy groups are shown;
  • R 25 to R 26 each independently have a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent, or a substituent. May indicate an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 3 to 6.
  • the plurality of R 25s may be the same or different, and the plurality of R 26s are the same. It may be different.
  • the compound having the Si—O structure represented by the general formula (A2) or the general formula (B2) includes the above ⁇ 1-B1.
  • the description of compound with Si—O structure> applies.
  • the compound represented by the general formula ( ⁇ ) includes ⁇ 1-A2.
  • the description of the compound represented by the general formula ( ⁇ )> applies.
  • Examples of the compound represented by the general formula (Z) include ⁇ 1-B2-1.
  • the description of the compound represented by the general formula (Z)> applies.
  • the compound represented by the general formula (Y) includes ⁇ 1-B2-2.
  • the description of the compound represented by the general formula (Y)> applies.
  • the non-aqueous electrolyte solutions of the present inventions A to C usually contain an electrolyte as a component thereof, like a general non-aqueous electrolyte solution.
  • the electrolyte used in the non-aqueous electrolyte solution of the present embodiment is not particularly limited, and known electrolytes can be used. Hereinafter, specific examples of the electrolyte will be described in detail.
  • Alkali metal salt As the electrolyte in the non-aqueous electrolyte solution of the present embodiment, an alkali metal salt such as a lithium salt is usually used.
  • the lithium salt is not particularly limited as long as it is known to be used for this purpose, and any one or more lithium salts can be used.
  • lithium salt for example, Inorganic lithium salts such as LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 ; Lithium fluorophosphates such as LiPF 6 ; Lithium tungstic acid salts such as LiWOF 5 ; Lithium carboxylic acid salts such as CF 3 CO 2 Li; Lithium sulfonic acid salts such as CH 3 SO 3 Li; Lithium imide salts such as LiN (FSO 2 ) 2 and LiN (CF 3 SO 2 ) 2 ; Lithiummethide salts such as LiC (FSO 2 ) 3 ; In addition, fluorine-containing organic lithium salts such as LiPF 4 (CF 3 ) 2 ; And so on.
  • Inorganic lithium salts such as LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 ; Lith
  • Inorganic lithium salts, lithium fluorophosphates, lithium sulfonates, lithium imide from the viewpoint of further improving the charge / discharge rate characteristics and impedance characteristics in addition to the improvement of charge storage characteristics in a high temperature environment obtained by the present invention.
  • Those selected from salts and lithium oxalate salts are preferable, and lithium fluorophosphates, inorganic lithium salts, and lithium imide salts are more preferable, and lithium fluorophosphate salts or more preferably, from the viewpoint of improving charge / discharge characteristics.
  • Lithium imide salts particularly preferably LiPF 6 or LiN (FSO 2 ) 2 , and particularly preferably LiPF 6 .
  • the total concentration of these electrolytes in the non-aqueous electrolyte solution is not particularly limited, but is usually 8% by mass or more, preferably 8.5% by mass or more, more preferably 9% by mass, based on the total amount of the non-aqueous electrolyte solution. % Or more.
  • the upper limit thereof is usually 18% by mass or less, preferably 17% by mass or less, and more preferably 16% by mass or less.
  • the mass ratio of the compound having the Si—O structure represented by the general formula (A) or the general formula (B) to the above-mentioned lithium salt in the non-aqueous electrolyte solution is particularly high as long as the effect of the present invention is not significantly impaired.
  • 0.0001 or more is preferable, 0.001 or more is more preferable, and 0.01 or more is particularly preferable.
  • the upper limit value is preferably 0.5 or less, more preferably 0.25 or less, and particularly preferably 0.1 or less.
  • the compound having the Si—O structure represented by the general formula (A) or the general formula (B) is preferably adsorbed on the electrode active material. ..
  • the mass ratio of the compound represented by the general formula ( ⁇ ) to the above-mentioned lithium salt in the non-aqueous electrolyte solution is not particularly limited as long as the effect of the present invention is not significantly impaired, but is preferably 0.0001 or more, and is 0. It is more preferably .001 or more, and particularly preferably 0.01 or more. Further, the upper limit value is preferably 0.5 or less, more preferably 0.25 or less, and particularly preferably 0.1 or less. When the mass ratio of these compounds is within the above-mentioned preferable range, the compound represented by the general formula ( ⁇ ) is preferably adsorbed on the electrode active material.
  • the mass ratio of the compound having the Si—O structure represented by the general formula (A2) or the general formula (B2) to the above-mentioned lithium salt in the non-aqueous electrolyte solution is particularly high as long as the effect of the present invention is not significantly impaired.
  • 0.0001 or more is preferable, 0.001 or more is more preferable, and 0.01 or more is particularly preferable.
  • the upper limit value is preferably 0.5 or less, more preferably 0.25 or less, and particularly preferably 0.1 or less.
  • the compound having the Si—O structure represented by the general formula (A2) or the general formula (B2) is preferably adsorbed on the electrode active material. ..
  • the mass ratio of the compound having a Si—N structure represented by the general formula (Z) or the general formula (Y) to the above-mentioned lithium salt in the non-aqueous electrolyte solution is particularly high as long as the effect of the present invention is not significantly impaired.
  • 0.0001 or more is preferable, 0.001 or more is more preferable, and 0.01 or more is particularly preferable.
  • the upper limit value is preferably 0.5 or less, more preferably 0.25 or less, and particularly preferably 0.1 or less.
  • the compound having a Si—N structure represented by the general formula (Z) or the general formula (Y) is preferably adsorbed on the electrode active material. ..
  • the non-aqueous electrolyte solution of the present embodiment usually contains a non-aqueous solvent that dissolves the above-mentioned electrolyte as its main component.
  • the non-aqueous solvent is not particularly limited, and a known organic solvent can be used.
  • the organic solvent include saturated cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate; and methyl acetate, ethyl acetate, propyl acetate, and butyl acetate.
  • Ethereal compounds such as carboxylic acid esters, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, tetrahydrofuran, 1,3-dioxane, and 1,4-dioxane; and 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane. , 3-Fluorosulfolane, dimethylsulfone, ethylmethylsulfone, monofluoromethylmethylsulfone and other sulfonic compounds. It is preferably a saturated cyclic carbonate, a chain carbonate or a carboxylic acid ester, and more preferably a saturated cyclic carbonate or a chain carbonate.
  • non-aqueous solvents may be used alone or in combination of two or more.
  • a combination of two or more non-aqueous solvents a combination of two or more selected from the group consisting of saturated cyclic carbonate, chain carbonate, and carboxylic acid ester is preferable, and a combination of saturated cyclic carbonate and chain carbonate is more preferable. ..
  • the non-aqueous electrolyte solution of the present embodiment may contain an auxiliary agent as long as the effects of the present invention are exhibited.
  • auxiliary agent such as difluorophosphates, fluorosulfonates, fluoroboron salts and fluoroimide salts; Unsaturated cyclic carbonates such as vinylene carbonate, vinyl ethylene carbonate and ethynyl ethylene carbonate; Fluorinated cyclic carbonates such as monofluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,5-difluoroethylene carbonate and 4,5-difluoro-4,5-dimethylethylene carbonate; Oxalate salts such as lithium bis (oxalate) borate, lithium tetrafluorooxalat oxalate, lithium difluorobis (oxalate) phosphate, lithium tris (oxalato) oxalate; Carbonate
  • Isocyanate compounds such as aliphatic polyisocyanates in which a polyhydric alcohol is added to the compound; Nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone; Hydrocarbon compounds such as cycloheptane; Fluoro-containing aromatic compounds such as fluorobenzene; Fluorosilane compounds such as fluorotrimethylsilane, fluorodimethylvinylsilane, difluorodimethylsilane, and difluorovinylmethylsilane; Ester compounds such as 2-propynyl 2- (methanesulfonyloxy) propionic acid; Lithium salts such as lithium ethyl methyloxycarbonylphosphonate; And so on. These may be used alone or in combination of two or more. By adding these auxiliaries, not only can gas generation during initial conditioning be suppressed, but also initial resistance can be reduced and battery characteristics can be comprehensively improved.
  • one or more selected from fluorinated salts, fluorosilane compounds, unsaturated cyclic carbonates, cyclic carbonates having a fluorine atom, and oxalate salts are used.
  • gas generation during initial conditioning is further suppressed, and not only a battery that does not easily swell can be obtained, but also the initial resistance of the battery is lowered, which is preferable.
  • it contains at least an unsaturated cyclic carbonate or a cyclic carbonate having a fluorine atom, and more preferably it contains an unsaturated cyclic carbonate and a cyclic carbonate having a fluorine atom. It is also possible to contain at least an unsaturated cyclic carbonate or a cyclic carbonate having a fluorine atom, and also contain one or more selected from fluorinated salts, fluorosilane compounds, and oxalate salts. It is preferable in that not only the generation is further suppressed and a battery that does not easily swell can be obtained, but also the initial resistance of the battery is lowered.
  • an unsaturated cyclic carbonate and a cyclic carbonate having a fluorine atom it is more preferable to contain an unsaturated cyclic carbonate and a cyclic carbonate having a fluorine atom, and to contain at least one selected from a fluorinated salt, a fluorosilane compound, and an oxalate salt.
  • fluorinated salt "fluorosilane compound”, “unsaturated cyclic carbonate”, “fluorinated cyclic carbonate” and "oxalate salt” will be described in detail.
  • the non-aqueous electrolyte solution according to the present embodiment may contain a fluorinated salt.
  • the fluorinated salt is not particularly limited, but since it has a highly desorbable fluorine atom in its structure, the general formulas (A), (B), ( ⁇ ), (Y), or Since it can react suitably with the decomposition product of the compound represented by (Z) to form a composite film and reduce the initial battery resistance, difluorophosphate, fluorosulfonate, fluoroboron salt and Fluorimide salts are preferred.
  • Fluoroboron salts, fluorosulfonates, and difluorophosphates are more preferable, and fluorosulfonates and difluorophosphates are more preferable because the desorption of fluorine atoms is particularly high and the reaction with nucleophilic species proceeds favorably. Is particularly preferable, and fluorosulfonate is most preferable because of its high desorption of fluorine.
  • a fluorinated lithium salt is preferable.
  • the fluorinated salt one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the fluorinated salt with respect to the total amount of the non-aqueous electrolyte solution is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001% by mass or more, preferably 0.01. Mass% or more, more preferably 0.1% by mass or more, and usually less than 8% by mass, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, most preferably 1% by mass. % Or less.
  • these various salts will be described.
  • the counter cation of difluorophosphate is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 27 R 28 R 29 R 30 (in the formula, R 27 to R 30).
  • Ammonium and the like represented by) can be mentioned as an example. Of these, lithium is preferable.
  • the organic group having 1 to 12 carbon atoms represented by R 27 to R 30 of the ammonium is not particularly limited, and is, for example, substituted with an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group.
  • Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent, and the like.
  • R 27 to R 30 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.
  • difluorophosphate examples include lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate and the like, and lithium difluorophosphate is preferable.
  • the difluorophosphate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of difluorophosphate with respect to the total amount of the non-aqueous electrolyte solution is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001% by mass or more, preferably 0.01% by mass.
  • % Or more more preferably 0.1% by mass or more, and usually less than 8% by mass, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, most preferably 1% by mass. It is as follows. When the content of difluorophosphate is within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving cycle characteristics, the high temperature storage characteristics are lowered, and the amount of gas generated is increased. It is easy to avoid a situation where the discharge capacity retention rate decreases.
  • the counter cation of the fluorosulfonate is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 17 R 18 R 19 R 20 (in the formula, R 17 to R). 20 each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms.) Ammonium and the like represented by these are examples. Of these, lithium is preferable.
  • the organic group having 1 to 12 carbon atoms represented by R 17 to R 20 of the ammonium is not particularly limited, but is substituted with, for example, an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group.
  • Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent, and the like.
  • R 17 to R 20 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.
  • fluorosulfonates include Examples thereof include lithium fluorosulfonate, sodium fluorosulfonate, potassium fluorosulfonate, rubidium fluorosulfonate, cesium fluorosulfonate, and lithium fluorosulfonate is preferable.
  • the fluorosulfonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the fluorosulfonate with respect to the total amount of the non-aqueous electrolyte solution is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001% by mass or more, preferably 0.01% by mass. % Or more, more preferably 0.1% by mass or more, and usually less than 8% by mass, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, most preferably 1% by mass. It is as follows.
  • the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, and the amount of gas generated is increased. It is easy to avoid a situation where the discharge capacity retention rate decreases.
  • the counter cation of the fluoroboron salt is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 21 R 22 R 23 R 24 (in the formula, R 21 to R 24).
  • Ammonium and the like represented by) can be mentioned as an example. Of these, lithium is preferable.
  • the organic group having 1 to 12 carbon atoms represented by R 21 to R 24 of the ammonium is not particularly limited, and is, for example, substituted with an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group.
  • Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent, and the like.
  • R 21 to R 24 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.
  • fluoroboron salts include LiBF 4, LiB (C i F 2i + 1) j (F) 4-j , and the like, LiBF 4 are preferred.
  • i represents an integer of 1 to 10
  • j represents an integer of 1 to 4.
  • the content of the fluoroboron salt with respect to the total amount of the non-aqueous electrolyte solution is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001% by mass or more, preferably 0.01% by mass.
  • the content of the fluoroboron salt is within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge is performed. It is easy to avoid a situation where the capacity retention rate drops.
  • the counter cation of the fluoroimide salt is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 31 R 32 R 33 R 34 (in the formula, R 31 to R 34).
  • Ammonium and the like represented by) can be mentioned as an example. Of these, lithium is preferable.
  • the organic group having 1 to 12 carbon atoms represented by R 31 to R 34 of the ammonium is not particularly limited, but is, for example, substituted with an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group.
  • Examples thereof include a cycloalkyl group which may be substituted, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like.
  • R 31 to R 34 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.
  • fluoroimide salts include LiN (FCO) 2 , LiN (FCO) (FSO 2 ), LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), and LiN (CF 3 SO 2 ).
  • LiN (C 2 F 5 SO 2 ) 2 Lithium cyclic 1,2-perfluoroethanedisulfonylimide, Lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiN (CF 3 SO 2 ) (C 4 F) 9 SO 2 ) is mentioned, and LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 are preferable.
  • the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge is performed. It is easy to avoid a situation where the capacity retention rate drops.
  • the oxalate salt can react suitably with the decomposition product of the compound represented by the general formula (A), (B), ( ⁇ ), (Y), or (Z) to form a complex film, and can form an initial film. It is preferable in that the battery resistance of the above can be reduced.
  • the counter cation of the oxalate salt is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 35 R 36 R 37 R 38 (in the formula, R 35 to R 38 are Examples thereof include ammonium represented by a hydrogen atom or an organic group having 1 to 12 carbon atoms independently of each other. Of these, lithium is preferable.
  • the organic group having 1 to 12 carbon atoms represented by R 35 to R 38 of the ammonium is not particularly limited, and is, for example, substituted with an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group.
  • Examples thereof include a cycloalkyl group which may be substituted, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like.
  • R 35 to R 38 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.
  • the oxalate salt include lithium bis (oxalate) oxalate, lithium tetrafluorooxalat oxalate, lithium difluorobis (oxalate) oxalate, lithium tris (oxalate) oxalate, and lithium bis (oxalate) oxalate.
  • Lithium difluorobis (oxalate) oxalate is preferred, with lithium bis (oxalate) borate being particularly preferred.
  • the oxalate salt one type may be used alone, or two or more types may be used in any combination and ratio.
  • the content of the oxalate salt with respect to the total amount of the non-aqueous electrolyte solution is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001% by mass or more, preferably 0.01% by mass or more. , More preferably 0.1% by mass or more, and usually less than 8% by mass, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, most preferably 1% by mass or less. is there.
  • the content of the oxalate salt is within this range, the effect of reducing the initial battery resistance is enhanced, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient effect of improving the cycle characteristics, and the high temperature storage characteristics are lowered. However, it is easy to avoid a situation in which the amount of gas generated increases and the discharge capacity retention rate decreases.
  • the fluorosilane compound can react suitably with the decomposition product of the compound represented by the general formula (A), (B), ( ⁇ ), (Y), or (Z) to form a composite film. It is preferable in that the initial battery resistance can be reduced.
  • the non-aqueous electrolyte solution according to the present embodiment may contain a fluorosilane compound.
  • the fluorosilane compound is not particularly limited as long as it is a compound having at least one silicon-fluorine bond (Si—F bond) in the molecule.
  • Fluorosilane compounds include fluorotrimethylsilane, dimethyl (fluoro) (vinyl) silane, (allyl) dimethyl (fluoro) silane, dimethyl (fluoro) (propargyl) silane, divinylfluoro (methyl) silane, fluorotrivinylsilane, and ethynyldimethyl.
  • fluorotrimethylsilane dimethyl (fluoro) (vinyl) silane, dimethyldifluorosilane, and methyl (difluoro) (vinyl) silane are preferable.
  • the fluorosilane compound one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the content of the fluorosilane compound (total amount in the case of two or more types) is usually 0.001% by mass or more, preferably 0.01% by mass or more, and more preferably 0, based on the total amount of the non-aqueous electrolyte solution. .1% by mass or more, and usually 3% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less.
  • the effect of reducing the initial battery resistance is enhanced, and it is easy to control the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, high temperature storage characteristics, and the like.
  • At least one selected from the group consisting of monofluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,5-difluoroethylene carbonate and 4,5-difluoro-4,5-dimethylethylene carbonate has high ionic conduction. It is more preferable in that it imparts properties and preferably forms an interface protective film.
  • the fluorinated cyclic carbonate one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the fluorinated cyclic carbonate may be used as an auxiliary agent for a non-aqueous electrolyte solution or as a non-aqueous solvent.
  • the content of the fluorinated cyclic carbonate when used as a non-aqueous solvent is usually 8% by mass or more, preferably 10% by mass or more, and more preferably 12% by mass or more, based on the total amount of the non-aqueous electrolyte solution. Yes, it is usually 85% by mass or less, preferably 80% by mass or less, and more preferably 75% by mass or less. Within this range, the effect of reducing the initial resistance of the non-aqueous electrolyte secondary battery is enhanced, the effect of improving the cycle characteristics is likely to be sufficiently exhibited, and it is easy to avoid a decrease in the discharge capacity retention rate.
  • fluorinated cyclic carbonate a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter, may be abbreviated as "fluorinated unsaturated cyclic carbonate") can be used.
  • the fluorinated unsaturated cyclic carbonate is not particularly limited. Of these, those having one or two fluorine atoms are preferable.
  • the method for producing the fluorinated unsaturated cyclic carbonate is not particularly limited, and a known method can be arbitrarily selected for production.
  • -Vinyl ethylene carbonate 4,5-difluoro-4-vinylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4-fluoro-4-phenyl Examples thereof include ethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate, 4,5-difluoro-4-phenylethylene carbonate and the like.
  • the amount of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.01% by mass or more, preferably 0.01% by mass or more, based on the total amount of the non-aqueous electrolyte solution. Is 0.1% by mass or more, more preferably 0.2% by mass or more, and usually 5% by mass or less, preferably 4% by mass or less, more preferably 3% by mass or less. Within this range, the effect of reducing the initial resistance of the non-aqueous electrolyte secondary battery is enhanced, and the effect of improving the cycle characteristics is likely to be sufficiently exhibited.
  • a non-aqueous electrolyte solution containing at least one of these is provided. The following description applies to inventions A to C.
  • Non-aqueous electrolyte As the non-aqueous electrolyte solution, the non-aqueous electrolyte solution according to the above-described embodiment of the present invention is used. It is also possible to mix and use other non-aqueous electrolyte solutions with the above non-aqueous electrolyte solution as long as the gist of the present invention is not deviated.
  • the positive electrode has a current collector and a positive electrode active material layer provided on the current collector. Other conventionally known configurations can be adopted.
  • the positive electrode used in the non-aqueous electrolyte battery of the present embodiment will be described in detail below.
  • the positive electrode active material used for the positive electrode will be described below.
  • the positive electrode active material is a transition metal oxide containing lithium cobaltate or at least Ni and Co, and 50 mol% or more of the transition metal is Ni and Co, and is an electrochemically metal ion.
  • the positive electrode active material is a transition metal oxide containing lithium cobaltate or at least Ni and Co, and 50 mol% or more of the transition metal is Ni and Co, and is an electrochemically metal ion.
  • a transition metal oxide in which% or more is Ni and Co is preferable. This is because Ni and Co have redox potentials suitable for use as a positive electrode material for a secondary battery and are suitable for high-capacity applications.
  • the transition metal oxide represented by the following composition formula (1) is preferable.
  • (1) the numerical values of 0.9 ⁇ a1 ⁇ 1.1, 0.3 ⁇ b1 ⁇ 0.95, 0.025 ⁇ c1 ⁇ 0.5, 0.025 ⁇ d1 ⁇ 0.5 are shown.
  • 0.5 ⁇ b1 + c1 and b1 + c1 + d1 1.
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.
  • the transition metal oxide represented by the following composition formula (2) is more preferable.
  • the numerical values of 0.9 ⁇ a2 ⁇ 1.1, 0.3 ⁇ b2 ⁇ 0.9, 0.025 ⁇ c2 ⁇ 0.5, and 0.025 ⁇ d2 ⁇ 0.5 are shown.
  • C2 ⁇ b2 and 0.6 ⁇ b2 + c2 and b2 + c2 + d2 1.
  • the transition metal oxide represented by the composition formula (2) is mainly composed of Ni and Co, and has the same composition ratio of Ni to Co or a large composition ratio of Ni to Co, so that it is a non-aqueous secondary. This is because when used as a positive electrode of a battery, it is stable and can take out a high capacity.
  • a transition metal oxide represented by the following composition formula (3).
  • the numerical values of 0.9 ⁇ a3 ⁇ 1.1, 0.5 ⁇ b3 ⁇ 0.9, 0.025 ⁇ c3 ⁇ 0.5, and 0.025 ⁇ d3 ⁇ 0.5 are shown.
  • C3 ⁇ b3 and 0.6 ⁇ b3 + c3 and b3 + c3 + d3 1.
  • M represents at least one element selected from the group consisting of Mn, Al, Mg, Zr, Fe, Ti and Er.
  • the negative electrode has a current collector and a negative electrode active material layer provided on the current collector. Other conventionally known configurations can be adopted.
  • the negative electrode active material used for the negative electrode will be described below.
  • Negative electrode active material The negative electrode active material is not particularly limited as long as it can store and release metal ions electrochemically. Specific examples include carbonaceous materials; particles containing a metal that can be alloyed with Li, metal compound-based materials such as lithium-containing metal composite oxide materials: and mixtures thereof. One of these may be used alone, or two or more thereof may be arbitrarily combined and used in combination. A carbonaceous material, metal particles that can be alloyed with Li, or a mixture of metal particles that can be alloyed with Li and graphite particles is used because of its good cycle characteristics and safety, and excellent continuous charging characteristics. Is preferable. Examples of the negative electrode active material include a carbonaceous material; a metal compound-based material such as particles containing a metal that can be alloyed with Li; and the like as described above.
  • Examples of the carbonaceous material include natural graphite, artificial graphite, amorphous carbon, carbon-coated graphite, graphite-coated graphite, resin-coated graphite and the like. Of these, natural graphite is preferable.
  • Examples of natural graphite include scaly graphite, scaly graphite, soil graphite and / or graphite particles obtained by subjecting these graphites to spheroidization or densification.
  • spherical or ellipsoidal graphite that has been subjected to a spheroidizing treatment is particularly preferable from the viewpoint of particle packing property and charge / discharge rate characteristics.
  • the metal compound-based material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium ions, and lithium alone, a single metal and alloy forming a lithium alloy, or their oxides, carbides, and nitrides. , Silicide, sulfide, phosphoric acid and other compounds.
  • the elemental metals and alloys forming the lithium alloy are preferably materials containing group 13 and group 14 metal / semi-metal elements (that is, excluding carbon), more preferably elemental metals of aluminum, silicon and tin, and these.
  • It is an alloy or compound containing an atom, and more preferably one having silicon or tin as a constituent element, such as a simple substance metal of silicon and tin and an alloy or compound containing these atoms.
  • Silicon is most preferable, and amorphous Si or nano-sized Si crystals are preferable because alkaline ions such as lithium ions can easily enter and exit and a high capacity can be obtained.
  • alkaline ions such as lithium ions can easily enter and exit and a high capacity can be obtained.
  • One of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • any conventionally known particles can be used, but from the viewpoint of the capacity and cycle life of the non-aqueous electrolyte battery, for example, Fe, Co, Sb, Bi. , Pb, Ni, Ag, Si, Sn, Al, Zr, Cr, P, S, V, Mn, As, Nb, Mo, Cu, Zn, Ge, In, Ti and W or a metal selected from the group. It is preferably particles of the compound.
  • the particles containing a metal that can be alloyed with Li contain two or more kinds of metals, the particles may be alloy particles made of an alloy of these metals.
  • particles of a metal selected from the group consisting of Si, Sn, As, Sb, Al, Zn and W or a metal compound thereof are preferable.
  • metal compounds that can be alloyed with Li include metal oxides, metal nitrides, and metal carbides.
  • the compound may contain two or more metals that can be alloyed with Li.
  • Si metallic Si
  • Si metal compound is preferable in terms of increasing the capacity of the battery.
  • Si or Si metal compounds are collectively referred to as Si compounds.
  • Si metal oxide (SiO x ) is preferable in that it has a larger theoretical capacity than graphite, or amorphous Si or nano-sized Si crystals allow alkaline ions such as lithium ions to enter and exit. It is preferable in that it is easy and a high capacity can be obtained.
  • This general formula SiO x is obtained by using silicon dioxide (SiO 2 ) and Si as raw materials, and the value of x is usually 0 ⁇ x ⁇ 2.
  • the content ratio of the particles containing Li and the metal that can be alloyed to the total of the particles containing the metal that can be alloyed with Li and the graphite particles is usually 0.1% by mass or more, preferably 0.5% by mass or more. More preferably, it is 1.0% by mass or more, and further preferably 2.0% by mass or more. Further, it is usually 99% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less, particularly. It is preferably 15% by mass or less, and most preferably 10% by mass or less. Within this range, side reactions on the Si surface can be controlled, and a sufficient capacity can be obtained in a non-aqueous electrolyte battery, which is preferable.
  • a separator is usually interposed between the positive electrode and the negative electrode to prevent a short circuit.
  • the non-aqueous electrolyte solution according to the embodiment of the present invention is usually used by impregnating the separator. Conventionally known separators can be used.
  • Examples A1-1 to A1-18, Comparative Examples A1-1 to A1-19> [Preparation of positive electrode] 90 parts by mass of lithium-nickel-cobalt-manganese composite oxide (Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 ) as a positive electrode active material, and 7 parts by mass of acetylene black as a conductive material. 3 parts by mass of polyvinylidene fluoride (PVdF) as a coating agent was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to both sides of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to obtain a positive electrode.
  • PVdF polyvinylidene fluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the reference electrolyte A1-1 It was added (as the concentration in the aqueous electrolyte) (hereinafter, this is referred to as the reference electrolyte A1-1).
  • Compounds A11 to A115 were added to the reference electrolyte A1-1 at the contents shown in Table 1 below to prepare a non-aqueous electrolyte.
  • the “content (% by mass)" in the table is the content when the total amount of each non-aqueous electrolyte solution is 100% by mass.
  • the batteries manufactured in Examples A1-1 to A1-18 have a larger ⁇ OCV than the batteries manufactured in Comparative Examples A1-1 to A1-18, and as a result, the initial gas It can be seen that the amount is small.
  • the formula (A) did not include the compound represented by the formula ( ⁇ ).
  • ⁇ OCV is almost the same as that of Comparative Example A1-1, and the initial gas amount is higher than that of Comparative Example A1-1. Shows many trends.
  • Example A1-3 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 63% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-2, and A1-7 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-4 is used.
  • the result of Example A1-4 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 57% as compared with Comparative Example A1-1. From the results of Comparative Examples A1-1, A1-2, and A1-3, it is predicted that the initial gas amount will be significantly increased when the non-aqueous electrolyte solution of Example A1-5 is used.
  • Example A1-5 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 42% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-2, and A1-14 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-8 is used.
  • the result of Example A1-8 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 44% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-2, and A1-15 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-9 is used.
  • Example A1-11 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 45% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-6, and A1-18 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-12 is used.
  • the result of Example A1-12 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 45% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-3, and A1-18 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-13 is used.
  • Example A1-13 had a large ⁇ OCV, and the initial gas amount was suppressed to 82% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-2, A1-4, A1-6, and A1-8 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-14 is used.
  • the result of Example A1-14 had a large ⁇ OCV, and the initial gas amount was suppressed to 71% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-2, and A1-8 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-15 is used.
  • Example A1-15 had a large ⁇ OCV, and the initial gas amount was suppressed to 86% as compared with Comparative Example A1-1. From the results of Comparative Examples A1-1, A1-2, and A1-16, an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-16 is used. On the contrary, the result of Example A1-16 had a large ⁇ OCV, and the initial gas amount was suppressed to 76% as compared with Comparative Example A1-1.
  • Comparative Examples A1-1, A1-2, and A1-16 an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example A1-18 is used.
  • the result of Example A1-18 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 59% as compared with Comparative Example A1-1.
  • Example A1-6 the initial gas amount was remarkably suppressed to 25% as compared with Comparative Example A1-1.
  • Comparative Examples A1-10 to A1-12 in which a compound represented by the formula ( ⁇ ) and a compound having a Si—O structure but not corresponding to the compound represented by the formula (A) or (B) are used in combination.
  • Comparative Example A1-13 in which a compound having a Si—O structure represented by the formula (A) and a compound having a Si—N structure but not corresponding to the compound represented by the formula ( ⁇ ) were used in combination is shown in Comparative Example A1-13.
  • ⁇ OCV was almost the same as that of Comparative Example A1-1, and the initial gas amount was increased to 169% from Comparative Example A1-1.
  • Example A2 The compounds used in this example and comparative examples are shown below.
  • Examples A2-1 to A2-20, Comparative Examples A2-1 to A2-16> [Preparation of positive electrode] 90 parts by mass of lithium-nickel-cobalt-manganese composite oxide (Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 ) as a positive electrode active material, and 7 parts by mass of acetylene black as a conductive material. 3 parts by mass of polyvinylidene fluoride (PVdF) as a coating agent was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This was uniformly applied to both sides of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to obtain a positive electrode.
  • PVdF polyvinylidene fluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the reference electrolyte A2-1 As the concentration in the aqueous electrolyte (hereinafter, this is referred to as the reference electrolyte A2-1).
  • Compounds A21 to A213 were added to the reference electrolytic solution 1 so as to have the contents shown in Table 1 below, respectively, and non-forms of Examples A2-1 to A2-20 and Comparative Examples A2-2 to A2-16 were added.
  • An aqueous electrolyte was prepared.
  • the “content (% by mass)" in the table is the content when the total amount of each non-aqueous electrolyte solution is 100% by mass. Further, in Comparative Example A2-1, the reference electrolytic solution A2-1 was used.
  • non-aqueous electrolyte batteries manufactured in Examples A2-1 to A2-20 are different from the batteries manufactured in Comparative Examples A2-1 to A2-10.
  • ⁇ OCV was almost the same as that of Comparative Example A2-1, and the initial gas amount was significantly increased.
  • Example A3 The compounds used in this example and comparative examples are shown below.
  • Examples A3-1 to A3-12, Comparative Examples A3-1 to A3-5> [Preparation of positive electrode] 90 parts by mass of lithium-nickel-cobalt-manganese composite oxide (Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 ) as a positive electrode active material, and 7 parts by mass of acetylene black as a conductive material. 3 parts by mass of polyvinylidene fluoride (PVdF) as a coating agent was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This was uniformly applied to both sides of an aluminum foil having a thickness of 15 ⁇ m, dried, and then pressed to obtain a positive electrode.
  • PVdF polyvinylidene fluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the reference electrolyte A3-1 As the concentration in the aqueous electrolyte, it was added (as the concentration in the aqueous electrolyte) (hereinafter, this is referred to as the reference electrolyte A3-1).
  • Compounds A31 to A311 are added to the reference electrolyte 1 so as to have the contents shown in Table 3 below, respectively, and non-forms of Examples A3-1 to A3-12 and Comparative Examples A3-1 to A3-5.
  • An aqueous electrolyte was prepared.
  • the “content (% by mass)" in the table is the content when the total amount of each non-aqueous electrolyte solution is 100% by mass. Further, in Comparative Example A3-1, the reference electrolytic solution A3-1 was used.
  • CC-CV charging was performed at 0.2 C to 4.4 V, and then discharged to 3.0 V at 0.2 C for initial conditioning.
  • Initial conditioning A non-aqueous electrolyte battery produced by the above method in a constant temperature bath at 25 ° C. has a current corresponding to 0.1 C (1 C means a current value that takes 1 hour to charge or discharge. The same shall apply hereinafter).
  • CC-CV charging constant current-constant voltage charging
  • CC-CV charging was performed at 0.2 C to 4.2 V, and then discharged to 2.5 V at 0.2 C for initial conditioning.
  • the battery after the initial conditioning was immersed in an ethanol bath to measure the volume, and the amount of generated gas was obtained from the volume change before and after the initial conditioning, and this was defined as the "initial gas amount”.
  • the battery after the initial conditioning was CC-CV charged at 0.2 C to half the capacity of the initial discharge capacity. This was discharged at 25 ° C. at 1.0 C, 2.0 C, and 3.0 C, respectively, and the voltage at 5 seconds in each discharge process was measured.
  • the batteries manufactured in Examples A3-1 to A3-12 have less initial gas and initial resistance than the batteries manufactured in Comparative Examples A3-1 to A3-5.
  • the initial resistance is also reduced by using the compound represented by the compound ( ⁇ 1) and the compound represented by the compound ( ⁇ 2) in combination as the compound represented by the compound ( ⁇ ).
  • Example A3-3 can suppress not only the initial resistance but also the initial gas as compared with Example A3-1.
  • the initial resistance is further reduced by using the compounds A37 to A312 which are auxiliary agents in combination.
  • Example B The compounds used in this example and comparative examples are shown below.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the reference electrolyte B1 It was added (as the concentration in the aqueous electrolyte) (hereinafter, this is referred to as the reference electrolyte B1).
  • Compounds B1 to B11 were added to the reference electrolyte B1 at the contents shown in Table 4 below to prepare a non-aqueous electrolyte.
  • the “content (% by mass)" in the table is the content when the total amount of each non-aqueous electrolyte solution is 100% by mass.
  • CC-CV charging was performed at 0.2 C to 4.4 V, and then discharged to 3.0 V at 0.2 C for initial conditioning.
  • the battery after the initial conditioning was immersed in an ethanol bath to measure the volume, and the amount of generated gas was obtained from the volume change before and after the initial conditioning, and this was defined as the "initial gas amount”.
  • Table 4 below shows ⁇ OCV, which is the difference from the OCV of Comparative Example B1, and the value of the initial gas amount when the initial gas amount of Comparative Example B1 is 100. In the table, "initial gas amount” is indicated as "initial gas”.
  • Example B1 had a large ⁇ OCV, and the initial gas amount was significantly suppressed to 47% as compared with Comparative Example 1. From the results of Comparative Examples B1, B2, and B5, an increase in the initial gas amount is predicted when the non-aqueous electrolyte solution of Example B2 is used. On the contrary, the result of Example B1 had a large ⁇ OCV, and the initial gas amount was remarkably suppressed to 75% as compared with Comparative Example B1. Further, it has a compound having a Si—N structure represented by the general formula (Y) or (Z) and a Si—O structure having a Si—O structure but represented by the general formula (A2) or (B2).
  • the battery of the example has a compound having a Si—N structure represented by the general formula (Y) or (Z) and a Si—O structure represented by the general formula (A2) or (B2) after injection. Since the amount of the compound adsorbed on the positive electrode active material and / or the negative electrode active material is large, the compound localized on the electrode during the first charge is electrochemically decomposed and is compounded on the surface of the positive electrode and / or the negative electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

非水系電解液電池の初期コンディショニング時のガス発生量を抑制できる非水系電解液を提供する。金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、アルカリ金属塩、非水系溶媒、一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の少なくとも一種、及び一般式(α)で表される化合物を含有することを特徴とする非水系電解液。

Description

非水系電解液及び非水系電解液電池
 本発明は、非水系電解液、及び非水系電解液電池に関し、詳しくは特定の化合物を含有する非水系電解液、及びこの非水系電解液を用いた非水系電解液電池に関する。
 スマートフォン等の携帯電話、ノートパソコン等のいわゆる民生用の小型機器用の電源や、電気自動車用等の駆動用車載電源等の広範な用途において、リチウム二次電池等の非水系電解液電池が実用化されている。
 非水系電解液電池の電池特性を改善する手段として、正極や負極の活物質、非水系電解液の添加剤分野において数多くの検討がなされている。
 例えば、特許文献1には、少なくとも1回充電を行った後の電池、具体的には、コンディショニングを行った後の電池に、1,1,3,3,5,5-ヘキサメチルシクロトリシラザンに代表される有機ケイ素化合物を添加することで、電池の内部抵抗を低下させる取り組みが開示されている。
 特許文献2には、非水系電解液にリン原子及び/又はホウ素原子を有するプロトン酸、スルホン酸、及びカルボン酸のトリアルキルシリル化合物と塩基性化合物あるいは特定のケイ素化合物を含有させることで、シリル基含有化合物の保存安定性を改善し、加えて、4.9V高電圧サイクル容量維持率及び、電池運転中のガス発生量を改善する検討が開示されている。
特開2003-7332号公報 国際公開第2015/098471号
 近年、電気自動車の車載用電源や、スマートフォン等の携帯電話用電源等用に、リチウム電池の高容量化が加速されており、電池内の空隙の割合が従来と比較して小さくなっている。そのため、初期コンディショニングにおいてガス発生量が多いことは致命的な欠点となる。
 本発明は、非水系電解液電池の初期コンディショニング時のガス発生量を抑制できる非水系電解液を提供することを課題とする。また、初期コンディショニング時のガス発生量が抑制された非水系電解液電池を提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、電解液注液後の電池開回路電圧(OCV)が高ければ、初期コンディショニングにおけるガス発生量が少ないことを見出した。また、一般式(A)又は一般式(B)で表される化合物、すなわち、一般式(A)で表される化合物及び一般式(B)で表される化合物から選択される少なくとも1種と一般式(α)で表される化合物とを含有する非水系電解液を用いることにより、電解液注液後、電池OCVが高くなることが分かった。これにより、注液後初期コンディショニング時のガス発生量を抑制することに想到し、発明Aを完成させた。本発明Aは以下の具体的態様等を提供する。
<A1>金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、アルカリ金属塩、非水系溶媒、一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の少なくとも一種、及び一般式(α)で表される化合物を含有することを特徴とする非水系電解液。
Figure JPOXMLDOC01-appb-C000008

(式(A)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Xは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;nは0~5の整数を示す。nが2以上の場合、複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000009

(式(B)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;kは3~6の整数を示す。複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000010

(式(α)中、R89は、水素原子又は-SiR10で表されるシリル基を示し;R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Yは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、-NR-SiRで表される基、又は-NR-Hで表される基を示し;Rは、水素原子、又は置換基を有していてもよい炭素数1~12の炭化水素基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11とRは互いに結合し環を形成していてもよい。)
<A2>前記一般式(A)又は(B)で表されるSi-O構造を有する化合物の含有量が非水系電解液の全量に対して0.001質量%~10質量%である、<A1>に記載の非水系電解液。
<A3>前記一般式(α)で表されるSi-N構造を有する化合物の含有量が非水系電解液の全量に対して0.01質量ppm以上0.5質量%以下である、<A1>又は<A2>に記載の非水系電解液。
<A4>非水系電解液中における前記一般式(α)で表される化合物の含有量に対する前記一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の含有量の比率が1.0以上10000以下である、<A1>~<A3>のいずれかに記載の非水系電解液。
<A5>前記R~Rの少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である、<A1>~<A4>のいずれかに記載の非水系電解液。
<A6>前記非水電解液が、更に、フッ素化された塩、フルオロシラン化合物、不飽和環状カーボネート、フッ素原子を有する環状カーボネート及びオキサラート塩から選択される1種以上を含有する、<A1>~<A5>のいずれかに記載の非水系電解液。
<A7>金属イオンを吸蔵及び放出しうる正極及び負極、並びに非水系電解液を備えた非水系電解液電池であって、該非水系電解液が<A1>~<A6>のいずれかに記載の非水系電解液である、非水系電解液電池。
 また、本発明者は、上記課題を解決すべく鋭意検討した結果、電解液注液後の電池開回路電圧(OCV)が高ければ、初期コンディショニングにおけるガス発生が小さいことを見出した。また、一般式(A2)又は一般式(B2)で表される化合物と一般式(Z)又は一般式(Y)で表される化合物とを含有する非水系電解液を用いることにより、電解液注液後、電池OCVが高くなることが分かった。これにより、注液後初期コンディショニング時のガス発生量を抑制できることを見出し、発明Bに到達した。本発明Bは以下の具体的態様等を提供する。
<B1>金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、アルカリ金属塩、非水系溶媒、一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも1種を含有し、且つ一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の少なくとも1種を含有することを特徴とする非水系電解液。
Figure JPOXMLDOC01-appb-C000011

(式(A2)中、R12~R16は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;X’は置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRo2p2q2で表されるシリル基を示し;Ro2~Rq2は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;n’は0~5の整数を示し;R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。n’が2以上の場合、複数のR15はそれぞれ同一であっても異なっていてもよく、複数のR16はそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000012

(式(B2)中、R17~R18は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し、k’は3~6の整数を示す。R17又はR18の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。複数のR17はそれぞれ同一であっても異なっていてもよく、複数のR18はそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000013

(式(Z)中、R19~R21は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R22~R23は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は‐SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R22及びR23は互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000014

(式(Y)中、R24は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R25~R26は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;lは3~6の整数を示す。複数のR25はそれぞれ同一であっても異なっていてもよく、複数のR26はそれぞれ同一であっても異なっていてもよい。)
<B2>前記一般式(A2)又は(B2)で表されるSi-O構造を有する化合物の含有量が非水系電解液の全量に対して0.001質量%以上10質量%以下である、<B1>に記載の非水系電解液。
<B3>前記一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の含有量が非水系電解液の全量に対して0.01質量ppm以上0.5質量%未満である、<B1>又は<B2>に記載の非水系電解液。
<B4>非水系電解液中における前記一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の含有量に対する前記一般式(A2)又は一般式(B2)で表される化合物の含有量の比率が1.0以上10000以下である、<B1>~<B3>のいずれかに記載の非水系電解液。
<B5>前記非水系電解液が前記一般式(A2)で表される化合物を含有し、前記式(A2)において、R~Rの少なくとも1つは、ビニル基又はアリル基である、<B1>~<B4>のいずれかに記載の非水系電解液。
<B6>前記非水系電解液が前記一般式(B2)で表される化合物を含有し、前記式(B2)において、R25又はR26の少なくとも1つは、ビニル基又はアリル基である、<B1>~<B5>のいずれかに記載の非水系電解液。
<B7>前記式(Z)において、R22~R23の内少なくとも一つは、-SiRで表されるシリル基である、<B1>~<B6>のいずれかに記載の非水系電解液。
<B8>前記非水電解液が、更に、フッ素化された塩、フルオロシラン化合物、不飽和環状カーボネート、フッ素原子を有する環状カーボネート及びオキサラート塩から選択される1種以上を含有する、<B1>~<B7>のいずれかに記載の非水系電解液。
<B9>金属イオンを吸蔵及び放出しうる正極及び負極、並びに非水系電解液を備えた非水系電解液電池であって、該非水系電解液が<B1>~<B8>のいずれかに記載の非水系電解液である、非水系電解液電池。
 本発明によれば、非水系電解液電池の初期コンディショニング時のガス発生量の抑制に優れる非水系電解液及び初期コンディショニング時のガス発生量が少ない非水系電解液電池を得ることができる。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
[発明A]
 本発明Aに係る非水系電解液は、金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液がアルカリ金属塩、非水系溶媒、一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の少なくとも1種、及び一般式(α)で表される化合物を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000015

(式(A)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Xは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;nは0~5の整数を示す。nが2以上の場合、複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000016

(式(B)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;kは3~6の整数を示す。複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000017

(式(α)中、R89は、水素原子又は-SiR10で表されるシリル基を示し;R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Yは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、-NR-SiRで表される基、又は-NR-Hで表される基を示し;Rは、水素原子、又は置換基を有していてもよい炭素数1~12の炭化水素基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11とRは互いに結合し環を形成していてもよい。)
<1-A.非水系電解液>
 本発明Aに係る非水系電解液は、以下に説明する一般式(A)で表される化合物及び一般式(B)で表される化合物から選択される少なくとも1種のSi-O構造を有する化合物(以下、「一般式(A)又は(B)で表される化合物」とも表記する。)、且つ一般式(α)で表されるSi-N-C=O構造又はH-N-C=O構造を有する化合物(以下、「一般式(α)で表される化合物」とも表記する。)を含有する。
 一般式(A)で表される化合物及び一般式(B)で表される化合物から選択される少なくとも1種のSi-O構造を有する化合物と一般式(α)で表される化合物とを含有する非水系電解液を用いることで、電解液注液時のOCVを高めるメカニズムは明らかではないが、以下の様に推測される。
 一般式(A)又は(B)で表される化合物は、分子内に極性構造(-Si-O-)及び非極性構造(例えば、-SiR)を有する。また、一般式(α)で表される化合物も、同様に、分子内に極性構造(-N-(C=O)-)を有し、さらに非極性構造(-SiR10)又は水素結合形成部位(-N-H)を有する。そのため、これら化合物は炭素などの負極活物質及び/又は遷移金属酸化物などの正極活物質の表面と相互作用し、表面近傍に局在化する傾向にある。また、活物質表面に局在化された一般式(A)又は(B)で表される化合物及び一般式(α)で表される化合物同士も相互作用することで、局在化された化合物の正極活物質及び/又は負極活物質表面への定着量も向上すると推測される。特に一般式(α)で表される化合物のSi-N-(C=O)-Y構造及びH-N-(C=O)-Y構造は電極表面への吸着性が高いため、一般式(α)で表される化合物の電極への定着を起点に一般式(A)又は(B)で表される化合物の電極への定着が促進される。これにより、初回充電時に電極に局在化されている一般式(α)で表される化合物と一般式(A)又は(B)で表される化合物が電気化学的に分解し、複合的な絶縁被膜を形成する。この複合被膜が初期コンディショニング時の電解液の副反応を抑制し、ガス発生を抑制すると推定される。
 ここで、OCVは正極と負極の電位差である。電解液に含まれる化合物の電極への吸着量が多いと、電極電位は変化する。注液時のOCVが高いということは、電解液を構成する化合物の電極への吸着量が多いと考えられる。本発明の一実施形態に係る電解液は注液後の化合物の電極への吸着量が多いため、注液後の電池OCVが高いことが推測される。これにより、本発明者は注液時のOCVを確認することで、初期コンディショニングにおけるガス発生量が予測できることを見出した。なお、後述の実施例では、OCVの高さとガス発生量は必ずしも一致はしないが、相関関係がみられる。組み合わせる化合物により生成する複合被膜の性状が異なると考えられる。
<1-A1.Si-O構造を有する化合物>
 本発明の一実施形態に係る非水系電解液は、下記一般式(A)又は(B)で表されるSi-O構造を有する化合物の少なくとも一種、すなわち、一般式(A)で表される化合物及び下記一般式(B)で表される化合物から選択される少なくとも1種のSi-O構造を有する化合物を含有することを特徴としている。
<1-A1-1.一般式(A)で表される化合物>
Figure JPOXMLDOC01-appb-C000018

(式(A)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Xは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;nは0~5の整数を示す。nが2以上の場合、複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
 一般式(A)に係るR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。なかでも、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基又は置換基を有していてもよい炭素数1~12のアルコキシ基が好ましく、特に好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基又は置換基を有していてもよい炭素数1~12のアルコキシ基である。本明細書において、「炭化水素基」は、分岐構造及び/又は環状構造を有していてもよく、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等の何れであってもよいものとする。なお、炭化水素基が置換基を有している場合、置換基が含む炭素の数は、この炭素数には、含まれない。
 また、R~Rの少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基であることが、一般式(A)で表される化合物が電極表面に好適に局在化される傾向にある観点で好ましい。炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基とは、後述する炭素数2~12のアルケニル基、炭素数2~12のアルキニル基又は炭素数6~12のアリール基が挙げられ、なかでも炭素数2~12のアルケニル基又は炭素数2~12のアルキニル基が、一般式(A)で表される化合物が電極表面により好適に局在化される傾向にある観点で好ましい。特に好ましくは、炭素数2~12のアルケニル基である。
 一般式(A)に係るR~Rは、同一でも異なっていてもよいが、少なくとも2つ以上同一であることが、化合物の合成が容易である点で好ましく、3つとも同一であることが先述の観点でさらに好ましい。
 一般式(A)に係るR及びRは、同一であっても異なっていてもよいが、同一であることが、化合物の合成が容易である点で好ましい。
 また、nが2以上の場合、すなわち、R及びRが複数存在する場合、該Rはそれぞれ同一であっても異なっていてもよいが、同一であることが、化合物の合成が容易である点で好ましい。該Rはそれぞれ同一であっても異なっていてもよいが、同一であることが、化合物の合成が容易である点で好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。好ましくは、電気化学的な副反応が少ない観点でフッ素原子である。
 炭素数1~12の炭化水素基としては、好ましくは炭素数1~6の炭化水素基であり、特に好ましくは炭素数1~4の炭化水素基である。
 炭化水素基の具体例としては、アルキル基、アルケニル基、アルキニル基、アラルキル基及びアリール基が挙げられる。
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。中でも好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、さらに好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、特に好ましくはメチル基、エチル基、n-ブチル基、tert-ブチル基が挙げられる。上述のアルキル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(A)で表される化合物が局在化する傾向にあるため好ましい。
 アルケニル基の具体例としては、ビニル基、アリル基、メタリル基、2-ブテニル基、3-メチル2-ブテニル基、3-ブテニル基、4-ペンテニル基等が挙げられる。中でも好ましくは、ビニル基、アリル基、メタリル基、2-ブテニル基、さらに好ましくは、ビニル基、アリル基、メタリル基、特に好ましくは、ビニル基又はアリル基が挙げられる。上述のアルケニル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(A)で表される化合物が局在化する傾向にあるため好ましい。
 アルキニル基の具体例としては、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基等が挙げられる。中でも好ましくは、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、さらに好ましくは、2-プロピニル基、3-ブチニル基、特に好ましくは、2-プロピニル基が挙げられる。上述のアルキニル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(A)で表される化合物が局在化する傾向にあるため好ましい。
 アリール基の具体例としては、フェニル基、及びトリル基等が挙げられる。なかでも、正極活物質及び/又は負極活物質の表面近傍へ一般式(A)で表される化合物が局在化する傾向にある観点から、フェニル基が好ましい。
 アラルキル基の具体例としては、ベンジル基、及びフェネチル基等が挙げられる。
 炭素数1~12のアルコキシ基として、好ましくは炭素数1~6のアルコキシ基であり、特に好ましくは炭素数1~4のアルコキシ基である。
 炭素数1~12のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びイソプロポキシ基等が挙げられる。なかでもメトキシ基及びエトキシ基が一般式(A)で表される化合物の立体障害が少なく活物質表面に好適に濃縮される点で好ましい。
 ここで、前記置換基としては、シアノ基、イソシアナト基、アシル基(-(C=O)-R)、アシルオキシ基(-O(C=O)-R)、アルコキシカルボニル基(-(C=O)O-R)、スルホニル基(-SO-R)、スルホニルオキシ基(-O(SO)-R)、アルコキシスルホニル基(-(SO)-O-R)、アルコキシスルホニルオキシ基(-O-(SO)-O-R)、アルコキシカルボニルオキシ基(-O-(C=O)-O-R)、エーテル基(-O-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基等が挙げられる。なお、Rは、炭素数1~10のアルキル基、炭素数1~10のアルキレン基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基を示す。Rがアルキレン基の場合は置換している炭化水素基の一部と結合し環を形成していてもよい。
 これらの置換基の中でも好ましくは、シアノ基、イソシアナト基、アシルオキシ基(-O(C=O)-R)、ハロゲン(好ましくは、フッ素原子)、トリフルオロメチル基であり、更に好ましくは、イソシアナト基、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基であり、特に好ましくは、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基である。
 一般式(A)に係るXは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。
 ここで、炭素数1~12の炭化水素基としては、R~Rにて説明したものが挙げられる。
 -SiRで表されるシリル基におけるR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。なかでも、好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基又は置換基を有していてもよい炭素数1~12のアルコキシ基であり、特に好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基である。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基のいずれもR~Rにて規定するものと同義である。また、好ましい態様も同様である。
 -SiRで表されるシリル基の具体例としては、-Si(CH、-Si(CH(C)、-Si(CH(CH=CH)、-Si(CH(CHCHCH)、-Si(CH(CHCH=CH)、-Si(CH[CH(CH]、-Si(CH[(CHCH)]、-Si(CH[CHCH(CH]、-Si(CH[C(CH]、-Si(CH(C)、-Si(CH)(C、-Si(C、-Si(C、-Si(CH=CH、-Si(CHCHCH、-Si[CH(CH、-Si(CHCH=CH、-Si(CH)(C)(CH=CH)、-Si(C(CH=CH)又は-Si(CF等が挙げられる。なかでも、-Si(CH、-Si(CH(CH=CH)、-Si(CH(CHCH=CH)、-Si(C、-Si(CH)(C)(CH=CH)、-Si(C(CH=CH)が好ましく、-Si(CH(CH=CH)、-Si(CH(CHCH=CH)が特に好ましい。
 一般式(A)中、nは0~5の整数を示す。化合物の合成が容易である点で、好ましくは、0~2である。中でも、n=0である一般式(A1)で表される化合物又はn=1である化合物が好ましい。
 一般式(A)においてn=0である、一般式(A1)で表される化合物は、初期コンディショニング時のガス発生の抑制効果に優れるため、好ましい。
Figure JPOXMLDOC01-appb-C000019

(式(A)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し、Xは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。)
 上記R~R及びXは一般式(A)のR~R及びXにそれぞれ対応する。
 また、一般式(A)において、n=1である化合物は、初期コンディショニング時のガス発生の抑制効果に優れるため、好ましい。
<1-A1-2.一般式(B)で表される化合物>
Figure JPOXMLDOC01-appb-C000020

(式(B)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;kは3~6の整数を示す。複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
 一般式(B)に係るR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を表す。複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。
 一般式(B)に係るR~Rは、同一でも異なっていてもよいが、同一であることが化合物の合成が容易である点で好ましい。
 複数のR(繰り返し単位内に存在するR)はそれぞれ同一であっても異なっていてもよいが、1分子内に存在する3~6個のRは全て同一であることが化合物の合成が容易である点で好ましい。複数のR(繰り返し単位内に存在するR)はそれぞれ同一であっても異なっていてもよいが、1分子内に存在する3~6個のRは全て同一であることが化合物の合成が容易である点で好ましい。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基のいずれもR~Rにて規定するものと同義である。
 式(B)中、kは通常3~6の整数であり、なかでも、3又は4が好ましい。
 本発明の一実施形態においては、一般式(A)で表される化合物及び一般式(B)で表される化合物から選択される少なくとも1種が使用されるが、一般式(A)又は一般式(B)で表される化合物の具体的な例としては以下の構造の化合物が挙げられる。
(一般式(A)で表される化合物の具体例)
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
(一般式(B)で表される化合物の具体例)
Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025
 一般式(A)又は(B)で表される化合物としては、好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029
 一般式(A)又は(B)で表される化合物としては、より好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
 一般式(A)又は(B)で表される化合物としては、特に好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 本発明の一実施形態に係る非水系電解液は一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の一種を含有してもよいし、2種以上を含有してもよい。
 本発明の一実施形態に係る非水系電解液全量に対する、一般式(A)又は(B)で表される、Si-O構造を有する化合物の含有量の合計は、通常0.001質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、通常10質量%以下、好ましくは8質量%以下、より好ましくは6.0質量%以下、さらに好ましくは4.0質量%以下、殊更に好ましくは3.0質量%以下、特に好ましくは2.5質量%以下、最も好ましくは2.0質量%以下である。
 非水系電解液全量に対する一般式(A)又は(B)で表される、Si-O構造を有する化合物の含有量の合計が、上記の範囲であれば、活物質への化合物の濃縮が好適に進行し、初期コンディショニング時のガス発生量が少ない電池の作製が可能となる。
 非水系電解液中の、一般式(A)又は(B)で表される、Si-O構造を有する化合物の同定や含有量の測定は、核磁気共鳴(NMR)分光法により行う。
<1-A2.一般式(α)で表される化合物>
 本発明の一実施形態に係る非水系電解液は、一般式(α)で表される、Si-N-C=O構造又はH-N-C=O構造を有する化合物を含有することを特徴としている。
Figure JPOXMLDOC01-appb-C000033

(式(α)中、R89は、水素原子又は-SiR10で表されるシリル基を示し;R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Yは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、-NR-SiRで表される基、又は-NR-Hで表される基を示し;Rは、水素原子、又は置換基を有していてもよい炭素数1~12の炭化水素基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11とRは互いに結合し環を形成していてもよい。)
 以下、R89、R~R11、R、及びY等について説明する。
 一般式(α)に係るR89は、水素原子又は-SiR10で表されるシリル基を示し、R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。
 -SiR10で表されるシリル基において、R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。なかでも、置換基を有していてもよい炭素数1~12の炭化水素基及び置換基を有していてもよい炭素数1~12のアルコキシ基が好ましく、特に好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基である。なお、炭化水素基が置換基を有している場合、置換基が含む炭素の数は、この炭素数には含まれない。
 また、R~R10の少なくとも1つは炭素数1~12のアルキル基であることが、一般式(α)に係る化合物が電極表面に好適に局在化される傾向にある観点で好ましい。特に好ましくはR~R10の全てが炭素数1~12のアルキル基である。
 一般式(α)に係るR~R10は、同一でも異なっていてもよいが、好ましくは少なくとも2つ以上同一であることが化合物の合成が容易である点で好ましく、3つとも同一であることが先述の観点でさらに好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。好ましくは、電気化学的な副反応が少ない観点でフッ素原子である。
 炭素数1~12の炭化水素基としては、好ましくは炭素数1~6の炭化水素であり、特に好ましくは炭素数1~4の炭化水素である。
 炭化水素基の具体例としては、アルキル基、アルケニル基、アルキニル基、アラルキル基及びアリール基が挙げられる。
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。中でも好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、さらに好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、特に好ましくはメチル基、エチル基、n-ブチル基、tert-ブチル基が挙げられる。上述のアルキル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(α)で表される化合物が局在化する傾向にあるため好ましい。
 アルケニル基の具体例としては、ビニル基、アリル基、メタリル基、2-ブテニル基、3-メチル2-ブテニル基、3-ブテニル基、4-ペンテニル基等が挙げられる。中でも好ましくは、ビニル基、アリル基、メタリル基、2-ブテニル基、さらに好ましくは、ビニル基、アリル基、メタリル基、特に好ましくは、ビニル基又はアリル基が挙げられる。上述のアルケニル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(α)で表される化合物が局在化する傾向にあるため好ましい。
 アルキニル基の具体例としては、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基等が挙げられる。中でも好ましくは、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、さらに好ましくは、2-プロピニル基、3-ブチニル基、特に好ましくは、2-プロピニル基が挙げられる。上述のアルキニル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(α)で表される化合物が局在化する傾向にあるため好ましい。
 アリール基の具体例としては、フェニル基、及びトリル基等が挙げられる。なかでも、正極活物質及び/又は負極活物質の表面近傍へ一般式(α)で表される化合物が局在化する傾向にある観点から、フェニル基が好ましい。
 アラルキル基の具体例としては、ベンジル基、及びフェネチル基等が挙げられる。
 炭素数1~12のアルコキシ基として、好ましくは炭素数1~6のアルコキシ基であり、特に好ましくは炭素数1~4のアルコキシ基である。
 炭素数1~12のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、及びイソプロポキシ基等が挙げられる。なかでもメトキシ基及びエトキシ基が化合物の立体障害が少なく活物質表面に好適に濃縮される点で好ましい。
 ここで、前記置換基としては、シアノ基、イソシアナト基、アシル基(-(C=O)-R)、アシルオキシ基(-O(C=O)-R)、アルコキシカルボニル基(-(C=O)O-R)、スルホニル基(-SO-R)、スルホニルオキシ基(-O(SO)-R)、アルコキシスルホニル基(-(SO)-O-R)、アルコキシスルホニルオキシ基(-O-(SO)-O-R)、アルコキシカルボニルオキシ基(-O-(C=O)-O-R)、エーテル基(-O-R)、アクリル基、メタクリル基、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基等が挙げられる。なお、Rは、炭素数1~10のアルキル基、炭素数1~10のアルキレン基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基を示す。Rがアルキレン基の場合は置換している炭化水素基の一部と結合し環を形成していてもよい。
 これらの置換基の中でも好ましくは、シアノ基、イソシアナト基、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基であり、更に好ましくは、イソシアナト基、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基であり、特に好ましくは、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基である。
 一般式(α)に係るR11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基示す。なかでも、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基又は-SiRで表されるシリル基が好ましい。
 ここで、置換基を有していてもよい炭素数1~12の炭化水素基としては、R~R10で規定するものと同義である。
 また、-SiRで表されるシリル基におけるR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基のいずれもR~R10にて規定するものと同義である。
 なお、炭化水素基が置換基を有している場合、置換基が含む炭素の数は、この炭素数には含まれない。
 一般式(α)に係るYは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、-NR-SiRで表される基又は-NR-Hで表される基を示し、Rは、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基を示し、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基は、いずれもR~R10で規定するものと同義である。
 -NR-SiRで表される基において、Rは、R11で規定するものと同義である。また、-SiRで表される基は-SiRで表される基と同義である。
 -NR-Hで表される基において、Rは、水素原子又は置換基を有していてもよい炭素数1~12の炭化水素基である。ここで、置換基を有していてもよい炭素数1~12の炭化水素基はR11で規定するものと同義である。なかでも、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基が好ましく、水素原子、炭素数1~12の炭化水素基がより好ましく、水素原子、炭素数1~6の炭化水素基がさらに好ましく、水素原子、炭素数1~4の炭化水素基が特に好ましい。
 また、一般式(α)で表される化合物としては、好ましくは、後述する一般式(α1)で表される化合物又は一般式(α2)で表される化合物である。
(一般式(α1)で表される化合物)
Figure JPOXMLDOC01-appb-C000034

(式(α1)中、R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。Y’は、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、又は-NR-SiRで表される基を示す。Rは、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基を示す。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11とRは、互いに結合し環を形成していてもよい。)
 上記式中、R~R11、及びR~Rは式(α)のR~R11、R~Rにそれぞれ対応し、Y’は式(α)のYの内、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、又は-NR-SiRで表される基に対応する。
 一般式(α1)で表されるSi-N構造を有する化合物の、具体的な例としては以下の構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 より好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 特に好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000038
(一般式(α2)で表される化合物)
Figure JPOXMLDOC01-appb-C000039

(式(α2)中、R111は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基を示す。Y”は、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、又は-NR-Hで表される基を示す。Rは、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基を示す。)
 上記式中、R111は式(α)のR11の内、水素原子又は置換基を有していてもよい炭素数1~12の炭化水素基であり、Rは式(α)のRに対応し、Y”は式(α)のYの内、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、又は-NR-Hで表される基に対応する。一般式(α2)に係るR111としては、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基が好ましく、より好ましくは、水素原子、炭素数1~12の炭化水素基である。さらに好ましくは水素原子、炭素数1~6の炭化水素基であり、特に好ましくは水素原子、炭素数1~4の炭化水素基である。
 一般式(α2)で表される化合物の、具体的な例としては以下の構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 一般式(α2)で表される化合物としては、好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000041
 一般式(α2)で表される化合物としては、より好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000042
 一般式(α2)で表される化合物としては、特に好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 一般式(α)で表される化合物は1種を用いてもよいし、2種以上を用いてもよい。2種以上用いる場合には、一般式(α1)で表される化合物及び一般式(α2)で表される化合物を、それぞれ1種以上含有することが、電極への定着率が高まる点で好ましい。一般式(α1)で表される化合物と一般式(α2)で表される化合物の含有量(質量)との比率は、特段の制限はないが、通常10000:1~1:10000の範囲である。
 本発明の一実施形態に係る非水系電解液全量に対する、一般式(α)で表される化合物の含有量の合計は、特段の制限はないが、好ましくは0.01質量ppm以上であり、より好ましくは0.1質量ppm以上、さらに好ましくは1.0質量ppm以上、特に好ましくは10質量ppm以上であり、また、好ましくは0.5質量%以下、より好ましくは0.5質量%未満、より好ましくは0.4質量%以下、より好ましくは0.3質量%以下、より好ましくは0.2質量%以下、より好ましくは0.1質量%以下、より好ましくは0.05質量%以下、より好ましくは0.03質量%以下である。
 非水系電解液全量に対する一般式(α)で表される化合物の含有量の合計が、上記の範囲であれば、活物質への一般式(α)で表される化合物の濃縮が好適に進行し、初期コンディショニング時のガス発生が少ない電池の作製が可能となる。
 なお、一般式(α)で表される化合物を2種以上用いる場合には、それらの合計量を一般式(α)で表される化合物の含有量とする。
 非水系電解液中における一般式(α)で表される化合物の含有量に対する、一般式(A)又は一般式(B)で表される化合物の含有量の質量の比率は、特段の制限はないが、通常1.0以上、好ましくは2.0以上、特に好ましくは3.0以上であり、一方、通常10000以下、好ましくは7000以下、より好ましくは4000以下、さらに好ましくは2000以下、殊更に好ましくは1000以下、特に好ましくは500以下である。なお、一般式(A)で表される化合物及び一般式(B)で表される化合物の両方を含む場合には、上述の比率は、一般式(α)で表される化合物の含有量に対する、一般式(A)で表される化合物及び一般式(B)で表される化合物の合計含有量の比率(一般式(A)で表される化合物及び一般式(B)で表される化合物の合計含有量/一般式(α)で表される化合物の合計含有量)を示す。
 本発明の一実施形態に係る非水系電解液全量に対する、一般式(α1)で表される化合物の含有量の合計は、特段の制限はないが、好ましくは0.01質量ppm以上であり、より好ましくは0.1質量ppm以上、さらに好ましくは1.0質量ppm以上、特に好ましくは10質量ppm以上であり、また、通常0.5質量%以下、好ましくは0.5質量%未満であり、より好ましくは0.4質量%以下、さらに好ましくは0.3質量%以下、殊更に好ましくは0.2質量%以下、特に好ましくは0.1質量%以下である。
 非水系電解液全量に対する一般式(α1)で表される化合物の含有量の合計が、上記の範囲であれば、活物質への一般式(α1)で表される化合物の濃縮が好適に進行し、初期コンディショニング時のガス発生が少ない電池の作製が可能となる。
 非水系電解液中における一般式(α1)で表される化合物の含有量に対する、一般式(A)又は一般式(B)で表される化合物の含有量の質量の比率は、特段の制限はないが、通常1.0以上、好ましくは2.0以上、特に好ましくは3.0以上であり、一方、通常10000以下、好ましくは7000以下、より好ましくは4000以下、さらに好ましくは2000以下、殊更に好ましくは1000以下、特に好ましくは500以下である。なお、一般式(A)及び一般式(B)で表される化合物の両方を含む場合には、上述の比率は、一般式(α1)で表される化合物の含有量に対する、一般式(A)で表される化合物及び一般式(B)で表される化合物の合計含有量の比率(一般式(A)で表される化合物及び一般式(B)で表される化合物の合計含有量/一般式(α1)で表される化合物の合計含有量)を示す。
 本発明の一実施形態に係る非水系電解液全量に対する、一般式(α2)で表される化合物の含有量の合計は、特段の制限はないが、好ましくは0.01質量ppm以上であり、より好ましくは0.1質量ppm以上、さらに好ましくは1.0質量ppm以上、特に好ましくは10質量ppm以上であり、また、好ましくは0.50質量%以下であり、より好ましくは0.2質量%以下、さらに好ましくは0.1質量%以下、殊更に好ましくは0.05質量%以下、特に好ましくは0.03質量%以下である。
 非水系電解液全量に対する一般式(α2)で表される化合物の含有量の合計が、上記の範囲であれば、活物質への一般式(α2)で表される化合物の濃縮が好適に進行し、初期コンディショニング時のガス発生量が少ない電池の作製が可能となる。
 非水系電解液中における一般式(α2)で表される化合物の含有量に対する、一般式(A)又は一般式(B)で表される化合物の含有量の質量の比率は、特段の制限はないが、通常1.0以上、好ましくは2.0以上、特に好ましくは3.0以上であり、一方、通常10000以下、好ましくは7000以下、より好ましくは4000以下、さらに好ましくは2000以下、殊更に好ましくは1000以下、特に好ましくは500以下である。
 なお、一般式(A)及び一般式(B)で表される化合物の両方を含む場合には、上述の比率は、一般式(α2)で表される化合物の含有量に対する、一般式(A)で表される化合物及び一般式(B)で表される化合物の合計含有量の比率(一般式(A)で表される化合物及び一般式(B)で表される化合物の合計含有量/一般式(α2)で表される化合物の合計含有量)を示す。
 非水系電解液中の、一般式(α)で表される化合物の同定や含有量の測定は、核磁気共鳴(NMR)分光法により行う。
 なお、電解液に、一般式(α)で表される化合物、並びに一般式(A)又は(B)で表される化合物を含有させる方法は、特に制限されない。上記化合物を直接電解液に添加する方法の他に、電池内又は電解液中において上記化合物を発生させる方法が挙げられる。
 本明細書において、化合物の含有量とは、非水系電解液製造時、非水系電解液の電池への注液時点又は電池として出荷された何れかの時点での含有量を意味する。
[発明B]
 本発明Bに係る非水系電解液は、金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液がアルカリ金属塩、非水系溶媒、一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも1種を含有し、且つ一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の少なくとも1種を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000044

(式(A2)中、R12~R16は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;X’は置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRo2p2q2で表されるシリル基を示し;Ro2~Rq2は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;n’は0~5の整数を示し;R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。n’が2以上の場合、複数のR15はそれぞれ同一であっても異なっていてもよく、複数のR16はそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000045

(式(B2)中、R17~R18は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;k’は3~6の整数を示し;R17又はR18の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。複数のR17はそれぞれ同一であっても異なっていてもよく、複数のR18はそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000046

(式(Z)中、R19~R21は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R22~R23は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は‐SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R22とR23は互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000047

(式(Y)中、R24は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R25~R26は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し、lは3~6の整数を示す。複数のR25はそれぞれ同一であっても異なっていてもよく、複数のR26はそれぞれ同一であっても異なっていてもよい。)
<1-B.非水系電解液>
 本発明Bに係る非水系電解液は、以下に説明する一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも1種、且つ一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の少なくとも1種を含有する。
 一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物と一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物とを含有する非水系電解液を用いることで、電解液注液時のOCVを高めるメカニズムは明らかではないが、以下の様に推測される。
 一般式(A2)又は一般式(B2)で表される化合物は分子内に極性構造(-Si-O-)、及び非極性構造(例えば、-SiR121314)を有する。また、一般式(Z)又は一般式(Y)で表される化合物も同様に分子内に極性構造(-Si-N-)、及び非極性構造(例えば、-SiR192021、-Si(R2526)-)を有する。そのため、これら化合物は炭素などの負極活物質及び/又は遷移金属酸化物などの正極活物質表面と相互作用し、表面近傍に局在化する傾向にある。また、活物質表面に局在化された一般式(A2)又は一般式(B2)で表される化合物及び一般式(Z)又は一般式(Y)で表される化合物同士も相互作用することで、局在化された化合物の正極活物質及び/又は負極活物質表面への定着量も向上すると推測される。特に一般式(Z)又は一般式(Y)で表される化合物の窒素原子は電極表面への吸着性が高いため、一般式(Z)又は一般式(Y)で表される化合物の電極への定着を起点に一般式(A2)又は一般式(B2)で表される化合物の電極への定着が促進される。これにより、初回充電時に電極に局在化されている一般式(Z)又は一般式(Y)で表される化合物と一般式(A2)又は(B2)で表される化合物が電気化学的に分解し、複合的な絶縁被膜を形成する。この複合被膜が初期コンディショニング時の電解液の副反応を抑制し、ガス発生を抑制すると推定する。
 ここで、OCVは正極と負極の電位差である。電解液に含まれる化合物の電極への吸着量が多いと、電極電位は変化する。注液時のOCVが高いということは、電解液を構成する化合物の電極への吸着量が多いと考えられる。本発明の一実施形態に係る電解液は注液後の化合物の電極への吸着量が多いため、注液後の電池OCVが高いことが推測される。これにより、本発明者は注液時のOCVを確認することで、初期コンディショニングにおけるガス発生量が予測できることを見出した。なお、後述の実施例では、OCVの高さとガス発生量は必ずしも一致はしないが、相関関係がみられる。組み合わせる化合物により生成する複合被膜の性状が異なると考えられる。
<1-B1.Si-O構造を有する化合物>
 本発明の非水系電解液は、下記一般式(A2)又は(B2)で表されるSi-O構造を有する化合物を含有することを特徴としている。
<1-B1-1.一般式(A2)で表される化合物>
Figure JPOXMLDOC01-appb-C000048

(式(A2)中、R12~R16は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;X’は置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRo2p2q2で表されるシリル基を示し;Ro2~Rq2は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;n’は0~5の整数を示し;R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。n’が2以上の場合、複数のR15はそれぞれ同一であっても異なっていてもよく、複数のR16はそれぞれ同一であっても異なっていてもよい。)
 一般式(A2)に係るR12~R16は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。なかでも、ハロゲン原子及び置換基を有していてもよい炭素数1~12の炭化水素基及び置換基を有していてもよい炭素数1~12のアルコキシ基が好ましく、特に好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基又は置換基を有していてもよい炭素数1~12のアルコキシ基である。なお、炭化水素基が置換基を有している場合、置換基が含む炭素の数は、この炭素数には含まれない。
 R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基であることが、一般式(A2)に係る化合物が電極表面に好適に局在化される傾向にある観点で好ましい。炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基とは、後述する炭素数2~12のアルケニル基、炭素数2~12のアルキニル基又は炭素数6~12のアリール基が挙げられ、なかでも炭素数2~12のアルケニル基又は炭素数2~12のアルキニル基が、一般式(A2)に係る化合物が電極表面に好適に局在化される傾向にある観点で好ましい。特に好ましくは、炭素数2~12のアルケニル基である。
 一般式(A2)に係るR12~R14は、同一でも異なっていてもよいが、少なくとも2つ以上同一であることが化合物の合成が容易である点で好ましく、3つとも同一であることが先述の観点でさらに好ましい。
 一般式(A2)に係るR15~R16は、同一でも異なっていてもよいが、同一であることが化合物の合成が容易である点で好ましい。
 また、n’が2以上の場合、すなわち、R15及びR16が複数存在する場合、該R15はそれぞれ同一であっても異なっていてもよいが、同一であることが、化合物の合成が容易である点で好ましい。また、該R16はそれぞれ同一であっても異なっていてもよいが、同一であることが、化合物の合成が容易である点で好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。好ましくは、電気化学的な副反応が少ない観点でフッ素原子である。
 炭素数1~12の炭化水素基としては、好ましくは炭素数1~6の炭化水素基であり、特に好ましくは炭素数1~4の炭化水素基である。
 炭化水素基の具体例としては、アルキル基、アルケニル基、アルキニル基、アラルキル基及びアリール基が挙げられる。
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。中でも好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、さらに好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、特に好ましくはメチル基、エチル基、n-ブチル基、tert-ブチル基が挙げられる。上述のアルキル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(A2)に係る化合物が局在化する傾向にあるため好ましい。
 アルケニル基の具体例としては、ビニル基、アリル基、メタリル基、2-ブテニル基、3-メチル2-ブテニル基、3-ブテニル基、4-ペンテニル基等が挙げられる。中でも好ましくは、ビニル基、アリル基、メタリル基、2-ブテニル基、さらに好ましくは、ビニル基、アリル基、メタリル基、特に好ましくは、ビニル基又はアリル基が挙げられる。上述のアルケニル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(A2)に係る化合物が局在化する傾向にあるため好ましい。
 アルキニル基の具体例としては、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基等が挙げられる。中でも好ましくは、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、さらに好ましくは、2-プロピニル基、3-ブチニル基、特に好ましくは、2-プロピニル基が挙げられる。上述のアルキニル基であると、正極活物質及び/又は負極活物質の表面近傍へ一般式(A2)に係る化合物が局在化する傾向にあるため好ましい。
 アリール基の具体例としては、フェニル基、及びトリル基等が挙げられる。なかでも、正極活物質及び/又は負極活物質の表面近傍へ一般式(A2)に係る化合物が局在化する傾向にある観点からフェニル基が好ましい。
 アラルキル基の具体例としては、ベンジル基、及びフェネチル基等が挙げられる。
 炭素数1~12のアルコキシ基として、好ましくは炭素数1~6のアルコキシ基であり、より好ましくは炭素数1~4のアルコキシ基である。
 炭素数1~12のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びイソプロポキシ基等が挙げられる。なかでもメトキシ基及びエトキシ基が一般式(A2)に係る化合物の立体障害が少なく活物質表面に好適に濃縮される点で好ましい。
 ここで、前記置換基としては、シアノ基、イソシアナト基、アシル基(-(C=O)-R)、アシルオキシ基(-O(C=O)-R)、アルコキシカルボニル基(-(C=O)O-R)、スルホニル基(-SO-R)、スルホニルオキシ基(-O(SO)-R)、アルコキシスルホニル基(-(SO)-O-R)、アルコキシスルホニルオキシ基(-O-(SO)-O-R)、アルコキシカルボニルオキシ基(-O-(C=O)-O-R)、エーテル基(-O-R)、アクリル基、メタクリル基、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基等が挙げられる。なお、Rは、炭素数1~10のアルキル基、炭素数1~10のアルキレン基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基を示す。Rがアルキレン基の場合は置換している炭化水素基の一部と結合し環を形成していてもよい。
 これらの置換基の中でも好ましくは、シアノ基、イソシアナト基、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基であり、更に好ましくは、イソシアナト基、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基であり、特に好ましくは、アシルオキシ基(-O(C=O)-R)、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基である。
 一般式(A2)に係るX’は置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRo2p2q2で表されるシリル基を示す。
 ここで、炭素数1~12の炭化水素基及び炭素数1~12のアルコキシ基としては、R~Rにて説明したものが挙げられる。
 -SiRo2p2q2で表されるシリル基におけるRo2~Rq2は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。なかでも、好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基又は置換基を有していてもよい炭素数1~12のアルコキシ基であり、特に好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基である。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基いずれもR12~R14にて規定するものと同義である。また、好ましい態様も同様である。
 -SiRで表されるシリル基の具体例としては、-Si(CH、-Si(CH(C)、-Si(CH(CH=CH)、-Si(CH(CHCHCH)、-Si(CH(CHCH=CH)、-Si(CH[CH(CH]、-Si(CH[(CHCH)]、-Si(CH[CHCH(CH]、-Si(CH[C(CH]、-Si(CH)2(C6H5)、-Si(CH3)(C、-Si(C、-Si(C、-Si(CH=CH、-Si(CHCHCH、-Si[CH(CH、-Si(CHCH=CH、-Si(CH)(C)(CH=CH)、-Si(C(CH=CH)又は-Si(CF等が挙げられる。なかでも、-Si(CH、-Si(CH(CH=CH)、-Si(CH(CHCH=CH)、-Si(C、-Si(CH)(C)(CH=CH)、-Si(C(CH=CH)が好ましく、-Si(CH(CH=CH)、-Si(CH(CHCH=CH)が特に好ましい。
 一般式(A2)中、n’は0~5の整数を示す。化合物の合成が容易である点で、好ましくは、0~2である。
 中でも、一般式(A2)においてn’=0である、一般式(A3)で表される化合物は、初期コンディショニング時のガス発生の抑制効果に優れるため、好ましい。
Figure JPOXMLDOC01-appb-C000049

(式(A3)中、R12~R14は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し、X’は置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRo2p2q2を示す。Ro2~Rq2は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。)
 一般式(A3)において、R12~R14、X’及びRo2~Rq2は、一般式(A2)のR12~R14、X’及びRo2~Rq2にそれぞれ対応する。
 また、一般式(A2)において、n’=1である化合物も、初期コンディショニング時のガス発生の抑制効果に優れるため、好ましい。
<1-B1-2.一般式(B2)で表される化合物>
Figure JPOXMLDOC01-appb-C000050

(式(B2)中、R17~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し、k’は3~6の整数を示す。R17又はR18の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。複数のR17はそれぞれ同一であっても異なっていてもよく、複数のR18はそれぞれ同一であっても異なっていてもよい。)
 一般式(B2)に係るR17~R18は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を表す。また、複数のR17(繰り返し単位内に存在するR17)はそれぞれ同一であっても異なっていてもよく、複数のR18(繰り返し単位内に存在するR18)はそれぞれ同一であっても異なっていてもよい。すなわち、1分子内に存在する3~6個のR17のそれぞれは互いに同一であっても異なっていてもよいし、1分子内に存在する3~6個のR18のそれぞれは互いに同一であっても異なっていてもよい。
 一般式(B2)に係るR17~R18は、同一でも異なっていてもよいが、同一であることが化合物の合成が容易である点で好ましい。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基いずれもR12~R14にて規定するものと同義である。
 R17~Rの少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基であることが、一般式(A2)に係る化合物が電極表面に好適に局在化される傾向にある観点で好ましい。炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基とは、後述する炭素数2~12のアルケニル基、炭素数2~12のアルキニル基又は炭素数6~12のアリール基が挙げられ、なかでも炭素数2~12のアルケニル基及び炭素数2~12のアルキニル基が、一般式(A2)に係る化合物が電極表面に好適に局在化される傾向にある観点で好ましい。特に好ましくは、炭素数2~12のアルケニル基である。
 式(B2)中、k’は通常3~6の整数であり、なかでもkは3又は4が好ましい。
 一般式(A2)又は(B2)で表される化合物の具体的な例としては、以下の構造の化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000051

Figure JPOXMLDOC01-appb-C000052

Figure JPOXMLDOC01-appb-C000053
 一般式(A2)又は(B2)で表される化合物として、より好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000054

Figure JPOXMLDOC01-appb-C000055
 一般式(A2)又は(B2)で表される化合物として、特に好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000056
 本発明の非水系電解液全量に対する、一般式(A2)又は(B2)で表される化合物の含有量の合計は、通常0.001質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、通常10質量%以下、好ましくは8質量%以下、より好ましくは6.0質量%以下であり、さらに好ましくは4.0質量%以下、殊更に好ましくは3.0質量%以下、特に好ましくは2.5質量%以下、最も好ましくは2.0質量%以下である。
 非水系電解液全量に対する一般式(A2)又は(B2)で表される化合物の含有量の合計が、上記の範囲であれば、活物質への化合物の濃縮が好適に進行し、初期コンディショニング時のガス発生が少ない電池の作製が可能となる。
 非水系電解液中の、一般式(A2)又は(B2)で表される化合物の同定や含有量の測定は、核磁気共鳴(NMR)分光法により行う。
<1-B2.Si-N構造を有する化合物>
<1-B2-1.一般式(Z)で表される化合物>
Figure JPOXMLDOC01-appb-C000057

(式(Z)中、R19~R21は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R22~R23は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、又は‐SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R22とR23は互いに結合して環を形成してもよい。)
 一般式(Z)に係るR19~R21は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。なかでも、置換基を有していてもよい炭素数1~12の炭化水素基及び置換基を有していてもよい炭素数1~12のアルコキシ基が好ましく、特に好ましくは、置換基を有していてもよい炭素数1~12の炭化水素基である。
 また、R19~R21の少なくとも1つは炭素数1~12のアルキル基であることが、一般式(Z)に係る化合物が好適に電極表面へ吸着できる観点で好ましい。
 一般式(Z)に係るR19~R21は、同一でも異なっていてもよいが、好ましくは少なくとも2つ以上同一が化合物の合成が容易である点で好ましく、3つとも同一であることが先述の観点でさらに好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。好ましくは、電気化学的な副反応が少ない観点でフッ素原子である。
 炭素数1~12の炭化水素基としては、好ましくは炭素数1~6の炭化水素であり、特に好ましくは炭素数1~4の炭化水素である。
 炭化水素基の具体例としては、アルキル基、アルケニル基、アルキニル基、アラルキル基及びアリール基が挙げられる。なかでも、アルキル基、アルケニル基又はアルキニル基が好ましく、特に好ましくはアルキル基又はアルケニル基が好ましい。
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。中でも好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、ヘキシル基、さらに好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、特に好ましくはメチル基、エチル基、n-ブチル基、tert-ブチル基が挙げられる。上述のアルキル基であると、正極及び/又は負極活物質表面へ一般式(Z)で表される化合物が表面近傍に局在化する傾向にあるため好ましい。
 アルケニル基の具体例としては、ビニル基、アリル基、メタリル基、2-ブテニル基、3-メチル2-ブテニル基、3-ブテニル基、4-ペンテニル基等が挙げられる。中でも好ましくは、ビニル基、アリル基、メタリル基、2-ブテニル基、さらに好ましくは、ビニル基、アリル基、メタリル基、特に好ましくは、ビニル基が挙げられる。上述のアルケニル基であると、正極及び/又は負極活物質表面へ一般式(Z)で表される化合物が表面近傍に局在化する傾向にあるため好ましい。
 アルキニル基の具体例としては、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、4-ペンチニル基、5-ヘキシニル基等が挙げられる。中でも好ましくは、エチニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、さらに好ましくは、2-プロピニル基、3-ブチニル基、特に好ましくは、2-プロピニル基が挙げられる。正極及び/又は負極活物質表面へ一般式(Z)で表される化合物が表面近傍に局在化する傾向にあるため好ましい。
 アリール基の具体例としては、フェニル基、及びトリル基等が挙げられる。なかでも、正極及び/又は負極活物質表面へ一般式(Z)で表される化合物が表面近傍に局在化する傾向にある観点からフェニル基が好ましい。
 アラルキル基の具体例としては、ベンジル基、及びフェネチル基等が挙げられる。
 炭素数1~12のアルコキシ基として、好ましくは炭素数1~6のアルコキシ基であり、より好ましくは炭素数1~4のアルコキシ基であり、さらに好ましくは炭素数1~2のアルコキシ基である。
 炭素数1~12のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びイソプロポキシ基等が挙げられる。なかでもメトキシ基及びエトキシ基が、一般式(Z)で表される化合物の立体障害が少なく活物質表面に好適に濃縮される点で好ましい。
 ここで、前記置換基としては、シアノ基、イソシアナト基、アシル基(-(C=O)-R)、アシルオキシ基(-O(C=O)-R)、アルコキシカルボニル基(-(C=O)O-R)、スルホニル基(-SO-R)、スルホニルオキシ基(-O(SO)-R)、アルコキシスルホニル基(-(SO)-O-R)、アルコキシスルホニルオキシ基(-O-(SO)-O-R)、アルコキシカルボニルオキシ基(-O-(C=O)-O-R)、エーテル基(-O-R)、アクリル基、メタクリル基、ハロゲン原子(好ましくは、フッ素原子)、トリフルオロメチル基等が挙げられる。なお、Rは、炭素数1~10のアルキル基、炭素数1~10のアルキレン基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基を示す。Rがアルキレン基の場合は置換している炭化水素基の一部と結合し環を形成していてもよい。
 一般式(Z)に係るR22~R23は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。なかでも、置換基を有していてもよい炭素数1~12の炭化水素基又は‐SiRで表されるシリル基が好ましい。
 また、R22~R23の内少なくとも一つが-SiRで表されるシリル基であることは、一般式(Z)で表される化合物の極性が低下する点で好ましい。
 ここで、置換基を有していてもよい炭素数1~12の炭化水素基は、R19~R21で規定するものと同義である。
 また、-SiRで表されるシリル基におけるR~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基を示す。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基のいずれもR19~R21にて規定するものと同義である。
 一般式(Z)で表されるSi-N構造を有する化合物の具体的な例としては、以下の構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000058
 一般式(Z)で表される化合物として、好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000059
 一般式(Z)で表される化合物として、より好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000060
 一般式(Z)で表される化合物として、特に好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000061
<1-B2-2.一般式(Y)で表される化合物>
Figure JPOXMLDOC01-appb-C000062

(式(Y)中、R24は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R25~R26は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基を示し;lは3~6の整数を示す。複数のR25はそれぞれ同一であっても異なっていてもよく、複数のR26はそれぞれ同一であっても異なっていてもよい。)
 R24は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示す。
 ここで、置換基を有していてもよい炭素数1~12の炭化水素基はR22~R23にて規定するものと同義である。
 -SiRで表されるシリル基は、上述の-SiRで表されるシリル基と同義である。
 R25~R26は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。
 ここで、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、及び置換基を有していてもよい炭素数1~12のアルコキシ基いずれもR19~R21にて規定するものと同義である。
 また、複数のR25(繰り返し単位内に存在するR25)はそれぞれ同一であっても異なっていてもよく、複数のR26(繰り返し単位内に存在するR26)はそれぞれ同一であっても異なっていてもよい。すなわち、1分子内に存在する3~6個のR25のそれぞれは互いに同一であっても異なっていてもよいし、1分子内に存在する3~6個のR26のそれぞれは互いに同一であっても異なっていてもよい。
 一般式(Y)に係るR25~R26は、同一でも異なっていてもよいが、同一であることが該化合物の合成が容易である点で好ましい。
 lは3~6の整数を示す。lは好ましくは3又は4である。
 一般式(Y)で表されるSi-N構造を有する化合物の具体的な例としては、以下の構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000063
 好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000064
 より好ましくは以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000065
 本発明の非水系電解液全量に対する、一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の含有量の合計は、特段の制限はないが、好ましくは0.01質量ppm以上であり、より好ましくは0.1質量ppm以上、さらに好ましくは1.0質量ppm以上、特に好ましくは10質量ppm以上であり、また、好ましくは0.5質量%未満であり、より好ましくは0.4質量%以下、さらに好ましくは0.3質量%以下、殊更に好ましくは0.2質量%以下、特に好ましくは0.1質量%以下である。
 非水系電解液全量に対する一般式(Z)又は一般式(Y)で表されるSi‐N構造を有する化合物の含有量の合計が、上記の範囲であれば、活物質への化合物の濃縮が好適に進行し、初期コンディショニング時のガス発生が少ない電池の作成が可能となる。
 非水系電解液中の、一般式(Z)又は一般式(Y)で表される化合物の同定や含有量の測定は、核磁気共鳴(NMR)分光法により行う。
 非水系電解液中における一般式(Z)又は一般式(Y)で表されるSi-N構造を有する含有量に対する、一般式(A2)又は一般式(B2)で表される化合物の含有量の質量の比率は、特段の制限はないが、通常1.0以上、好ましくは2.0以上、より好ましくは3.0以上であり、一方、通常10000以下、好ましくは7000以下、より好ましくは4000以下、さらに好ましくは2000以下、殊更に好ましくは1000以下、特に好ましくは500以下である。なお、一般式(A2)及び一般式(B2)で表される化合物の両方を含む場合には、上述の比率は、一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の含有量に対する、一般式(A2)及び一般式(B2)で表される化合物の合計含有量の比率を示す。一般式(Z)及び一般式(Y)で表される化合物の両方を含む場合には、上述の比率は、一般式(Z)及び一般式(Y)で表されるSi‐N構造を有する化合物の合計含有量に対する、一般式(A2)又は一般式(B2)で表される化合物の含有量の比率を示す。
 なお、本発明の電解液に、一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物、又は一般式(A2)又は(B2)で表されるSi-O構造を有する化合物を含有する方法は、特に制限されない。上記化合物を直接電解液に添加する方法の他に、電池内又は電解液中において上記化合物を発生させる方法が挙げられる。
 本明細書において、化合物の含有量とは、非水系電解液製造時、非水系電解液の電池への注液時点又は電池として出荷された何れかの時点での含有量を意味する。
[発明C]
 本発明Cに係る非水系電解液は、金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液がアルカリ金属塩、非水系溶媒、一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも1種を含有し、且つ一般式(α)で表される化合物、一般式(Z)で表される化合物、及び一般式(Y)で表される化合物からなる群より選ばれる少なくとも1種を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000066

(式(A2)中、R12~R16は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Xは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;nは0~5の整数を示し;R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。n’が2以上の場合、複数のR15はそれぞれ同一であっても異なっていてもよく、複数のR16はそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000067

(式(B)中、R17~R18は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;k’は3~6の整数を示し;R17又はR18の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。複数のR17はそれぞれ同一であっても異なっていてもよく、複数のR18はそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000068

(式(α)中、R89は、水素原子又は-SiR10で表されるシリル基を示し;R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Yは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、-NR-SiRで表される基、又は-NR-Hで表される基を示し;Rは、水素原子、又は置換基を有していてもよい炭素数1~12の炭化水素基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11とRは互いに結合し環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000069

(式(Z)中、R19~R21は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R22~R23は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は‐SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R22とR23は互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000070

(式(Y)中、R24は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R25~R26は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;lは3~6の整数を示す。複数のR25はそれぞれ同一であっても異なっていてもよく、複数のR26はそれぞれ同一であっても異なっていてもよい。)
 一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物には、上記<1-B1.Si-O構造を有する化合物>の説明が適用される。
 一般式(α)で表される化合物には、<1-A2.一般式(α)で表される化合物>の説明が適用される。
 一般式(Z)で表される化合物には、<1-B2-1.一般式(Z)で表される化合物>の説明が適用される。
 一般式(Y)で表される化合物には、<1-B2-2.一般式(Y)で表される化合物>の説明が適用される。
<1-3.電解質>
 本発明A~Cの非水系電解液は、一般的な非水系電解液と同様、通常はその成分として、電解質を含有する。本実施形態の非水系電解液に用いられる電解質について特に制限は無く、公知の電解質を用いることができる。以下、電解質の具体例について詳述する。
<1-3-1.アルカリ金属塩>
 本実施形態の非水系電解液における電解質としては、通常、リチウム塩等のアルカリ金属塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを1種以上用いることができる。
 リチウム塩としては、具体的には、例えば、
 LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
 LiPF等のフルオロリン酸リチウム塩類;
 LiWOF等のタングステン酸リチウム塩類;
 CFCOLi等のカルボン酸リチウム塩類;
 CHSOLi等のスルホン酸リチウム塩類;
 LiN(FSO、LiN(CFSO等のリチウムイミド塩類;
 LiC(FSO等のリチウムメチド塩類;
 その他、LiPF(CF等の含フッ素有機リチウム塩類;
等が挙げられる。
 本発明で得られる高温環境下での充電保存特性向上に加え、充放電レート特性、インピーダンス特性の向上効果を更に高める点から、無機リチウム塩類、フルオロリン酸リチウム塩類、スルホン酸リチウム塩類、リチウムイミド塩類、リチウムオキサラート塩類、の中から選ばれるものが好ましく、充放電特性向上の点から、フルオロリン酸リチウム塩類、無機リチウム塩類、リチウムイミド塩類がより好ましく、さらに好ましくはフルオロリン酸リチウム塩類又はリチウムイミド塩類であり、殊更に好ましくはLiPF又はLiN(FSOであり、特に好ましくはLiPFである。
 非水系電解液中のこれらの電解質の総濃度は、特に制限はないが、非水系電解液の全量に対して、通常8質量%以上、好ましくは8.5質量%以上、より好ましくは9質量%以上である。また、その上限は、通常18質量%以下、好ましくは17質量%以下、より好ましくは16質量%以下である。電解質の総濃度が上記範囲内であると、電気伝導率が電池動作に適正となるため、十分な出力特性が得られる傾向にある。
 非水系電解液中の、上述のリチウム塩に対する一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の質量比は、本発明の効果を著しく損なわない限り、特に限定されないが、0.0001以上が好ましく、0.001以上であることがより好ましく、0.01以上であることが特に好ましい。また、上限値としては、0.5以下であることが好ましく、0.25以下であることがより好ましく、0.1以下であることが特に好ましい。これらの化合物の質量比が上記の好ましい範囲内であると、電極活物質へ一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物が好適に吸着する点で好ましい。
 非水系電解液中の、上述のリチウム塩に対する一般式(α)で表される化合物の質量比は、本発明の効果を著しく損なわない限り、特に限定されないが、0.0001以上が好ましく、0.001以上であることがより好ましく、0.01以上であることが特に好ましい。また、上限値としては、0.5以下であることが好ましく、0.25以下であることがより好ましく、0.1以下であることが特に好ましい。これらの化合物の質量比が上記の好ましい範囲内であると、電極活物質へ一般式(α)で表される化合物が好適に吸着するである点で好ましい。
 非水系電解液中の、上述のリチウム塩に対する一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の質量比は、本発明の効果を著しく損なわない限り、特に限定されないが、0.0001以上が好ましく、0.001以上であることがより好ましく、0.01以上であることが特に好ましい。また、上限値としては、0.5以下であることが好ましく、0.25以下であることがより好ましく、0.1以下であることが特に好ましい。これらの化合物の質量比が上記の好ましい範囲内であると、電極活物質へ一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物が好適に吸着する点で好ましい。
 非水系電解液中の、上述のリチウム塩に対する一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の質量比は、本発明の効果を著しく損なわない限り、特に限定されないが、0.0001以上が好ましく、0.001以上であることがより好ましく、0.01以上であることが特に好ましい。また、上限値としては、0.5以下であることが好ましく、0.25以下であることがより好ましく、0.1以下であることが特に好ましい。これらの化合物の質量比が上記の好ましい範囲内であると、電極活物質へ一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物が好適に吸着する点で好ましい。
<1-4.非水系溶媒>
 本実施形態の非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、上述した電解質を溶解する非水系溶媒を含有する。非水系溶媒について特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、及びブチレンカーボネート等の飽和環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネート等の鎖状カーボネート;酢酸メチル、酢酸エチル、酢酸プロピル、及び酢酸ブチル等のカルボン酸エステル、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、テトラヒドロフラン、1,3-ジオキサン、及び1,4-ジオキサン等のエーテル系化合物;及び2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、ジメチルスルホン、エチルメチルスルホン、及びモノフルオロメチルメチルスルホン等のスルホン系化合物等が挙げられる。好ましくは飽和環状カーボネート、鎖状カーボネート又はカルボン酸エステルであり、より好ましくは飽和環状カーボネート又は鎖状カーボネートである。これら非水系溶媒は、1種を単独で又は2種以上を組み合わせて用いることができる。2種以上の非水系溶媒の組み合わせとして、飽和環状カーボネート、鎖状カーボネート、及びカルボン酸エステルからなる群より選択される2種以上の組み合わせが好ましく、飽和環状カーボネート及び鎖状カーボネートの組み合わせがより好ましい。
<1-5.助剤>
 本実施形態の非水系電解液において、本発明の効果を奏する範囲で助剤を含有してもよい。
 助剤としては、
 ジフルオロリン酸塩、フルオロスルホン酸塩、フルオロホウ素塩及びフルオロイミド塩等のフッ素化された塩;
 ビニレンカーボネート、ビニルエチレンカーボネート及びエチニルエチレンカーボネート等の不飽和環状カーボネート;
 モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート等のフッ素化環状カーボネート;
 リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のオキサラート塩; 
 メトキシエチル-メチルカーボネート等のカーボネート化合物;
 メチル-2-プロピニルオギザレート等のスピロ化合物;
 エチレンサルファイト等の含硫黄化合物;
 1,3-ビス(イソシアナトメチル)シクロヘキサン等のシクロアルキレン基を有するジイソシアネート、トリアリルイソシアヌレート等の分子内に少なくとも2つのイソシアネート基を有する化合物から誘導される三量体化合物及び該三量体化合物に多価アルコールを付加した脂肪族ポリイソシアネート等のイソシアネート化合物; 
 1-メチル-2-ピロリジノン等の含窒素化合物;
 シクロヘプタン等の炭化水素化合物;
 フルオロベンゼン等の含フッ素芳香族化合物;
 フルオロトリメチルシラン、フルオロジメチルビニルシラン、ジフルオロジメチルシラン、ジフルオロビニルメチルシラン等のフルオロシラン化合物;
 2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、等のエステル化合物;
 リチウムエチルメチルオキシカルボニルホスホネート等のリチウム塩;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、初期コンディショニング時のガス発生が抑制できるだけでなく、初期抵抗を低下させ、電池特性を総合的に向上させることができる。
 中でも、本発明の一実施形態に係る非水系電解液においては、フッ素化された塩、フルオロシラン化合物、不飽和環状カーボネート、フッ素原子を有する環状カーボネート、及びオキサラート塩から選択される1種以上を含有することで、初期コンディショニング時のガス発生がさらに抑制され、膨れにくい電池が得られるだけでなく、電池の初期抵抗も低くなる点で好ましい。より好ましくは、少なくとも不飽和環状カーボネート又はフッ素原子を有する環状カーボネートを含有することであり、さらに好ましくは不飽和環状カーボネート及びフッ素原子を有する環状カーボネートを含有することである。
 また、少なくとも不飽和環状カーボネート又はフッ素原子を有する環状カーボネートを含有し、かつフッ素化された塩、フルオロシラン化合物、及びオキサラート塩から選択される1種以上を含有することも、初期コンディショニング時のガス発生がさらに抑制され、膨れにくい電池が得られるだけでなく、電池の初期抵抗も低くなる点において、好ましい。また、不飽和環状カーボネート及びフッ素原子を有する環状カーボネートを含有し、かつフッ素化された塩、フルオロシラン化合物、及びオキサラート塩から選択される1種以上を含有することがより好ましい。
 以下、「フッ素化された塩」、「フルオロシラン化合物」、「不飽和環状カーボネート」、「フッ素化環状カーボネート」及び「オキサラート塩」について詳細に説明する。
(フッ素化された塩)
 本実施形態に係る非水系電解液においては、フッ素化された塩を含んでいてもよい。フッ素化された塩に、特に制限はないが、構造内に脱離性の高いフッ素原子を有していることから、一般式(A)、(B)、(α)、(Y)、又は(Z)で表される化合物の分解物と好適に反応し、複合的被膜を形成することができ、初期の電池抵抗が低減できることから、ジフルオロリン酸塩、フルオロスルホン酸塩、フルオロホウ素塩及びフルオロイミド塩が好ましい。フッ素原子の脱離性が特に高いこと、求核種との反応が好適に進行することから、フルオロホウ素塩、フルオロスルホン酸塩、ジフルオロリン酸塩がより好ましく、フルオロスルホン酸塩、ジフルオロリン酸塩が特に好ましく、フッ素の脱離性が高いことからフルオロスルホン酸塩は最も好ましい。また、フッ素化された塩としては、フッ素化されたリチウム塩が好ましい。
 フッ素化された塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、非水系電解液全量に対するフッ素化された塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常8質量%未満、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。
 以下、これらの各種塩について説明する。
<ジフルオロリン酸塩>
 ジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR27282930(式中、R27~R30は、各々独立に、水素原子又は炭素数1~12の有機基を示す。)で表されるアンモニウム等がその例として挙げられる。なかでもリチウムが好ましい。
 上記アンモニウムのR27~R30で表される炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR27~R30が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。
 ジフルオロリン酸塩の具体例としては、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、ジフルオロリン酸リチウムが好ましい。
 ジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、非水系電解液全量に対するジフルオロリン酸塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常8質量%未満、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。
 ジフルオロリン酸塩の含有量がこの範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<フルオロスルホン酸塩>
 前記フルオロスルホン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR17181920(式中、R17~R20は、各々独立に、水素原子又は炭素数1~12の有機基を示す。)で表されるアンモニウム等がその例として挙げられる。なかでもリチウムが好ましい。
 上記アンモニウムのR17~R20で表される炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR17~R20が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。
 フルオロスルホン酸塩の具体例としては、
 フルオロスルホン酸リチウム、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸ルビジウム、フルオロスルホン酸セシウム等が挙げられ、フルオロスルホン酸リチウムが好ましい。
 フルオロスルホン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、非水系電解液全量に対するフルオロスルホン酸塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常8質量%未満、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。
 フルオロスルホン酸塩の含有量がこの範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<フルオロホウ素塩>
 前記フルオロホウ素塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR21222324(式中、R21~R24は、各々独立に、水素原子又は炭素数1~12の有機基を示す。)で表されるアンモニウム等がその例として挙げられる。なかでもリチウムが好ましい。
 上記アンモニウムのR21~R24で表される炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR21~R24が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。
 フルオロホウ素塩の具体例としては、
 LiBF、LiB(C2i+1(F)4-j等が挙げられ、LiBFが好ましい。なお、iは1~10の整数、jは1~4の整数を表す。
 フルオロホウ素塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、非水系電解液全量に対するフルオロホウ素塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常3質量%以下、好ましくは1質量%以下、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下、最も好ましくは0.3質量%以下である。
 フルオロホウ素塩の含有量がこの範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<フルオロイミド塩>
 前記フルオロイミド塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR31323334(式中、R31~R34は、各々独立に、水素原子又は炭素数1~12の有機基を表わす。)で表されるアンモニウム等がその例として挙げられる。なかでもリチウムが好ましい。
 上記アンモニウムのR31~R34で表わされる炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR31~R34が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。
 フルオロイミド塩の具体例としては、LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)が挙げられ、LiN(FSO、LiN(CFSO、LiN(CSOが好ましい。
 フルオロイミド塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、非水系電解液全量に対するフルオロイミド塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常8質量%未満、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。
 フルオロイミド塩の含有量がこの範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
(オキサラート塩)
 オキサラート塩は一般式(A)、(B)、(α)、(Y)、又は(Z)で表される化合物の分解物と好適に反応し、複合的被膜を形成することができ、初期の電池抵抗が低減できる点で好ましい。
 オキサラート塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR35363738(式中、R35~R38は、各々独立に、水素原子又は炭素数1~12の有機基を表わす。)で表されるアンモニウム等がその例として挙げられる。なかでもリチウムが好ましい。
 上記アンモニウムのR35~R38で表わされる炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR35~R38が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。
 オキサラート塩の具体例としては、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェートが挙げられ、リチウムビス(オキサラト)ボレート、リチウムジフルオロビス(オキサラト)フォスフェートが好ましく、特にリチウムビス(オキサラト)ボレートが好ましい。
 オキサラート塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、非水系電解液全量に対するオキサラート塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常8質量%未満、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。
 オキサラート塩の含有量がこの範囲内であれば、初期の電池抵抗低減の効果を高め、さらに非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
(フルオロシラン化合物)
 フルオロシラン化合物は一般式(A)、(B)、(α)、(Y)、又は(Z)で表される化合物の分解物と好適に反応し、複合的被膜を形成することができ、初期の電池抵抗が低減できる点で好ましい。
 本実施形態に係る非水系電解液においては、フルオロシラン化合物を含んでいてもよい。フルオロシラン化合物としては、分子内に少なくとも1つのケイ素-フッ素結合(Si-F結合)を有する化合物であれば、特に制限されない。
 フルオロシラン化合物としては、フルオロトリメチルシラン、ジメチル(フルオロ)(ビニル)シラン、(アリル)ジメチル(フルオロ)シラン、ジメチル(フルオロ)(プロパルギル)シラン、ジビニルフルオロ(メチル)シラン、フルオロトリビニルシラン、エチニルジメチルフルオロシラン、ジフルオロジメチルシラン、ジフルオロジビニルシラン、メチルトリフルオロシラン、トリフルオロビニルシラン、フルオロトリエチルシラン、ジエチル(フルオロ)(メチル)シラン、ジエチル(フルオロ)(ビニル)シラン、エチルジビニルフルオロシラン、ジエチル(フルオロ)(エチニル)シラン、(アリル)ジエチル(フルオロ)シラン、ジエチル(フルオロ)(プロパルギル)シラン、ジフルオロジエチルシラン、エチルジフルオロビニルシラン、トリフルオロエチルシラン、フルオロトリプロピルシラン、トリフルオロプロピルシラン、フルオロトリブチルシラン、トリフルオロブチルシラン、フルオロトリペンチルシラン、トリフルオロペンチルシラン、フルオロトリヘキシルシラン、トリフルオロヘキシルシラン、フルオロトリシクロヘキシルシラン、トリフルオロシクロヘキシルシラン、フルオロトリフェニルシラン、フルオロトリトルイルシラン、フルオロトリベンジルシラン、ジフルオロジナフチルシラン、ナフチルトリフルオロシラン、ジビフェニルジフルオロシラン、ビフェニルトリフルオロシラン、(シクロヘキシルフェニル)トリフルオロシラン、ジ(シクロヘキシルフェニル)ジフルオロシラン、フルオロトリ(ビフェニル)シラン、フルオロトリ(シクロヘキシルフェニル)シラン等の化合物が挙げられる。
 これらのうち、好ましくはフルオロトリメチルシラン、ジメチル(フルオロ)(ビニル)シラン、ジメチルジフルオロシラン、メチル(ジフルオロ)(ビニル)シランである。
 フルオロシラン化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。フルオロシラン化合物の含有量(2種以上の場合は合計量)は、非水系電解液全量に対して、通常0.001質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、また、通常3質量%以下であり、好ましくは1質量%以下、より好ましくは0.5質量%以下である。この範囲であれば、初期の電池抵抗の低減効果を高め、さらに、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等を制御しやすい。
(不飽和環状カーボネート)
 本明細書において「不飽和環状カーボネート」とは、炭素-炭素不飽和結合を有する環状カーボネートであり、炭素-炭素二重結合や炭素-炭素三重結合等の炭素-炭素不飽和結合を有するカーボネートであれば、特に限定されず、任意の不飽和環状カーボネートを用いることができる。
 不飽和環状カーボネートの例としては、ビニレンカーボネート類、炭素-炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類等が挙げられる。
 ビニレンカーボネート類の具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート等が挙げられる。
 炭素-炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート等が挙げられる。
 中でも、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートが好ましく、特にビニレンカーボネートは、安定な被膜状の構造物の形成に寄与することができ、より好適に用いられる。
 不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常50以上、好ましくは80以上であり、また通常250以下、好ましくは150以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。
 不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、不飽和環状カーボネートの含有量は、非水系電解液全量に対して、通常0.001質量%以上であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、さらに好ましくは0.2質量%以上であり、また、通常10質量%以下であり、好ましくは8質量%以下、より好ましくは5質量%以下である。不飽和環状カーボネートの含有量が上記範囲内であれば、非水系電解液二次電池の初期抵抗の低減効果を高め、さらに、十分な高温保存特性やサイクル特性向上効果を発現しやすい。
(フッ素化環状カーボネート)
 本明細書において「フッ素化環状カーボネート」とは、フッ素原子を有する環状カーボネートである。
 フッ素化環状カーボネートとしては、炭素原子数2~6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1~4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1~8個のものが好ましい。
 具体的には、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。
 中でも、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,5-ジフルオロ-4,5-ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
 フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 尚、フッ素化環状カーボネートは、非水系電解液の助剤として用いても、非水溶媒として用いてもよい。非水溶媒として用いる場合のフッ素化環状カーボネートの含有量は、非水系電解液全量に対して、通常8質量%以上であり、好ましくは10質量%以上であり、より好ましくは12質量%以上であり、また、通常85質量%以下であり、好ましくは80質量%以下であり、より好ましくは75質量%以下である。この範囲であれば、非水系電解液二次電池の初期抵抗の低減効果を高め、さらに、十分なサイクル特性向上効果を発現しやすく、放電容量維持率が低下することを回避しやすい。
 本発明の一実施形態に係る非水系電解液において、前記不飽和環状カーボネート又はフッ素化環状カーボネートが、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネート、及びフルオロエチレンカーボネートからなる群より選択される少なくとも1種であることが好ましい。
 フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある。)を用いることができる。フッ素化不飽和環状カーボネートは、特に制限されない。中でもフッ素原子が1個又は2個のものが好ましい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
 フッ素化不飽和環状カーボネートとしては、ビニレンカーボネート誘導体、芳香環又は炭素-炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体等が挙げられる。
 ビニレンカーボネート誘導体としては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4,5-ジフルオロエチレンカーボネート等が挙げられる。
 芳香環又は炭素-炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
 フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、通常50以上、好ましくは80以上であり、また、通常250以下、好ましくは150以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
 フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液全量に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。この範囲であれば、非水系電解液二次電池の初期抵抗の低減効果を高め、さらに、十分なサイクル特性向上効果を発現しやすい。
 フッ素化された塩、フルオロシラン化合物、不飽和環状カーボネート、フッ素化環状カーボネート及びオキサラート塩以外の助剤(その他の助剤の含有量)は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液の全量に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高温保存安定性が向上する傾向にある。その他の助剤を2種以上併用する場合には、その他の助剤の合計量が上記範囲を満たすようにすればよい。
<2.非水系電解液電池>
 本発明Aの一実施形態に係る非水系電解液電池は、正極及び負極と、非水系電解液とを備える非水系電解液電池であって、上述した本発明の一実施形態に係る非水系電解液とを備える。より詳細には、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、アルカリ金属塩及び非水系溶媒とともに、上述の一般式(A)又は一般式(B)で表される、Si-O構造を有する化合物を少なくとも1種含有し、且つ上述の一般式(α)で表される化合物を含有する非水系電解液とを備える。
 本発明Bの一実施形態に係る非水系電解液電池は、正極及び負極と、非水系電解液とを備える非水系電解液電池であって、上述した本発明Bの一実施形態に係る非水系電解液とを備える。より詳細には、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、アルカリ金属塩及び非水系溶媒とともに、上述の一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも一種を含有し、且つ上述の一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の少なくとも一種を含有する非水系電解液とを備える。
 本発明Cの一実施形態に係る非水系電解液電池は、正極及び負極と、非水系電解液とを備える非水系電解液電池であって、上述した本発明Cの一実施形態に係る非水系電解液とを備える。より詳細には、集電体及び該集電体上に設けられた正極活物質層を有しかつ金属イオンを吸蔵及び放出し得る正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつ金属イオンを吸蔵及び放出し得る負極と、アルカリ金属塩及び非水系溶媒とともに、上述の一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも一種を含有し、且つ上述の一般式(α)で表される化合物、一般式(Z)又で表される化合物及び一般式(Y)で表される化合物からなる群より選ばれる少なくとも1種を含有する非水系電解液とを備える。
 以下の説明は、発明A~Cに適用される。
<2-1.電池構成>
 本実施形態の非水系電解液電池は、上記の非水系電解液以外の構成については、従来公知の非水系電解液電池と同様である。通常は上記の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。
 本実施形態の非水系電解液電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<2-2.非水系電解液>
 非水系電解液としては、上述の本発明の一実施形態に係る非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、上記非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
<2-3.正極>
 本発明の一実施形態においては、正極は集電体及び該集電体上に設けられた正極活物質層を有する。その他の構成は従来公知のものを採用できる。
 以下に本実施形態の非水系電解液電池に使用される正極について詳細に説明する。
<2-3-1.正極活物質>
 以下に正極に使用される正極活物質について説明する。
(1)組成
 正極活物質としては、コバルト酸リチウムや、少なくともNiとCoを含有し、遷移金属のうち50モル%以上がNiとCoである遷移金属酸化物であり、電気化学的に金属イオンを吸蔵及び放出可能なものであれば特に制限はないが、例えば、電気化学的にリチウムイオンを吸蔵及び放出可能なものが好ましく、リチウムと少なくともNiとCoを含有し、遷移金属のうち60モル%以上がNiとCoである遷移金属酸化物が好ましい。Ni及びCoは、酸化還元の電位が二次電池の正極材として用いるのに好適であり、高容量用途に適しているためである。
 遷移金属酸化物の中でも、下記組成式(1)で示される遷移金属酸化物であることが好ましい。
Lia1Nib1Coc1d1・・・(1)
(式(2)中、0.9≦a1≦1.1、0.3≦b1≦0.95、0.025≦c1≦0.5、0.025≦d1≦0.5の数値を示し、0.5≦b1+c1かつb1+c1+d1=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 正極活物質として用いる遷移金属酸化物のNi及びCoの組成比並びにその他の金属種の組成比が所定の通りであることで、正極から遷移金属が溶出しにくく、かつ、たとえ溶出したとしてもNi及びCoは非水系二次電池内での悪影響が小さいためである。
 組成式(1)で示される遷移金属酸化物としては、例えば、LiNi0.85Co0.10Al0.05、LiNi0.80Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.05Ni0.33Mn0.33Co0.33、LiNi0.5Co0.2Mn0.3、Li1.05Ni0.50Mn0.29Co0.21、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1が挙げられる。
 中でも、下記組成式(2)で示される遷移金属酸化物であることがより好ましい。
Lia2Nib2Coc2d2・・・(2)
(式(2)中、0.9≦a2≦1.1、0.3≦b2≦0.9、0.025≦c2≦0.5、0.025≦d2≦0.5の数値を示し、c2≦b2かつ0.6≦b2+c2かつb2+c2+d2=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 組成式(2)で示される遷移金属酸化物は、NiおよびCoが主成分であり、かつNiのCoに対する組成比が同じか、もしくはNiのCoに対する組成比が大きいことで、非水系二次電池正極として用いた際に、安定であり、かつ高容量を取り出すことが可能となるからである。
 中でも、下記組成式(3)で示される遷移金属酸化物であることがさらに好ましい。
Lia3Nib3Coc3d3・・・(3)
(式(3)中、0.9≦a3≦1.1、0.5≦b3≦0.9、0.025≦c3≦0.5、0.025≦d3≦0.5の数値を示し、c3<b3かつ0.6≦b3+c3かつb3+c3+d3=1を満たす。MはMn、Al、Mg、Zr、Fe、Ti及びErからなる群より選ばれる少なくとも1種の元素を表す。)
 正極活物質として用いる遷移金属酸化物のNi及びCoの組成比並びにその他の金属種の組成比を上記の範囲とすることで、正極から遷移金属が溶出しにくく、かつ、たとえ溶出したとしてもNi及びCoは非水系二次電池内での悪影響が小さいという利点がある。
<2-4.負極>
 本発明の一実施形態においては、負極は集電体及び該集電体上に設けられた負極活物質層を有する。その他の構成は従来公知のものを採用できる。
 以下に負極に使用される負極活物質について述べる。
<2-4-1.負極活物質>
 負極活物質としては、電気化学的に金属イオンを吸蔵及び放出可能なものであれば、特に制限はない。具体例としては、炭素質材料;Liと合金化可能な金属を含有する粒子、リチウム含有金属複合酸化物材料等の金属化合物系材料:及びこれらの混合物が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。サイクル特性及び安全性が良好でさらに連続充電特性も優れている点で、炭素質材料、Liと合金化可能な金属粒子、又はLiと合金化可能な金属粒子と黒鉛粒子との混合物を使用するのが好ましい。
 負極活物質としては、前記の通り炭素質材料;Liと合金化可能な金属を含有する粒子等の金属化合物系材料;等が挙げられる。
 前記炭素質材料としては、天然黒鉛、人造黒鉛、非晶質炭素、炭素被覆黒鉛、黒鉛被覆黒鉛、樹脂被覆黒鉛等が挙げられる。なかでも、天然黒鉛が好ましい。
 天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛及び/又はこれらの黒鉛に球形化や緻密化等の処理を施した黒鉛粒子等が挙げられる。これらの中でも、粒子の充填性や充放電レート特性の観点から、球形化処理を施した球状もしくは楕円体状の黒鉛が特に好ましい。
 負極活物質として用いられる金属化合物系材料は、リチウムイオンを吸蔵及び放出可能であれば特に制限されず、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよい。リチウム合金を形成する単体金属及び合金は、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属並びにこれら原子を含む合金又は化合物であり、更に好ましくはケイ素及びスズの単体金属並びにこれら原子を含む合金又は化合物などの、ケイ素又はスズを構成元素として有するものである。最も好ましいのはケイ素であり、非晶質SiもしくはナノサイズのSi結晶が、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能である点で好ましい。
 これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<Liと合金化可能な金属を含有する粒子>
 リチウムと合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物を負極活物質として使用する場合、Liと合金化可能な金属は、粒子形態である。
 Liと合金化可能な金属を含有する粒子としては、従来公知のいずれのものも使用可能であるが、非水系電解液電池の容量とサイクル寿命の点から、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、As、Nb、Mo、Cu、Zn、Ge、In、Ti及びWからなる群より選ばれる金属又はその化合物の粒子であることが好ましい。また、Liと合金化可能な金属を含有する粒子が金属を2種以上含有する場合、当該粒子はこれらの金属の合金からなる合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその金属化合物の粒子であることが好ましい。
 また、Liと合金化可能な金属の化合物としては、金属酸化物、金属窒化物、金属炭化物等が挙げられる。該化合物は、Liと合金化可能な金属を2種以上含有していてもよい。
 中でも、金属Si(以下、Siと記載する場合がある)又はSi金属化合物が電池の高容量化の点で好ましい。本明細書では、Si又はSi金属化合物を総称してSi化合物と呼ぶ。Si化合物としては、具体的には、SiO,SiN,SiC、SiZ(Z=C、N)等が挙げられる。Si化合物としては、Si金属酸化物(SiO)が黒鉛と比較して理論容量が大きい点で好ましく、又は非晶質SiもしくはナノサイズのSi結晶が、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能である点で好ましい。この一般式SiOは、二酸化ケイ素(SiO)とSiとを原料として得られるが、そのxの値は通常0<x<2である。
<Liと合金化可能な金属を含有する粒子と黒鉛粒子とを含有する負極活物質>
 負極活物質は、Liと合金化可能な金属を含有する粒子と黒鉛粒子とを含有するものであってもよい。その負極活物質とは、Liと合金化可能な金属を含有する粒子と黒鉛粒子とが互いに独立した粒子の状態で混合されている混合物でもよいし、Liと合金化可能な金属を含有する粒子が黒鉛粒子の表面及び/又は内部に存在している複合体でもよい。
<Liと合金化可能な金属を含有する粒子の含有割合>
 Liと合金化可能な金属を含有する粒子と黒鉛粒子の合計に対するLiと合金化可能な金属を含有する粒子の含有割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは、1.0質量%以上、更に好ましくは2.0質量%以上である。また、通常99質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より更に好ましくは25質量%以下、より更に好ましくは20質量%以下、特に好ましくは15質量%以下、最も好ましくは10質量%以下である。この範囲であると、Si表面での副反応の制御が可能であり、非水系電解液電池において十分な容量を得ることが可能となる点で好ましい。
<2-5.セパレータ>
 正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の一実施形態に係る非水系電解液は、通常はこのセパレータに含浸させて用いる。セパレータは従来公知のものを用いることができる。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
[実施例A1]
 本実施例及び比較例に使用した化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000071

 化合物A11
Figure JPOXMLDOC01-appb-C000072

 化合物A12
Figure JPOXMLDOC01-appb-C000073

 化合物A13
Figure JPOXMLDOC01-appb-C000074

 化合物A14
Figure JPOXMLDOC01-appb-C000075

 化合物A15
Figure JPOXMLDOC01-appb-C000076

  化合物A16
Figure JPOXMLDOC01-appb-C000077

  化合物A17
Figure JPOXMLDOC01-appb-C000078

  化合物A18
Figure JPOXMLDOC01-appb-C000079

 化合物A19
Figure JPOXMLDOC01-appb-C000080

 化合物A110
Figure JPOXMLDOC01-appb-C000081

化合物A111
Figure JPOXMLDOC01-appb-C000082

化合物A112
Figure JPOXMLDOC01-appb-C000083

    化合物A113
Figure JPOXMLDOC01-appb-C000084

    化合物A114
Figure JPOXMLDOC01-appb-C000085

    化合物A115
<実施例A1-1~A1-18、比較例A1-1~A1-19>
[正極の作製]
 正極活物質としてリチウム・ニッケル・コバルト・マンガン複合酸化物(Li1.0Ni0.5Co0.2Mn0.3)90質量部と、導電材としてアセチレンブラック7質量部と、結着剤としてポリフッ化ビニリデン(PVdF)3質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 天然黒鉛98質量部に、増粘剤及び結着剤として、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部及びスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥した後、プレスして負極とした。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)の混合物(体積比EC:DEC:EMC=3:3:4)に、電解質として十分に乾燥させたLiPFを1.2mol/L(14.8質量%、非水系電解液中の濃度として)溶解させ、さらに、ビニレンカーボネート(VC)及び、フルオロエチレンカーボネート(FEC)をそれぞれ2.0質量%(非水系電解液中の濃度として)添加した(以下、これを基準電解液A1-1と呼ぶ)。基準電解液A1-1に対して、下記表1に記載の含有量で化合物A11~A115を加えて非水系電解液を調製した。なお、表中の「含有量(質量%)」は、各非水系電解液全量を100質量%とした時の含有量である。
[非水系電解液電池の製造]
 上記の正極、負極及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記調製後の非水系電解液を袋内に注入し、真空封止を行い、ラミネート型の非水系電解液電池を作製した。
<非水系電解液電池の評価>
[注液後OCV測定]
 25℃の恒温槽中、上記の方法で作製した非水系電解液電池のOCVを測定した。
[初期コンディショニング]
 25℃の恒温槽中、0.05Cに相当する電流で6時間定電流充電した後、0.2Cで3.0Vまで放電した。0.2Cで4.1VまでCC-CV充電を行った。その後、45℃、72時間の条件でエージングを実施した。その後、0.2Cで3.0Vまで放電し、ラミネート型電池を安定させた。さらに、0.2Cで4.4VまでCC-CV充電を行った後、0.2Cで3.0Vまで放電し、初期コンディショニングを行った。
[初期コンディショニング発生ガス量測定]
 初期コンディショニング後の電池をエタノール浴中に浸して体積を測定し、初期コンディショニング前後の体積変化から発生ガス量を求め、これを「初期ガス量」とした。
 下記表1に、比較例A1-1のOCVとの差であるΔOCVと、比較例A1-1の初期ガス量を100とした際の初期ガス量をそれぞれ示す。表中、「初期ガス量」は「初期ガス」と示す。
Figure JPOXMLDOC01-appb-T000086
 表1から明らかなように、実施例A1-1~実施例A1-18で製造した電池は、比較例A1-1~A1-18で製造した電池に対して、ΔOCVが大きく、その結果初期ガス量が少ないことがわかる。
 比較例A1-1と比較例A1-2、A1-14、A1-15、A1-17~A1-19との比較から、式(α)で表される化合物を含まずに、式(A)又は(B)で表されるSi-O構造を有する化合物のみを含む非水系電解液を用いた場合、ΔOCVが比較例A1-1とほとんど同じであり、初期ガス量が比較例A1-1より多い傾向を示す。また、比較例A1-1と比較例A1-3~A1-9及びA1-16との比較から、式(A)又は(B)で表されるSi-O構造を有する化合物を含まずに、式(α)で表される化合物のみを含む非水系電解液を用いた場合、ΔOCVが比較例A1-1とほとんど同じであり、初期ガス量が比較例A1-1より多い傾向を示す。
 比較例A1-1、A1-2、A1-4の結果からは、実施例A1-1の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-1の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し62%と顕著に抑制された。
 比較例A1-1、A1-2、A1-5の結果からは、実施例A1-2の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-2の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に比べ64%と顕著に抑制された。
 比較例A1-1、A1-2、A1-6の結果からは、実施例A1-3の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-3の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し63%と顕著に抑制された。
 比較例A1-1、A1-2、A1-7の結果からは、実施例A1-4の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-4の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し57%と顕著に抑制された。
 比較例A1-1、A1-2、A1-3の結果からは、実施例A1-5の非水系電解液を用いた場合には初期ガス量の大幅な増加が予測される。これに反して、実施例A1-5の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し42%と顕著に抑制された。
 比較例A1-1、A1-2、A1-14の結果からは、実施例A1-8の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-8の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し44%と顕著に抑制された。
 比較例A1-1、A1-2、A1-15の結果からは、実施例A1-9の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-9の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し56%と顕著に抑制された。
 比較例A1-1、A1-6、A1-17の結果からは、実施例A1-10の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-10の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し80%に抑制された。
 比較例A1-1、A1-3、A1-17の結果からは、実施例A1-11の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-11の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し45%と顕著に抑制された。
 比較例A1-1、A1-6、A1-18の結果からは、実施例A1-12の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-12の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し45%と顕著に抑制された。
 比較例A1-1、A1-3、A1-18の結果からは、実施例A1-13の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-13の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し82%に抑制された。
 比較例A1-1、A1-2、A1-4、A1-6、A1-8の結果からは、実施例A1-14の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-14の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し71%に抑制された。
 比較例A1-1、A1-2、A1-8の結果からは、実施例A1-15の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-15の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し86%に抑制された。
 比較例A1-1、A1-2、A1-16の結果からは、実施例A1-16の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-16の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し76%に抑制された。
 実施例A1-1、A1-14、A1-15の結果から、式(A)で表されるSi-O構造を有する化合物と式(α)で表される化合物を併用した場合に、式(α)で表される化合物の含有量が少ない程、初期ガス量が抑制された。
 また、実施例A1-5、A1-16、A1-17の結果から、式(A)で表されるSi-O構造を有する化合物と式(α)で表される化合物を併用した場合に、式(α)で表される化合物の含有量が少ない程、初期ガス量が抑制された。
 比較例A1-1、A1-2、A1-16の結果からは、実施例A1-18の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A1-18の結果は、ΔOCVが大きく、初期ガス量は比較例A1-1に対し59%と顕著に抑制された。
 また、実施例A1-6は、初期ガス量は比較例A1-1に対し25%と顕著に抑制された。
 また、式(α)で表される化合物と、Si-O構造を有するが式(A)又は(B)で表される化合物には該当しない化合物を併用した比較例A1-10~A1-12は、ΔOCVが比較例A1-1とほとんど同じであり、初期ガス量が比較例A1-1より127%~176%と増加した。
 また、式(A)で表されるSi-O構造を有する化合物と、Si-N構造を有するが式(α)で表される化合物には該当しない化合物を併用した比較例A1-13は、ΔOCVが比較例A1-1とほとんど同じであり、初期ガス量が比較例A1-1より169%と増加した。
 実施例の電池は、注液後の、一般式(α)で表される化合物と一般式(A)又は(B)で表されるSi-O構造を有する化合物の正極活物質及び/又は負極活物質への吸着量が多いため、初回充電時に電極に局在化している化合物が電気化学的に分解し、正極活物質及び/又は負極活物質表面に複合的な絶縁被膜を形成するためと推測される。Δこれより、一般式(α)で表される化合物と一般式(A)又は(B)で表されるSi-O構造を有する化合物とを組み合わせることで、電極への化合物の吸着を制御し、初期ガス発生量を好適に抑制できる。
[実施例A2]
 本実施例及び比較例に使用した化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000087

化合物A21
Figure JPOXMLDOC01-appb-C000088

化合物A22
Figure JPOXMLDOC01-appb-C000089

化合物A23
Figure JPOXMLDOC01-appb-C000090

化合物A24
Figure JPOXMLDOC01-appb-C000091

 化合物A25
Figure JPOXMLDOC01-appb-C000092

 化合物A26
Figure JPOXMLDOC01-appb-C000093

 化合物A27
Figure JPOXMLDOC01-appb-C000094

 化合物A28
Figure JPOXMLDOC01-appb-C000095

 化合物A29
Figure JPOXMLDOC01-appb-C000096

 化合物A210
Figure JPOXMLDOC01-appb-C000097

 化合物A211
Figure JPOXMLDOC01-appb-C000098

 化合物A212
Figure JPOXMLDOC01-appb-C000099

   化合物A213
<実施例A2-1~A2-20、比較例A2-1~A2-16>
[正極の作製]
 正極活物質としてリチウム・ニッケル・コバルト・マンガン複合酸化物(Li1.0Ni0.5Co0.2Mn0.3)90質量部と、導電材としてアセチレンブラック7質量部と、結着剤としてポリフッ化ビニリデン(PVdF)3質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 天然黒鉛98質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部及び結着剤としてスチレン・ブタジエンゴムの水性ディスパージョン(スチレン・ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥した後、プレスして負極とした。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)の混合物(体積比EC:DEC:EMC=3:3:4)に、電解質として十分に乾燥させたLiPFを1.2mol/L(14.8質量%、非水系電解液中の濃度として)溶解させ、さらに、ビニレンカーボネート(VC)及び、フルオロエチレンカーボネート(FEC)をそれぞれ2.0質量%(非水系電解液中の濃度として)添加した(以下、これを基準電解液A2-1と呼ぶ)。基準電解液1に対して、下記表1に記載の含有量となるように化合物A21~A213をそれぞれ加えて、実施例A2-1~A2-20及び比較例A2-2~A2-16の非水系電解液を調製した。なお、表中の「含有量(質量%)」は、各非水系電解液全量を100質量%とした時の含有量である。また、比較例A2-1は基準電解液A2-1を用いた。
[非水系電解液電池の製造]
 上記の正極、負極及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に、正極と負極の端子が突設するように挿入した後、上記調製後の非水系電解液を袋内に注入し、真空封止を行い、ラミネート型の非水系電解液電池を作製した。
<非水系電解液電池の評価>
[注液後OCV測定]
 25℃の恒温槽中、上記の方法で作製した非水系電解液電池のOCVを測定した。
[初期コンディショニング]
 25℃の恒温槽中、0.05Cに相当する電流で6時間定電流充電した後、0.2Cで3.0Vまで放電した。0.2Cで4.1VまでCC-CV充電を行った。その後、45℃、72時間の条件でエージングを実施した。その後、0.2Cで3.0Vまで放電し、ラミネート型電池を安定させた。さらに、0.2Cで4.4VまでCC-CV充電を行った後、0.2Cで3.0Vまで放電し、初期コンディショニングを行った。
[初期コンディショニング発生ガス量測定]
 初期コンディショニング後の電池をエタノール浴中に浸して体積を測定し、初期コンディショニング前後の体積変化から発生ガス量を求め、これを「初期ガス量」とした。
 下記表2に、比較例A2-1のOCVとの差であるΔOCVと、比較例A2-1の初期ガス量を100とした際の初期ガス量をそれぞれ示す。表中、「初期ガス量」は「初期ガス」と示す。
Figure JPOXMLDOC01-appb-T000100
 比較例A2-1と比較例A2-2、12、15及び16との比較から、式(α)で表される化合物を含まずに、式(A)又は(B)で表される、Si-O構造を有する化合物のみを含む非水系電解液を用いた場合、ΔOCVが比較例A2-1とほとんど同じであり、初期ガス量が比較例A2-1より多い傾向を示すことがわかる。また、比較例A2-1と比較例A2-3~8、11、13及び14との比較から、式(A)又は(B)で表される、Si-O構造を有する化合物を含まずに、式(α)で表される化合物のみを含む非水系電解液を用いた場合、ΔOCVが比較例A2-1とほとんど同じであり、初期ガス量が比較例A2-1より多い傾向を示すことがわかる。これらから、式(A)又は(B)で表される、Si-O構造を有する化合物と、式(α)で表される化合物の両方を含有する非水系電解液を用いる場合、これらの化合物を含まない場合及びいずれか一方を含む場合よりも、非水系電解液電池の初期ガス量の増加が予想される。しかしながら、表2から明らかなように、実施例A2-1~実施例A2-20で製造した非水系電解液電池は、比較例A2-1~比較例A2-10で製造した電池に対して、ΔOCVが大きく、その結果初期ガス量が少なく、式(A)又は(B)で表される、Si-O構造を有する化合物と、式(α)で表される化合物の両方を含有する非水系電解液を用いることで、非水系電解液電池の初期コンディショニング時のガス発生が抑制されたことがわかる。
 特に、比較例A2-1、A2-3、A2-16の結果からは、実施例A2-17の非水系電解液を用いた場合には初期ガス量の増加が予測される。これに反して、実施例A2-17の結果は、ΔOCVが大きく、初期ガス量は比較例A2-1に対し59%と顕著に抑制された。
 また、実施例A2-3、A2-4と比較例A2-10との比較から、式(A)又は(B)で表されるSi-O構造を有する化合物を含み、式(α)で表される化合物と類似構造を有するアミド化合物を含む非水系電解液であっても、該アミド化合物がSi-N-H構造を有さない化合物である場合にはΔOCVが上がらず、初期ガス量が多いことが判る。
 また、式(A)又は(B)で表される、Si-O構造を有する化合物を含まず、式(α2)で表されるN-H構造を有する化合物のみを含む非水系電解液を用いた比較例A2-9はΔOCVが比較例A2-1と変わらず、初期ガス量が著しく増加した。
 また、式(α)で表される化合物を含まずに、式(A)又は(B)で表される、Si-O構造を有する化合物のみを含む非水系電解液を用いた比較例A2-12はΔOCVが比較例A2-1とほとんど同じであり、初期ガス量が著しく増加した。
[実施例A3]
 本実施例及び比較例に使用した化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000101

化合物A31
Figure JPOXMLDOC01-appb-C000102

 化合物A32
Figure JPOXMLDOC01-appb-C000103

 化合物A33
Figure JPOXMLDOC01-appb-C000104

  化合物A34
Figure JPOXMLDOC01-appb-C000105

化合物A35
Figure JPOXMLDOC01-appb-C000106

 化合物A36
Figure JPOXMLDOC01-appb-C000107

 化合物A37
Figure JPOXMLDOC01-appb-C000108

 化合物A38
Figure JPOXMLDOC01-appb-C000109

 化合物A39
Figure JPOXMLDOC01-appb-C000110

   化合物A310
Figure JPOXMLDOC01-appb-C000111

 化合物A311
<実施例A3-1~A3-12、比較例A3-1~A3-5>
[正極の作製]
 正極活物質としてリチウム・ニッケル・コバルト・マンガン複合酸化物(Li1.0Ni0.5Co0.2Mn0.3)90質量部と、導電材としてアセチレンブラック7質量部と、結着剤としてポリフッ化ビニリデン(PVdF)3質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 天然黒鉛98質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部及び結着剤としてスチレン・ブタジエンゴムの水性ディスパージョン(スチレン・ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥した後、プレスして負極とした。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)の混合物(体積比EC:DEC:EMC=3:3:4)に、電解質として十分に乾燥させたLiPFを1.2mol/L(14.8質量%、非水系電解液中の濃度として)溶解させ、さらに、ビニレンカーボネート(VC)及び、フルオロエチレンカーボネート(FEC)をそれぞれ2.0質量%(非水系電解液中の濃度として)添加した(以下、これを基準電解液A3-1と呼ぶ)。基準電解液1に対して、下記表3に記載の含有量となるように化合物A31~A311をそれぞれ加えて、実施例A3-1~A3-12及び比較例A3-1~A3-5の非水系電解液を調製した。なお、表中の「含有量(質量%)」は、各非水系電解液全量を100質量%とした時の含有量である。また、比較例A3-1は基準電解液A3-1を用いた。
[非水系電解液電池の製造]
 上記の正極、負極及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に、正極と負極の端子が突設するように挿入した後、上記調製後の非水系電解液を袋内に注入し、真空封止を行い、ラミネート型の非水系電解液電池を作製した。
<非水系電解液電池の評価>
[注液後OCV測定]
 25℃の恒温槽中、上記の方法で作製した非水系電解液電池のOCVを測定した。
[初期コンディショニング]
 25℃の恒温槽中、0.05Cに相当する電流で6時間定電流充電した後、0.2Cで3.0Vまで放電した。0.2Cで4.1VまでCC-CV充電を行った。その後、45℃、72時間の条件でエージングを実施した。その後、0.2Cで3.0Vまで放電し、ラミネート型電池を安定させた。さらに、0.2Cで4.4VまでCC-CV充電を行った後、0.2Cで3.0Vまで放電し、初期コンディショニングを行った。
[初期コンディショニング]
 25℃の恒温槽中、上記の方法で作製した非水系電解液電池を、0.1C(1Cとは、充電または放電に1時間かかる電流値のことを示す。以下同様。)に相当する電流で3.2Vまで定電流充電した後、0.2Cで4.2Vまで定電流-定電圧充電(以下、CC-CV充電と記載)を行った。その後、45℃に120時間保持しエージングを実施した。その後、0.2Cで2.5Vまで放電し、非水系電解液電池を安定させた。さらに、0.2Cで4.2VまでCC-CV充電を行った後、0.2Cで2.5Vまで放電し、初期コンディショニングを行った。
[初期コンディショニング発生ガス量測定]
 初期コンディショニング後の電池をエタノール浴中に浸して体積を測定し、初期コンディショニング前後の体積変化から発生ガス量を求め、これを「初期ガス量」とした。
[初期抵抗測定]
 初期コンディショニング後の電池を0.2Cで初期放電容量の半分の容量となるようCC-CV充電を行った。これを25℃において各々1.0C、2.0C、3.0Cで放電させ、各放電過程の5秒時点の電圧を測定した。得られた1.0C、2.0C、3.0Cにおける電流-電圧直線の傾きの平均値を「初期抵抗」とした。
 下記表3に、比較例A3-1のOCVとの差であるΔOCVと、比較例A3-1の初期ガス量を100とした際の初期ガス量を、比較例A3-1の初期抵抗を100とした際の初期抵抗の値を、それぞれ示す。表中、「初期ガス量」は「初期ガス」と示す。
Figure JPOXMLDOC01-appb-T000112
 表3から明らかなように、実施例A3-1~実施例A3-12で製造した電池は、比較例A3-1~A3-5で製造した電池に対して、初期ガス及び初期抵抗が少ないことがわかる。
 また、化合物(α)で表される化合物として、化合物(α1)で表される化合物と化合物(α2)で表される化合物を併用することで、初期抵抗も低下することがわかる。特に実施例A3-3は、実施例A3-1と比較して初期抵抗だけでなく、初期ガスも抑制できることがわかる。
 また、助剤である化合物A37~A312を併用することで初期抵抗はさらに低下することがわかる。
[実施例B]
 本実施例及び比較例に使用した化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000113

  化合物B1
Figure JPOXMLDOC01-appb-C000114

  化合物B2
Figure JPOXMLDOC01-appb-C000115

  化合物B3
Figure JPOXMLDOC01-appb-C000116

 化合物B4
Figure JPOXMLDOC01-appb-C000117

  化合物B5
Figure JPOXMLDOC01-appb-C000118

 化合物B6
Figure JPOXMLDOC01-appb-C000119

 化合物B7
Figure JPOXMLDOC01-appb-C000120

 化合物B8
Figure JPOXMLDOC01-appb-C000121

化合物B9
Figure JPOXMLDOC01-appb-C000122

  化合物B10
Figure JPOXMLDOC01-appb-C000123

  化合物B11
<実施例B1~B6、比較例B1~B11>
[正極の作製]
 正極活物質としてリチウム・ニッケル・コバルト・マンガン複合酸化物(Li1.0Ni0.5Co0.2Mn0.3)90質量部と、導電材としてアセチレンブラック7質量部と、結着剤としてポリフッ化ビニリデン(PVdF)3質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[負極の作製]
 天然黒鉛98質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部及び結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔の片面に塗布して乾燥した後、プレスして負極とした。
[非水系電解液の調製]
 乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)の混合物(体積比EC:DEC:EMC=3:3:4)に、電解質として十分に乾燥させたLiPFを1.2mol/L(14.8質量%、非水系電解液中の濃度として)溶解させ、さらに、ビニレンカーボネート(VC)及び、フルオロエチレンカーボネート(FEC)をそれぞれ2.0質量%(非水系電解液中の濃度として)添加した(以下、これを基準電解液B1と呼ぶ)。基準電解液B1に対して、下記表4に記載の含有量で化合物B1~B11を加えて非水系電解液を調製した。なお、表中の「含有量(質量%)」は、各非水系電解液全量を100質量%とした時の含有量である。
[非水系電解液電池の製造]
 上記の正極、負極及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記調製後の非水系電解液を袋内に注入し、真空封止を行い、ラミネート型の非水系電解液電池を作製した。
<非水系電解液電池の評価>
[注液後OCV測定]
 25℃の恒温槽中、上記の方法で作製した非水系電解液電池のOCVを測定した。
[初期コンディショニング]
 25℃の恒温槽中、0.05Cに相当する電流で6時間定電流充電した後、0.2Cで3.0Vまで放電した。0.2Cで4.1VまでCC-CV充電を行った。その後、45℃、72時間の条件でエージングを実施した。その後、0.2Cで3.0Vまで放電し、ラミネート型電池を安定させた。さらに、0.2Cで4.4VまでCC-CV充電を行った後、0.2Cで3.0Vまで放電し、初期コンディショニングを行った。
[初期コンディショニング時発生ガス量測定]
 初期コンディショニング後の電池をエタノール浴中に浸して体積を測定し、初期コンディショニング前後の体積変化から発生ガス量を求め、これを「初期ガス量」とした。
 下記表4に、比較例B1のOCVとの差であるΔOCVと、比較例B1の初期ガス量を100とした際の初期ガス量の値を示す。表中、「初期ガス量」は「初期ガス」と示す。
Figure JPOXMLDOC01-appb-T000124
 表4から明らかなように、実施例B1~実施例B6で製造した電池は、比較例B1~比較例B11で製造した電池に対して、ΔOCVが大きく、その結果初期ガス量が少ないことがわかる。
 比較例B1と比較例B2との比較から、一般式(Y)又は(Z)で表されるSi-N構造を有する化合物を含まずに、一般式(A2)又は(B2)で表されるSi-O構造を有する化合物のみを含む非水系電解液を用いた場合、ΔOCVが比較例B1より若干高くなったが、初期ガス量は比較例B1より3%増加した。また、比較例B1と比較例B4、B5、B6との比較から、一般式(A2)又は(B2)で表されるSi-O構造を有する化合物を含まずに、一般式(Y)又は(Z)で表されるSi-N構造のみを含む非水系電解液を用いた場合、ΔOCVが比較例B1とほとんど同じであり、初期ガス量が比較例B1より多くなる傾向を示した。
 比較例B1、B2、B4の結果からは、実施例B1の非水系電解液を用いた場合には、初期ガス量の増加が予測される。これに反して、実施例B1の結果は、ΔOCVが大きく、初期ガス量は比較例1に対し、47%と顕著に抑制された。
 比較例B1、B2、B5の結果からは、実施例B2の非水系電解液を用いた場合には、初期ガス量の増加が予測される。これに反して、実施例B1の結果は、ΔOCVが大きく、初期ガス量は比較例B1に対し、75%と顕著に抑制された。
 また、一般式(Y)又は(Z)で表されるSi-N構造を有する化合物と、Si-O構造を有するが一般式(A2)又は(B2)で表されるSi-O構造を有する化合物には該当しない化合物を併用した場合、ΔOCVは比較例B1とほとんど同じであり、比較例B8、B9では比較例B1に対し146%に増加し、比較例B7は比較例B1に対し169%に増加した。
 実施例の電池は、注液後の、一般式(Y)又は(Z)で表されるSi-N構造を有する化合物と一般式(A2)又は(B2)で表されるSi-O構造を有する化合物の正極活物質及び/又は負極活物質への吸着量が多いため、初回充電時に電極に局在化している化合物が電気化学的に分解し、正極及び/又は負極活物質表面に複合的な絶縁被膜を形成するためと推測される。また、比較例B4~B6から、Si-N構造を有する化合物の含有量が多いと、注液後のΔOCVが小さいため、化合物の電極への吸着量が少ないと考える。そのため、充電時に絶縁性被膜が好適に形成されないため、初期ガス量の抑制効果が得られなかったと推定する。これより、一般式(Y)又は(Z)で表されるSi-N構造を有する化合物と一般式(A2)又は(B2)で表されるSi-O構造を有する化合物を組み合わせることで、これら化合物の電極への吸着を制御し、初期ガスを好適に抑制できることが示された。
 本出願は、2019年8月8日出願の日本特許出願(特願2019-146414)、2019年8月8日出願の日本特許出願(特願2019-146415)及び2019年11月28日出願の日本特許出願(特願2019-215635)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (15)

  1.  金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、アルカリ金属塩、非水系溶媒、一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の少なくとも一種、及び一般式(α)で表される化合物を含有することを特徴とする非水系電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式(A)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Xは置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;nは0~5の整数を示す。nが2以上の場合、複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (式(B)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;kは3~6の整数を示す。複数のRはそれぞれ同一であっても異なっていてもよく、複数のRはそれぞれ同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003

    (式(α)中、R89は、水素原子又は-SiR10で表されるシリル基を示し;R~R10は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R11は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;Yは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、置換基を有していてもよい炭素数1~12のアルコキシ基、-NR-SiRで表される基、又は-NR-Hで表される基を示し;Rは、水素原子、又は置換基を有していてもよい炭素数1~12の炭化水素基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R11とRは互いに結合し環を形成していてもよい。)
  2.  前記一般式(A)又は(B)で表されるSi-O構造を有する化合物の含有量が非水系電解液の全量に対して0.001質量%~10質量%である、請求項1に記載の非水系電解液。
  3.  前記一般式(α)で表されるSi-N構造を有する化合物の含有量が非水系電解液の全量に対して0.01質量ppm以上0.5質量%以下である、請求項1又は2に記載の非水系電解液。
  4.  非水系電解液中における前記一般式(α)で表される化合物の含有量に対する前記一般式(A)又は一般式(B)で表されるSi-O構造を有する化合物の含有量の比率が1.0以上10000以下である、請求項1~3のいずれか一項に記載の非水系電解液。
  5.  前記R~Rの少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である、請求項1~4のいずれか一項に記載の非水系電解液。
  6.  前記非水電解液が、更に、フッ素化された塩、フルオロシラン化合物、不飽和環状カーボネート、フッ素原子を有する環状カーボネート及びオキサラート塩から選択される1種以上を含有する、請求項1~5のいずれか一項に記載の非水系電解液。
  7.  金属イオンを吸蔵及び放出しうる正極並びに負極を備える非水系電解液電池用の非水系電解液であって、アルカリ金属塩、非水系溶媒、一般式(A2)又は一般式(B2)で表されるSi-O構造を有する化合物の少なくとも1種を含有し、且つ一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の少なくとも1種を含有することを特徴とする非水系電解液。
    Figure JPOXMLDOC01-appb-C000004

    (式(A2)中、R12~R16は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;X’は置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRo2p2q2で表されるシリル基を示し;Ro2~Rq2は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;n’は0~5の整数を示し;R12~R14の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。n’が2以上の場合、複数のR15はそれぞれ同一であっても異なっていてもよく、複数のR16はそれぞれ同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000005

    (式(B2)中、R17~R18は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し、k’は3~6の整数を示す。R17又はR18の少なくとも1つは炭素-炭素不飽和結合を有する炭素数2~12の炭化水素基である。複数のR17はそれぞれ同一であっても異なっていてもよく、複数のR18はそれぞれ同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000006

    (式(Z)中、R19~R21は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R22~R23は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は‐SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示す。R22及びR23は互いに結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000007

    (式(Y)中、R24は、水素原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は-SiRで表されるシリル基を示し;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;R25~R26は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~12の炭化水素基、又は置換基を有していてもよい炭素数1~12のアルコキシ基を示し;lは3~6の整数を示す。複数のR25はそれぞれ同一であっても異なっていてもよく、複数のR26はそれぞれ同一であっても異なっていてもよい。)
  8.  前記一般式(A2)又は(B2)で表されるSi-O構造を有する化合物の含有量が非水系電解液の全量に対して0.001質量%以上10質量%以下である、請求項7に記載の非水系電解液。
  9.  前記一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の含有量が非水系電解液の全量に対して0.01質量ppm以上0.5質量%未満である、請求項7又は8に記載の非水系電解液。
  10.  非水系電解液中における前記一般式(Z)又は一般式(Y)で表されるSi-N構造を有する化合物の含有量に対する前記一般式(A2)又は一般式(B2)で表される化合物の含有量の比率が1.0以上10000以下である、請求項7~9のいずれか一項に記載の非水系電解液。
  11.  前記非水系電解液が前記一般式(A2)で表される化合物を含有し、前記式(A2)において、R~Rの少なくとも1つは、ビニル基又はアリル基である、請求項7~10のいずれか一項に記載の非水系電解液。
  12.  前記非水系電解液が前記一般式(B2)で表される化合物を含有し、前記式(B2)において、R25又はR26の少なくとも1つは、ビニル基又はアリル基である、請求項7~11のいずれか一項に記載の非水系電解液。
  13.  前記式(Z)において、R22~R23の内少なくとも一つは、-SiRで表されるシリル基である、請求項7~12のいずれか一項に記載の非水系電解液。
  14.  前記非水電解液が、更に、フッ素化された塩、フルオロシラン化合物、不飽和環状カーボネート、フッ素原子を有する環状カーボネート及びオキサラート塩から選択される1種以上を含有する、請求項7~13のいずれか一項に記載の非水系電解液。
  15.  金属イオンを吸蔵及び放出しうる正極及び負極、並びに非水系電解液を備えた非水系電解液電池であって、該非水系電解液が請求項1~14のいずれか一項に記載の非水系電解液である、非水系電解液電池。
PCT/JP2020/030504 2019-08-08 2020-08-07 非水系電解液及び非水系電解液電池 WO2021025164A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20850586.7A EP4012814A4 (en) 2019-08-08 2020-08-07 NON-AQUEOUS ELECTROLYTIC SOLUTION AND NON-AQUEOUS ELECTROLYTIC SOLUTION BATTERY
CN202080056205.5A CN114207901B (zh) 2019-08-08 2020-08-07 非水电解液及非水电解质电池
JP2021537411A JPWO2021025164A1 (ja) 2019-08-08 2020-08-07
KR1020227005631A KR20220035244A (ko) 2019-08-08 2020-08-07 비수계 전해액 및 비수계 전해액 전지
US17/591,329 US20220158244A1 (en) 2019-08-08 2022-02-02 Nonaqueous Electrolyte Solution and Nonaqueous-Electrolytic-Solution Battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019146414 2019-08-08
JP2019-146414 2019-08-08
JP2019-146415 2019-08-08
JP2019146415 2019-08-08
JP2019215635 2019-11-28
JP2019-215635 2019-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/591,329 Continuation US20220158244A1 (en) 2019-08-08 2022-02-02 Nonaqueous Electrolyte Solution and Nonaqueous-Electrolytic-Solution Battery

Publications (1)

Publication Number Publication Date
WO2021025164A1 true WO2021025164A1 (ja) 2021-02-11

Family

ID=74503886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030504 WO2021025164A1 (ja) 2019-08-08 2020-08-07 非水系電解液及び非水系電解液電池

Country Status (6)

Country Link
US (1) US20220158244A1 (ja)
EP (1) EP4012814A4 (ja)
JP (1) JPWO2021025164A1 (ja)
KR (1) KR20220035244A (ja)
CN (1) CN114207901B (ja)
WO (1) WO2021025164A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013489A (zh) * 2021-02-25 2021-06-22 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的锂离子电池
CN114156526A (zh) * 2021-12-02 2022-03-08 浙江大学 一种用于锂电池的高电压电解液

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005522A1 (ko) * 2022-06-28 2024-01-04 자인에너지 주식회사 신규한 음이온 수용체 화합물 및 이를 함유한 전해질
WO2024005524A1 (ko) * 2022-06-28 2024-01-04 자인에너지 주식회사 신규한 음이온 수용체 화합물 및 이를 함유한 전해질
CN115572364A (zh) * 2022-11-07 2023-01-06 重庆宏国聚材科技有限责任公司 一种溶剂型高分子磷酸盐及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007332A (ja) 2001-06-22 2003-01-10 Toyota Motor Corp リチウム二次電池及びその製造方法
JP2012160316A (ja) * 2011-01-31 2012-08-23 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池
JP2015005328A (ja) * 2012-06-13 2015-01-08 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2015098471A1 (ja) 2013-12-25 2015-07-02 旭化成株式会社 シリル基含有化合物を含む電解液添加用組成物、該組成物を含む非水蓄電デバイス用電解液、及び該電解液を含むリチウムイオン二次電池
JP2015191807A (ja) * 2014-03-28 2015-11-02 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP2016189327A (ja) * 2015-03-27 2016-11-04 旭化成株式会社 非水蓄電デバイス用電解液の添加剤
JP2018014319A (ja) * 2016-07-06 2018-01-25 セントラル硝子株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP2018172356A (ja) * 2017-03-31 2018-11-08 三井化学株式会社 リチウム塩錯化合物、電池用添加剤、電池用非水電解液、及びリチウム二次電池
JP2019146414A (ja) 2018-02-22 2019-08-29 株式会社オートネットワーク技術研究所 制御装置
JP2019146415A (ja) 2018-02-22 2019-08-29 トヨタ自動車株式会社 車両用電源システム
JP2019215635A (ja) 2018-06-11 2019-12-19 オムロン株式会社 制御システム、制御装置、画像処理装置およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154951B2 (ja) * 2002-08-08 2008-09-24 三菱化学株式会社 非水電解液二次電池
KR101444992B1 (ko) * 2012-02-28 2014-09-26 주식회사 엘지화학 비수계 이차전지용 전해질 및 이를 포함하는 이차전지
JP6255722B2 (ja) * 2012-06-13 2018-01-10 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN103401019B (zh) * 2013-08-08 2016-03-16 东莞市杉杉电池材料有限公司 硅氮烷添加剂及应用其制备的防止钢壳腐蚀的锂离子电池电解液
KR102183661B1 (ko) * 2017-08-16 2020-11-26 주식회사 엘지화학 이차 전지용 전해질 및 이를 포함하는 이차 전지
CN107910591B (zh) * 2017-11-14 2019-12-10 石家庄圣泰化工有限公司 一种耐高温锂电池电解液
CN109776596A (zh) * 2017-11-14 2019-05-21 石家庄圣泰化工有限公司 1,3-二乙烯基-1,1,3,3-四甲基二硅氮烷的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007332A (ja) 2001-06-22 2003-01-10 Toyota Motor Corp リチウム二次電池及びその製造方法
JP2012160316A (ja) * 2011-01-31 2012-08-23 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池
JP2015005328A (ja) * 2012-06-13 2015-01-08 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2015098471A1 (ja) 2013-12-25 2015-07-02 旭化成株式会社 シリル基含有化合物を含む電解液添加用組成物、該組成物を含む非水蓄電デバイス用電解液、及び該電解液を含むリチウムイオン二次電池
JP2015191807A (ja) * 2014-03-28 2015-11-02 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP2016189327A (ja) * 2015-03-27 2016-11-04 旭化成株式会社 非水蓄電デバイス用電解液の添加剤
JP2018014319A (ja) * 2016-07-06 2018-01-25 セントラル硝子株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP2018172356A (ja) * 2017-03-31 2018-11-08 三井化学株式会社 リチウム塩錯化合物、電池用添加剤、電池用非水電解液、及びリチウム二次電池
JP2019146414A (ja) 2018-02-22 2019-08-29 株式会社オートネットワーク技術研究所 制御装置
JP2019146415A (ja) 2018-02-22 2019-08-29 トヨタ自動車株式会社 車両用電源システム
JP2019215635A (ja) 2018-06-11 2019-12-19 オムロン株式会社 制御システム、制御装置、画像処理装置およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4012814A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013489A (zh) * 2021-02-25 2021-06-22 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的锂离子电池
CN114156526A (zh) * 2021-12-02 2022-03-08 浙江大学 一种用于锂电池的高电压电解液

Also Published As

Publication number Publication date
CN114207901A (zh) 2022-03-18
JPWO2021025164A1 (ja) 2021-02-11
US20220158244A1 (en) 2022-05-19
EP4012814A4 (en) 2022-10-05
KR20220035244A (ko) 2022-03-21
CN114207901B (zh) 2024-04-09
EP4012814A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
CN114207901B (zh) 非水电解液及非水电解质电池
CN109891654B (zh) 电解质添加剂和包括该添加剂的用于锂二次电池的非水电解质溶液
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
EP3686983A1 (en) Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and energy device
JP2016027574A (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2013100081A1 (ja) 非水系電解液及び非水系電解液二次電池
WO2012035821A1 (ja) 非水系電解液及び非水系電解液二次電池
EP3780226B1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
WO2021251472A1 (ja) 非水系電解液及び非水系電解液電池
EP3758123A1 (en) Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
EP4329036A1 (en) Non-aqueous electrolytic solution and secondary battery
KR102434069B1 (ko) 리튬 이차 전지용 전해질
JP2021515367A (ja) リチウム二次電池用電解質
JP2022029448A (ja) 非水系電解液及び該非水系電解液を備える非水系電解液二次電池
JP5948756B2 (ja) 非水系電解液及び非水系電解液電池
JP2010097802A (ja) 電解液
JP5857434B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2013145731A (ja) リチウム二次電池
JP5948755B2 (ja) 非水系電解液及び非水系電解液電池
WO2021261579A1 (ja) 非水系電解液及び非水系電解液電池
KR102663158B1 (ko) 안전성이 향상된 리튬 이차전지
EP4243150A1 (en) Novel additive for non-aqueous electrolyte solution and lithium secondary battery comprising same
EP3883037B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2022138893A1 (ja) 非水系電解液及び非水系電解液電池
EP4243149A1 (en) Novel additive for nonaqueous electrolyte, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005631

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020850586

Country of ref document: EP

Effective date: 20220309