WO2021017967A1 - 一种稀土永磁材料及其原料组合物、制备方法和应用 - Google Patents

一种稀土永磁材料及其原料组合物、制备方法和应用 Download PDF

Info

Publication number
WO2021017967A1
WO2021017967A1 PCT/CN2020/103430 CN2020103430W WO2021017967A1 WO 2021017967 A1 WO2021017967 A1 WO 2021017967A1 CN 2020103430 W CN2020103430 W CN 2020103430W WO 2021017967 A1 WO2021017967 A1 WO 2021017967A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtb
permanent magnet
refers
mass percentage
magnet material
Prior art date
Application number
PCT/CN2020/103430
Other languages
English (en)
French (fr)
Inventor
蓝琴
黄佳莹
谢志兴
牟维国
黄清芳
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Priority to KR1020217037138A priority Critical patent/KR102527123B1/ko
Priority to US17/600,102 priority patent/US20220165462A1/en
Priority to JP2021552778A priority patent/JP7253069B2/ja
Priority to EP20846773.8A priority patent/EP3940720A4/en
Publication of WO2021017967A1 publication Critical patent/WO2021017967A1/zh
Priority to JP2023012515A priority patent/JP7502494B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a rare earth permanent magnet material and its raw material composition, preparation method and application.
  • R-T-B series rare earth permanent magnet materials have been widely used in modern industry and electronic technology, such as electronic computers, automatic control systems, motors and generators, nuclear magnetic resonance imagers, audio devices, material edge devices, communication equipment and many other fields. With the development of new application fields and the harsh and changeable application conditions, the demand for products with high coercivity is increasing.
  • Hcj intrinsic coercivity
  • Nd forms DyFeB or TbFeB.
  • Br residual magnetic flux density
  • the sintering temperature is lower and the sintering compactness is poor, resulting in the low Br of the permanent magnet material; for example, it can be used in the RTB rare earth permanent Ti is added to the formulation of the magnetic material to increase the Hcj of the magnet, but this formulation is easy to form a high melting point rich Ti phase, which leads to the deterioration of the grain boundary diffusion effect, which is not conducive to the improvement of the Hcj of the magnet.
  • the technical problem to be solved by the present invention is to overcome the defect that Br and Hcj of the R-T-B rare earth permanent magnet material in the prior art are difficult to achieve synchronous improvement, and provide a rare earth permanent magnet material and its raw material composition, preparation method and application.
  • the R-T-B system permanent magnet material in the present invention has excellent performance, Br ⁇ 14.30kGs, Hcj ⁇ 24.1kOe, and realizes the synchronous improvement of Br and Hcj.
  • the RTB-based permanent magnet material of the present invention is added with ⁇ 0.30wt.% Cu and 0.05-0.20wt.% Ti. Part of Ti enters the grain boundary to form high Cu-rich Ti phases. It can be completely dissolved in the grain boundary diffusion, which is beneficial to the grain boundary diffusion, and the Hcj is greatly improved.
  • the present invention provides a R-T-B series permanent magnet material, which comprises the following components in terms of mass percentage:
  • R 29.0-32.0wt.%, and R includes RH, and the content of the RH>1wt.%;
  • the balance is Fe and unavoidable impurities; among them:
  • the R is a rare earth element, and the R includes at least Nd;
  • the RH is a heavy rare earth element, and the RH includes at least Tb.
  • the R may also include rare earth elements conventional in the art, such as Pr.
  • the content of R is preferably 29.5-32.0wt.%, such as 30.05wt.%, 31.05wt.%, 31.06wt.%, 31.07wt.%, 31.3wt.%, or 31.56wt.%, wt.% refers to the mass percentage in the RTB-based permanent magnetic material.
  • the RH may also include heavy rare earth elements conventional in the art, such as Dy.
  • the content of the RH is preferably 1.05-1.30wt.%, such as 1.05wt.%, 1.06wt.%, 1.07wt.% or 1.30wt.%, and wt.% refers to the RH in the RTB system.
  • the mass percentage in the magnetic material is preferably 1.05-1.30wt.%, such as 1.05wt.%, 1.06wt.%, 1.07wt.% or 1.30wt.%, and wt.% refers to the RH in the RTB system.
  • the mass percentage in the magnetic material is preferably 1.05-1.30wt.%, such as 1.05wt.%, 1.06wt.%, 1.07wt.% or 1.30wt.%.
  • the RH also includes Dy
  • the Tb content is 0.5 wt.%
  • the Dy content is 0.8 wt.%
  • wt.% refers to the content in the RTB-based permanent magnetic material Mass percentage.
  • the content of Cu is preferably 0.30-0.45wt.%, such as 0.30wt.%, 0.35wt.%, 0.40wt.% or 0.45wt.%, and wt.% refers to the permanent The mass percentage in the magnetic material.
  • the content of Co is preferably 0.10wt.% or 0.50-1.0wt.%, such as 0.50wt.%, 0.80wt.% or 1.0wt.%, and wt.% refers to the permanent The mass percentage in the magnetic material.
  • the content of Ti is preferably 0.05wt.% or 0.10-0.20wt.%, such as 0.10wt.%, 0.15wt.% or 0.20wt.%, and wt.% refers to the permanent The mass percentage in the magnetic material.
  • the content of B is preferably 0.92-0.96wt.% or 0.94-0.98wt.%, such as 0.92wt.%, 0.94wt.%, 0.95wt.% or 0.98wt.%, and wt.% is Refers to the mass percentage in the RTB-based permanent magnet material.
  • the R-T-B series permanent magnetic material includes the following components:
  • R 29.5-32.0wt.%, the content of the RH is 1.05-1.3wt.%;
  • wt.% refers to the mass percentage in the R-T-B-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 29.0wt.%, Tb is 1.05wt.%, Cu is 0.30wt.%, and Co is 0.10wt.% , Ti is 0.05wt.% and B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.05wt.%, Cu is 0.30wt.%, and Co is 0.10wt.% , Ti is 0.05wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.5wt.%, Tb is 1.06wt.%, Cu is 0.30wt.%, and Co is 0.10wt.% , Ti is 0.05wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.05wt.%, Cu is 0.35wt.%, and Co is 0.50wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.07wt.%, Cu is 0.40wt.%, and Co is 0.50wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.06wt.%, Cu is 0.45wt.%, and Co is 0.50wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.06wt.%, Cu is 0.40wt.%, and Co is 0.8wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnetic material includes the following components: Nd is 30.0wt.%, Tb is 1.07wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.05wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.06wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.10wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnetic material includes the following components: Nd is 30.0wt.%, Tb is 1.05wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.15wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnetic material includes the following components: Nd is 30.0wt.%, Tb is 1.05wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.20wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 1.06wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.10wt.%, B is 0.95wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnetic material includes the following components: Nd is 30.0wt.%, Tb is 1.05wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.10wt.%, B is 0.98wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: PrNd is 30wt.%, Tb is 0.5wt.%, Dy is 0.8wt.%, Cu is 0.40wt.%, Co is 0.5wt.%, Ti is 0.1wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the RTB-based permanent magnetic material.
  • the RTB-based permanent magnetic material has a high Cu and high Ti phase with a composition ratio of (T 1-ab -Ti a -Cu b ) x -R y at the grain boundaries of the magnet; wherein: T represents Fe and Co , 1.5b ⁇ a ⁇ 2b, 70at% ⁇ x ⁇ 82at%, 18at% ⁇ y ⁇ 30at%.
  • At% refers to atomic percentage, and specifically refers to the percentage of atomic content of various elements in the R-T-B permanent magnetic material.
  • the a may be 2.50-3.0 at%.
  • the y may be 20.0-23.0 at%.
  • the present invention also provides a raw material composition of R-T-B series permanent magnet material, which includes the following components in terms of mass percentage:
  • R 29.0-31.5wt.%, and R includes RH, and the content of the RH is 0.1-0.9wt.%;
  • the balance is Fe and unavoidable impurities; among them:
  • the R is a rare earth element, and the R includes at least Nd;
  • the RH is a heavy rare earth element.
  • the R may also include rare earth elements conventional in the art, such as Pr.
  • the content of R is preferably 29.5-31.0wt.%, such as 29.5wt.%, 30.5wt.%, 30.8wt.% or 31.0wt.%, and wt.% means that the RTB The mass percentage in the raw material composition of the magnetic material.
  • the RH may be a conventional heavy rare earth element such as Tb and/or Dy.
  • the RH content is preferably 0.5-0.9wt.%, such as 0.5wt.% or 0.8wt.%, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material .
  • the content of Cu is preferably 0.30-0.45wt.%, such as 0.30wt.%, 0.35wt.%, 0.40wt.% or 0.45wt.%, and wt.% refers to the permanent The mass percentage in the raw material composition of the magnetic material.
  • the content of Co is preferably 0.10wt.% or 0.50-1.0wt.%, such as 0.50wt.%, 0.80wt.% or 1.0wt.%, and wt.% refers to the permanent The mass percentage in the raw material composition of the magnetic material.
  • the content of Ti is preferably 0.05wt.% or 0.10-0.20wt.%, such as 0.10wt.%, 0.15wt.% or 0.20wt.%, and wt.% refers to the permanent The mass percentage in the raw material composition of the magnetic material.
  • the content of B is preferably 0.92-0.96wt.% or 0.94-0.98wt.%, such as 0.92wt.%, 0.94wt.%, 0.95wt.% or 0.98wt.%, and wt.% is Refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the raw material composition of the R-T-B permanent magnet material includes the following components:
  • the wt.% refers to the mass percentage in the raw material composition of the R-T-B permanent magnetic material.
  • the RTB-based permanent magnet material includes the following components: Nd is 29.0wt.%, Tb is 0.50wt.%, Cu is 0.30wt.%, and Co is 0.10wt.% , Ti is 0.05wt.% and B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.30wt.%, and Co is 0.10wt.% , Ti is 0.05wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.5wt.%, Tb is 0.50wt.%, Cu is 0.30wt.%, and Co is 0.10wt.% , Ti is 0.05wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.35wt.%, and Co is 0.50wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 0.50wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.45wt.%, and Co is 0.50wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 0.8wt.% , Ti is 0.10wt.%, B is 0.92wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.05wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.10wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.15 wt.%, B is 0.94 wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.20wt.%, B is 0.94wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.10 wt.%, B is 0.95 wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material includes the following components: Nd is 30.0wt.%, Tb is 0.50wt.%, Cu is 0.40wt.%, and Co is 1.0wt.% , Ti is 0.10 wt.%, B is 0.98 wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the RTB-based permanent magnetic material includes the following components: PrNd is 30wt.%, Dy is 0.8wt.%, Cu is 0.40wt.%, Co is 0.5wt.%, Ti is 0.1 wt.%, B is 0.92 wt.%, the balance is Fe, and wt.% refers to the mass percentage in the raw material composition of the RTB-based permanent magnet material.
  • the present invention also provides a method for preparing an RTB-based permanent magnet material, which includes the following steps: casting, crushing, crushing, forming, sintering and grain boundary molten liquid of the raw material composition of the RTB-based permanent magnet material Diffusion treatment to obtain the RTB-based permanent magnet material;
  • the heavy rare earth element in the grain boundary diffusion treatment includes Tb.
  • the molten liquid of the raw material composition of the RTB-based permanent magnet material can be prepared according to a conventional method in the art, for example, smelting in a high-frequency vacuum induction melting furnace.
  • the vacuum degree of the smelting furnace may be 5 ⁇ 10 -2 Pa.
  • the melting temperature may be 1500°C or less.
  • the casting process can be a conventional casting process in the field, for example: in an Ar gas atmosphere (for example, under an Ar gas atmosphere of 5.5 ⁇ 10 4 Pa), at 10 2 °C/sec-10 4 °C/ Cool down at a rate of seconds, that's it.
  • an Ar gas atmosphere for example, under an Ar gas atmosphere of 5.5 ⁇ 10 4 Pa
  • 10 2 °C/sec-10 4 °C/ Cool down at a rate of seconds, that's it.
  • the crushing process can be a conventional crushing process in the field, such as hydrogen absorption, dehydrogenation, and cooling treatment.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.15 MPa.
  • the dehydrogenation can be carried out under the condition of raising the temperature while drawing a vacuum.
  • the pulverization process can be a conventional pulverization process in the field, such as jet mill pulverization.
  • the jet mill pulverization can be performed in a nitrogen atmosphere with an oxidizing gas content of 150 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure of the crushing chamber of the jet mill crushing may be 0.38 MPa.
  • the pulverization time of the jet mill may be 3 hours.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.10-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the forming process may be a conventional forming process in the field, such as a magnetic field forming method or a hot pressing and thermal deformation method.
  • the sintering process can be a conventional sintering process in the field, for example, preheating, sintering, and cooling under vacuum conditions (for example, under a vacuum of 5 ⁇ 10 -3 Pa).
  • the preheating temperature may be 300-600°C.
  • the preheating time can be 1-2h.
  • the preheating is for 1 hour at a temperature of 300°C and 600°C each.
  • the sintering temperature may be a conventional sintering temperature in the art, for example, 900°C to 1100°C, and for example, 1040°C.
  • the sintering time may be a conventional sintering time in the field, for example, 2h.
  • Ar gas can be introduced before cooling to make the gas pressure reach 0.1 MPa.
  • the grain boundary diffusion treatment can be processed according to conventional processes in the field, for example, the surface of the RTB-based permanent magnet material is vapor-deposited, coated or sputtered to attach a substance containing Tb, and then subjected to diffusion heat treatment, That's it.
  • the material containing Tb may be Tb metal, a compound or alloy containing Tb.
  • the temperature of the diffusion heat treatment may be 800-900°C, such as 850°C.
  • the time of the diffusion heat treatment may be 12-48h, such as 24h.
  • heat treatment may also be performed.
  • the temperature of the heat treatment may be 450-550°C, for example 500°C.
  • the heat treatment time may be 3h.
  • the invention also provides an R-T-B series permanent magnet material prepared by the above method.
  • the invention also provides an application of the R-T-B series permanent magnet material as an electronic component in a motor.
  • the application can be used as an electronic component in a motor with a motor speed of 3000-7000rpm and/or a motor operating temperature of 80-180°C, and can also be used as an electronic component in a high-speed motor and/or household appliances. Device use.
  • the high-speed motor generally refers to a motor whose speed exceeds 10000 r/min.
  • the home appliance may be an inverter air conditioner.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the R-T-B series permanent magnet material of the present invention has excellent performance, Br ⁇ 14.30kGs, Hcj ⁇ 24.1kOe, and realizes the synchronous improvement of Br and Hcj.
  • the RTB-based permanent magnet material of the present invention is added with ⁇ 0.30wt.% Cu and 0.05-0.20wt.% Ti. Part of Ti enters the grain boundary to form a high Cu-rich Ti phase. These phases can be completely dissolved in the grain boundary diffusion, which is beneficial to the grain boundary diffusion, and the Hcj is greatly improved.
  • Figure 1 is the Nd, Cu, and Ti distribution diagrams of the permanent magnetic material prepared in Example 7 formed by scanning the FE-EPMA surface (from left to right are the concentration distribution diagrams of Nd, Cu, and Ti elements, the legend shows the difference The colors correspond to different concentration values), in which point 1 is the main phase and point 2 is the high Cu-rich Ti phase.
  • Fig. 2 is a distribution diagram of Nd, Cu, and Ti formed by scanning the permanent magnetic material FE-EPMA prepared in Comparative Example 3.
  • the purity of Nd and Tb is 99.8%
  • the purity of Fe-B is technical grade purity
  • the purity of pure Fe is technical grade purity
  • the purity of Co, Cu, and Ti is 99.9%.
  • R-T-B permanent magnetic materials in the examples and comparative examples are shown in Table 1.
  • wt.% refers to the mass percentage of each raw material in the R-T-B-based permanent magnetic material, and "/" means that the element is not added.
  • Example 1 29.0 / 0.50 / 0.30 0.10 0.05 0.92 margin / / / / / Example 2 30.0 / 0.50 / 0.30 0.10 0.05 0.92 margin / / / / / Example 3 30.5 / 0.50 / 0.30 0.10 0.05 0.92 margin / / / / / Example 4 30.0 / 0.50 / 0.35 0.50 0.10 0.92 margin / / / / / / Example 5 30.0 / 0.50 / 0.40 0.50 0.10 0.92 margin / / / / / / Example 6 30.0 / 0.50 / 0.45 0.50 0.10 0.92 margin / / / / / / Example 7 30.0 / 0.50 / 0.40 0.80 0.10 0.92 margin / / / / / / Example 8 30.0 / 0.50 / 0.40 1.0
  • R-T-B series permanent magnet material The preparation method of R-T-B series permanent magnet material is as follows:
  • Hydrogen breaking and pulverizing process vacuum the hydrogen breaking furnace containing the quench alloy at room temperature, and then inject hydrogen with a purity of 99.9% into the hydrogen breaking furnace to maintain the hydrogen pressure at 0.15MPa; after fully absorbing hydrogen, The temperature is raised while vacuuming, and the hydrogen is fully dehydrogenated; then the cooling is performed, and the powder after the hydrogen breakage is taken out.
  • Fine pulverization step under a nitrogen atmosphere with an oxidizing gas content of 150 ppm or less and a pulverization chamber pressure of 0.38 MPa, the powder after hydrogen pulverization is jet milled for 3 hours to obtain a fine powder.
  • Oxidizing gas refers to oxygen or moisture.
  • Magnetic field forming process using a right-angle orientation type magnetic field forming machine, in a 1.6T orientation magnetic field and under a forming pressure of 0.35ton/cm 2 , the above-mentioned zinc stearate-added powder is formed into a side length at a time It is a 25mm cube; it is demagnetized in a 0.2T magnetic field after one-time forming.
  • a secondary molding machine isostatic press
  • each compact is moved to a sintering furnace for sintering, sintered under a vacuum of 5 ⁇ 10 -3 Pa and at a temperature of 300°C and 600°C, respectively, for 1 hour; then, at 1040°C The sintering temperature is 2 hours; then Ar gas is introduced to make the pressure reach 0.1MPa, and then cooled to room temperature.
  • each group of sintered bodies are processed into magnets with a diameter of 20mm and a thickness of 5mm.
  • the thickness direction is the direction of the magnetic field orientation.
  • the raw materials made of Tb fluoride are used for spray coating.
  • the coated magnet is dried, and the metal with Tb element is sputtered on the surface of the magnet in a high-purity Ar gas atmosphere, followed by diffusion heat treatment at a temperature of 850°C for 24 hours. Cool to room temperature.
  • Magnetic performance evaluation Use the NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute for magnetic performance testing. Table 2 below shows the magnetic performance test results.
  • “Br” is the residual magnetic flux density
  • “Hcj” is the intrinsic coercivity
  • “SQ” is the squareness (squareness ratio)
  • “BHmax” is the maximum energy product (maximum energy product).
  • Example 1 14.51 24.4 99.0 51.0
  • Example 2 14.42 25.1 99.6 50.3
  • Example 3 14.32 25.6 99.6 49.6
  • Example 4 14.49 24.3 99.5 50.8
  • Example 5 14.41 25.2 99.7 50.5
  • Example 6 14.33 24.1 99.8 49.6
  • Example 7 14.45 25.5 99.8 50.3
  • Example 8 14.48 24.9 99.6 50.6
  • Example 9 14.50 24.5 99.4 51.0
  • Example 10 14.49 24.5 99.5 50.7
  • Example 11 14.45 24.9 99.2 50.6
  • Example 12 14.39 25.2 99.1 50.1
  • Example 13 14.42 24.3 99.5 50.6
  • Example 14 14.30 25.7 99.5 49.7 Comparative example 1 14.06 16.8 88.2 47.0 Comparative example 2 13.24 26.1 99.0 42.1 Comparative example 3 14.52 21.6 99.3 51.0 Comparative example 4 14.24 23.4 97.6 49.1 Comparative example 5 14.21 23.2 99.0 48.9 Comparative example 6 14.
  • R-T-B series permanent magnet material in this application has excellent performance, Br ⁇ 14.30kGs, Hcj ⁇ 24.1kOe, which realizes the simultaneous improvement of Br and Hcj (Embodiment 1-14);
  • Example 1 29.0 / 1.05 / 0.30 0.10 0.05 0.92 margin / / / / / Example 2 30.0 / 1.05 / 0.30 0.10 0.05 0.92 margin / / / / / Example 3 30.5 / 1.06 / 0.30 0.10 0.05 0.92 margin / / / / / Example 4 30.0 / 1.05 / 0.35 0.50 0.10 0.92 margin / / / / / / Example 5 30.0 / 1.07 / 0.40 0.50 0.10 0.92 margin / / / / / / Example 6 30.0 / 1.06 / 0.45 0.50 0.10 0.92 margin / / / / / / Example 7 30.0 / 1.06 / 0.40 0.8 0.10 0.92 margin / / / / / / Example 8 30.0 / 1.07 / 0.40 1.0
  • FE-EPMA detection Polish the vertical orientation surface of the permanent magnet material, and use the field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) to detect. First, determine the distribution of Nd, Cu, Ti and other elements in the permanent magnetic material by scanning FE-EPMA, and then determine the content of Cu, Ti and other elements in the key phase by FE-EPMA single-point quantitative analysis.
  • the test condition is the acceleration voltage of 15kv, Probe beam current is 50nA.
  • Example 7 The permanent magnet material prepared in Example 7 was tested by FE-EPMA, and the results are shown in Table 4 and Figure 1 below. among them:
  • Figure 1 shows the concentration profiles of Nd, Cu, and Ti respectively. It can be seen from Figure 1 that apart from being dispersedly distributed in the main phase, Ti-rich phases also exist at the grain boundaries. The Cu content in the Ti-rich phase is also higher than the main phase. In Figure 1, point 1 is the main phase and point 2 is the Ti-rich phase.
  • Table 4 shows the results of FE-EPMA single-point quantitative analysis of the Ti-rich phase in FIG. 1. It can be seen from Table 4 that in the Ti-rich phase, the Ti content is 1.8 atomic ratios of the Cu content, and the rare earth content is about 21.3 at%. In the same way, the FE-EPMA test of other examples shows that there are high Cu and high Ti phases at the grain boundaries. The Ti content is 1.5-2 times the atomic ratio of Cu, and the total rare earth is 18-30at% (At% refers to the atomic percentage, specifically refers to the percentage of the atomic content of various elements).
  • the comparative example 3 was tested by FE-EPMA, and the results are shown in Fig. 2, which respectively represent the concentration distribution diagrams of Nd, Cu, and Ti. It can be seen from the results that Ti is dispersed in the main phase, and no high Cu and high Ti phases are formed at the grain boundaries. In testing other comparative examples, no high Cu and high Ti phases were observed in the grain boundaries of the permanent magnet materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种稀土永磁材料及其原料组合物、制备方法和应用。该稀土永磁材料中,以质量百分比计,包括下述组分:R:29.0-32.0wt.%,且R中包括RH,所述RH的含量>1wt.%;Cu:0.30-0.50wt.%,不包括0.50wt.%;Co:0.10-1.0wt.%;Ti:0.05-0.20wt.%;B:0.92-0.98wt.%;余量为Fe及不可避免的杂质;其中:所述R为稀土元素,所述R中至少包括Nd;所述RH为重稀土元素,所述RH中至少包括Tb。该R-T-B系永磁材料性能优异,Br≥14.30kGs,Hcj≥24.1kOe,实现了Br和Hcj的同步提升。

Description

一种稀土永磁材料及其原料组合物、制备方法和应用 技术领域
本发明涉及一种稀土永磁材料及其原料组合物、制备方法和应用。
背景技术
R-T-B系稀土永磁材料在现代工业和电子技术中获得了广泛应用,如电子计算机、自动化控制系统、电动机与发电机、核磁共振像仪、音响器件、材料分边装置、通讯设备等诸多领域。随着新应用领域的开拓及应用条件的苛刻多变,具有高矫顽力的产品需求越来越多。
目前,一般可以通过在R-T-B系稀土永磁材料的配方中添加Dy、Tb等中重稀土提升磁体的内禀矫顽力(intrinsic coercivity,简称Hcj),但是中重稀土进入主相,取代部分Pr、Nd形成DyFeB或TbFeB,由于DyFeB或TbFeB的饱和磁化强度明显低于NdFeB,从而导致剩余磁通密度(remanence,简称Br)下降,且主相中的Dy、Tb利用率低,又因Dy、Tb十分昂贵,产品成本显著上升,并且不利于资源储量缺乏的Dy、Tb重稀土元素的综合高效利用。
也有研究表明,可以选用其他资源丰富的元素来提升磁体的Hcj,例如通过在R-T-B系稀土永磁材料的配方中添加Cu、Ga(形成R 6-T 13-Ga相)和Al等原料来提升磁体的Hcj,但是该些元素液相熔点低,为防止晶粒异常长大,烧结温度较低,烧结致密性较差,导致永磁材料的Br偏低;再例如,可在R-T-B系稀土永磁材料的配方中添加Ti来提高磁体的Hcj,但是该配方易形成高熔点富Ti相,导致晶界扩散效果变差,反而不利于磁体的Hcj的提升。
可见,现有的配方中,Br和Hcj通常处于权衡关系,Hcj的提升会牺牲一部分Br,两者难以同步维持在较高水平。因此,如何获得一种具有高Hcj和高Br的R-T-B系稀土永磁材料是本领域亟待解决的问题。
发明内容
本发明所要解决的技术问题在于克服现有技术中R-T-B系稀土永磁材料的Br和Hcj难以实现同步提升的缺陷,而提供了一种稀土永磁材料及其原料组合物、制备方法和应用。本发明中的R-T-B系永磁材料性能优异,Br≥14.30kGs,Hcj≥24.1kOe,实现了Br和Hcj的同步提升。较之常规的配方,本发明中的R-T-B系永磁材料中添加了≥0.30wt.%的Cu以及0.05-0.20wt.%的Ti,部分Ti进入晶界形成高Cu富Ti相,这些相在晶界扩散中可完全溶解,有益于晶界扩散,Hcj得到大幅度提升。
本发明提供了一种R-T-B系永磁材料,以质量百分比计,其包括下述组分:
R:29.0-32.0wt.%,且R中包括RH,所述RH的含量>1wt.%;
Cu:0.30-0.50wt.%,不包括0.50wt.%;
Co:0.10-1.0wt.%;
Ti:0.05-0.20wt.%;
B:0.92-0.98wt.%;
余量为Fe及不可避免的杂质;其中:
所述R为稀土元素,所述R中至少包括Nd;
所述RH为重稀土元素,所述RH中至少包括Tb。
本发明中,所述R中还可包括本领域常规的稀土元素,例如Pr。
本发明中,所述R的含量优选为29.5-32.0wt.%,例如30.05wt.%、31.05wt.%、31.06wt.%、31.07wt.%、31.3wt.%、或31.56wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述RH中还可包括本领域常规的重稀土元素,例如Dy。
本发明中,所述RH的含量优选为1.05-1.30wt.%,例如1.05wt.%、1.06wt.%、1.07wt.%或1.30wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
当所述RH中还包括Dy时,优选地,所述Tb的含量为0.5wt.%、所述Dy的含量为0.8wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述Cu的含量优选为0.30-0.45wt.%,例如0.30wt.%、0.35wt.%、0.40wt.% 或0.45wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述Co的含量优选为0.10wt.%或0.50-1.0wt.%,例如0.50wt.%、0.80wt.%或1.0wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述Ti的含量优选为0.05wt.%或0.10-0.20wt.%,例如0.10wt.%、0.15wt.%或0.20wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述B的含量优选为0.92-0.96wt.%或0.94-0.98wt.%,例如0.92wt.%、0.94wt.%、0.95wt.%或0.98wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:
R:29.5-32.0wt.%,所述RH的含量为1.05-1.3wt.%;
Cu:0.30-0.45wt.%;
Co:0.50-1.0wt.%;
Ti:0.10-0.20wt.%;
B:0.92-0.96wt.%;
wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为29.0wt.%、Tb为1.05wt.%、Cu为0.30wt.%、Co为0.10wt.%、Ti为0.05wt.%和B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.05wt.%、Cu为0.30wt.%、Co为0.10wt.%、Ti为0.05wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.5wt.%、Tb为1.06wt.%、Cu为0.30wt.%、Co为0.10wt.%、Ti为0.05wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.05wt.%、Cu为0.35wt.%、Co为0.50wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、 Tb为1.07wt.%、Cu为0.40wt.%、Co为0.50wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.06wt.%、Cu为0.45wt.%、Co为0.50wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.06wt.%、Cu为0.40wt.%、Co为0.8wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.07wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.05wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.06wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.10wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.05wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.15wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.05wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.20wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.06wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.10wt.%、B为0.95wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为1.05wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.10wt.%、B为0.98wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:PrNd为30wt.%、 Tb为0.5wt.%、Dy为0.8wt.%、Cu为0.40wt.%、Co为0.5wt.%、Ti为0.1wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述R-T-B系永磁材料在磁体晶界处存在组成比为(T 1-a-b-Ti a-Cu b) x-R y的高Cu高Ti相;其中:T代表Fe和Co,1.5b<a<2b,70at%<x<82at%,18at%<y<30at%。
本发明中,at%是指原子百分数,具体是指所述R-T-B系永磁材料中各种元素的原子含量所占百分比。
其中,所述a可为2.50~3.0at%。
其中,所述y可为20.0~23.0at%。
本发明还提供了一种R-T-B系永磁材料的原料组合物,以质量百分比计,其包括下述组分:
R:29.0-31.5wt.%,且R中包括RH,所述RH的含量为0.1-0.9wt.%;
Cu:0.30-0.50wt.%,不包括0.50wt.%;
Co:0.10-1.0wt.%;
Ti:0.05-0.20wt.%;
B:0.92-0.98wt.%;
余量为Fe及不可避免的杂质;其中:
所述R为稀土元素,所述R中至少包括Nd;
所述RH为重稀土元素。
本发明中,所述R中还可包括本领域常规的稀土元素,例如Pr。
本发明中,所述R的含量优选为29.5-31.0wt.%,例如29.5wt.%、30.5wt.%、30.8wt.%或31.0wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
本发明中,所述RH可为本领域常规的重稀土元素例如Tb和/或Dy。
本发明中,所述RH的含量优选为0.5-0.9wt.%,例如0.5wt.%或0.8wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
本发明中,所述Cu的含量优选为0.30-0.45wt.%,例如0.30wt.%、0.35wt.%、0.40wt.%或0.45wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
本发明中,所述Co的含量优选为0.10wt.%或0.50-1.0wt.%,例如0.50wt.%、0.80wt.% 或1.0wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
本发明中,所述Ti的含量优选为0.05wt.%或0.10-0.20wt.%,例如0.10wt.%、0.15wt.%或0.20wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
本发明中,所述B的含量优选为0.92-0.96wt.%或0.94-0.98wt.%,例如0.92wt.%、0.94wt.%、0.95wt.%或0.98wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料的原料组合物中包括下述组分:
R:29.5-31.0wt.%,RH:0.5-0.9wt.%;
Cu:0.30-0.45wt.%;
Co:0.50-1.0wt.%;
Ti:0.10-0.20wt.%;
B:0.92-0.96wt.%;
wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为29.0wt.%、Tb为0.50wt.%、Cu为0.30wt.%、Co为0.10wt.%、Ti为0.05wt.%和B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.30wt.%、Co为0.10wt.%、Ti为0.05wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.5wt.%、Tb为0.50wt.%、Cu为0.30wt.%、Co为0.10wt.%、Ti为0.05wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.35wt.%、Co为0.50wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为0.50wt.%、Ti为0.10wt.%、B为0.92wt.%,余 量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.45wt.%、Co为0.50wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为0.8wt.%、Ti为0.10wt.%、B为0.92wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.05wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.10wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.15wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.20wt.%、B为0.94wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.10wt.%、B为0.95wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:Nd为30.0wt.%、Tb为0.50wt.%、Cu为0.40wt.%、Co为1.0wt.%、Ti为0.10wt.%、B为0.98wt.%,余量为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料中包括下述组分:PrNd为30wt.%、Dy为0.8wt.%、Cu为0.40wt.%、Co为0.5wt.%、Ti为0.1wt.%、B为0.92wt.%,余量 为Fe,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
本发明还提供了一种R-T-B系永磁材料的制备方法,其包括下述步骤:将所述R-T-B系永磁材料的原料组合物的熔融液经铸造、破碎、粉碎、成形、烧结和晶界扩散处理,即得所述R-T-B系永磁材料;
所述晶界扩散处理中的重稀土元素包括Tb。
本发明中,所述R-T-B系永磁材料的原料组合物的熔融液可按本领域常规方法制得,例如:在高频真空感应熔炼炉中熔炼,即可。所述熔炼炉的真空度可为5×10 -2Pa。所述熔炼的温度可为1500℃以下。
本发明中,所述铸造的工艺可为本领域常规的铸造工艺,例如:在Ar气气氛中(例如5.5×10 4Pa的Ar气气氛下),以10 2℃/秒-10 4℃/秒的速度冷却,即可。
本发明中,所述破碎的工艺可为本领域常规的破碎工艺,例如经吸氢、脱氢、冷却处理,即可。
其中,所述吸氢可在氢气压力0.15MPa的条件下进行。
其中,所述脱氢可在边抽真空边升温的条件下进行。
本发明中,所述粉碎的工艺可为本领域常规的粉碎工艺,例如气流磨粉碎。
其中,所述气流磨粉碎可在氧化气体含量150ppm以下的氮气气氛下进行。所述氧化气体指的是氧气或水分含量。
其中,所述气流磨粉碎的粉碎室压力可为0.38MPa。
其中,所述气流磨粉碎的时间可为3小时。
其中,所述粉碎后,可按本领域常规手段添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.10-0.15%,例如0.12%。
本发明中,所述成形的工艺可为本领域常规的成形工艺,例如磁场成形法或热压热变形法。
本发明中,所述烧结的工艺可为本领域常规的烧结工艺,例如,在真空条件下(例如在5×10 -3Pa的真空下),经预热、烧结、冷却,即可。
其中,所述预热的温度可为300-600℃。所述预热的时间可为1-2h。优选地,所述预热为在300℃和600℃的温度下各预热1h。
其中,所述烧结的温度可为本领域常规的烧结温度,例如900℃-1100℃,再例如1040℃。
其中,所述烧结的时间可为本领域常规的烧结时间,例如2h。
其中,所述冷却前可通入Ar气体使气压达到0.1MPa。
本发明中,所述晶界扩散处理可按本领域常规的工艺进行处理,例如,在所述R-T-B系永磁材料的表面蒸镀、涂覆或溅射附着含有Tb的物质,经扩散热处理,即可。
其中,所述含有Tb的物质可为Tb金属、含有Tb的化合物或合金。
其中,所述扩散热处理的温度可为800-900℃,例如850℃。
其中,所述扩散热处理的时间可为12-48h,例如24h。
其中,所述晶界扩散处理后,还可进行热处理。所述热处理的温度可为450-550℃,例如500℃。所述热处理的时间可为3h。
本发明还提供了一种采用上述方法制得的R-T-B系永磁材料。
本发明还提供了一种所述R-T-B系永磁材料在马达中作为电子元器件的应用。
其中,所述应用可为在3000-7000rpm电机转速和/或80-180℃的电机工作温度的马达中作为电子元器件的应用,也可为在高转速电机和/或家电制品中作为电子元器件使用。
所述高转速电机一般是指转速超过10000r/min的电机。
所述家电制品可为变频空调。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明中的R-T-B系永磁材料性能优异,Br≥14.30kGs,Hcj≥24.1kOe,实现了Br和Hcj的同步提升。
(2)较之常规的配方,本发明中的R-T-B系永磁材料中添加了≥0.30wt.%的Cu以及0.05-0.20wt.%的Ti,部分Ti进入晶界形成高Cu富Ti相,这些相在晶界扩散中可完全溶解,有益于晶界扩散,Hcj得到大幅度提升。
附图说明
图1为实施例7制得的永磁材料由FE-EPMA面扫描形成的Nd、Cu、Ti分布图(从 左到右依次为Nd元素、Cu元素和Ti元素的浓度分布图,图例表示不同的颜色对应不同的浓度值),其中点1为主相,点2为高Cu富Ti相。
图2为对比例3制得的永磁材料FE-EPMA面扫描形成的Nd、Cu、Ti分布图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
下述实施例和对比例中,Nd、Tb的纯度为99.8%,Fe-B的纯度为工业级纯度,纯Fe的纯度为工业级纯度,Co、Cu、Ti的纯度为99.9%。
实施例及对比例中R-T-B系永磁材料的配方如表1所示。表1和后述的表3中wt.%是指各原料在所述R-T-B系永磁材料中的质量百分比,“/”表示未添加该元素。
表1 R-T-B系永磁材料的原料组合物的配方(wt.%)
编号 Nd PrNd Tb Dy Cu Co Ti B Fe Ga Al Zr Mo W Mn
实施例1 29.0 / 0.50 / 0.30 0.10 0.05 0.92 余量 / / / / / /
实施例2 30.0 / 0.50 / 0.30 0.10 0.05 0.92 余量 / / / / / /
实施例3 30.5 / 0.50 / 0.30 0.10 0.05 0.92 余量 / / / / / /
实施例4 30.0 / 0.50 / 0.35 0.50 0.10 0.92 余量 / / / / / /
实施例5 30.0 / 0.50 / 0.40 0.50 0.10 0.92 余量 / / / / / /
实施例6 30.0 / 0.50 / 0.45 0.50 0.10 0.92 余量 / / / / / /
实施例7 30.0 / 0.50 / 0.40 0.80 0.10 0.92 余量 / / / / / /
实施例8 30.0 / 0.50 / 0.40 1.0 0.05 0.94 余量 / / / / / /
实施例9 30.0 / 0.50 / 0.40 1.0 0.10 0.94 余量 / / / / / /
实施例10 30.0 / 0.50 / 0.40 1.0 0.15 0.94 余量 / / / / / /
实施例11 30.0 / 0.50 / 0.40 1.0 0.20 0.94 余量 / / / / / /
实施例12 30.0 / 0.50 / 0.40 1.0 0.10 0.95 余量 / / / / / /
实施例13 30.0 / 0.50 / 0.40 1.0 0.10 0.98 余量 / / / / / /
实施例14 / 30 / 0.8 0.4 0.5 0.10 0.92 余量 / / / / / /
对比例1 28.0 / 0.50 / 0.30 0.10 0.05 0.92 余量 / / / / / /
对比例2 32.0 / 0.50 / 0.30 0.10 0.05 0.92 余量 / / / / / /
对比例3 30.0 / 0.50 / 0.20 0.50 0.10 0.92 余量 / / / / / /
对比例4 30.0 / 0.50 / 0.50 0.50 0.10 0.92 余量 / / / / / /
对比例5 30.0 / 0.50 / 0.50 0.30 0.25 0.92 余量 / / / / / /
对比例6 30.0 / 0.50 / 0.40 0.30 0.05 0.89 余量 / / / / / /
对比例7 28.0 / 0.50 / 0.40 0.10 0.20 0.92 余量 0.30 0.20 / / / /
对比例8 30.0 / 0.50 / 0.40 0.10 / 0.92 余量 / / 0.20 / / /
对比例9 30.0 / 0.50 / 0.40 0.10 / 0.92 余量 / / / 0.20 / /
对比例10 30.0 / 0.50 / 0.40 0.10 / 0.92 余量 / / / / 0.20 /
对比例11 / 29.1 / 0.5 0.20 2.0 / 0.9 余量 0.20 0.20 0.15 / / 0.03
R-T-B系永磁材料制备方法如下:
(1)熔炼过程:按表1所示配方,将配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中且在5×10 -2Pa的真空中,以1500℃以下的温度进行真空熔炼。
(2)铸造过程:在真空熔炼后的熔炼炉中通入Ar气体,使气压达到5.5万Pa后进行 铸造,并以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(3)氢破粉碎过程:在室温下将放置急冷合金的氢破用炉抽真空,然后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.15MPa;充分吸氢后,边抽真空边升温,充分脱氢;然后进行冷却,取出氢破粉碎后的粉末。
(4)微粉碎工序:在氧化气体含量150ppm以下的氮气气氛下以及在粉碎室压力为0.38MPa的条件下,对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉。氧化气体指的是氧或水分。
(5)在气流磨粉碎后的粉末中添加硬脂酸锌,硬脂酸锌的添加量为混合后粉末重量的0.12%,再用V型混料机充分混合。
(6)磁场成形过程:使用直角取向型的磁场成型机,在1.6T的取向磁场中以及在0.35ton/cm 2的成型压力下,将上述添加了硬脂酸锌的粉末一次成形成边长为25mm的立方体;一次成形后在0.2T的磁场中退磁。为了使一次成形后的成形体不接触到空气,将其进行密封,然后再使用二次成形机(等静压成形机),在1.3ton/cm 2的压力下进行二次成形。
(7)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下以及分别在300℃和600℃的温度下,各保持1小时;然后,以1040℃的温度烧结2小时;然后通入Ar气体使气压达到0.1MPa后,冷却至室温。
(8)晶界扩散处理过程:将各组烧结体加工成直径20mm、厚度5mm的磁铁,厚度方向为磁场取向方向,表面洁净化后,分别使用Tb氟化物配制成的原料,全面喷雾涂覆在磁铁上,将涂覆后的磁铁干燥,在高纯度Ar气体气氛中,在磁铁表面溅射附着Tb元素的金属,以850℃的温度扩散热处理24小时。冷却至室温。
(9)热处理过程:烧结体在高纯度Ar气中,以500℃温度进行3小时热处理后,冷却至室温后取出。
效果实施例
测定实施例1-14、对比例1-11制得的R-T-B系永磁材料的磁性能和成分,并采用场发射电子探针显微分析仪(FE-EPMA)观察其磁体的晶相结构。
(1)磁性能评价:使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。下表2表示磁性能检测结果。表2中,“Br”为剩余磁通密度,“Hcj”为 内禀矫顽力,“SQ”为方形度(squareness ratio),“BHmax”为最大磁能积(maximum energy product)。
表2
编号 Br(kGs) Hcj(kOe) SQ(%) BHmax(MGoe)
实施例1 14.51 24.4 99.0 51.0
实施例2 14.42 25.1 99.6 50.3
实施例3 14.32 25.6 99.6 49.6
实施例4 14.49 24.3 99.5 50.8
实施例5 14.41 25.2 99.7 50.5
实施例6 14.33 24.1 99.8 49.6
实施例7 14.45 25.5 99.8 50.3
实施例8 14.48 24.9 99.6 50.6
实施例9 14.50 24.5 99.4 51.0
实施例10 14.49 24.5 99.5 50.7
实施例11 14.45 24.9 99.2 50.6
实施例12 14.39 25.2 99.1 50.1
实施例13 14.42 24.3 99.5 50.6
实施例14 14.30 25.7 99.5 49.7
对比例1 14.06 16.8 88.2 47.0
对比例2 13.24 26.1 99.0 42.1
对比例3 14.52 21.6 99.3 51.0
对比例4 14.24 23.4 97.6 49.1
对比例5 14.21 23.2 99.0 48.9
对比例6 14.11 24.2 92.3 47.8
对比例7 13.84 25.5 99.0 46.4
对比例8 14.35 23.5 99.0 49.6
对比例9 14.25 23.2 98.9 49.0
对比例10 14.22 23.6 99.0 49.0
对比例11 14.28 25.9 91.6 48.3
由表2可知:
(1)本申请中的R-T-B系永磁材料性能优异,Br≥14.30kGs,Hcj≥24.1kOe,实现了Br和Hcj的同步提升(实施例1-14);
(2)基于本申请的配方,原料R、Cu、Co、Ti和B的用量改变,R-T-B永磁材料的性能明显下降(对比例1-6);
(3)发明人在研究过程中发现,添加较大量的Cu以及高熔点Ti,部分Ti进入晶界形成高Cu高Ti相,这有利于R-T-B系永磁材料性能的提升;但是并非性质相似的元素都能够形成该相,例如Ga和Al的添加(对比例7),再例如Zr、Mo、W等高熔点金属的添加(对比例8-10),均无法获得本申请中R-T-B系永磁材料。
(2)成分测定:各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。下表3所示为成分检测结果。
表3 成分检测结果(wt.%)
编号 Nd PrNd Tb Dy Cu Co Ti B Fe Ga Al Zr Mo W Mn
实施例1 29.0 / 1.05 / 0.30 0.10 0.05 0.92 余量 / / / / / /
实施例2 30.0 / 1.05 / 0.30 0.10 0.05 0.92 余量 / / / / / /
实施例3 30.5 / 1.06 / 0.30 0.10 0.05 0.92 余量 / / / / / /
实施例4 30.0 / 1.05 / 0.35 0.50 0.10 0.92 余量 / / / / / /
实施例5 30.0 / 1.07 / 0.40 0.50 0.10 0.92 余量 / / / / / /
实施例6 30.0 / 1.06 / 0.45 0.50 0.10 0.92 余量 / / / / / /
实施例7 30.0 / 1.06 / 0.40 0.8 0.10 0.92 余量 / / / / / /
实施例8 30.0 / 1.07 / 0.40 1.0 0.05 0.94 余量 / / / / / /
实施例9 30.0 / 1.06 / 0.40 1.0 0.10 0.94 余量 / / / / / /
实施例10 30.0 / 1.05 / 0.40 1.0 0.15 0.94 余量 / / / / / /
实施例11 30.0 / 1.05 / 0.40 1.0 0.20 0.94 余量 / / / / / /
实施例12 30.0 / 1.06 / 0.40 1.0 0.10 0.95 余量 / / / / / /
实施例13 30.0 / 1.05 / 0.40 1.0 0.10 0.98 余量 / / / / / /
实施例14 / 30 0.5 0.8 0.40 0.5 0.1 0.92 余量 / / / / / /
对比例1 28.0 / 0.95 / 0.30 0.10 0.05 0.92 余量 / / / / / /
对比例2 32.0 / 1.06 / 0.30 0.10 0.05 0.92 余量 / / / / / /
对比例3 30.0 / 1.07 / 0.20 0.50 0.10 0.92 余量 / / / / / /
对比例4 30.0 / 1.05 / 0.50 0.50 0.10 0.92 余量 / / / / / /
对比例5 30.0   1.03   0.5 0.30 0.25 0.92 余量 / / / / / /
对比例6 30.0 / 1.06 / 0.40 0.30 0.05 0.89 余量 / / / / / /
对比例7 28 / 1.07 / 0.40 0.10 0.20 0.92 余量 0.30 0.20 / / / /
对比例8 30 / 1.06 / 0.40 0.10 / 0.92 余量 / / 0.20 / / /
对比例9 30.0 / 1.07 / 0.40 0.10 / 0.92 余量 / / / 0.20 / /
对比例10 30.0 / 1.06 / 0.40 0.10 / 0.92 余量 / / / / 0.20 /
对比例11 / 29.1 0.35 0.5 0.20 2.0 / 0.9 余量 0.20 0.20 0.15 / / 0.03
(3)FE-EPMA检测:对永磁材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。首先通过FE-EPMA面扫描确定永磁材料中Nd、Cu、Ti等元素的分布,然后通过FE-EPMA单点定量分析确定关键相中Cu、Ti等元素的含量,测试条件为加速电压15kv,探针束流50nA。
对实施例7所制得的永磁材料进行FE-EPMA检测,结果如下表4和图1所示。其中:
图1分别为Nd、Cu、Ti的浓度分布图。由图1可知,Ti除了弥散地分布在主相内,还在晶界处存在Ti富集相。在Ti富集相中Cu含量也是高于主相的。在图1中,点1为主相,点2为Ti富集相。
表4为对图1中该Ti富集相进行FE-EPMA单点定量分析的结果。由表4可知,该Ti富集相中,Ti含量为Cu含量的1.8倍原子比,稀土量约为21.3at%。同样的,对其他实施例进行FE-EPMA检测,均可观测到存在晶界处的高Cu高Ti相,Ti的含量为Cu含量的1.5~2倍原子比,稀土总量为18~30at%(at%是指原子百分数,具体是指各种元素的原子含量所占百分比)。
表4
(at%) Nd Tb Fe Co Cu Ti B 相成分
点1 11.4 0.2 80.6 1.03 0.06 0.02 5.90 R 2T 14B
点2 18.0 3.2 73.2 0.98 1.48 2.72 0.33 高Cu高Ti相
将对比例3进行FE-EPMA检测,结果如图2所示,分别代表Nd、Cu、Ti的浓度分布图。从结果可知,Ti是弥散分布在主相内,没有在晶界形成高Cu高Ti相。对其他对比例进行检测,在永磁材料的晶界中没有观测到高Cu高Ti相。

Claims (10)

  1. 一种R-T-B系永磁材料,其特征在于,以质量百分比计,其包括下述组分:
    R:29.0-32.0wt.%,且R中包括RH,所述RH的含量>1wt.%;
    Cu:0.30-0.50wt.%,不包括0.50wt.%;
    Co:0.10-1.0wt.%;
    Ti:0.05-0.20wt.%;
    B:0.92-0.98wt.%;
    余量为Fe及不可避免的杂质;其中:
    所述R为稀土元素,所述R中至少包括Nd;
    所述RH为重稀土元素,所述RH中至少包括Tb。
  2. 如权利要求1所述的R-T-B系永磁材料,其特征在于,所述R的含量为29.5-32.0wt.%,优选为30.05wt.%、31.05wt.%、31.06wt.%、31.07wt.%、31.3wt.%、或31.56wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比;
    和/或,所述RH中还包括Dy;
    和/或,所述RH的含量为1.05-1.30wt.%,优选为1.05wt.%、1.06wt.%、1.07wt.%或1.30wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比;
    和/或,所述Cu的含量为0.30-0.45wt.%,优选为0.30wt.%、0.35wt.%、0.40wt.%或0.45wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比;
    和/或,所述Co的含量为0.10wt.%或0.50-1.0wt.%,优选为0.50wt.%、0.80wt.%或1.0wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比;
    和/或,所述Ti的含量为0.05wt.%或0.10-0.20wt.%,优选为0.10wt.%、0.15wt.%或0.20wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比;
    和/或,所述B的含量为0.92-0.96wt.%或0.94-0.98wt.%,优选为0.92wt.%、0.94wt.%、0.95wt.%或0.98wt.%,wt.%是指在所述R-T-B系永磁材料中的质量百分比。
  3. 如权利要求1所述的R-T-B系永磁材料,其特征在于,所述R-T-B系永磁材料中包括下述组分:
    R:29.5-32.0wt.%,所述RH的含量为1.05-1.3wt.%;
    Cu:0.30-0.45wt.%;
    Co:0.50-1.0wt.%;
    Ti:0.10-0.20wt.%;
    B:0.92-0.96wt.%;
    wt.%是指在所述R-T-B系永磁材料中的质量百分比。
  4. 如权利要求1-3中任一项所述的R-T-B系永磁材料,其特征在于,所述R-T-B系永磁材料在磁体晶界处存在组成比为(T 1-a-b-Ti a-Cu b) x-R y的高Cu高Ti相;其中:T代表Fe和Co,1.5b<a<2b,70at%<x<82at%,18at%<y<30at%,at%是指所述R-T-B系永磁材料中各元素的原子含量所占百分比。
  5. 一种R-T-B系永磁材料的原料组合物,其特征在于,以质量百分比计,其包括下述组分:
    R:29.0-31.5wt.%,且R中包括RH,所述RH的含量为0.1-0.9wt.%;
    Cu:0.30-0.50wt.%,不包括0.50wt.%;
    Co:0.10-1.0wt.%;
    Ti:0.05-0.20wt.%;
    B:0.92-0.98wt.%;
    余量为Fe及不可避免的杂质;其中:
    所述R为稀土元素,所述R中至少包括Nd;
    所述RH为重稀土元素。
  6. 如权利要求5所述的R-T-B系永磁材料的原料组合物,其特征在于,所述R的含量为29.5-31.0wt.%,优选为29.5wt.%、30.5wt.%、30.8wt.%或31.0wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比;
    和/或,所述RH中包括Tb和/或Dy;
    和/或,所述RH的含量为0.5-0.9wt.%,优选为0.5wt.%或0.8wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比;
    和/或,所述Cu的含量为0.30-0.45wt.%,优选为0.30wt.%、0.35wt.%、0.40wt.%或0.45wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比;
    和/或,所述Co的含量为0.10wt.%或0.50-1.0wt.%,优选为0.50wt.%、0.80wt.%或1.0wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比;
    和/或,所述Ti的含量为0.05wt.%或0.10-0.20wt.%,优选为0.10wt.%、0.15wt.%或0.20wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比;
    和/或,所述B的含量为0.92-0.96wt.%或0.94-0.98wt.%,优选为0.92wt.%、0.94wt.%、0.95wt.%或0.98wt.%,wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比;
    或者,所述R-T-B系永磁材料的原料组合物中包括下述组分:R:29.5-31.0wt.%,RH:0.5-0.9wt.%;Cu:0.30-0.45wt.%;Co:0.50-1.0wt.%;Ti:0.10-0.20wt.%;B:0.92-0.96wt.%;wt.%是指在所述R-T-B系永磁材料的原料组合物中的质量百分比。
  7. 一种R-T-B系永磁材料的制备方法,其特征在于,其包括下述步骤:将如权利要求5或6所述的R-T-B系永磁材料的原料组合物的熔融液经铸造、破碎、粉碎、成形、烧结和晶界扩散处理,即得所述R-T-B系永磁材料;其中:所述晶界扩散处理中的重稀土元素包括Tb。
  8. 如权利要求7所述的R-T-B系永磁材料的制备方法,其特征在于,所述R-T-B系永磁材料的原料组合物的熔融液按下述方法制得:在高频真空感应熔炼炉中熔炼,即可;所述熔炼炉的真空度优选为5×10 -2Pa;所述熔炼的温度优选为1500℃以下;
    和/或,所述铸造的工艺按下述步骤进行:在Ar气气氛中,以10 2℃/秒-10 4℃/秒的速度冷却,即可;
    和/或,所述破碎的工艺按下述步骤进行:经吸氢、脱氢、冷却处理,即可;所述吸氢优选在氢气压力0.15MPa的条件下进行;所述粉碎优选为气流磨粉碎,所述气流磨粉碎的粉碎室压力优选为0.38MPa,所述气流磨粉碎的时间优选为3小时;
    和/或,所述成形的方法为磁场成形法或热压热变形法;
    和/或,所述烧结的工艺按下述步骤进行:在真空条件下,经预热、烧结、冷却,即可;所述预热的温度优选为300-600℃,所述预热的时间优选为1-2h;所述烧结的温度优选为900℃-1100℃,所述烧结的时间优选为2h;
    和/或,所述晶界扩散处理按下述步骤进行:在所述R-T-B系永磁材料的表面蒸镀、涂覆或溅射附着含有Tb的物质,经扩散热处理,即可;所述含有Tb的物质为Tb金属、含 有Tb的化合物或合金,所述扩散热处理的温度优选为800-900℃,所述扩散热处理的时间优选为12-48h;
    和/或,所述晶界扩散处理后,还进行热处理,所述热处理的温度优选为450-550℃,所述热处理的时间优选为3h。
  9. 一种如权利要求7或8中所述的R-T-B系永磁材料的制备方法制得的R-T-B系永磁材料。
  10. 一种如权利要求1-4、9中任一项所述R-T-B系永磁材料在马达中作为电子元器件的应用;
    所述应用优选为在3000-7000rpm电机转速和/或80-180℃电机工作温度的马达中作为电子元器件的应用;或者,在高转速电机和/或家电制品中作为电子元器件的应用。
PCT/CN2020/103430 2019-07-31 2020-07-22 一种稀土永磁材料及其原料组合物、制备方法和应用 WO2021017967A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217037138A KR102527123B1 (ko) 2019-07-31 2020-07-22 희토류 영구자석 재료 및 그 원료조성물, 제조방법과 응용
US17/600,102 US20220165462A1 (en) 2019-07-31 2020-07-22 Rare earth permanent magnet material and raw material composition,preparation method therefor and use thereof
JP2021552778A JP7253069B2 (ja) 2019-07-31 2020-07-22 希土類永久磁石材料及びその原料組成物、製造方法、並びに応用
EP20846773.8A EP3940720A4 (en) 2019-07-31 2020-07-22 RARE EARTH PERMANENT MAGNETIC MATERIAL AND RAW MATERIAL COMPOSITION, PROCESS FOR PRODUCTION THEREOF AND USE
JP2023012515A JP7502494B2 (ja) 2019-07-31 2023-01-31 希土類永久磁石材料及びその原料組成物、製造方法、並びに応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910701203.6 2019-07-31
CN201910701203.6A CN110428947B (zh) 2019-07-31 2019-07-31 一种稀土永磁材料及其原料组合物、制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021017967A1 true WO2021017967A1 (zh) 2021-02-04

Family

ID=68411757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103430 WO2021017967A1 (zh) 2019-07-31 2020-07-22 一种稀土永磁材料及其原料组合物、制备方法和应用

Country Status (7)

Country Link
US (1) US20220165462A1 (zh)
EP (1) EP3940720A4 (zh)
JP (2) JP7253069B2 (zh)
KR (1) KR102527123B1 (zh)
CN (1) CN110428947B (zh)
TW (1) TWI727865B (zh)
WO (1) WO2021017967A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428947B (zh) * 2019-07-31 2020-09-29 厦门钨业股份有限公司 一种稀土永磁材料及其原料组合物、制备方法和应用
CN110853855B (zh) * 2019-11-21 2021-08-27 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN110993232B (zh) * 2019-12-04 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料、制备方法和应用
CN111048273B (zh) * 2019-12-31 2021-06-04 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN111210962B (zh) * 2020-01-31 2021-05-07 厦门钨业股份有限公司 一种含SmFeN或SmFeC的烧结钕铁硼及其制备方法
US20230282397A1 (en) * 2022-03-07 2023-09-07 Hrl Laboratories, Llc Thermally stable, cladded permanent magnets, and compositions and methods for making the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017709A1 (de) * 1995-11-10 1997-05-15 Magnetfabrik Schramberg Gmbh & Co. MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS
CN103805827A (zh) * 2014-01-16 2014-05-21 宁波金科磁业有限公司 纳米非晶低钕复相钕铁硼的制作方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN105655076A (zh) * 2016-04-06 2016-06-08 湖北汽车工业学院 驱动电机用多主相高矫顽力钕铁硼永磁材料及其制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN109585111A (zh) * 2018-11-19 2019-04-05 浙江东阳东磁稀土有限公司 一种无镝铽高性能永磁体的制备方法
CN110428947A (zh) * 2019-07-31 2019-11-08 厦门钨业股份有限公司 一种稀土永磁材料及其原料组合物、制备方法和应用
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111326306A (zh) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437741A (en) * 1990-10-09 1995-08-01 Kawasaki Steel Corporation Corrosion-resistant rare earth metal-transition metal-boron permanent magnets
JPH08104945A (ja) * 1994-05-30 1996-04-23 Nisshin Steel Co Ltd 耐食性に優れた深絞り用冷延鋼板及びその製造方法
JP2000331810A (ja) 1999-05-21 2000-11-30 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料
JP2005123974A (ja) 2003-10-17 2005-05-12 Kyodo Printing Co Ltd 電子透かし検出システム及び電子透かし検出方法並びに情報提供システム及び情報提供方法
JPWO2005123974A1 (ja) * 2004-06-22 2008-04-10 信越化学工業株式会社 R−Fe−B系希土類永久磁石材料
EP2071597B1 (en) 2006-09-15 2016-12-28 Intermetallics Co., Ltd. METHOD FOR PRODUCING SINTERED NdFeB MAGNET
CN101266857A (zh) * 2007-12-24 2008-09-17 中国石油大学(华东) 纳米钛粉改性提高烧结钕铁硼矫顽力和工作温度方法
CN102456458B (zh) * 2010-10-15 2017-02-08 中国科学院宁波材料技术与工程研究所 高耐蚀性烧结钕铁硼磁体及其制备方法
CN102447315B (zh) * 2011-11-04 2015-02-11 无锡天宝电机有限公司 一种高速电机用钕铁硼磁体
CN102361371A (zh) * 2011-11-04 2012-02-22 无锡天宝电机有限公司 一种高速电机用钕铁硼磁体的制备方法
US20170018342A1 (en) * 2014-02-28 2017-01-19 Hitachi Metals, Ltd. R-t-b based sintered magnet and method for producing same
TWI673729B (zh) 2015-03-31 2019-10-01 日商信越化學工業股份有限公司 R-Fe-B系燒結磁石及其製造方法
CN106160849B (zh) 2015-04-15 2018-12-28 富士通株式会社 功率估计装置、频谱特征监测装置和光接收机
JP6090550B1 (ja) * 2015-06-25 2017-03-08 日立金属株式会社 R−t−b系焼結磁石およびその製造方法
CN105513736A (zh) * 2016-01-08 2016-04-20 宁波宏垒磁业有限公司 一种烧结钕铁硼磁体
TW201739929A (zh) * 2016-01-28 2017-11-16 厄本開採公司 燒結磁性合金之晶粒邊界工程及其衍生組合物
CN106205924B (zh) * 2016-07-14 2019-09-20 烟台正海磁性材料股份有限公司 一种高性能钕铁硼磁体的制备方法
JP7251916B2 (ja) * 2017-12-05 2023-04-04 Tdk株式会社 R-t-b系永久磁石
CN110619984B (zh) 2018-06-19 2021-12-07 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017709A1 (de) * 1995-11-10 1997-05-15 Magnetfabrik Schramberg Gmbh & Co. MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS
CN103805827A (zh) * 2014-01-16 2014-05-21 宁波金科磁业有限公司 纳米非晶低钕复相钕铁硼的制作方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN105655076A (zh) * 2016-04-06 2016-06-08 湖北汽车工业学院 驱动电机用多主相高矫顽力钕铁硼永磁材料及其制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN109585111A (zh) * 2018-11-19 2019-04-05 浙江东阳东磁稀土有限公司 一种无镝铽高性能永磁体的制备方法
CN110428947A (zh) * 2019-07-31 2019-11-08 厦门钨业股份有限公司 一种稀土永磁材料及其原料组合物、制备方法和应用
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111326306A (zh) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110428947B (zh) 2020-09-29
TWI727865B (zh) 2021-05-11
EP3940720A4 (en) 2022-06-08
US20220165462A1 (en) 2022-05-26
JP7502494B2 (ja) 2024-06-18
EP3940720A1 (en) 2022-01-19
TW202106896A (zh) 2021-02-16
KR20210151950A (ko) 2021-12-14
KR102527123B1 (ko) 2023-04-27
CN110428947A (zh) 2019-11-08
JP2023061988A (ja) 2023-05-02
JP2022538952A (ja) 2022-09-07
JP7253069B2 (ja) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2021017967A1 (zh) 一种稀土永磁材料及其原料组合物、制备方法和应用
TWI751789B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
EP4016558A1 (en) R-t-b permanent magnet material and preparation method therefor and use thereof
TWI704238B (zh) 低B含量的R-Fe-B系燒結磁鐵及其製備方法
WO2021042864A1 (zh) 一种稀土永磁材料、原料组合物、制备方法、应用、电机
WO2015078362A1 (zh) 一种低b的稀土磁铁
TWI742937B (zh) R-t-b系永磁材料、製備方法和應用
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2016015662A1 (zh) 稀土磁铁用急冷合金和稀土磁铁的制备方法
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
TWI730930B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
EP3975212A1 (en) A method for preparation of a sintered type ndfeb permanent magnet with an adjusted grain boundary
WO2021169897A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
TWI750964B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
TWI742969B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
WO2021218702A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552778

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020846773

Country of ref document: EP

Effective date: 20211013

ENP Entry into the national phase

Ref document number: 20217037138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE