WO2021019682A1 - 素子モジュール - Google Patents
素子モジュール Download PDFInfo
- Publication number
- WO2021019682A1 WO2021019682A1 PCT/JP2019/029809 JP2019029809W WO2021019682A1 WO 2021019682 A1 WO2021019682 A1 WO 2021019682A1 JP 2019029809 W JP2019029809 W JP 2019029809W WO 2021019682 A1 WO2021019682 A1 WO 2021019682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- element module
- input
- spacer member
- conductor plate
- conductor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/327—Means for protecting converters other than automatic disconnection against abnormal temperatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
- H01L23/053—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
- H01L25/072—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
Definitions
- the present invention relates to an element module.
- a stator of a rotary electric machine including a plurality of bus bars laminated so as to form a coil end has been disclosed.
- a battery unit including a plurality of bus bars joined to a plurality of cell cells and arranged at predetermined intervals in the battery stacking direction has been disclosed.
- An object to be solved by the present invention is to provide an element module that secures a desired cooling property while improving the positioning accuracy of the conductive member.
- the element module of the embodiment includes an element, a plurality of conductive members, and a spacer member.
- the plurality of conductive members are connected to the element and arranged side by side in a predetermined direction.
- the spacer member is arranged between two conductive members adjacent to each other in a predetermined direction, and is in contact with a part of each conductive member.
- FIG. 5 is a cross-sectional view of the input / output terminals of the element module of the embodiment cut in the XX plane.
- FIG. 5 is a cross-sectional view of the input / output terminals of the element module in the modified example of the embodiment cut in the XX plane.
- FIG. 1 is a perspective view of the element module 10 of the embodiment.
- FIG. 2 is a cross-sectional view of the input / output terminal 25 of the element module 10 of the embodiment cut in the XX plane.
- the X-axis, Y-axis, and Z-axis directions that are orthogonal to each other in the three-dimensional space are directions parallel to each axis.
- the left-right direction of the element module 10 is parallel to the X-axis direction.
- the front-rear direction of the element module 10 is parallel to the Y-axis direction.
- the vertical direction (thickness direction) of the element module 10 is parallel to the Z-axis direction.
- the element module 10 of the embodiment includes at least one semiconductor element.
- the element module 10 includes two switching elements that are bridge-connected.
- the two switching elements are two transistors 11 such as an IGBT (Insulated Gate Bipolar Transistor) arranged on the paired high side arm and low side arm.
- the element module 10 includes a diode 13 connected between the collector and the emitter of each transistor 11 so as to be forward from the emitter toward the collector.
- the two transistors 11 and the two diodes 13 are mounted on the substrate 15.
- the substrate 15 is a plate-shaped member in which an insulating portion made of resin or ceramics and a conductive portion made of copper or the like are integrated.
- the element module 10 is a power module that constitutes a bridge circuit of an inverter that converts electric power between direct current and alternating current.
- the element module 10 includes, for example, a housing 21, a heat sink 22, a positive electrode terminal 23, a negative electrode terminal 24, an input / output terminal 25, and a control terminal 26.
- the outer shape of the housing 21 is formed in a rectangular box shape, for example.
- the housing 21 is made of an electrically insulating resin material or the like.
- the housing 21 houses two transistors 11 and two diodes 13 inside.
- the housing 21 holds the terminals 23, 24, 25, and 26 and exposes them to the outside from the upper portion 21a.
- the housing 21 exposes the substrate 15 on which the two transistors 11 and the two diodes 13 are mounted from the lower portion 21b to the outside.
- the heat sink 22 is fixed to the lower portion 21b of the housing 21.
- the heat sink 22 comes into contact with the substrate 15 exposed from the lower portion 21b of the housing 21.
- Each of the positive electrode terminal 23, the negative electrode terminal 24, and the input / output terminal 25 is formed of, for example, a conductor plate 30.
- the positive electrode terminal 23 is connected to the collector of the transistor 11 of the high side arm.
- the negative electrode terminal 24 is connected to the emitter of the transistor 11 of the low side arm.
- the input / output terminals 25 are connected to the emitter of the transistor 11 of the high side arm and the collector of the transistor 11 of the low side arm which are connected to each other.
- the conductor plate 30 constituting each of the positive electrode terminal 23, the negative electrode terminal 24, and the input / output terminal 25 has a bolt insertion hole 30a into which a bolt (not shown) for fixing an external conductive member (not shown) is inserted. It is formed.
- the input / output terminal 25 is, for example, an alternating current (AC) input / output terminal.
- the input / output terminal 25 includes, for example, a plurality of AC conductor plates 31 and at least one spacer member 33.
- the AC conductor plate 31, which is the conductor plate 30 forming the input / output terminal 25, is a so-called busbar and is made of a metal such as copper.
- the plurality of AC conductor plates 31 are arranged side by side in the plate thickness direction.
- the plate thickness direction is, for example, the Z-axis direction.
- the outer shape of the spacer member 33 is formed, for example, in the shape of an annular plate smaller than the AC conductor plate 31.
- the spacer member 33 is made of a conductive metal material.
- the spacer member 33 is arranged between two AC conductor plates 31 adjacent to each other in the plate thickness direction.
- the spacer member 33 is sandwiched by two AC conductor plates 31 from both sides in the plate thickness direction.
- the spacer member 33 forms a gap 35 between parts other than a part of each other by contacting a part of each facing surface 31A of two AC conductor plates 31 adjacent to each other in the plate thickness direction.
- the spacer member 33 is formed with a through hole 33a that faces the bolt insertion hole 30a of the AC conductor plate 31 so as to be connected to the bolt insertion hole 30a.
- the spacer member 33 is a so-called washer (washer).
- the plurality of AC conductor plates 31 of the input / output terminals 25 are laminated and arranged via the spacer member 33, so that the positioning accuracy in the stacking direction is easily improved. Can be made to.
- Each of the spacer members 33 comes into contact with only a part of each facing surface 31A of two AC conductor plates 31 adjacent to each other in the stacking direction through a gap 35 formed between parts other than a part of each other. The heat dissipation and cooling performance of the AC conductor plate 31 can be improved.
- FIG. 3 is a side view of the input / output terminal 25 of the element module 10 of the embodiment as viewed from the Y-axis direction.
- a plurality of AC conductor plates 31 are formed by flowing a refrigerant CW such as cooling air through the gaps 35 of two AC conductor plates 31 adjacent to each other in the stacking direction.
- the heat dissipation and cooling performance of the module are improved.
- the surface area of the AC conductor plate 31 in contact with the refrigerant CW can be increased to improve the cooling efficiency as compared with the case where the gap 35 is not provided between the two AC conductor plates 31 adjacent to each other in the stacking direction. it can.
- the skin effect is caused by the thickness of each AC conductor plate 31 becoming thinner. And the inductance can be reduced.
- the thickness of each AC conductor plate 31 becomes thinner, the flexibility of the input / output terminal 25 can be improved, the pressure acting on the external conductive member can be reduced, and the contact resistance with the external conductive member can be reduced. it can.
- the temperature of the input / output terminal 25 of the terminals 23, 24, 25 on the opposite side of the heat sink 22 is likely to rise due to the substrate 15 which has been miniaturized by integrating the insulating portion and the conductive portion. Even if there is, the temperature rise can be suppressed by improving the heat dissipation and the cooling property.
- FIG. 4 is a cross-sectional view of the input / output terminal 25 of the element module 10 in the modified example of the embodiment cut in the XX plane.
- the input / output terminal 25 of the element module 10 in the modified example is an AC conductor plate 41 provided with a protruding portion 41a instead of the combination of the AC conductor plate 31 and the spacer member 33 of the above-described embodiment. To be equipped.
- the outer shape of the protruding portion 41a is formed in a convex shape that protrudes from one surface of both sides of the AC conductor plate 41 in the plate thickness direction, for example.
- the tip of the protrusion 41a comes into contact with the other surface of both sides of the other AC conductor plate 41 adjacent to the AC conductor plate 41 in the plate thickness direction.
- the protrusion 41a forms a gap 43 between the facing surfaces 41A of the two AC conductor plates 41 adjacent to each other in the stacking direction.
- the AC conductor plate 41 and the projecting portion 41a are formed with bolt insertion holes 41b into which bolts (not shown) for fixing an external conductive member (not shown) are inserted.
- the positioning accuracy of the AC conductor plate 41 in the stacking direction can be further improved. Can be done. Further, since the protruding portion 41a is integrated with the AC conductor plate 41, the heat dissipation area of the AC conductor plate 31 as a whole can be improved. Therefore, the heat dissipation and cooling performance of the AC conductor plate 41 can be improved.
- the outer shape of the spacer member 33 is said to be an annular plate shape, but the outer shape is not limited to this, and other shapes may be used.
- the outer shape of the spacer member 33 may be a plurality of convex shapes protruding from at least one surface of each AC conductor plate 31 in the Z-axis direction.
- the input / output terminal 25 is composed of a laminate of a plurality of AC conductor plates 31 and at least one spacer member 33, but the present invention is not limited to this. All or at least one of the positive electrode terminal 23, the negative electrode terminal 24, and the input / output terminal 25 may be composed of a laminate of a plurality of conductor plates 30 and at least one spacer member 33.
- the external conductive member (not shown) connected to each of the positive electrode terminal 23, the negative electrode terminal 24, and the input / output terminal 25 is composed of a laminate of a plurality of conductor plates and at least one spacer member. May be done.
- the element module 10 includes two transistors 11 and two diodes 13, but the present invention is not limited to this, and an appropriate number of semiconductor elements or other elements may be provided. In this case, the present invention is not limited to each one positive electrode terminal 23, negative electrode terminal 24, and input / output terminal 25, and an appropriate number of terminals connected to each element may be provided.
- the plurality of AC conductor plates 31 and 41 of the input / output terminals 25 are laminated and arranged via the spacer member 33 and the protruding portion 41a to improve the positioning accuracy in the stacking direction. It can be easily improved.
- the spacer member 33 and the protruding portion 41a are formed between parts other than a part of each other by contacting only a part of the facing surfaces 31A and 41A of the two AC conductor plates 31 and 41 adjacent to each other in the stacking direction.
- the heat dissipation and cooling properties of the AC conductor plates 31 and 41 can be improved through the gaps 35 and 43 formed therein.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Inverter Devices (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
実施形態の素子モジュールは、素子と、複数の導電部材と、スペーサー部材とを備える。複数の導電部材は、素子に接続されるとともに所定方向に並んで配置される。スペーサー部材は、所定方向で隣り合う2つの導電部材の間に配置されるとともに各導電部材の一部と接する。
Description
本発明は、素子モジュールに関する。
従来、コイルエンドを形成するように積層された複数のバスバーを備える回転電機のステータが開示されている。
従来、複数の単電池に接合されて電池積層方向に所定間隔を置いて配置された複数のバスバーを備える電池ユニットが開示されている。
従来、複数の単電池に接合されて電池積層方向に所定間隔を置いて配置された複数のバスバーを備える電池ユニットが開示されている。
隙間なく積層された複数の板状のバスバーでは、積層体全体の冷却性を向上させることが困難である可能性があった。
電池積層方向に所定間隔を置いて配置された複数のバスバーでは、電池積層方向での複数のバスバーの位置決め精度を向上させることが困難である可能性があった。
電池積層方向に所定間隔を置いて配置された複数のバスバーでは、電池積層方向での複数のバスバーの位置決め精度を向上させることが困難である可能性があった。
本発明が解決しようとする課題は、導電部材の位置決め精度を向上させつつ所望の冷却性を確保する素子モジュールを提供することである。
実施形態の素子モジュールは、素子と、複数の導電部材と、スペーサー部材とを備える。複数の導電部材は、素子に接続されるとともに所定方向に並んで配置される。スペーサー部材は、所定方向で隣り合う2つの導電部材の間に配置されるとともに各導電部材の一部と接する。
以下、実施形態の素子モジュールについて添付図面を参照しながら説明する。
図1は、実施形態の素子モジュール10の斜視図である。図2は、実施形態の素子モジュール10の入出力端子25をX-Z平面で切断した断面図である。
以下において、3次元空間で互いに直交するX軸、Y軸及びZ軸の各軸方向は、各軸に平行な方向である。例えば、素子モジュール10の左右方向は、X軸方向と平行である。素子モジュール10の前後方向は、Y軸方向と平行である。素子モジュール10の上下方向(厚さ方向)は、Z軸方向と平行である。
図1は、実施形態の素子モジュール10の斜視図である。図2は、実施形態の素子モジュール10の入出力端子25をX-Z平面で切断した断面図である。
以下において、3次元空間で互いに直交するX軸、Y軸及びZ軸の各軸方向は、各軸に平行な方向である。例えば、素子モジュール10の左右方向は、X軸方向と平行である。素子モジュール10の前後方向は、Y軸方向と平行である。素子モジュール10の上下方向(厚さ方向)は、Z軸方向と平行である。
図1に示すように、実施形態の素子モジュール10は、少なくとも1つの半導体素子を備える。例えば、素子モジュール10は、ブリッジ接続される2つのスイッチング素子を備える。2つのスイッチング素子は、対を成すハイサイドアーム及びローサイドアームに配置されるIGBT(Insulated Gate Bipolar Transistor)等の2つのトランジスタ11である。素子モジュール10は、各トランジスタ11のコレクタ-エミッタ間にエミッタからコレクタに向けて順方向となるように接続されるダイオード13を備える。2つのトランジスタ11及び2つのダイオード13は基板15に装着されている。基板15は、樹脂又はセラミックスから成る絶縁部と銅等から成る導電部とが一体化された板状部材である。素子モジュール10は、直流と交流との間で電力変換を行うインバータのブリッジ回路を構成するパワーモジュールである。
素子モジュール10は、例えば、筐体21と、ヒートシンク22と、正極端子23と、負極端子24と、入出力端子25と、制御端子26とを備える。
筐体21の外形は、例えば、矩形箱型に形成されている。筐体21は、電気的絶縁性の樹脂材料等によって形成されている。例えば、筐体21は、2つのトランジスタ11及び2つのダイオード13を内部に収容する。筐体21は、各端子23,24,25,26を保持して、上部21aから外部に露出させる。筐体21は、2つのトランジスタ11及び2つのダイオード13が装着される基板15を、下部21bから外部に露出させる。
ヒートシンク22は、筐体21の下部21bに固定されている。ヒートシンク22は、筐体21の下部21bから露出する基板15に接触する。
正極端子23、負極端子24及び入出力端子25の各々は、例えば、導体板30によって形成されている。正極端子23は、ハイサイドアームのトランジスタ11のコレクタに接続されている。負極端子24は、ローサイドアームのトランジスタ11のエミッタに接続されている。入出力端子25は、相互に接続されるハイサイドアームのトランジスタ11のエミッタとローサイドアームのトランジスタ11のコレクタとに接続されている。例えば、正極端子23、負極端子24及び入出力端子25の各々を構成する導体板30には、外部の導電部材(図示略)を固定するボルト(図示略)が挿入されるボルト挿入孔30aが形成されている。
入出力端子25は、例えば、交流(AC)の入出力用の端子である。図2に示すように、入出力端子25は、例えば、複数のAC導体板31と、少なくとも1つのスペーサー部材33とを備える。
入出力端子25を形成する導体板30であるAC導体板31は、いわゆるブスバー(busbar)であって、銅等の金属によって形成されている。複数のAC導体板31は、板厚方向に並んで配置されている。板厚方向は、例えば、Z軸方向である。
入出力端子25を形成する導体板30であるAC導体板31は、いわゆるブスバー(busbar)であって、銅等の金属によって形成されている。複数のAC導体板31は、板厚方向に並んで配置されている。板厚方向は、例えば、Z軸方向である。
スペーサー部材33の外形は、例えば、AC導体板31よりも小さな円環板状に形成されている。スペーサー部材33は、導電性の金属材料によって形成されている。スペーサー部材33は、板厚方向で隣り合う2つのAC導体板31の間に配置されている。スペーサー部材33は、板厚方向の両側から2つのAC導体板31によって挟み込まれている。スペーサー部材33は、板厚方向で隣り合う2つのAC導体板31の各対向面31Aの一部に接触することによって、相互の一部以外の部位の間に空隙35を形成している。スペーサー部材33には、AC導体板31のボルト挿入孔30aに連なって通じるように臨む貫通孔33aが形成されている。例えば、スペーサー部材33は、いわゆるワッシャー(座金)である。
上述したように、実施形態の素子モジュール10によれば、入出力端子25の複数のAC導体板31は、スペーサー部材33を介して積層配置されることによって、積層方向の位置決め精度を容易に向上させることができる。スペーサー部材33は、積層方向で隣り合う2つのAC導体板31の各対向面31Aの一部のみに接触することによって、相互の一部以外の部位の間に形成される空隙35を介して各AC導体板31の放熱性及び冷却性を向上させることができる。
図3は、実施形態の素子モジュール10の入出力端子25をY軸方向から見た側面図である。
図3に示すように、実施形態の素子モジュール10では、積層方向で隣り合う2つのAC導体板31の空隙35に冷却用の空気等の冷媒CWが流通することによって、複数のAC導体板31の放熱性及び冷却性が向上させられている。例えば、積層方向で隣り合う2つのAC導体板31の間に空隙35が設けられない場合に比べて、冷媒CWに接触するAC導体板31の表面積を増大させて、冷却効率を向上させることができる。
図3に示すように、実施形態の素子モジュール10では、積層方向で隣り合う2つのAC導体板31の空隙35に冷却用の空気等の冷媒CWが流通することによって、複数のAC導体板31の放熱性及び冷却性が向上させられている。例えば、積層方向で隣り合う2つのAC導体板31の間に空隙35が設けられない場合に比べて、冷媒CWに接触するAC導体板31の表面積を増大させて、冷却効率を向上させることができる。
例えば、入出力端子25を複数のAC導体板31の積層体と同一厚みの単一の導体板によって形成する場合等に比べて、各AC導体板31の厚みが薄くなることに伴い、表皮効果及びインダクタンスを低減することができる。各AC導体板31の厚みが薄くなることに伴い、入出力端子25の柔軟性を向上させ、外部の導電部材に作用する圧力を低減させ、外部の導電部材との接触抵抗を低減することができる。
例えば、絶縁部と導電部との一体化によって小型化された基板15に起因して、ヒートシンク22と反対側の各端子23,24,25のうち入出力端子25の温度が上昇し易い場合であっても、放熱性及び冷却性の向上によって温度上昇を抑制することができる。
以下、実施形態の変形例について説明する。
上述した実施形態において、入出力端子25の各AC導体板31とスペーサー部材33とは別体であるとしたが、これに限定されず、一体であってもよい。
図4は、実施形態の変形例での素子モジュール10の入出力端子25をX-Z平面で切断した断面図である。
図4に示すように、変形例での素子モジュール10の入出力端子25は、上述した実施形態のAC導体板31及びスペーサー部材33の組み合わせの代わりに突出部41aが設けられたAC導体板41を備える。
上述した実施形態において、入出力端子25の各AC導体板31とスペーサー部材33とは別体であるとしたが、これに限定されず、一体であってもよい。
図4は、実施形態の変形例での素子モジュール10の入出力端子25をX-Z平面で切断した断面図である。
図4に示すように、変形例での素子モジュール10の入出力端子25は、上述した実施形態のAC導体板31及びスペーサー部材33の組み合わせの代わりに突出部41aが設けられたAC導体板41を備える。
突出部41aの外形は、例えば、AC導体板41の板厚方向の両面のうち一方の表面から突出する凸状に形成されている。突出部41aの先端は、AC導体板41に隣り合う他のAC導体板41の板厚方向の両面のうち他方の表面に接触する。突出部41aは、積層方向で隣り合う2つのAC導体板41の対向面41Aの間に空隙43を形成する。AC導体板41及び突出部41aには、外部の導電部材(図示略)を固定するボルト(図示略)が挿入されるボルト挿入孔41bが形成されている。
このように、AC導体板31及びスペーサー部材33の組み合わせの代わりに突出部41aが設けられたAC導体板41を備えることにより、AC導体板41の積層方向の位置決め精度をさらに容易に向上させることができる。また、AC導体板41に突出部41aが一体化されているので、AC導体板31全体としての放熱面積を向上させることができる。このため、AC導体板41の放熱性及び冷却性を向上できる。
上述した実施形態において、スペーサー部材33の外形は、円環板状であるとしたが、これに限定されず、他の形状であってもよい。例えば、スペーサー部材33の外形は、各AC導体板31の少なくとも一面からZ軸方向に突出する複数の凸状等であってもよい。
上述した実施形態において、入出力端子25を、複数のAC導体板31と少なくとも1つのスペーサー部材33との積層体によって構成するとしたが、これに限定されない。正極端子23、負極端子24及び入出力端子25の全て又は少なくとも1つは、複数の導体板30と少なくとも1つのスペーサー部材33との積層体によって構成されてもよい。
上述した実施形態において、正極端子23、負極端子24及び入出力端子25の各々に接続される外部の導電部材(図示略)は、複数の導体板と少なくとも1つのスペーサー部材との積層体によって構成されてもよい。
上述した実施形態において、素子モジュール10は、2つのトランジスタ11及び2つのダイオード13を備えるとしたが、これに限定されず、適宜の個数の半導体素子又は他の素子を備えてもよい。この場合、各1つの正極端子23、負極端子24及び入出力端子25に限定されず、各素子に接続される適宜の個数の端子を備えてもよい。
以上説明した少なくともひとつの実施形態によれば、入出力端子25の複数のAC導体板31,41は、スペーサー部材33や突出部41aを介して積層配置されることによって、積層方向の位置決め精度を容易に向上させることができる。スペーサー部材33や突出部41aは、積層方向で隣り合う2つのAC導体板31、41の各対向面31A,41Aの一部のみに接触することによって、相互の一部以外の部位の間に形成される空隙35,43を介して各AC導体板31,41の放熱性及び冷却性を向上させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10…素子モジュール、11…トランジスタ、13…ダイオード、15…基板、21…筐体、22…ヒートシンク、23…正極端子、24…負極端子、25…入出力端子、26…制御端子、31…AC導体板、33…スペーサー部材、41…AC導体板、41a…突出部
Claims (4)
- 素子と、
前記素子に接続されるとともに所定方向に並んで配置される複数の導電部材と、
前記所定方向で隣り合う2つの前記導電部材の間に配置されるとともに各前記導電部材の一部に接するスペーサー部材と
を備える素子モジュール。 - 各前記導電部材及び前記スペーサー部材は一体である
請求項1に記載の素子モジュール。 - 前記スペーサー部材の外形は、各前記導電部材の少なくとも一面から前記所定方向に突出する複数の凸状である
請求項2に記載の素子モジュール。 - 前記スペーサー部材の外形は、環状である
請求項1又は請求項2に記載の素子モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980075223.5A CN113016069A (zh) | 2019-07-30 | 2019-07-30 | 元件模块 |
PCT/JP2019/029809 WO2021019682A1 (ja) | 2019-07-30 | 2019-07-30 | 素子モジュール |
US17/291,441 US11908773B2 (en) | 2019-07-30 | 2019-07-30 | Element module |
JP2021500239A JP7019092B2 (ja) | 2019-07-30 | 2019-07-30 | 素子モジュール |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/029809 WO2021019682A1 (ja) | 2019-07-30 | 2019-07-30 | 素子モジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021019682A1 true WO2021019682A1 (ja) | 2021-02-04 |
Family
ID=74229420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/029809 WO2021019682A1 (ja) | 2019-07-30 | 2019-07-30 | 素子モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US11908773B2 (ja) |
JP (1) | JP7019092B2 (ja) |
CN (1) | CN113016069A (ja) |
WO (1) | WO2021019682A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935774A (ja) * | 1995-07-20 | 1997-02-07 | Sony Corp | 環状導電端子の固定装置 |
JPH1084078A (ja) * | 1996-09-06 | 1998-03-31 | Hitachi Ltd | パワー半導体装置 |
JP2006520523A (ja) * | 2003-03-13 | 2006-09-07 | エフシーアイ・エクスパンシオン・ドゥ | 少なくとも一つの導体を支持片に対して電気的に接続しかつ固定するためのシステム |
JP2006520537A (ja) * | 2003-03-13 | 2006-09-07 | エフシーアイ・エクスパンシオン・ドゥ | 少なくとも一つのプレート型導電体を支持片に対して電気的に接続しかつ固定するためのシステム |
JP2011108817A (ja) * | 2009-11-17 | 2011-06-02 | Nippon Inter Electronics Corp | パワー半導体モジュール |
WO2016204306A1 (ja) * | 2016-07-28 | 2016-12-22 | 株式会社小松製作所 | パワー半導体モジュールの端子接続構造 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4514437A (en) * | 1984-05-02 | 1985-04-30 | Energy Conversion Devices, Inc. | Apparatus for plasma assisted evaporation of thin films and corresponding method of deposition |
US6114201A (en) * | 1998-06-01 | 2000-09-05 | Texas Instruments-Acer Incorporated | Method of manufacturing a multiple fin-shaped capacitor for high density DRAMs |
US7042086B2 (en) * | 2002-10-16 | 2006-05-09 | Nissan Motor Co., Ltd. | Stacked semiconductor module and assembling method of the same |
JP4631340B2 (ja) | 2004-07-27 | 2011-02-16 | トヨタ自動車株式会社 | 回転電機 |
JP5076440B2 (ja) * | 2006-10-16 | 2012-11-21 | 富士電機株式会社 | 半導体装置及び半導体装置の製造方法 |
JP4506848B2 (ja) * | 2008-02-08 | 2010-07-21 | 株式会社デンソー | 半導体モジュール |
JP5481148B2 (ja) * | 2009-10-02 | 2014-04-23 | 日立オートモティブシステムズ株式会社 | 半導体装置、およびパワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置 |
JP6171606B2 (ja) | 2013-06-18 | 2017-08-02 | 株式会社デンソー | 電池ユニット |
JP7055648B2 (ja) * | 2018-01-26 | 2022-04-18 | 三洋電機株式会社 | 蓄電装置 |
-
2019
- 2019-07-30 CN CN201980075223.5A patent/CN113016069A/zh active Pending
- 2019-07-30 US US17/291,441 patent/US11908773B2/en active Active
- 2019-07-30 JP JP2021500239A patent/JP7019092B2/ja active Active
- 2019-07-30 WO PCT/JP2019/029809 patent/WO2021019682A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935774A (ja) * | 1995-07-20 | 1997-02-07 | Sony Corp | 環状導電端子の固定装置 |
JPH1084078A (ja) * | 1996-09-06 | 1998-03-31 | Hitachi Ltd | パワー半導体装置 |
JP2006520523A (ja) * | 2003-03-13 | 2006-09-07 | エフシーアイ・エクスパンシオン・ドゥ | 少なくとも一つの導体を支持片に対して電気的に接続しかつ固定するためのシステム |
JP2006520537A (ja) * | 2003-03-13 | 2006-09-07 | エフシーアイ・エクスパンシオン・ドゥ | 少なくとも一つのプレート型導電体を支持片に対して電気的に接続しかつ固定するためのシステム |
JP2011108817A (ja) * | 2009-11-17 | 2011-06-02 | Nippon Inter Electronics Corp | パワー半導体モジュール |
WO2016204306A1 (ja) * | 2016-07-28 | 2016-12-22 | 株式会社小松製作所 | パワー半導体モジュールの端子接続構造 |
Also Published As
Publication number | Publication date |
---|---|
CN113016069A (zh) | 2021-06-22 |
JP7019092B2 (ja) | 2022-02-17 |
US11908773B2 (en) | 2024-02-20 |
US20220005746A1 (en) | 2022-01-06 |
JPWO2021019682A1 (ja) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5289348B2 (ja) | 車載用電力変換装置 | |
JP6222713B2 (ja) | バスバー構造及びバスバー構造を用いた電力変換装置 | |
WO2015072105A1 (ja) | パワーモジュール | |
JP7519356B2 (ja) | 半導体装置 | |
JP6591556B2 (ja) | 電力変換装置 | |
JP4885046B2 (ja) | 電力用半導体モジュール | |
JP2006271063A (ja) | バスバーの冷却構造 | |
JP2012191768A (ja) | 電力変換装置 | |
US9842786B2 (en) | Semiconductor device | |
JP2010087002A (ja) | 発熱部品冷却構造 | |
JP6058353B2 (ja) | 半導体装置 | |
JP2012074730A (ja) | 電力用半導体モジュール | |
JP2010219569A (ja) | 半導体装置およびその製造方法 | |
JP7019092B2 (ja) | 素子モジュール | |
JP2015119121A (ja) | パワー半導体装置 | |
JP2017118672A (ja) | 電気接続箱 | |
US20220165712A1 (en) | Power module | |
JP2015179702A (ja) | 半導体装置およびその製造方法 | |
JP5040418B2 (ja) | 半導体装置 | |
CN111668165A (zh) | 半导体模块和具备该半导体模块的半导体装置 | |
JP5626184B2 (ja) | 半導体ユニット、及び、半導体ユニットの製造方法 | |
JP6680393B2 (ja) | 電力変換装置 | |
US20180218959A1 (en) | Semiconductor device | |
JP2018037452A (ja) | パワー半導体モジュール | |
JP2014072384A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021500239 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19939059 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19939059 Country of ref document: EP Kind code of ref document: A1 |