WO2021169897A1 - 一种r-t-b系永磁材料及其制备方法和应用 - Google Patents

一种r-t-b系永磁材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021169897A1
WO2021169897A1 PCT/CN2021/077183 CN2021077183W WO2021169897A1 WO 2021169897 A1 WO2021169897 A1 WO 2021169897A1 CN 2021077183 W CN2021077183 W CN 2021077183W WO 2021169897 A1 WO2021169897 A1 WO 2021169897A1
Authority
WO
WIPO (PCT)
Prior art keywords
percentage
mass
content
permanent magnet
raw material
Prior art date
Application number
PCT/CN2021/077183
Other languages
English (en)
French (fr)
Inventor
付刚
黄佳莹
黄清芳
房明海
许德钦
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021169897A1 publication Critical patent/WO2021169897A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention specifically relates to an R-T-B series permanent magnet material and its preparation method and application.
  • RTB series permanent magnet materials (R refers to rare earth elements, T refers to transition metal elements and metal elements of the third main group, B refers to boron elements) are widely used in electronic products, automobiles, wind power, home appliances, elevators due to their excellent magnetic properties And industrial robots and other fields, such as hard disks, mobile phones, earphones, and permanent magnet motors such as elevator traction machines, generators, etc., as energy sources, etc., and its demand is increasing. The requirements for performance, temperature stability, and squareness of magnets are gradually increasing.
  • the RTB-based permanent magnetic material is mainly composed of a main phase containing an R 2 T 14 B compound and a grain boundary phase located in the grain boundary portion of the main phase.
  • the R 2 T 14 B compound has a ferromagnetic material with high saturation magnetization and anisotropic magnetic field.
  • the coercivity of the RTB-based permanent magnet material will decrease at high temperatures, resulting in irreversible thermal demagnetization. It is currently known that: replacing part of the light rare earth RL in R in the R 2 T 14 B compound as the main phase with heavy rare earth element RH, the coercive force will increase, and the coercive force will increase with the increase in the amount of substitution. improve. On the other hand, the residual magnetic flux Br will decrease.
  • RH resources are scarce and expensive.
  • R 2 T 17 does not have uniaxial anisotropy at room temperature, which further deteriorates the performance of the magnet.
  • a high squareness is a necessary condition for high-quality magnets.
  • the invention aims to overcome the need to add a large amount of heavy rare earth elements when the prior art rare earth permanent magnet materials adopt low-B system to improve the magnetic performance, and even if the heavy rare earth elements are added, the magnetic performance (remanence, coercivity, temperature stability)
  • the RTB-based permanent magnetic material of the present invention can still be prepared with a low boron and aluminum-free system without adding heavy rare earth elements to obtain better magnetic properties (remanence, coercivity, temperature stability, squareness), and at the same time The magnetic properties of batches of permanent magnet materials are uniform.
  • RTB-based permanent magnet materials usually require the addition of a certain amount of Al to obtain better performance magnet materials.
  • Magnetic properties but in the preparation of the same batch of products, the magnetic properties are not uniform, that is, the difference between the maximum and minimum coercivity in the same batch of products is greater than 1.5kOe.
  • the R-T-B permanent magnetic material finally obtained by the present invention has better uniformity through a specific formula.
  • the present invention adopts the following technical solutions to solve the above technical problems.
  • the present invention provides a raw material composition of R-T-B series permanent magnet material, which includes the following components by mass content:
  • R 28.5-34%; the R is a rare earth element, and the R includes at least Nd;
  • N contains one or more of Ti, Zr and Nb;
  • the content of Ti is 0.15 to 0.25%;
  • N includes Zr
  • the content of Zr is 0.2-0.35%
  • Nb When N includes Nb, the content of Nb is 0.2-0.5%;
  • the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the components and corresponding contents in the raw material composition are all actively added, and do not include the components and/or contents introduced in the preparation process and/or impurities.
  • the content of R is preferably 29 to 34%, such as 29.4%, 30%, 30.3%, 30.4%, 30.5%, 31%, 31.2%, 31.5%, 31.8%, 32%, 33.8 % Or 34%, more preferably 30 to 31.6%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the Nd content is preferably 8 to 13%, or 25 to 31.5%, such as 9.5%, 10.5%, 25%, 29%, 30%, 31%, 31.4% or 31.5%; more Preferably, it is 9.5 to 10.5% or 29 to 31.5%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the raw material composition preferably does not contain Al; it means that Al is not actively added, but it may be added during the addition of other elements (for example, Fe) or during the preparation process (for example, alumina crucible to prepare molten liquid) A small amount of Al (less than 0.08%) will be introduced.
  • the R in the raw material composition, the R may also include Pr.
  • the content of Pr is preferably below 8% and not 0, such as 0.1%, 0.2%, 0.3%, 0.4%, 0.5% or 6.5%, and more Preferably, it is 0.1 to 0.5%; or the content of Pr is preferably 18.5% to 30%, more preferably 20.5% to 21.5%, such as 20.5% or 21.5%, and the percentage is based on the total mass of the raw material composition The mass percentage.
  • the raw material composition may not contain heavy rare earth elements, and may also reach a level equivalent to the remanence and coercivity of the prior art magnet materials.
  • the raw material composition may further include RH, which is a heavy rare earth element.
  • the content of the RH is preferably 1 to 2.5%, and the percentage is a mass percentage of the total mass of the raw material composition.
  • the type of RH preferably includes one or more of Dy, Tb and Ho.
  • the content of Dy is preferably 1 to 2.5%, for example 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Tb is preferably 1 to 2.5%, for example 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of B is preferably 0.86 to 0.94%, such as 0.86%, 0.88%, 0.9%, 0.92% or 0.94%, more preferably 0.86 to 0.92%, and the percentage is based on the raw material combination The mass percentage of the total mass of the material.
  • the atomic percentage of R and the atomic percentage of B in the raw material composition preferably satisfy the following relationship: B/R ⁇ 0.38, where the B is in the raw material composition The atomic percentage of R in the raw material composition.
  • the B and Nd satisfy the following relational formula: B/(Pr+Nd) ⁇ 0.405, where B refers to the B In the atomic percentage in the raw material composition, Pr refers to the atomic percentage of the Pr in the raw material composition, and Nd refers to the atomic percentage of the Nd in the raw material composition.
  • the content of Ga is preferably 0.52 to 1.8%, such as 0.52%, 0.55%, 0.65%, 0.85%, 1.05%, 1.25%, 1.75% or 1.8%, more preferably 0.6 to 1.8 %, the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Cu is preferably 0.4 to 2%, such as 0.4%, 0.45%, 0.55%, 0.6%, 0.65%, 0.85%, 1%, 1.25%, 1.5%, 1.85% or 2%. %, more preferably 0.55-1.05% or 1.25-2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Co is preferably 0.5 to 2.5%, such as 0.5%, 1.2%, 1.5%, 1.6%, 1.8%, 2% or 2.5%, more preferably 0.5 to 2%. It is the mass percentage of the total mass of the raw material composition.
  • the Fe content is preferably 59.5-67.3%, such as 59.68%, 60.01%, 62.28%, 62.38%, 62.84%, 63.84%, 64.09%, 64.35%, 64.38%, 64.74%, 64.92 %, 65.46%, 65.5%, 65.75%, 67.06% or 67.24%, more preferably 60-66%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Ti is preferably 0.2 to 0.25%, such as 0.15%, 0.2%, 0.22% or 0.25%, and the percentage is based on the total mass of the raw material composition. The mass percentage.
  • the content of Zr is preferably 0.22 to 0.35%, such as 0.22%, 0.25%, 0.26%, 0.32% or 0.35%, more preferably 0.26 to 0.32% ,
  • the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of the Zr is preferably: 0.26% ⁇ Zr ⁇ 3.48B-2.67, and the B is the mass percentage in the raw material composition.
  • B is 0.86.
  • the content of Nb is preferably 0.2 to 0.32%, such as 0.2%, 0.22%, 0.25% or 0.32%, and the percentage is based on the total mass of the raw material composition. The mass percentage.
  • the raw material composition contains Ti and Nb, preferably the Ti/Nb ⁇ 1.5, where the Ti is the mass percentage in the raw material composition, and the Nb is The mass percentage in the raw material composition.
  • the raw material composition of the R-T-B permanent magnet material preferably includes the following components by mass content: R: 29-32%; the R is a rare earth element, and the R includes at least Nd;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Nb
  • the content of Nb is 0.25-0.5%
  • the raw material composition does not contain Al
  • the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material preferably includes the following components by mass: R: 29-32%; the R is a rare earth element, and the R includes Nd and Pr; Pr :0.1 ⁇ 0.5% or 18.5% ⁇ 25%;
  • the raw material composition does not contain Al; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material preferably includes the following components by mass: R: 29-32%; the R is a rare earth element, and the R includes Nd and Pr; Pr :0.1 ⁇ 0.5% or 18.5% ⁇ 25%;
  • the raw material composition does not contain Al; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the R-T-B permanent magnet material preferably includes the following components by mass content: R: 29-32%; the R is a rare earth element, and the R includes at least Nd;
  • the raw material composition does not contain Al;
  • the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the R-T-B permanent magnet material preferably includes the following components by mass content: R: 29-32%; the R is a rare earth element, and the R includes at least Nd;
  • the raw material composition does not contain Al; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 30%, Pr 0.3%, Ga 0.52%, Cu 0.45%, Co 0.5%, Ti 0.15 %, B 0.84%, Fe 67.24%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 31%, Pr 0.2%, Ga 0.52%, Cu 1%, Co 0.5%, Ti 0.2 %, Nb 0.2%, B 0.88%, Fe 65.5%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components by mass content: Nd 10.5%, Pr 21.5%, Ga 0.55%, Cu 1.5%, Co 0.5%, Ti 0.22%, Nb 0.22%, B 0.92%, Fe 64.09%, and the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 9.5%, Pr 21.5%, Ga 0.55%, Cu 2%, Co 1.2%, Ti 0.25 %, Nb 0.22%, B 0.94%, Fe 63.84%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 9.5%, Pr 21.5%, Ga 1.05%, Cu 0.55%, Co 1.5%, Ti 0.22 %, B 0.94%, Fe 64.74%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 9.5%, Pr 21.5%, Ga 1.75%, Cu 1.25%, Co 2%, Ti 0.22 %, B 0.94%, Fe 62.84%, and the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 29%, Pr 0.4%, Ga 0.52%, Cu 0.45%, Co 1.2%, Zr 0.26 %, Nb 0.25%, B 0.86%, Fe 67.06%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 30%, Pr 0.4%, Ga 0.55%, Cu 0.6%, Co 1.2%, Zr 0.32 %, Nb 0.32%, B 0.86%, Fe 65.75%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 30.3%, Pr 0.2%, Ga 0.85%, Cu 0.65%, Co 1.6%, Ti 0.2 %, Zr 0.2%, Nb 0.2%, B 0.88%, Fe 64.92%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: 31.5%, Nd 31.4%, Pr 0.1%, Ga 0.55%, Cu 0.85%, Co 1.6% , Zr 0.22%, B 0.9%, Fe 64.38%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 25%, Pr 6.5%, Ga 0.55%, Cu 0.85%, Co 1.6%, Zr 0.22 %, B 0.9%, Fe 64.38%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 9.5%, Pr 21.5%, Ga 0.65%, Cu 1.25%, Co 1.6%, Zr 0.25 %, B 0.9%, Fe 64.35%, and the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 10.5%, Pr 21.5%, Ga 0.85%, Cu 1.85%, Co 1.8%, Zr 0.32 %, B 0.9%, Fe 62.28%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 10.5%, Pr 21.5%, Ga 0.85%, Cu 1.85%, Co 1.8%, Zr 0.22 %, B 0.9%, Fe 62.38%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 9.5%, Pr 20.5%, Ga 0.85%, Cu 0.65%, Co 1.8%, Zr 0.32 %, B 0.92%, Fe 65.46%, and the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 31.5%, Pr 0.3%, 2%, Ga 1.25% Cu 2%, Co 2%, Zr 0.35%, B 0.92%, Fe 59.68%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the RTB-based permanent magnet material includes the following components: Nd 31.5%, Pr 0.5%, 2%, Ga 1.8%, Cu 0.4%, Co 2.5% , Zr 0.35%, B 0.94%, Fe 60.01%, the percentages are the mass percentages of the mass of each component to the total mass of the raw material composition.
  • the present invention also provides a preparation method of R-T-B series permanent magnet material, which includes the following steps: the raw material composition of the R-T-B series permanent magnet material is cast, powdered, formed, sintered and aging treated.
  • the operation and conditions of the smelting can be conventional in the art.
  • the vacuum degree of the smelting may be 0.05 Pa.
  • the melting temperature may be 1500°C or less.
  • the melting equipment may be a high-frequency vacuum induction melting furnace.
  • the casting operations and conditions may be conventional casting operations and conditions in the field.
  • the casting is typically 10 2 °C / sec ⁇ 10 4 °C / sec cooling rate of the alloy to prepare a sheet.
  • the atmosphere of the casting may generally be argon.
  • the casting pressure may generally be 5.5 ⁇ 10 4 Pa.
  • the cooling can be achieved by passing cooling water into the rollers.
  • the inlet water temperature of the roller is ⁇ 25°C, such as 22.5°C, 22.8°C, 23.1°C, 23.4°C, 23.5°C, 23.6°C or 23.8°C, more preferably 22.5-24°C.
  • the roller may be a copper roller.
  • the operations and conditions of the powder milling can be conventional operations and conditions in the art.
  • the pulverization usually includes a hydrogen cracking process and a jet milling process.
  • the hydrogen breaking process may be a conventional hydrogen breaking process in the field, such as hydrogen absorption, dehydrogenation, and cooling treatment.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.15 MPa.
  • the dehydrogenation can be carried out under the conditions of raising the temperature while drawing a vacuum.
  • the jet milling process can be a conventional jet milling process in the art, and the jet milling process can be performed in a nitrogen atmosphere with an oxidizing gas content of 120 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure of the crushing chamber of the jet mill process can be 0.3-0.4 MPa, for example 0.38 MPa.
  • the time of the jet milling process may be 2 to 4 hours, for example, 3 hours.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.10-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the molding operation and conditions can be conventional molding operations in the art.
  • it includes a magnetic field forming method or a hot pressing and thermal deformation method.
  • the sintering operation and conditions can be conventional sintering operation conditions in the art.
  • the sintering environment may be a vacuum.
  • the pressure of the vacuum may be 5 ⁇ 10 -3 Pa.
  • preheating is usually included before the sintering.
  • the preheating temperature may be 300-600°C.
  • the preheating time may be 1 to 2 hours.
  • the preheating is preferably at a temperature of 300°C and 600°C for 1 hour each.
  • the sintering temperature is preferably 1060-1090°C, such as 1065°C, 1068°C, 1070°C, 1073°C, 1075°C or 1085°C, more preferably 1065-1085°C.
  • the sintering time is preferably 5-10h, for example 8h.
  • the aging treatment preferably includes a primary aging treatment and a secondary aging treatment.
  • the temperature of the primary aging treatment is preferably 850-950°C, more preferably 900°C.
  • the time of the primary aging treatment is preferably 2 to 4 hours, such as 3 hours, and the time refers to the time at the temperature of the primary aging treatment.
  • the temperature of the secondary aging treatment is preferably 440-475°C, such as 440°C, 450°C, 455°C, 460°C, 465°C or 472°C, more preferably 440-460°C.
  • the time of the secondary aging treatment is preferably 2 to 4 hours, such as 3 hours, and the time refers to the time at the temperature of the secondary aging treatment.
  • the rate of heating up to the temperature of the primary aging treatment or secondary aging treatment may be conventional, and is usually 3 to 5° C./min.
  • the invention also provides an R-T-B series permanent magnet material prepared by the above preparation method.
  • the present invention also provides an R-T-B series permanent magnet material, which includes the following components by mass content:
  • R 28.5-34%; the R is a rare earth element, and the R includes at least Nd;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Ti
  • the content of Ti is 0.15 to 0.251%
  • Nb When N contains Nb, the content of Nb is 0.2-0.5%;
  • the percentage is the mass percentage of each component in the total mass of the R-T-B permanent magnet material.
  • the grain boundary phase of the RTB-based permanent magnetic material preferably further includes R 6 T 13 M phase, where T refers to Fe and/or Co, and M refers to Cu and/or Ga.
  • the ratio of the volume of the R 6 T 13 M phase to the total volume of the "grain boundary phase, main phase and rare earth-rich phase” is preferably 4-10%, such as 4.2%, 4.6%, 5.2%, 5.4%, 5.7%, 6.3%, 6.5%, 7.5%, 7.6%, 7.7% or 9.8%, more preferably 5-9.8%.
  • the grain boundary phase refers to the general term for the grain boundary phase between two or more Nd 2 T 14 B crystal grains.
  • the grain boundary phase of the RTB-based permanent magnetic material preferably does not contain the R 6 T 13 Al phase.
  • R is a rare earth element
  • T is Fe and/or Co.
  • the content of R is preferably 29 to 34%, such as 29.414%, 30%, 30.19%, 30.381%, 30.502%, 30.997%, 31.003%, 31.004%, 31.007%, 31.215%, 31.502 %, 31.55%, 32.05%, 32.06%, 32.07%, 33.77% or 33.983%, more preferably 30-31.6%, and the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the Nd content is preferably 8-13% or 25-31.502%, such as 9.5%, 9.501%, 9.505%, 10.503%, 10.504%, 25%, 29.012%, 29.895%, 29.979% , 30.302%, 31.012%, 31.402%, 31.497% or 31.502%, more preferably 9.5-10.503% or 29-31.502%, the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the R in the R-T-B series permanent magnetic material, the R may also include Pr.
  • the content of Pr is preferably below 8% and not 0, such as 0.103%, 0.2%, 0.203%, 0.295%, 0.303%, 0.402% , 0.502% or 6.502%, more preferably 0.1 to 0.502%; or the content of Pr is preferably 18.5 to 30%, more preferably 20.5 to 21.504%, such as 20.5%, 21.497%, 21.501%, 21.502%, 21.503% or 21.504, the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the R-T-B series permanent magnet material may not contain heavy rare earth elements, and may also reach a level equivalent to the remanence and coercivity of the prior art magnet materials.
  • the R-T-B series permanent magnetic material may further include RH, and the RH is a heavy rare earth element.
  • the content of the RH is preferably 1 to 2.5%, and the percentage is a mass percentage of the total mass of the R-T-B series permanent magnet material.
  • the type of RH preferably includes one or more of Dy, Tb and Ho.
  • the content of Dy is preferably 1 to 2.5%, for example, 1.965%, and the percentage is a mass percentage of the total mass of the R-T-B permanent magnet material.
  • the content of Tb is preferably 1 to 2.5%, such as 1.984%, and the percentage is a mass percentage of the total mass of the R-T-B permanent magnet material.
  • the content of B is preferably 0.86-0.943%, such as 0.861%, 0.862%, 0.879%, 0.88%, 0.902%, 0.903%, 0.905%, 0.906%, 0.92%, 0.921%, 0.922 %, 0.942% or 0.943%, more preferably 0.861-0.922%, and the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the atomic percentage of R and the atomic percentage of B in the RTB-based permanent magnetic material preferably satisfy the following relationship: B/R ⁇ 0.38, where the B is in the raw material.
  • the RTB-based permanent magnet material contains Pr
  • the B and the Nd satisfy the following relationship: B/(Pr+Nd) ⁇ 0.405, where B refers to the The atomic percentage of B in the RTB-based permanent magnetic material, Pr refers to the atomic percentage of the Pr in the RTB-based permanent magnetic material, and Nd refers to the atomic percentage of the Nd in the raw material composition.
  • the content of Ga is preferably 0.52-1.8%, such as 0.522%, 0.552%, 0.553%, 0.654%, 0.85%, 0.851%, 0.852%, 1.052%, 1.252%, 1.75% or 1.792 %, more preferably 0.6-1.8%, and the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the Cu content is preferably 0.405% to 2.001%, such as 0.405%, 0.452%, 0.454%, 0.551%, 0.601%, 0.65%, 0.852%, 0.854%, 0.994%, 1.25%, 1.254 %, 1.502%, 1.854%, 1.857%, 1.985% or 2.001%, more preferably 0.55-1.05% or 1.25-2.001%, the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the content of Co is preferably 0.49 to 2.5%, such as 0.49%, 0.492%, 0.497%, 1.202%, 1.503%, 1.594%, 1.6%, 1.602%, 1.8%, 1.804%, 1.991 %, 2% or 2.502%, more preferably 0.49-2%, and the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the content of Al is preferably 0.01-0.05%, such as 0.014%, 0.015%, 0.025%, 0.032% or 0.041%, and the percentage is the mass percentage of the total mass of the R-T-B permanent magnet material.
  • the Fe content is preferably 59.5 to 67.32%, such as 59.681%, 60.009%, 62.244%, 62.331%, 62.799%, 63.811%, 64.042%, 64.312%, 64.324%, 64.331%, 64.71 %, 64.903%, 65.419%, 65.469%, 65.744%, 67.008% or 67.32%, more preferably 60-66%, and the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the content of Ti is preferably 0.2 to 0.251%, such as 0.2%, 0.202%, 0.22%, 0.222%, 0.224% or 0.251%, and the percentage is RTB is the mass percentage of the total mass of permanent magnet materials.
  • the content of Zr is preferably 0.22-0.352%, such as 0.222%, 0.224%, 0.252%, 0.263%, 0.32%, 0.322%, 0.324% or 0.352% , More preferably 0.26 to 0.32%, and the percentage is the mass percentage of the total mass of the RTB-based permanent magnet material.
  • the content of the Zr is preferably: 0.26% ⁇ Zr ⁇ 3.48B-2.67, and the B is the mass percentage in the R-T-B series permanent magnet material.
  • B is 0.86.
  • the Nb content is preferably 0.2% to 0.321%, such as 0.2%, 0.202%, 0.221%, 0.222%, 0.251% or 0.321%, and the percentage is RTB is the mass percentage of the total mass of permanent magnet materials.
  • the RTB-based permanent magnet material contains Ti and Nb, preferably the Ti/Nb ⁇ 1.5, where the Ti is the mass percentage in the RTB-based permanent magnet material,
  • the Nb is the mass percentage in the RTB-based permanent magnetic material.
  • the R-T-B series permanent magnet material preferably includes the following components by mass content: R: 29-32%; the R is a rare earth element, and the R includes at least Nd;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Zr
  • the content of Zr is 0.22-0.352%
  • Nb When N contains Nb, the content of Nb is 0.22-0.321%;
  • the percentage is the mass percentage of each component in the total mass of the RTB-based permanent magnetic material; the grain boundary phase of the RTB-based permanent magnetic material also includes the R 6 T 13 M phase; the R 6 T 13 M phase
  • the ratio of the volume to the total volume of the "grain boundary phase, main phase and rare earth-rich phase" is 4-10%.
  • the RTB-based permanent magnet material preferably includes the following components by mass content: R: 30 ⁇ 31.6%; the R is a rare earth element, and the R includes Nd and Pr; Pr: 0.1 ⁇ 0.502 % Or 20.5 ⁇ 21.504%;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Zr
  • the content of Zr is 0.22-0.352%
  • Nb When N contains Nb, the content of Nb is 0.22-0.321%;
  • the percentage is the mass percentage of each component in the total mass of the RTB-based permanent magnetic material; the grain boundary phase of the RTB-based permanent magnetic material also includes the R 6 T 13 M phase; the R 6 T 13 M phase
  • the ratio of the volume to the total volume of the "grain boundary phase, main phase and rare earth-rich phase" is 5 to 9.8%.
  • the RTB-based permanent magnet material preferably includes the following components by mass content: R: 30 ⁇ 31.6%; the R is a rare earth element, and the R includes Nd and Pr; Pr: 0.1 ⁇ 0.502 % Or 20.5 ⁇ 21.504%;
  • Ga 0.6 ⁇ 1.8%
  • the percentage is the mass percentage of each component in the total mass of the RTB-based permanent magnet material; the grain boundary phase of the RTB-based permanent magnet material also includes the R 6 T 13 M phase; The ratio of the volume of the R 6 T 13 M phase to the total volume of the “grain boundary phase, the main phase, and the rare earth-rich phase” is 5 to 9.8%.
  • the R-T-B series permanent magnet material preferably includes the following components by mass content: R: 29-32%; the R is a rare earth element, and the R includes at least Nd;
  • the percentage is the mass percentage of each component in the total mass of the RTB-based permanent magnetic material; the grain boundary phase of the RTB-based permanent magnetic material also includes the R 6 T 13 M phase; the R 6 T 13 M
  • the ratio of the volume of the phase to the total volume of the "grain boundary phase, main phase and rare earth-rich phase" is 5 to 9.8%.
  • the invention also provides an application of the R-T-B series permanent magnet material as an electronic component.
  • the application fields can be the automotive drive field, wind power field, servo motor and home appliance field (for example, air conditioner).
  • the room temperature refers to 25°C ⁇ 5°C.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is that the RTB-based permanent magnet material of the present invention can still be prepared with low boron and aluminum-free system under the premise of not adding heavy rare earth elements to obtain magnetic properties (remanence, coercivity, temperature stability, Squareness) is better, and the magnetic properties of the same batch of permanent magnet materials are uniform.
  • Example 1 (1) Melting process: According to the formula shown in Example 1 in Table 1, take the prepared raw materials and put them in a crucible made of alumina, and place them in a high-frequency vacuum induction melting furnace in a vacuum of 5 ⁇ 10 -2 Pa. Vacuum melting is performed at a temperature below 1500°C.
  • Hydrogen breaking and pulverizing process Vacuum the hydrogen breaking furnace containing the quench alloy at room temperature, and then pass hydrogen with a purity of 99.9% into the hydrogen breaking furnace, maintain the hydrogen pressure at 0.15MPa, and fully absorb hydrogen. The temperature is raised while vacuuming, and the hydrogen is fully dehydrogenated, and then cooled, and the powder after the hydrogen cracking and pulverization is taken out.
  • Fine pulverization process Under the nitrogen atmosphere with an oxidizing gas content of 120 ppm or less, the powder after hydrogen pulverization is pulverized by jet milling for 3 hours under the condition of a pulverizing chamber pressure of 0.38 MPa to obtain a fine powder.
  • Oxidizing gas refers to oxygen or moisture.
  • Magnetic field molding process using a right-angle orientation magnetic field molding machine, in a 1.6T orientation magnetic field, under a molding pressure of 0.35ton/cm 2 , the above-mentioned zinc stearate-added powder is formed into a side length at a time It is a 25mm cube, which is demagnetized in a 0.2T magnetic field after a single forming.
  • a secondary molding machine isostatic press
  • each molded body is moved to a sintering furnace for sintering, sintered in a vacuum of 5 ⁇ 10 -3 Pa, maintained at a temperature of 300°C and 600°C for 1 hour, and then sintered at a temperature of 1070°C After 8 hours, Ar gas was introduced to bring the pressure to 0.1 MPa, and then cooled to room temperature.
  • the sintered body is heated from 20°C to 900°C at a heating rate of 3 to 5°C/min in high-purity Ar gas, and then subjected to primary aging treatment at 900°C for 3 hours, and then cooled to room temperature After removing. Then, the temperature is increased from 20°C to 465°C at a heating rate of 3 to 5°C/min, and the secondary aging temperature is performed at a temperature of 465°C.
  • Table 1 The formula (wt%) of the raw material composition of the R-T-B series permanent magnetic materials of Examples 1-15 and Comparative Examples 1-10 and the water inlet temperature, sintering temperature, and secondary aging temperature in the preparation method
  • the magnetic properties of the RTB-based permanent magnet materials in Comparative Examples 1-10 are the best properties that can be obtained after the formulations of Comparative Examples 1-10 are optimized (aging temperature, sintering temperature or water inlet temperature). .
  • Example 1 29.895 0.295 / / 0.522 0.452 0.032 0.497 0.152 / / 0.835 67.32
  • Example 2 31.012 0.203 / / 0.522 0.994 0.025 0.492 0.202 / 0.202 0.879 65.47
  • Example 3 10.503 21.504 / / 0.553 1.502 0.041 0.490 0.222 / 0.221 0.922 64.04
  • Example 4 9.501 21.502 / / 0.552 1.985 0.032 1.202 0.251 / 0.222 0.942 63.81
  • Example 5 9.501 21.503 / / 1.052 0.551 0.014 1.503 0.224 / / 0.942 64.71
  • Example 6 9.505 21.502 / / 1.750 1.250 0.032 2.000 0.220 / / 0.942 62.80
  • Example 7 29.012 0.402 / / 0.522 0.454
  • Example 9 30.302 0.200 / / 0.850 0.650 0.015 1.600 0.200 0.200 0.200 0.880 64.90
  • Example 10 31.402 0.103 / / 0.552 0.852 0.032 1.602 / 0.224 / 0.902 64.33
  • Example 10.1 25.000 6.502 / / 0.552 0.854 0.041 1.602 / 0.222 / 0.903 64.32
  • Example 11 9.500 21.497 / / 0.654 1.254 0.032 1.594 / 0.252 / 0.905 64.31
  • Example 12 10.503 21.503 / / 0.852 1.854 0.014 1.800 / 0.324 / 0.906 62.24
  • Example 12.2 10.503 21.503 / / 0.852 1.854 0.014 1.800 / 0.324
  • Microstructure use FE-EPMA to detect, polish the vertical orientation surface of RTB-based permanent magnet materials, and use field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) Detection.
  • FE-EPMA field emission electron probe microanalyzer
  • the R 6 T 13 M phase and the R 6 T 13 Al phase in the grain boundary are detected.
  • T refers to Fe and/or Co
  • M refers to Ga and/or Cu.
  • Table 3 The test results are shown in Table 3 below.
  • the proportion of R 6 T 13 M phase or R 6 T 13 Al phase refers to the volume of R 6 T 13 M phase or R 6 T 13 Al phase and the "main phase, grain boundary phase and rare earth-rich phase" The ratio of the total volume.
  • Br or Hcj refers to the average value: the average value calculated by testing the remanence or coercivity of 5 rare earth permanent magnetic materials in the same batch.
  • the relative permeability is Br/Hcb; among them, Br is the remanence and Hcb is the magnetic coercivity.
  • Br is the remanence
  • Hcb is the magnetic coercivity.
  • Max(Hcj)-Min(Hcj) The maximum value of the coercive force minus the minimum value of the coercive force in the same embodiment or the same comparative example. If it is greater than 1.5kOe, the magnetic performance consistency is poor.
  • each neodymium iron boron material refers to a cylinder of 10mm*10mm cut out according to the unit of the performance test.
  • refers to the absence of R 6 T 13 M phase or R 6 T 13 Al phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种R-T-B系永磁材料及其制备方法和应用。该R-T-B系永磁材料的原料组合物包括如下含量的组分:R:28.5~34%;R为稀土元素,所述R包括Nd;Ga>0.5%;Cu≥0.4%;B:0.84~0.94%;Co≤2.5%;Fe:59~69%;N:包含Ti、Zr和Nb中的一种或多种;N包含Ti时,Ti为0.15~0.25%;N包含Zr时,Zr为0.2~0.35%;N包含Nb时,Nb为0.2~0.5%;百分比为占原料组合物总质量的质量百分比。上述稀土永磁材料在不添加重稀土时,采用低硼无铝体系磁性能如剩磁、矫顽力、温度稳定性、方形度较佳,同一批次的永磁材料的磁性能均一。

Description

一种R-T-B系永磁材料及其制备方法和应用 技术领域
本发明具体涉及一种R-T-B系永磁材料及其制备方法和应用。
背景技术
R-T-B系永磁材料(R指稀土元素,T指过渡金属元素及第三主族金属元素,B指硼元素)由于其优异的磁特性而被广泛应用于电子产品、汽车、风电、家电、电梯及工业机器人等领域,例如硬盘、手机、耳机、和电梯曳引机、发电机等永磁电机中作为能量源等,其需求日益扩大,且各产商对于磁铁性能例如剩磁、矫顽力性能、温度稳定性、磁体方形度等的要求也逐步提升。
R-T-B系永磁材料主要由包含R 2T 14B化合物的主相和位于该主相的晶界部分的晶界相构成。该R 2T 14B化合物具有高饱和磁化和各向异性磁场的强磁性材料。而R-T-B系永磁材料的矫顽力在高温下会降低,因而发生不可逆热退磁。目前已知的是:用重稀土元素RH置换作为主相的R 2T 14B化合物中的R中的部分轻稀土RL,则矫顽力会提高,矫顽力会随着置换量的增加而提高。但另一方面,剩余磁通量Br会降低。此外,RH的资源稀少,价格昂贵。为了提升R-T-B系永磁材料的剩磁,通常需要降低B含量。但是当B的含量在较低水平时,会形成R 2T 17相。而R 2T 17不具有室温单轴各向异性,进而使得磁体的性能劣化。
另外,磁体材料的方形度是指在J-H退磁曲线上磁极化强度J=0.9Jr(Jr为剩余磁极化强度,其值与剩余磁感应强度Br相同,二者统称为剩磁)-所对应的磁场值Hk(膝点矫顽力),与J-H退磁曲线上J=0对应的磁场值Hcj(内禀矫顽力)的比值,即Hk/Hcj。具有较高的方形度是高品质磁体所必须具备的条件。以减少在使用过程中尤其是在相对使用温度较高的环境下的失磁,确保磁体在上述环境中长期使用时仍旧具有高的磁性能。目前现有技术中的 永磁材料即使矫顽力和剩磁较高,其方形度也无法同时提升到较佳的水平。
因此,在不添加或少量添加重稀土的情况下,如何采用低B无Al体系的方法制得高矫顽力、高剩磁、方形度以及一致性较佳的R-T-B系永磁材料是本领域亟待解决的技术问题。
发明内容
本发明旨在克服现有技术稀土永磁材料采用低B体系提升磁性能时,通常需要添加大量的重稀土元素,且即使添加了重稀土元素,磁性能(剩磁、矫顽力、温度稳定性、方形度)仍然无法得到显著提升的缺陷,而提供了一种R-T-B系永磁材料及其制备方法和应用。本发明的R-T-B系永磁材料在不添加重稀土元素的前提下,采用低硼无铝体系仍然能够制备得到磁性能(剩磁、矫顽力、温度稳定性、方形度)较佳,同时同批次的永磁材料磁性能均一。
需要说明的是,现有技术中R-T-B系永磁材料通常需要添加一定量的Al才能够得到性能较佳的磁体材料,但是发明人通过多次试验的验证发现:虽然添加Al会提升磁体材料的磁性能,但是在制备同一批次的产品中,磁性能不均一,即同一批次产品中矫顽力的最大值和最小值之间的差值大于1.5kOe。且本发明通过特定的配方,最终得到的R-T-B系永磁材料的均一性较佳。
本发明采用以下技术方案解决上述技术问题。
本发明提供了一种R-T-B系永磁材料的原料组合物,其包括如下质量含量的组分:
R:28.5~34%;所述R为稀土元素,所述R至少包括Nd;
Ga:>0.5%;
Cu:≥0.4%;
B:0.84~0.94%;
Co:≤2.5%、但不为0;
Fe:59~69%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包括Ti时,所述Ti的含量为0.15~0.25%;
当N中包括Zr时,所述Zr的含量为0.2~0.35%;
当N中包括Nb时,所述Nb的含量为0.2~0.5%;
百分比为各组分质量占所述原料组合物总质量的质量百分比。
需要说明的是所述原料组合物中的各组分及相应的含量均为主动添加,不包括制备工艺和/或杂质中所引入的组分和/或含量。
本发明中,所述R的含量较佳地为29~34%,例如29.4%、30%、30.3%、30.4%、30.5%、31%、31.2%、31.5%、31.8%、32%、33.8%或34%,更佳地为30~31.6%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Nd的含量较佳地为8~13%,或者25~31.5%,例如9.5%、10.5%、25%、29%、30%、31%、31.4%或31.5%;更佳地为9.5~10.5%或者29~31.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中较佳地不含Al;指的是不主动添加Al,但是可能会在添加其他元素(例如Fe时)或者制备工艺中(例如氧化铝坩埚制备熔融液)会引入微量的Al(0.08%以下)。
本发明中,所述原料组合物中,所述R通常还可包括Pr。
其中,当所述原料组合物中包含Pr时,所述Pr的含量较佳地在8%以下且不为0,例如0.1%、0.2%、0.3%、0.4%、0.5%或6.5%,更佳地为0.1~0.5%;或者所述Pr的含量较佳地为18.5~30%,更佳地为20.5~21.5%,例如20.5%或21.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中可不含重稀土元素,也可达到与现有技术的磁体材料的剩磁、矫顽力相当的水平。或者,所述原料组合物中还可包括RH,所述RH为重稀土元素。
其中,当所述原料组合物中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比。
其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种。
当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述B的含量较佳地为0.86~0.94%,例如0.86%、0.88%、0.9%、0.92%或0.94%,更佳地为0.86~0.92%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中的所述R的原子百分比和所述B的原子百分比较佳地满足如下关系式:B/R≥0.38,式中,所述B在所述原料组合物中的原子百分比,所述R在所述原料组合物中的原子百分比。
本发明中,当所述原料组合物中包含Pr时,较佳地所述B、所述Nd满足如下关系式:B/(Pr+Nd)≥0.405,式中,B指的是所述B在原料组合物中的原子百分比,Pr指的是所述Pr在原料组合物中的原子百分比,Nd指的是所述Nd在原料组合物中的原子百分比。
本发明中,所述Ga的含量较佳地为0.52~1.8%,例如0.52%、0.55%、0.65%、0.85%、1.05%、1.25%、1.75%或1.8%,更佳地为0.6~1.8%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Cu的含量较佳地为0.4~2%,例如0.4%、0.45%、0.55%、0.6%、0.65%、0.85%、1%、1.25%、1.5%、1.85%或2%,更佳地为0.55~1.05%或1.25~2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Co的含量较佳地为0.5~2.5%,例如0.5%、1.2%、1.5%、1.6%、1.8%、2%或2.5%,更佳地为0.5~2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Fe的含量较佳地为59.5~67.3%,例如59.68%、60.01%、62.28%、62.38%、62.84%、63.84%、64.09%、64.35%、64.38%、64.74%、64.92%、65.46%、65.5%、65.75%、67.06%或67.24%,更佳地为60~66%, 百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Ti时,所述Ti的含量较佳地为0.2~0.25%,例如0.15%、0.2%、0.22%或0.25%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地为0.22~0.35%,例如0.22%、0.25%、0.26%、0.32%或0.35%,更佳地为0.26~0.32%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N中含有Zr时,所述Zr的含量较佳地为:0.26%≤Zr<3.48B-2.67,所述B为占所述原料组合物中的质量百分数。例如当所述B的含量为0.86%时,式中的B为0.86。
本发明中,当所述N包含Nb时,所述Nb的含量较佳地为0.2~0.32%,例如0.2%、0.22%、0.25%或0.32%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述原料组合物中包含Ti和Nb时,较佳地所述Ti/Nb≥1.5,式中,所述Ti为在所述原料组合物中的质量百分比,所述Nb为在所述原料组合物中的质量百分比。
本发明中,所述R-T-B系永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;
B:0.86~0.94%;
Ga:0.52~1.8%;
Cu:0.45~2%;
Co:0.45~2.5%;
Fe:59.5~67.3%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.2~0.25%;
当N中包含Zr时,所述Zr的含量为0.25~0.35%;
当N中包含Nb时,所述Nb的含量为0.25~0.5%;所述原料组合物中不 含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述R-T-B系永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者18.5~25%;
B:0.86~0.94%;
Ga:0.52~1.8%;
Cu:0.45~2%;
Co:0.45~2.5%;
Fe:62.8~67.25%;
Ti:0.2~0.25%;所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述R-T-B系永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者18.5~25%;
B:0.86~0.94%;
Ga:0.52~0.55%;
Cu:0.45~2%;
Co:0.45~2.5%;
Fe:62.8~67.25%;
Ti:0.2~0.25%;所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述R-T-B系永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;
B:0.86~0.94%;
Ga:0.52~1.8%;
Cu:0.45~2%;
Co:0.45~2.5%;
Fe:60~67.1%;
Zr:0.25~0.35%;
所述原料组合物中不含Al;
百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述R-T-B永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;
B:0.86~0.94%;
Ga:0.52~0.55%;
Cu:0.45~2%;
Co:0.45~0.55%;
Fe:60~67.1%;
Zr:0.25~0.35%;
所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 30%、Pr 0.3%、Ga 0.52%、Cu 0.45%、Co 0.5%、Ti 0.15%、B 0.84%、Fe 67.24%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 31%、Pr 0.2%、Ga 0.52%、Cu 1%、Co 0.5%、Ti 0.2%、Nb 0.2%、B 0.88%、Fe 65.5%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下质量含量的组分:Nd 10.5%、Pr 21.5%、Ga 0.55%、Cu 1.5%、Co 0.5%、Ti 0.22%、Nb 0.22%、B 0.92%、Fe 64.09%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如 下含量的组分:Nd 9.5%、Pr 21.5%、Ga 0.55%、Cu 2%、Co 1.2%、Ti 0.25%、Nb 0.22%、B 0.94%、Fe 63.84%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 9.5%、Pr 21.5%、Ga 1.05%、Cu 0.55%、Co 1.5%、Ti 0.22%、B 0.94%、Fe 64.74%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 9.5%、Pr 21.5%、Ga 1.75%、Cu 1.25%、Co 2%、Ti 0.22%、B 0.94%、Fe 62.84%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 29%、Pr 0.4%、Ga 0.52%、Cu 0.45%、Co 1.2%、Zr 0.26%、Nb 0.25%、B 0.86%、Fe 67.06%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 30%、Pr 0.4%、Ga 0.55%、Cu 0.6%、Co 1.2%、Zr 0.32%、Nb 0.32%、B 0.86%、Fe 65.75%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 30.3%、Pr 0.2%、Ga 0.85%、Cu 0.65%、Co 1.6%、Ti 0.2%、Zr 0.2%、Nb 0.2%、B 0.88%、Fe 64.92%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:31.5%、Nd 31.4%、Pr 0.1%、Ga 0.55%、Cu 0.85%、Co 1.6%、Zr 0.22%、B 0.9%、Fe 64.38%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 25%、Pr 6.5%、Ga 0.55%、Cu 0.85%、Co 1.6%、Zr 0.22%、B 0.9%、Fe 64.38%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 9.5%、Pr 21.5%、Ga 0.65%、Cu 1.25%、Co 1.6%、Zr 0.25%、B 0.9%、Fe 64.35%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 10.5%、Pr 21.5%、Ga 0.85%、Cu 1.85%、Co 1.8%、Zr 0.32%、B 0.9%、Fe 62.28%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 10.5%、Pr 21.5%、Ga 0.85%、Cu 1.85%、Co 1.8%、Zr 0.22%、B 0.9%、Fe 62.38%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 9.5%、Pr 20.5%、Ga 0.85%、Cu 0.65%、Co 1.8%、Zr 0.32%、B 0.92%、Fe 65.46%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 31.5%、Pr 0.3%、2%、Ga 1.25%Cu 2%、Co 2%、Zr 0.35%、B 0.92%、Fe 59.68%,百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:Nd 31.5%、Pr 0.5%、2%、Ga 1.8%、Cu 0.4%、Co 2.5%、Zr 0.35%、B 0.94%、Fe 60.01%,百分比为各组分质量占所述原料组合物总质 量的质量百分比。
本发明还提供了一种R-T-B系永磁材料的制备方法:其包括下述步骤:将所述R-T-B系永磁材料的原料组合物经铸造、制粉、成型、烧结和时效处理即可。
本发明中,本领域技术人员知晓所述铸造之前通常还包括熔炼。
其中,所述熔炼的操作和条件可为本领域常规。所述熔炼的真空度可为0.05Pa。所述熔炼的温度可为1500℃以下。所述熔炼的设备可为高频真空感应熔炼炉。
本发明中,所述铸造的操作和条件可为本领域常规的铸造操作和条件。所述铸造通常是以10 2℃/秒~10 4℃/秒的速度冷却以制备合金片。所述铸造的气氛通常可为氩气。所述铸造的压力通常可为5.5×10 4Pa。
所述冷却可通过辊轮中通入冷却水实现。优选地,所述辊轮的进水温度≤25℃,例如22.5℃、22.8℃、23.1℃、23.4℃、23.5℃、23.6℃或23.8℃,更佳地为22.5~24℃。所述辊轮可为铜辊。
本发明中,所述制粉的操作和条件可为本领域常规的操作和条件。所述制粉通常包括氢破工艺和气流磨工艺。
其中,所述氢破工艺可为本领域常规的氢破工艺,例如经吸氢、脱氢、冷却处理,即可。所述吸氢可在氢气压力0.15MPa的条件下进行。所述脱氢可在边抽真空边升温的条件下进行。
其中,所述气流磨工艺可为本领域常规的气流磨工艺,所述气流磨工艺可在氧化气体含量120ppm以下的氮气气氛下进行。所述氧化气体指的是氧气或水分含量。
所述气流磨工艺的粉碎室压力可为0.3~0.4MPa,例如0.38MPa。
所述气流磨工艺的时间可为2~4小时,例如3小时。
所述气流磨工艺后,可按本领域常规手段在粉体中添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.10~0.15%,例如0.12%。
本发明中,所述成型的操作和条件可为本领域常规的成型操作。例如包括磁场成形法或热压热变形法。
本发明中,所述烧结的操作和条件可为本领域常规的烧结操作条件。
其中,所述烧结的环境可为真空。所述真空的压力可为5×10 -3Pa。
其中,所述烧结之前通常还包括预热。所述预热的温度可为300~600℃。所述预热的时间可为1~2h。所述预热较佳地为在300℃和600℃的温度下各预热1h。
其中,所述烧结的温度较佳地为1060~1090℃,例如1065℃、1068℃、1070℃、1073℃、1075℃或1085℃,更佳地为1065~1085℃。
其中,所述烧结的时间较佳地为5~10h,例如8h。
本发明中,所述时效处理较佳地包括一级时效处理和二级时效处理。
其中,所述一级时效处理的温度较佳地为850~950℃,更佳地为900℃。
其中,所述一级时效处理的时间较佳地为2~4h,例如3h,该时间指的是在所述一级时效处理的温度下的时间。
其中,所述二级时效处理的温度较佳地为440~475℃,例如440℃、450℃、455℃、460℃、465℃或472℃,更佳地为440~460℃。
其中,所述二级时效处理的时间较佳地为2~4h,例如3h,该时间指的是在所述二级时效处理的温度下的时间。
其中,升温至所述一级时效处理或二级时效处理的温度的速率可为本领常规,通常为3~5℃/min。
本发明还提供了一种上述制备方法制得的R-T-B系永磁材料。
本发明还提供了一种R-T-B系永磁材料,其包括如下质量含量的组分:
R:28.5~34%;所述R为稀土元素,所述R至少包括Nd;
Ga:>0.5%;
Cu:≥0.4%;
B:0.835~0.943%;
Al:<0.08%;
Co:≤2.502%、但不为0;
Fe:59~69%;
N:包含Ti、Zr和Nb中的一种或多种;
当N包含Ti时,所述Ti的含量为0.15~0.251%;
当N包含Zr时,所述Zr的含量为0.2~0.352%;
当N包含Nb时,所述Nb的含量为0.2~0.5%;
百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述R-T-B系永磁材料的晶界相中较佳地还包括R 6T 13M相,其中T指的是Fe和/或Co,M指的是Cu和/或Ga。
其中,所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比较佳地为4~10%,例如4.2%、4.6%、5.2%、5.4%、5.7%、6.3%、6.5%、7.5%、7.6%、7.7%或9.8%,更佳地为5~9.8%。本发明中,所述晶界相指的是两个或两个以上的Nd 2T l4B晶粒间的晶界相的总称。
本发明中,所述R-T-B系永磁材料的晶界相中较佳地不含R 6T 13Al相。其中,R为稀土元素,T为Fe和/或Co。
本发明中,所述R的含量较佳地为29~34%,例如29.414%、30%、30.19%、30.381%、30.502%、30.997%、31.003%、31.004%、31.007%、31.215%、31.502%、31.505%、32.005%、32.006%、32.007%、33.77%或33.983%,更佳地为30~31.6%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述Nd的含量较佳地为8~13%或25~31.502%,例如9.5%、9.501%、9.505%、10.503%、10.504%、25%、29.012%、29.895%、29.979%、30.302%、31.012%、31.402%、31.497%或31.502%,更佳地为9.5~10.503%或29~31.502%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所R-T-B系永磁材料中,所述R通常还可包括Pr。
其中,当所述R-T-B系永磁材料中包含Pr时,所述Pr的含量较佳地在8%以下且不为0,例如0.103%、0.2%、0.203%、0.295%、0.303%、0.402%、0.502%或6.502%,更佳地为0.1~0.502%;或者所述Pr的含量较佳地为 18.5~30%,更佳地为20.5~21.504%,例如20.5%、21.497%、21.501%、21.502%、21.503%或21.504,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述R-T-B系永磁材料中可不含重稀土元素,也可达到与现有技术的磁体材料的剩磁、矫顽力相当的水平。或者,所述R-T-B系永磁材料中还可包括RH,所述RH为重稀土元素。
其中,当所述R-T-B系永磁材料中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种。
当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,例如1.965%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,例如1.984%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述B的含量较佳地为0.86~0.943%,例如0.861%、0.862%、0.879%、0.88%、0.902%、0.903%、0.905%、0.906%、0.92%、0.921%、0.922%、0.942%或0.943%,更佳地为0.861~0.922%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述R-T-B系永磁材料中的所述R的原子百分比和所述B的原子百分比较佳地满足如下关系式:B/R≥0.38,式中,所述B在所述原料组合物中的原子百分比,所述R在所述R-T-B系永磁材料中的原子百分比。
本发明中,当所述R-T-B系永磁材料中包含Pr时,较佳地所述B、所述Nd满足如下关系式:B/(Pr+Nd)≥0.405,式中,B指的是所述B在R-T-B系永磁材料中的原子百分比,Pr指的是所述Pr在R-T-B系永磁材料中的原子百分比,Nd指的是所述Nd在原料组合物中的原子百分比。
本发明中,所述Ga的含量较佳地为0.52~1.8%,例如0.522%、0.552%、0.553%、0.654%、0.85%、0.851%、0.852%、1.052%、1.252%、1.75%或1.792%,更佳地为0.6~1.8%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述Cu的含量较佳地为0.405~2.001%,例如0.405%、0.452%、 0.454%、0.551%、0.601%、0.65%、0.852%、0.854%、0.994%、1.25%、1.254%、1.502%、1.854%、1.857%、1.985%或2.001%,更佳地为0.55~1.05%或1.25~2.001%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述Co的含量较佳地为0.49~2.5%,例如0.49%、0.492%、0.497%、1.202%、1.503%、1.594%、1.6%、1.602%、1.8%、1.804%、1.991%、2%或2.502%,更佳地为0.49~2%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,本领域技术人员知晓,虽然在原料配方中未主动添加Al,但是其他元素的加入,如Fe、Co等元素,由于根据目前工艺的手段其不是纯度无法达到100%,不可避免的会引入其他的杂质,其中可能会含有Al;另外,在制备工艺中,本领域技术人员通常使用铝制的坩埚进行熔炼,也同样不可避免的会引入微量的Al,因此本发明最终产品的配方中会含有微量(0.08%以下)的Al。
本发明中,所述Al的含量较佳地为0.01~0.05%,例如0.014%、0.015%、0.025%、0.032%或0.041%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,所述Fe的含量较佳地为59.5~67.32%,例如59.681%、60.009%、62.244%、62.331%、62.799%、63.811%、64.042%、64.312%、64.324%、64.331%、64.71%、64.903%、65.419%、65.469%、65.744%、67.008%或67.32%,更佳地为60~66%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,当所述N包含Ti时,所述Ti的含量较佳地为0.2~0.251%,例如0.2%、0.202%、0.22%、0.222%、0.224%或0.251%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地为0.22~0.352%,例如0.222%、0.224%、0.252%、0.263%、0.32%、0.322%、0.324%或0.352%,更佳地为0.26~0.32%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地为:0.26%≤Zr<3.48B-2.67,所述B为占所述R-T-B系永磁材料中的质量百分数。例如当所述B的含量为0.86%时,式中的B为0.86。
本发明中,当所述N包含Nb时,所述Nb的含量较佳地为0.2~0.321%,例如0.2%、0.202%、0.221%、0.222%、0.251%或0.321%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
本发明中,当所述R-T-B系永磁材料中包含Ti和Nb时,较佳地所述Ti/Nb≥1.5,式中,所述Ti为在所述R-T-B系永磁材料中的质量百分比,所述Nb为在所述R-T-B系永磁材料中的质量百分比。
本发明中,所述R-T-B系永磁材料,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;
B:0.86~0.943%;
Ga:0.52~1.8%;
Cu:0.405~2.001%;
Co:0.49~2.502%;
Al:0.01~0.05%;
Fe:59.5~67.32%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.2~0.251%;
当N中包含Zr时,所述Zr的含量为0.22~0.352%;
当N中包含Nb时,所述Nb的含量为0.22~0.321%;
百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为4~10%。
本发明中,所述R-T-B系永磁材料,较佳地包括如下质量含量的组分:R:30~31.6%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.502%或者20.5~21.504%;
B:0.861~0.922%;
Ga:0.52~1.8%;
Cu:0.994~2.001%;
Co:0.49~2%;
Al:0.01~0.05%;
Fe:60~66%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.2~0.251%;
当N中包含Zr时,所述Zr的含量为0.22~0.352%;
当N中包含Nb时,所述Nb的含量为0.22~0.321%;
百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为5~9.8%。
本发明中,所述R-T-B系永磁材料,较佳地包括如下质量含量的组分:R:30~31.6%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.502%或者20.5~21.504%;
B:0.861~0.922%;
Ga:0.6~1.8%;
Cu:0.405~2.001%;
Co:0.49~2%;
Al:0.01~0.05%;
Fe:60~66%;
Ti:0.2~0.251%;所述百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为5~9.8%。
本发明中,所述R-T-B系永磁材料,较佳地包括如下质量含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;
B:0.86~0.943%;
Ga:0.52~1.8%;
Cu:0.405~2%;
Co:0.45~2.5%;
Al:0.01~0.05%;
Fe:60~67.1%;
Zr:0.22~0.352%;
所述百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为5~9.8%。
本发明还提供了一种所述R-T-B系永磁材料作为电子元器件的应用。
其中,所述应用的领域可为汽车驱动领域、风电领域、伺服电机和家电领域(例如空调)。
本发明中,所述室温是指25℃±5℃。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明的R-T-B系永磁材料在不添加重稀土元素的前提下,采用低硼无铝体系仍然能够制备得到磁性能(剩磁、矫顽力、温度稳定性、方形度)较佳,同时同批次的永磁材料磁性能均一。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
1、实施例1
本实施例中制备R-T-B系永磁材料所用的原料如表1所示,其制备的工 艺如下:
(1)熔炼过程:按表1中实施例1所示配方,取配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在5×10 -2Pa的真空中以1500℃以下的温度进行真空熔炼。
(2)铸造过程:在真空熔炼后的熔炼炉中通入Ar气体使气压达到5.5万Pa后,进行铸造,将熔融液通过29转/分转速的铜辊制得0.12-0.35mm厚度的速凝合金片,浇铸过程中,铜辊需通入冷冻水,其进水温度为23.5℃;以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(3)氢破粉碎过程:在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.15MPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。
(4)微粉碎工序:在氧化气体含量120ppm以下的氮气气氛下,在粉碎室压力为0.38MPa的条件下对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉。氧化气体指的是氧或水分。
(5)在气流磨粉碎后的粉末中添加硬脂酸锌,硬脂酸锌的添加量为混合后粉末重量的0.12%,再用V型混料机充分混合。
(6)磁场成型过程:使用直角取向型的磁场成型机,在1.6T的取向磁场中,在0.35ton/cm 2的成型压力下,将上述添加了硬脂酸锌的粉末一次成形成边长为25mm的立方体,一次成形后在0.2T的磁场中退磁。为使一次成形后的成形体不接触到空气,将其进行密封,再使用二次成形机(等静压成形机)在1.3ton/cm 2的压力下进行二次成形。
(7)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下,在300℃和600℃的温度下各保持1小时后,以1070℃的温度烧结8小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
(8)时效处理过程:烧结体在高纯度Ar气中,以3~5℃/min的升温速率从20℃升温至900℃,以900℃温度进行3小时一级时效处理后,冷却至室温后取出。接着以3~5℃/min的升温速率从20℃升温至465℃,以465℃ 温度进行二级时效温度。
表1 实施例1~15和对比例1~10的R-T-B系永磁材料的原料组合物的配方(wt%)以及制备方法中的进水温度、烧结温度、二级时效温度
Figure PCTCN2021077183-appb-000001
Figure PCTCN2021077183-appb-000002
注:“/”是指不含有该元素。wt%为质量百分比。
需要说明的是:对比例1~10中R-T-B系永磁材料的磁性能为对比例1~10的配方经工艺优化(时效温度、烧结温度或是进水温度)后所能够获得的最佳性能。
2、实施例2~15和对比例1~10中R-T-B系永磁材料的原料配方按表1所示,制备方法中的参数除烧结温度、二级时效温度和步骤2中的进水温度按照表1中的参数外,其余制备方法的参数与实施例1相同。
3、成分测定:对实施例1~15和对比例1~10中的R-T-B系永磁材料使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。测试结果如下表2所示。
表2 稀土永磁材料的组分和含量(wt%)
编号/wt% Nd Pr Dy Tb Ga Cu Al Co Ti Zr Nb B Fe
实施例1 29.895 0.295 / / 0.522 0.452 0.032 0.497 0.152 / / 0.835 67.32
实施例2 31.012 0.203 / / 0.522 0.994 0.025 0.492 0.202 / 0.202 0.879 65.47
实施例3 10.503 21.504 / / 0.553 1.502 0.041 0.490 0.222 / 0.221 0.922 64.04
实施例4 9.501 21.502 / / 0.552 1.985 0.032 1.202 0.251 / 0.222 0.942 63.81
实施例5 9.501 21.503 / / 1.052 0.551 0.014 1.503 0.224 / / 0.942 64.71
实施例6 9.505 21.502 / / 1.750 1.250 0.032 2.000 0.220 / / 0.942 62.80
实施例7 29.012 0.402 / / 0.522 0.454 0.025 1.202 / 0.263 0.251 0.861 67.01
实施例8 29.979 0.402 / / 0.552 0.601 0.015 1.202 / 0.322 0.321 0.862 65.74
实施例9 30.302 0.200 / / 0.850 0.650 0.015 1.600 0.200 0.200 0.200 0.880 64.90
实施例10 31.402 0.103 / / 0.552 0.852 0.032 1.602 / 0.224 / 0.902 64.33
实施例10.1 25.000 6.502 / / 0.552 0.854 0.041 1.602 / 0.222 / 0.903 64.32
实施例11 9.500 21.497 / / 0.654 1.254 0.032 1.594 / 0.252 / 0.905 64.31
实施例12 10.503 21.503 / / 0.852 1.854 0.014 1.800 / 0.324 / 0.906 62.24
实施例12.1 10.504 21.501 / / 0.851 1.857 0.025 1.804 / 0.222 / 0.905 62.33
实施例12.2 10.503 21.503 / / 0.852 1.854 0.014 1.800 / 0.324 / 0.906 62.24
实施例12.3 10.503 21.503 / / 0.852 1.854 0.014 1.800 / 0.324 / 0.906 62.24
实施例13 9.500 20.500 / / 0.850 0.650 0.041 1.800 / 0.320 / 0.920 65.42
实施例14 31.502 0.303 1.965 / 1.252 2.001 0.032 1.991 / 0.352 / 0.921 59.68
实施例15 31.497 0.502 / 1.984 1.792 0.405 0.014 2.502 / 0.352 / 0.943 60.01
对比例1 10.492 21.500 / / 0.450 1.500 0.014 0.505 0.220 / 0.220 0.923 64.18
对比例2 31.402 0.103 / / 0.552 0.853 0.205 1.609 / 0.221 / 0.904 64.15
对比例3 10.505 21.503 / / 0.551 1.502 0.025 0.506 0.097 / 0.218 0.922 64.17
对比例4 31.406 0.102 / / 0.553 0.854 0.041 1.602 / 0.153 / 0.902 64.39
对比例5 31.408 0.097 / / 0.551 0.852 0.015 1.604 / 0.402 / 0.897 64.17
对比例6 10.503 21.502 / / 0.452 1.502   0.492 0.222 / 0.225 0.923 64.18
对比例7 31.405 0.105 / / 0.552 0.851 0.198 1.602 / 0.219 / 0.903 64.17
对比例8 10.492 21.504 / / 0.549 1.503   0.493 0.102 / 0.221 0.92 64.22
对比例9 31.392 0.102 / / 0.548 0.852   1.602 / 0.152 / 0.903 64.45
对比例10 31.396 0.103 / / 0.547 0.8504   1.597 / 0.402 / 0.901 64.20
注:“/”是指不含有该元素。wt%为质量百分比。
效果实施例1
实施例1~15和对比例1~10中R-T-B系永磁材料的磁性能检测
1、微观结构:采用FE-EPMA检测,对R-T-B系永磁材料的垂直取向面 进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。检测晶界中的R 6T 13M相和R 6T 13Al相,T指Fe和/或Co,M指Ga和/或Cu。测试结果如下表3所示。
其中,R 6T 13M相或R 6T 13Al相的占比指的是:R 6T 13M相或R 6T 13Al相的体积与“主相、晶界相和富稀土相”总体积的比。
2、剩磁、矫顽力:烧结磁铁使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行检测。并通过计算得出剩磁温度系数和矫顽力温度系数。测试结果如下表3所示。
其中,Br或Hcj均是指均值:通过测试同一批次中5个稀土永磁材料的剩磁或矫顽力,计算出的平均值。
3、R-T-B系永磁材料的磁性能一致性检测
方形度=Hk/Hcj;其中,Hk为当Br为90%Br时,外磁场H的值,Hcj为矫顽力。
相对磁导率为Br/Hcb;其中,Br为剩磁,Hcb为磁感矫顽力,当J-H曲线存在拐点时,磁导率在拐点之前取值。
Max(Hcj)-Min(Hcj):同一实施例或同一对比例中矫顽力最大值减去矫顽力最小值,若大于1.5kOe,则是磁性能一致性差。
本发明每一实施例和对比例中制备出的是若干个钕铁硼材料,同一批次指的就是每一实施例和对比例中所获得的若干个钕铁硼材料。针对表3中的每项检测而言,每个钕铁硼材料指的是按照性能测试的单位切割出来10mm*10mm的圆柱体。
表3
Figure PCTCN2021077183-appb-000003
Figure PCTCN2021077183-appb-000004
注:“×”指的是不含R 6T 13M相或R 6T 13Al相。
除Max(Hcj)-Min(Hcj)外,表3中的其余参数均是测量同一批次中的5个R-T-B系永磁材料取的平均值。
表3中20-80℃Br温度系数α(Br)%/℃、20-80℃Hcj温度系数β(Hcj)%/℃、20-150℃ Br温度系数β(Hcj)%/℃、20-150℃Hcj温度系数β(Hcj)%/℃的数据是绝对值。

Claims (10)

  1. 一种R-T-B系永磁材料的原料组合物,其特征在于,其包括如下质量含量的组分:
    R:28.5~34%;所述R为稀土元素,所述R至少包括Nd;
    Ga:>0.5%;
    Cu:≥0.4%;
    B:0.84~0.94%;
    Co:≤2.5%、但不为0;
    Fe:59~69%;
    N:包含Ti、Zr和Nb中的一种或多种;
    当N中包括Ti时,所述Ti的含量为0.15~0.25%;
    当N中包括Zr时,所述Zr的含量为0.2~0.35%;
    当N中包括Nb时,所述Nb的含量为0.2~0.5%;
    百分比为各组分质量占所述原料组合物总质量的质量百分比。
  2. 如权利要求1所述的原料组合物,其特征在于,所述R的含量为29~34%,较佳地为30~31.6%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Nd的含量为8~13%或25~31.5%,较佳地为9.5~10.5%或者29~31.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中不含Al;
    和/或,所述原料组合物中,所述R还包括Pr;
    其中,当所述原料组合物中包含Pr时,所述Pr的含量较佳地在8%以下且不为0%或者为18.5~30%;更佳地为0.1~0.5或者20.5~21.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中,所述R还包括RH,所述RH为重稀土元素;
    其中,当所述原料组合物中还包括RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比;
    其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种;
    当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比;
    当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述B的含量为0.86~0.94%,较佳地为0.86~0.92%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中,所述R的原子百分比和所述B的原子百分比满足如下关系式:B/R≥0.38,式中,所述B为在所述原料组合物中的原子百分比,所述R为在所述原料组合物中的原子百分比;
    和/或,所述Ga的含量为0.52~1.8%,较佳地为0.6~1.8%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Cu的含量为0.4~2%,较佳地为0.55~1.05%或1.25~2%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Co的含量为0.5~2.5%,较佳地为0.5~2%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Fe的含量为59.5~67.3%,较佳地为60~66%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Ti时,所述Ti的含量为0.2~0.25%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Zr时,所述Zr的含量为0.22~0.35%,较佳地为0.26~0.32%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述N中含有Zr时,所述Zr的含量为:0.26%≤Zr<3.48B-2.67,所述B为占所述原料组合物中的质量百分数;
    和/或,当所述N包含Nb时,所述Nb的含量为0.2~0.32%,百分比为占所述原料组合物总质量的质量百分比。
  3. 如权利要求1或2所述的原料组合物,其特征在于,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:R:29~32%;所述R为稀土元素, 所述R至少包括Nd;B:0.86~0.94%;Ga:0.52~1.8%;Cu:0.45~2%;Co:0.45~2.5%;Fe:59.5~67.3%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.25%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.25~0.35%;所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:R:29~32%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或18.5~25%;B:0.86~0.94%;Ga:0.52~1.8%;Cu:0.45~2%;Co:0.45~2.5%;Fe:62.8~67.25%;Ti:0.2~0.25%;所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述R-T-B系永磁材料的原料组合物包括如下含量的组分:R:29~32%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者18.5~25%;B:0.86~0.94%;Ga:0.52~0.55%;Cu:0.45~2%;Co:0.45~2.5%;Fe:62.8~67.25%;Ti:0.2~0.25%;所述原料组合物中不含Al;所述百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述R-T-B系永磁材料的原料组合物包括如下质含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.52~1.8%;Cu:0.45~2%;Co:0.45~2.5%;Fe:60~67.1%;Zr:0.25~0.35%;所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述R-T-B永磁材料的原料组合物包括如下含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.52~0.55%;Cu:0.45~2%;Co:0.45~0.55%;Fe:60~67.1%;Zr:0.25~0.35%;所述原料组合物中不含Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
  4. 一种R-T-B系永磁材料的制备方法,其特征在于,其包括下述步骤: 将如权利要求1~3中任一项所述R-T-B系永磁材料的原料组合物经铸造、制粉、成型、烧结和时效处理即可。
  5. 如权利要求4所述的制备方法,其特征在于,所述铸造之前还包括熔炼;
    其中,所述熔炼的温度较佳地在1500℃以下;
    和/或,所述铸造是以10 2℃/秒~10 4℃/秒的速度冷却;
    其中,所述冷却较佳地通过辊轮中通入冷却水实现;
    所述辊轮的进水温度较佳地≤25℃,更佳地为22.5~24℃;
    和/或,所述制粉包括氢破工艺和气流磨工艺;
    其中,所述氢破工艺较佳地包括吸氢、脱氢和冷却处理;
    其中,所述气流磨工艺较佳地在氧化气体含量120ppm以下的氮气气氛下进行;
    其中,所述气流磨工艺的粉碎室压力较佳地为0.3~0.4MPa;
    其中,所述气流磨工艺的时间较佳地为2~4小时;
    其中,所述气流磨工艺后,较佳地在粉体中添加润滑剂;所述润滑剂的添加量较佳地为混合后粉末重量的0.10~0.15%;
    和/或,所述成型包括磁场成形法或热压热变形法;
    和/或,所述烧结之前还包括预热;所述预热的温度较佳地为300~600℃;所述预热的时间较佳地为1~2h;
    和/或,所述烧结的温度为1060~1090℃,较佳地为1065~1085℃;
    和/或,所述烧结的时间为5~10h;
    和/或,所述时效处理包括一级时效处理和二级时效处理;
    其中,所述一级时效处理的温度较佳地为850~950℃,更佳地为900℃;
    其中,所述一级时效处理的时间较佳地为2~4h;
    其中,所述二级时效处理的温度较佳地为440~475℃,更佳地为440~460℃;
    其中,所述二级时效处理的时间较佳地为2~4h;
    其中,升温至所述一级时效处理或二级时效处理的温度的速率较佳地为3~5℃/min。
  6. 一种由如权利要求4或5所述的制备方法制得的R-T-B系永磁材料。
  7. 一种R-T-B系永磁材料,其特征在于,其包括如下质量含量的组分:
    R:28.5~34%;所述R为稀土元素,所述R至少包括Nd;
    Ga:>0.5%;
    Cu:≥0.4%;
    B:0.835~0.943%;
    Al:<0.08%;
    Co:≤2.502%、但不为0;
    Fe:59~69%;
    N:包含Ti、Zr和Nb中的一种或多种;
    当N包含Ti时,所述Ti的含量为0.15~0.251%;
    当N包含Zr时,所述Zr的含量为0.2~0.352%;
    当N包含Nb时,所述Nb的含量为0.2~0.5%;
    百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比。
  8. 如权利要求7所述的R-T-B系永磁材料,其特征在于,所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相,其中T指的是Fe和/或Co,M指的是Cu和/或Ga;
    其中,所述所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为4~10%,更佳地为5~9.8%;
    和/或,所述R的含量为29~34%,较佳地为30~31.6%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述Nd的含量为8~13%或25~31.502%,较佳地为9.5~10.503%或29~31.502%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所R-T-B系永磁材料中,所述R还包括Pr;
    其中,当所述R-T-B系永磁材料中包含Pr时,所述Pr的含量较佳地在 8%以下且不为0,更佳地为0.1~0.502%;或者,所述Pr的含量较佳地为18.5~30%,更佳地为20.5~21.504%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所R-T-B系永磁材料还包含RH,所述RH为重稀土元素;
    其中,当所述R-T-B系永磁材料中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种;
    当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述B的含量为0.86~0.943%,较佳地为0.861~0.922%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述R-T-B系永磁材料中的所述R的原子百分比和所述B的原子百分比满足如下关系式:B/R≥0.38,式中,所述B在所述原料组合物中的原子百分比,所述R在所述R-T-B系永磁材料中的原子百分比;
    和/或,所述Ga的含量为0.52~1.8%,较佳地为0.6~1.8%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述Cu的含量为0.405~2.001%,较佳地为0.55~1.05%或1.25~2.001%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述Co的含量为0.49~2.5%,较佳地为0.49~2%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述Al的含量为0.01~0.05%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,所述Fe的含量为59.5~67.32%,较佳地60~66%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,当所述N包含Ti时,所述Ti的含量为0.2~0.251%,百分比为 占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,当所述N包含Zr时,所述Zr的含量为0.22~0.352%,较佳地为0.26~0.32%,百分比为占所述R-T-B系永磁材料总质量的质量百分比;
    和/或,当所述N包含Zr时,所述Zr的含量为:0.26%≤Zr<3.48B-2.67,所述B为占所述R-T-B系永磁材料中的质量百分数;
    和/或,当所述N包含Nb时,所述Nb的含量为0.2~0.321%,百分比为占所述R-T-B系永磁材料总质量的质量百分比。
  9. 如权利要求7或8所述的R-T-B系永磁材料,其特征在于,所述R-T-B系永磁材料包括如下含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.52~1.8%;Cu:0.405~2.001%;Co:0.49~2.502%;Al:0.01~0.05%;Fe:59.5~67.32%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.251%;当N中包含Zr时,所述Zr的含量为0.22~0.352%;当N中包含Nb时,所述Nb的含量为0.22~0.321%;百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为4~10%;
    或者,所述R-T-B系永磁材料包括如下含量的组分:R:30~31.6%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.502%或者20.5~21.504%;B:0.861~0.922%;Ga:0.52~1.8%;Cu:0.994~2.001%;Co:0.49~2%;Al:0.01~0.05%;Fe:60~66%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.251%;当N中包含Zr时,所述Zr的含量为0.22~0.352%;当N中包含Nb时,所述Nb的含量为0.22~0.321%;百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为5~9.8%;
    或者,所述R-T-B系永磁材料包括如下含量的组分:R:30~31.6%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.502%或者20.5~21.504%; B:0.861~0.922%;Ga:0.6~1.8%;Cu:0.405~2.001%;Co:0.49~2%;Al:0.01~0.05%;Fe:60~66%;Ti:0.2~0.251%;百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为5~9.8%;
    或者,所述R-T-B系永磁材料包括如下含量的组分:R:29~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.52~1.8%;Cu:0.405~2%;Co:0.45~2.5%;Al:0.01~0.05%;Fe:60~67.1%;Zr:0.22~0.352%;百分比为各组分质量占所述R-T-B系永磁材料总质量的质量百分比;所述R-T-B系永磁材料的晶界相中还包括R 6T 13M相;所述R 6T 13M相的体积与“晶界相、主相和富稀土相”总体积的比为5~9.8%。
  10. 一种如权利要求6~9中任一项所述的R-T-B系永磁材料作为电子元器件的应用。
PCT/CN2021/077183 2020-02-29 2021-02-22 一种r-t-b系永磁材料及其制备方法和应用 WO2021169897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132226.2A CN111326306B (zh) 2020-02-29 2020-02-29 一种r-t-b系永磁材料及其制备方法和应用
CN202010132226.2 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169897A1 true WO2021169897A1 (zh) 2021-09-02

Family

ID=71169102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077183 WO2021169897A1 (zh) 2020-02-29 2021-02-22 一种r-t-b系永磁材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111326306B (zh)
WO (1) WO2021169897A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428947B (zh) * 2019-07-31 2020-09-29 厦门钨业股份有限公司 一种稀土永磁材料及其原料组合物、制备方法和应用
CN111326306B (zh) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN112992462B (zh) * 2021-03-17 2023-01-24 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法
CN114373593B (zh) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 一种r-t-b磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223617A (ja) * 1996-12-17 1997-08-26 Mitsubishi Materials Corp 耐食性および磁気特性に優れた希土類−B−Fe系焼結磁石およびその製造方法
CN104078176A (zh) * 2013-03-28 2014-10-01 Tdk株式会社 稀土类磁体
CN110537235A (zh) * 2018-03-23 2019-12-03 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111326306A (zh) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2663626B2 (ja) * 1989-05-12 1997-10-15 三菱マテリアル株式会社 耐食性および磁気特性に優れた希土類―B―Fe系焼結磁石
CN105164765A (zh) * 2014-03-20 2015-12-16 株式会社东芝 永磁体、电动机及发电机
JP6946905B2 (ja) * 2017-09-28 2021-10-13 日立金属株式会社 拡散源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223617A (ja) * 1996-12-17 1997-08-26 Mitsubishi Materials Corp 耐食性および磁気特性に優れた希土類−B−Fe系焼結磁石およびその製造方法
CN104078176A (zh) * 2013-03-28 2014-10-01 Tdk株式会社 稀土类磁体
CN110537235A (zh) * 2018-03-23 2019-12-03 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111326306A (zh) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111326306A (zh) 2020-06-23
CN111326306B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
US10109401B2 (en) Method for increasing coercive force of magnets
WO2021169897A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111243809B (zh) 一种钕铁硼材料及其制备方法和应用
TW202000944A (zh) 低B含量的R-Fe-B系燒結磁鐵及其製備方法
KR102527128B1 (ko) R-t-b계 희토류 영구자석 재료, 제조방법 및 응용
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
KR102589802B1 (ko) 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용
WO2021114648A1 (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
TW202127474A (zh) 釹鐵硼永磁材料、製備方法、應用
CN111223627A (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111326304B (zh) 一种稀土永磁材料及其制备方法和应用
CN111243812B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169895A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169899A1 (zh) 一种稀土永磁材料及其制备方法和应用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
WO2021169898A1 (zh) 一种钕铁硼材料及其制备方法和应用
TWI742969B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
CN111243811B (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169903A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2021169901A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169900A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2022199232A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2016155674A1 (zh) 一种含有Ho和W的稀土磁铁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760036

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.07.2023)