WO2021169895A1 - 一种钕铁硼材料及其制备方法和应用 - Google Patents

一种钕铁硼材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021169895A1
WO2021169895A1 PCT/CN2021/077180 CN2021077180W WO2021169895A1 WO 2021169895 A1 WO2021169895 A1 WO 2021169895A1 CN 2021077180 W CN2021077180 W CN 2021077180W WO 2021169895 A1 WO2021169895 A1 WO 2021169895A1
Authority
WO
WIPO (PCT)
Prior art keywords
percentage
content
neodymium iron
iron boron
mass
Prior art date
Application number
PCT/CN2021/077180
Other languages
English (en)
French (fr)
Inventor
付刚
胡季帆
黄佳莹
黄清芳
许德钦
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021169895A1 publication Critical patent/WO2021169895A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention specifically relates to a neodymium iron boron material and its preparation method and application.
  • NdFeB magnet materials are widely used in electronic products, automobiles, wind power, home appliances, elevators and industrial robots due to their excellent magnetic properties, such as hard disks, mobile phones, earphones, and permanent magnets such as elevator traction machines, generators, etc.
  • the demand for electric motors as energy sources is increasing, and the requirements of various manufacturers for magnet properties such as remanence, coercivity performance, temperature stability, magnet squareness, etc. are gradually increasing.
  • the neodymium iron boron magnet material is mainly composed of a main phase containing an R 2 T 14 B compound and a grain boundary phase located in the grain boundary portion of the main phase.
  • the R 2 T 14 B compound has a ferromagnetic material with high saturation magnetization and anisotropic magnetic field.
  • the coercive force of NdFeB magnet material will decrease at high temperature, so irreversible thermal demagnetization occurs. It is currently known that: replacing part of the light rare earth RL in R in the R 2 T 14 B compound as the main phase with heavy rare earth element RH, the coercive force will increase, and the coercive force will increase with the increase in the amount of substitution. improve. On the other hand, the residual magnetic flux Br will decrease.
  • RH resources are scarce and expensive.
  • R 2 T 17 does not have uniaxial anisotropy at room temperature, which further deteriorates the performance of the magnet.
  • a high squareness is a necessary condition for high-quality magnets.
  • the invention aims to overcome the need to add a large amount of heavy rare earth elements when the prior art neodymium iron boron material adopts a low boron system to improve the magnetic performance, and even if the heavy rare earth elements are added, the magnetic performance (remanence, coercivity, temperature stability)
  • it provides a neodymium iron boron material and its preparation method and application.
  • the neodymium iron boron material of the present invention can still be prepared with a low boron and aluminum-free system without adding heavy rare earth elements to obtain better magnetic properties (remanence, coercivity, temperature stability, squareness), and the same batch
  • the magnetic properties of the second NdFeB material are uniform.
  • neodymium iron boron materials usually require the addition of a certain amount of Al to obtain better performance magnet materials, but the inventors have verified through multiple experiments that the addition of Al will increase the magnetic properties of the magnet material. Yes, but in the preparation of the same batch of products, the magnetic properties are not uniform, that is, the difference between the maximum and minimum coercivity in the same batch of products is greater than 1.5kOe. In addition, through a specific formula of the present invention, the final NdFeB material obtained has better uniformity.
  • the present invention adopts the following technical solutions to solve the above technical problems.
  • the present invention provides a raw material composition of neodymium iron boron material, which includes the following components by mass content: R: 28.5-34%; the R is a rare earth element, and the R includes Nd;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Zr
  • the content of Zr is 0.2-0.35%
  • Nb When N contains Nb, the content of Nb is 0.2-0.5%;
  • the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the components and corresponding contents in the raw material composition are all actively added, and do not include the components and/or contents introduced in the preparation process and/or impurities.
  • the content of R is preferably 29 to 33%, such as 29%, 29.4%, 29.5%, 30%, 30.4%, 30.5%, 31%, 31.5%, 32.5% or 33%, and more Preferably, it is 29 to 32.5%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the Nd content is preferably 7.5% to 13% or 20 to 31.5%, such as 7.5%, 8.5%, 9.5%, 10.5%, 12.5%, 20%, 29%, 29.3%, 30% , 30.2%, 30.3%, 31% or 31.4%, more preferably 7.5-10.5% or 30-31.5%, the percentage is the mass percentage of the total mass of the raw material composition.
  • the raw material composition preferably does not contain Ga.
  • the raw material composition preferably does not contain Al; it means that Al is not actively added, but it may be added during the addition of other elements (for example, Fe) or during the preparation process (for example, alumina crucible to prepare molten liquid) A small amount of Al (less than 0.08%) will be introduced.
  • the R in the raw material composition, the R may also include Pr.
  • the raw material composition may not contain heavy rare earth elements, and may also reach a level equivalent to the remanence and coercivity of the prior art magnet materials.
  • the raw material composition may further include RH, which is a heavy rare earth element.
  • the content of the RH is preferably 1 to 2.5%, such as 2%, and the percentage is a mass percentage of the total mass of the raw material composition.
  • the type of RH preferably includes one or more of Dy, Tb and Ho.
  • the content of Dy is preferably 1 to 2.5%, for example 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Tb is preferably 1 to 2.5%, for example 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of B is preferably 0.85 to 0.94%, such as 0.85%, 0.86%, 0.88%, 0.9%, 0.92% or 0.94%, more preferably 0.86 to 0.92%, the percentage is The mass percentage of the total mass of the raw material composition.
  • the atomic percentage of R and the atomic percentage of B in the raw material composition preferably satisfy the following relationship: B/R ⁇ 0.38, where the B is in the raw material composition The atomic percentage of R in the raw material composition.
  • the B and Nd satisfy the following relational formula: B/(Pr+Nd) ⁇ 0.405, where B refers to the B In the atomic percentage in the raw material composition, Pr refers to the atomic percentage of the Pr in the raw material composition, and Nd refers to the atomic percentage of the Nd in the raw material composition.
  • the content of Cu is preferably 0.48-2%, such as 0.48%, 0.6%, 0.65%, 0.85%, 0.95%, 1%, 1.15%, 1.5%, 1.85% or 2%, and more Preferably, it is 0.65 to 1.85%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Co is preferably 0.45% to 2.5%, such as 0.45%, 0.85%, 0.95%, 1.15%, 1.25%, 1.55%, 1.85%, 2%, 2.4% or 2.5%, and more Preferably, it is 0.85 to 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Fe is preferably 61.2 to 68.7%, such as 61.26%, 61.61%, 62.87%, 63.43%, 64.36%, 64.43%, 64.49%, 64.73%, 65.61%, 66.42%, 66.59 %, 66.69%, 68.04%, 68.41%, 68.45%, 68.49%, 68.57% or 68.61%, more preferably 63-68.61%, the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Ti is preferably 0.18 to 0.25%, such as 0.18%, 0.2%, 0.22%, 0.24% or 0.25%, more preferably 0.22 to 0.25% ,
  • the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Zr is preferably 0.25 to 0.35%, such as 0.25%, 0.26%, 0.28% or 0.32%, more preferably 0.26 to 0.32%, and the percentage is It accounts for the mass percentage of the total mass of the raw material composition.
  • the content of the Zr preferably satisfies: 0.20% ⁇ Zr ⁇ (3.48B-2.67)%, where B means that the B accounts for the raw material composition The mass percentage of the total mass. For example, when the content of B is 0.86%, B in the formula is 0.86.
  • the Nb content is preferably 0.2-0.3%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the raw material composition contains Ti and Nb, preferably the Ti/Nb ⁇ 1.5, where the Ti is the mass percentage in the raw material composition, and the Nb is The mass percentage in the raw material composition.
  • the raw material composition of the neodymium iron boron material preferably includes the following components: R: 29 to 33%; the R is a rare earth element, and the R includes Nd; B: 0.85 to 0.94% Cu: 0.48-2%; Co: 0.45-2.5%; Fe: 61.2-68.7%; N: contains one or more of Ti, Zr and Nb; when N contains Ti, the content of Ti When N contains Zr, the content of Zr is 0.25-0.35%; when N contains Nb, the content of Nb is 0.25-0.35%; the percentage is the mass of each component It accounts for the mass percentage of the total mass of the raw material composition.
  • the raw material composition of the neodymium iron boron material preferably includes the following components: R: 29-33%; the R is a rare earth element, the R includes Nd and Pr; the Pr The content is 0.1 ⁇ 0.5% or 11.5 ⁇ 30%; B: 0.86 ⁇ 0.92%; Cu: 0.65 ⁇ 1.85%; Co: 0.85 ⁇ 2%; Fe: 63 ⁇ 68.61%; N: including Ti, Zr and Nb One or more; when N contains Ti, the content of Ti is 0.22 to 0.25%; when N contains Zr, the content of Zr is 0.26 to 0.32%; when N contains Nb, the content of Ti is 0.22 to 0.25%; The content of Nb is 0.2-0.3%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the neodymium iron boron material preferably includes the following components: R: 29.5% to 31%; the R is a rare earth element, and the R includes Nd; B: 0.85 to 0.94% Cu: 0.48 to 2%; Co: 0.45 to 2.5%; Ti: 0.15 to 0.25%; Fe: 62.8 to 68.8%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the neodymium iron boron material preferably includes the following components: R: 29 to 33%; the R is a rare earth element, and the R includes Nd; B: 0.85 to 0.94% Cu: 0.48 to 2%; Co: 0.45 to 2.5%; Zr: 0.25 to 0.35%; Fe: 63 to 68.8%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the present invention also provides a method for preparing a neodymium iron boron material, which includes the following steps: the raw material composition of the neodymium iron boron material is cast, powdered, formed, sintered and aging treated;
  • the aging treatment includes a primary aging treatment and a secondary aging treatment, and the temperature of the primary aging treatment is 830-870°C.
  • the operation and conditions of the smelting can be conventional in the art.
  • the vacuum degree of the smelting may be 0.05 Pa.
  • the melting temperature may be 1500°C or less.
  • the melting equipment may be a high-frequency vacuum induction melting furnace.
  • the casting operations and conditions may be conventional casting operations and conditions in the field.
  • the casting is typically 10 2 °C / sec ⁇ 10 4 °C / sec cooling rate of the alloy to prepare a sheet.
  • the atmosphere of the casting may generally be argon.
  • the casting pressure may generally be 5.5 ⁇ 10 4 Pa.
  • the operations and conditions of the powder milling can be conventional operations and conditions in the art.
  • the pulverization usually includes a hydrogen cracking process and a jet milling process.
  • the hydrogen breaking process may be a conventional hydrogen breaking process in the field, such as hydrogen absorption, dehydrogenation, and cooling treatment.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.15 MPa.
  • the dehydrogenation can be carried out under the conditions of raising the temperature while drawing a vacuum.
  • the jet milling process can be a conventional jet milling process in the field, and the jet milling can be carried out in a nitrogen atmosphere with an oxidizing gas content of 120 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure of the pulverization chamber of the jet mill pulverization can be 0.3-0.5 MPa, for example, 0.38 MPa.
  • the pulverization time of the jet mill may be 2 to 4 hours, for example, 3 hours.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.10-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the molding operation and conditions can be conventional molding operations in the art.
  • the magnetic field forming method or the hot pressing and thermal deformation method can be conventional molding operations in the art.
  • the sintering operation and conditions can be conventional sintering operation conditions in the art.
  • the sintering environment may be a vacuum.
  • the pressure of the vacuum may be 5 ⁇ 10 -3 Pa.
  • preheating is usually included before the sintering.
  • the preheating temperature may be 300-600°C.
  • the preheating time may be 1 to 2 hours.
  • the preheating is preferably at a temperature of 300°C and 600°C for 1 hour each.
  • the sintering temperature is preferably 1065-1090°C, such as 1065°C, 1070°C, 1075°C, 1078°C, 1085°C, 1088°C or 1090°C.
  • the sintering time is preferably 5-10h, for example 8h.
  • the temperature of the primary aging treatment is preferably 840 to 865°C, such as 840°C, 845°C, 850°C or 865°C.
  • the time for the primary aging treatment can be conventional in the art, and preferably is 2 to 4 hours, such as 3 hours.
  • the temperature of the secondary aging treatment is preferably 440-470°C, more preferably 450-465°C, such as 450°C, 455°C, 460°C or 465°C.
  • the time for the secondary aging treatment may be conventional in the art, and preferably is 2 to 4 hours, for example, 3 hours.
  • the invention also provides a neodymium iron boron material prepared by the above preparation method.
  • the present invention also provides a neodymium iron boron material, which includes the following components in mass content:
  • R 28.5 to 34.01%; the R is a rare earth element, and the R includes at least Nd;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Zr
  • the content of Zr is 0.2-0.35%
  • the percentage is the mass percentage of each component in the total mass of the neodymium iron boron material; the grain boundary phase of the neodymium iron boron material also includes the R 6 T 13 Cu phase; T is Fe and/or Co; The ratio of the volume of the R 6 T 13 M phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is above 3.5%.
  • the volume of the R 6 T 13 M phase and the total volume of the "main phase, grain boundary phase and rare earth-rich phase” are preferably 5-10%; more preferably 5.5-85%, for example 5.1 %, 5.60%, 6.70%, 7.3%, 7.4%, 7.60%, 7.80%, 8.20% or 8.40%.
  • the grain boundary phase refers to the general term for the grain boundary phase between two or more Nd 2 T 14 B crystal grains.
  • the Nd 2 T 14 B crystal grains refer to the main phase.
  • the content of R is preferably 29-33.1%, such as 29.002%, 29.387%, 29.406%, 29.424%, 29.501%, 29.504%, 29.996%, 30.388%, 30.503%, 30.504%, 31 %, 31.005%, 31.485%, 31.504%, 31.518%, 32.494%, 33.004% or 34.004%, more preferably 29-32.5%, and the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the content of Nd is preferably 7.5% to 13% or 19.9% to 31.5%, such as 7.505%, 8.501%, 9.502%, 10.505%, 12.502%, 19.982%, 28.989%, 29.004%, 29.021% , 29.298%, 29.986%, 30.202%, 30.302%, 31.002%, 31.012% or 31.402%, more preferably 7.5-10.51% or 30-31.5%, the percentage is the mass percentage of the total mass of the neodymium iron boron material .
  • the neodymium iron boron material preferably does not contain Ga.
  • the R in the neodymium iron boron material, the R may also include Pr.
  • the content of Pr is preferably below 0.5% and not 0, or 11.5% to 30%, such as 0.102%, 0.201%, 0.202%, 0.203%, 0.302%, 0.398%, 0.402%, 0.403% , 0.502%, 0.506%, 11.503%, 18.502%, 18.503%, 21.495%, 21.497%, 21.498%, 21.989% or 22.502%, more preferably 0.1-0.51% or 18.5-1.5%, the percentage is The mass percentage of the total mass of NdFeB material.
  • the B and the Nd satisfy the following relationship: B/(Pr+Nd) ⁇ 0.405, where B means that the B is in The atomic percentage in the neodymium iron boron material, Pr refers to the atomic percentage of the Pr in the neodymium iron boron material, and Nd refers to the atomic percentage of the Nd in the neodymium iron boron material.
  • the neodymium iron boron material may not contain heavy rare earth elements, and can also reach a level equivalent to the remanence and coercivity of the prior art magnet materials.
  • the neodymium iron boron material may further include RH, and the RH is a heavy rare earth element.
  • the content of the RH is preferably 1 to 2.5%, such as 2%, and the percentage is a mass percentage of the total mass of the neodymium iron boron material.
  • the type of RH preferably includes one or more of Dy, Tb and Ho.
  • the content of Dy is preferably 1 to 2.5%, for example 2%, and the percentage is a mass percentage of the total mass of the neodymium iron boron material.
  • the content of Tb is preferably 1 to 2.5%, such as 2%, and the percentage is a mass percentage of the total mass of the neodymium iron boron material.
  • the content of B is preferably 0.85 to 0.942%, such as 0.852%, 0.853%, 0.862%, 0.862%, 0.882%, 0.884%, 0.902%, 0.903%, 0.905%, 0.919%, 0.922 %, 0.942% or 0.945%, more preferably 0.86-0.922%, and the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the atomic percentage of R and the atomic percentage of B in the neodymium iron boron material preferably satisfy the following relationship: B/R ⁇ 0.38, where the B is in the neodymium iron.
  • the Cu content is preferably 0.48 to 2.021%, such as 0.481%, 0.482%, 0.598%, 0.602%, 0.654%, 0.852%, 0.952%, 0.998%, 1.151%, 1.152%, 1.502 %, 1.504%, 1.852%, 2.004%, 2.005% or 2.021%, more preferably 0.65-1.852%, and the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the content of Al is preferably 0.02-0.05%, such as 0.026%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.035%, 0.036%, 0.037%, 0.039%, 0.041 %, 0.042% or 0.045%, the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the content of Co is preferably 0.45% to 2.5%, such as 0.448%, 0.449%, 0.452%, 0.851%, 0.852%, 0.95%, 1.152%, 1.252%, 1.252%, 1.55%, 1.552 %, 1.852%, 1.998%, 2%, 2.402% or 2.5%, more preferably 0.85% to 2%, and the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the Fe content is preferably 61.2 to 68.7%, such as 61.245%, 61.602%, 62.867%, 63.415%, 63.421%, 64.352%, 64.4%, 64.479%, 64.717%, 65.597%, 66.415 %, 66.582%, 66.697%, 68.023%, 68.424%, 68.441%, 68.462%, 68.559% or 68.599%, more preferably 63-68.61%, the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the content of Ti is preferably 0.18 to 0.252%, such as 0.182%, 0.202%, 0.202%, 0.223%, 0.245% or 0.252%, more preferably 0.22%. ⁇ 0.252%, the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the content of Zr is preferably 0.25-0.35%, such as 0.25%, 0.262%, 0.264%, 0.281%, 0.282%, 0.319%, 0.322% or 0.323% , More preferably 0.26 to 0.323%, and the percentage is the mass percentage of the total mass of the neodymium iron boron material.
  • the content of the Zr preferably satisfies: 0.20% ⁇ Zr ⁇ (3.48B-2.67)%, where B means that the B occupies the neodymium iron boron material The mass percentage of the total mass. For example, when the content of B is 0.86%, B in the formula is 0.86.
  • the Nb content is preferably 0.2 to 0.302%, such as 0.2%, 0.202%, 0.203% or 0.302%, and the percentage is based on the total mass of the neodymium iron boron material The percentage of mass.
  • the neodymium iron boron material contains Ti and Nb, preferably the Ti/Nb ⁇ 1.5, in the formula, the Ti is the mass percentage in the neodymium iron boron material, and the Nb is the mass percentage in the neodymium iron boron material.
  • the neodymium iron boron material preferably includes the following components: R: 29-33.1%; the R is a rare earth element, and the R includes Nd;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Nb
  • the Nb content is 0.2-0.3%
  • the percentage is the mass percentage of each component in the total mass of the neodymium iron boron material
  • the grain boundary phase of the neodymium iron boron material It also includes the R 6 T 13 Cu phase; T is Fe and/or Co; the ratio of the volume of the R 6 T 13 Cu phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is 5-10%.
  • the neodymium iron boron material preferably includes the following components: R: 29-33.1%; the R is a rare earth element, the R includes Nd and Pr; the content of the Pr is 0.1- 0.5% or 11.5-30%;
  • N contains one or more of Ti, Zr and Nb;
  • N contains Nb
  • the content of Nb is 0.2 to 0.302%
  • the percentage is the mass percentage of each component in the total mass of the neodymium iron boron material
  • the grain boundary phase of the neodymium iron boron material It also includes the R 6 T 13 Cu phase; T is Fe and/or Co; the ratio of the volume of the R 6 T 13 M phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is 5.5 to 8.5%.
  • the neodymium iron boron material preferably includes the following components: R: 29.5-31.1%; the R is a rare earth element, and the R includes Nd;
  • the grain boundary phase of the neodymium iron boron material also includes the R 6 T 13 Cu phase; T is Fe and / Or Co; the ratio of the volume of the R 6 T 13 M phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is 5-8.5%.
  • the neodymium iron boron material preferably includes the following components: R: 29-33%; the R is a rare earth element, and the R includes Nd;
  • the percentage is the mass percentage of the mass of each component in the total mass of the neodymium iron boron material; the grain boundary phase of the neodymium iron boron material also includes the R 6 T 13 Cu phase; T is Fe and/or Co; the ratio of the volume of the R 6 T 13 M phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is 5.5 to 8.5%.
  • the invention also provides an application of the neodymium iron boron material as an electronic component.
  • the application fields can be the automotive drive field, wind power field, servo motor and home appliance field (for example, air conditioner).
  • the room temperature refers to 25°C ⁇ 5°C.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive and progressive effects of the present invention are: (1) The elements in the neodymium iron boron material of the present invention are coordinated with each other in a specific content, and the obtained neodymium iron boron material contains a specific content of R 6 T 13 Cu.
  • the neodymium iron boron material of the present invention contains a small amount (0.84-0.945%) of boron element, and can obtain good remanence, coercivity, squareness, and temperature stability without adding heavy rare earth elements.
  • the neodymium iron boron material of the present invention not only obtains the neodymium iron boron material with better magnetic properties, but also improves the consistency of the neodymium iron boron material, that is, the magnetic properties of the same batch of products. Can be uniform.
  • Example 1 29.3 0.2 / / 0.48 / 0.45 0.15 / / 0.85 68.57
  • Example 2 29.3 0.2 / / 0.6 / 0.45 0.15 / / 0.85 68.45
  • Example 3 30.2 0.3 / / 1 / 0.85 0.18 / / 0.88 66.59
  • Example 4 31 0.5 / / 1.5 / 1.25 0.2 / 0.2 0.92 64.43
  • Example 4.1 31 0.5 / / 1.5 / 0.95 0.2 / 0.2 0.92 64.73
  • Example 5 10.5 twenty two / / 2 / 1.55 0.22 / / 0.86 62.87
  • Example 6 12.5 18.5 / / 0.85 / 2.5 0.24 / / 0.92 64.49
  • Example 7 9.5 21.5 / / 1.15 / 2 0.25 / 0.3 0.94 64.36
  • Example 8 29 0.4 / / 0.48 / 0.45 / 0.2 / 0.86 68.61
  • Example 9 29 0.4 / / 0.6 / 0.45 / 0.2 / 0.86 68.49
  • Example 9.1 29 0.4 / / 0.6 / 0.45 / 0.28 / 0.86 68.41
  • Example 9.2 29 0.4 / / 0.6 / 0.45 / 0.2 / 0.86 68.49
  • Example 9.3 29 0.4 / / 0.6 / 0.45 / 0.2 / 0.86 68.49
  • Example 10 30 0.4 / / 0.95 / 0.85 / 0.25 / 0.86 66.69
  • Example 11 30.3 0.2 / / 1.5 / 1.25 / 0.26 /
  • Example 1 (1) Melting process: According to the formula shown in Example 1 in Table 1, take the prepared raw materials and put them in a crucible made of alumina, and place them in a high-frequency vacuum induction melting furnace in a vacuum of 5 ⁇ 10 -2 Pa. Vacuum melting is performed at a temperature below 1500°C.
  • Casting process Ar gas is introduced into the smelting furnace after vacuum smelting to make the pressure reach 55,000 Pa, then casting is carried out, and the molten liquid is passed through a copper roller with a rotation speed of 29 rpm to make 0.12-0.35 mm the thickness of the rapid solidified alloy sheets, the casting process, the copper roll should be purged with chilled water, which inlet temperature of 22.6 deg.] C; at a cooling rate of 10 2 °C / sec -10 4 °C / sec is obtained rapidly solidified alloy.
  • Hydrogen breaking and pulverizing process Vacuum the hydrogen breaking furnace containing the quench alloy at room temperature, and then pass hydrogen with a purity of 99.9% into the hydrogen breaking furnace, maintain the hydrogen pressure at 0.15MPa, and fully absorb hydrogen. The temperature is raised while vacuuming, and the hydrogen is fully dehydrogenated, and then cooled, and the powder after the hydrogen cracking and pulverization is taken out.
  • Fine pulverization process Under the nitrogen atmosphere with an oxidizing gas content of 120 ppm or less, the powder after hydrogen pulverization is pulverized by jet milling for 3 hours under the condition of a pulverizing chamber pressure of 0.38 MPa to obtain a fine powder.
  • Oxidizing gas refers to oxygen or moisture.
  • Magnetic field molding process using a right-angle orientation magnetic field molding machine, in a 1.6T orientation magnetic field, under a molding pressure of 0.35ton/cm 2 , the above-mentioned zinc stearate-added powder is formed into a side length at a time It is a 25mm cube, which is demagnetized in a 0.2T magnetic field after a single forming.
  • a secondary molding machine isostatic press
  • the sintered body is heated from 20°C to 850°C at a heating rate of 3 to 5°C/min in high-purity Ar gas, and then subjected to primary aging treatment at 900°C for 3 hours, and then cooled to room temperature After removing. Then, the temperature is increased from 20°C to 460°C at a heating rate of 3 to 5°C/min, and the secondary aging temperature is performed at a temperature of 460°C.
  • Comparative example 3 1070 900 490 23.8 Comparative example 4 1085 900 500 23.9 Comparative example 5 1075 900 440 23.6 Comparative example 6 1075 850.00 440 23.6 Comparative example 7 1075 845 465 23.1 Comparative example 8 1075 850.00 440 23.6
  • the magnetic properties of the neodymium-iron-boron materials in Comparative Examples 1 to 4 are the best properties that can be obtained after the formulations of Comparative Examples 1 to 4 are optimized through process (aging temperature, sintering temperature or water inlet temperature).
  • Example 1 29.504 29.302 0.202 / / 0.481 0.029 0.452 0.152 / / 0.852 68.53
  • Example 2 29.501 29.298 0.203 / / 0.602 0.030 0.452 0.151 / / 0.853 68.411
  • Example 3 30.504 30.202 0.302 / / 0.998 0.026 0.852 0.182 / / 0.882 66.556
  • Example 4 31.518 31.012 0.506 / / 1.504 0.032 1.252 0.202 / 0.202 0.922 64.4
  • Example 4.1 31.504 31.002 0.502 / / 1.502 0.036 0.950 0.202 / 0.203 0.922 64.681
  • Example 5 32.494 10.505 21.989 / / 2.004 0.033 1.550 0.223 / / 0.862 62.834
  • Example 6 31.005 12.502 18.503 / / 0.852 0.0
  • Microstructure FE-EPMA is used to detect, the vertical orientation surface of NdFeB material is polished, and the field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) is used to detect .
  • FE-EPMA field emission electron probe microanalyzer
  • the R 6 T 13 Cu phase and the R 6 T 13 Al phase in the grain boundary are detected, and T refers to Fe and/or Co.
  • Table 4 The test results are shown in Table 4 below. Wherein R 6 T 13 Cu phase or accounting R 6 T 13 Al phase refers to a phase R 6 T 13 Cu or R 6 T 13 Al volume relative to the total volume of the "main phase and the grain boundary phase and the R-rich phase" Ratio.
  • Br or Hcj refers to the average value: the average value calculated by testing the remanence or coercivity of all neodymium iron boron materials in the same batch.
  • the relative permeability is Br/Hcb; among them, Br is the remanence and Hcb is the magnetic coercivity.
  • Br is the remanence
  • Hcb is the magnetic coercivity.
  • Max(Hcj)-Min(Hcj) The maximum value of the coercive force minus the minimum value of the coercive force in the same embodiment or the same comparative example. If it is greater than 1.5kOe, the magnetic performance consistency is poor.
  • each neodymium iron boron material refers to a cylinder of 10mm*10mm cut out according to the unit of the performance test.
  • refers to the absence of R 6 T 13 Cu phase or R 6 T 13 Al phase. Except Max(Hcj)-Min(Hcj), the other parameters in Table 4 are the average values of 5 neodymium iron boron materials in the same batch. In Table 4, 20-80°CBr temperature coefficient ⁇ (Br)%/°C, 20-80°CHcj temperature coefficient ⁇ (Hcj)%/°C, 20-150°CBr temperature coefficient ⁇ (Hcj)%/°C, 20- The data of 150°C Hcj temperature coefficient ⁇ (Hcj)%/°C is an absolute value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种钕铁硼材料及其制备方法和应用。该钕铁硼材料的原料组合物包括如下质量含量的组分:R:28.5~34%;R为稀土元素,R包括Nd;B:0.84~0.94%;Cu:0.45<Cu≤2%;Co:≤2.5%、但不为0;Fe:61~69%;N:包含Ti、Zr和Nb中的一种或多种;当N包含Ti时,Ti为0.15~0.25%;当N包含Zr时,Zr为0.2~0.35%;当N包含Nb时,Nb为0.2~0.5%;百分比为各组分质量占所述原料组合物总质量的质量百分比。所述钕铁硼材料在不添加重稀土元素的前提下,采用低硼无铝体系仍然能够制备得到磁性能较佳,并且同批次的钕铁硼材料磁性能均一。

Description

一种钕铁硼材料及其制备方法和应用 技术领域
本发明具体涉及一种钕铁硼材料及其制备方法和应用。
背景技术
钕铁硼磁体材料由于其优异的磁特性而被广泛应用于电子产品、汽车、风电、家电、电梯及工业机器人等领域,例如硬盘、手机、耳机、和电梯曳引机、发电机等永磁电机中作为能量源等,其需求日益扩大,且各产商对于磁铁性能例如剩磁、矫顽力性能、温度稳定性、磁体方形度等的要求也逐步提升。
钕铁硼磁体材料主要由包含R 2T 14B化合物的主相和位于该主相的晶界部分的晶界相构成。该R 2T 14B化合物具有高饱和磁化和各向异性磁场的强磁性材料。而钕铁硼磁体材料的矫顽力在高温下会降低,因而发生不可逆热退磁。目前已知的是:用重稀土元素RH置换作为主相的R 2T 14B化合物中的R中的部分轻稀土RL,则矫顽力会提高,矫顽力会随着置换量的增加而提高。但另一方面,剩余磁通量Br会降低。此外,RH的资源稀少,价格昂贵。为了提升钕铁硼磁体材料的剩磁,通常需要降低B含量。但是当B的含量在较低水平时,会形成R 2T 17相。而R 2T 17不具有室温单轴各向异性,进而使得磁体的性能劣化。
另外,磁体材料的方形度是指在J-H退磁曲线上磁极化强度J=0.9Jr(Jr为剩余磁极化强度,其值与剩余磁感应强度Br相同,二者统称为剩磁)-所对应的磁场值Hk(膝点矫顽力),与J-H退磁曲线上J=0对应的磁场值Hcj(内禀矫顽力)的比值,即Hk/Hcj。具有较高的方形度是高品质磁体所必须具备的条件。以减少在使用过程中尤其是在相对使用温度较高的环境下的失磁,确保磁体在上述环境中长期使用时仍旧具有高的磁性能。目前现有技术中的钕铁硼材料即使矫顽力和剩磁较高,其方形度也无法同时提升到较佳的水平。
因此,在不添加或少量添加重稀土的情况下,如何采用低B无Al体系的方法制得高矫顽力、高剩磁、方形度以及一致性较佳的钕铁硼磁体材料是本领域亟待解决的技术问题。
发明内容
本发明旨在克服现有技术钕铁硼材料采用低硼体系提升磁性能时,通常需要添加大量的重稀土元素,且即使添加了重稀土元素,磁性能(剩磁、矫顽力、温度稳定性、方形度)仍然无法得到显著提升的缺陷,而提供了一种钕铁硼材料及其制备方法和应用。本发明的钕铁硼材料在不添加重稀土元素的前提下,采用低硼无铝体系仍然能够制备得到磁性能(剩磁、矫顽力、温度稳定性、方形度)较佳,并且同批次的钕铁硼材料磁性能均一。
需要说明的是,现有技术中钕铁硼材料通常需要添加一定量的Al才能够得到性能较佳的磁体材料,但是发明人通过多次试验的验证发现:虽然添加Al会提升磁体材料的磁性能,但是在制备同一批次的产品中,磁性能不均一,即同一批次产品中矫顽力的最大值和最小值之间的差值大于1.5kOe。且本发明通过特定的配方,最终得到的钕铁硼材料的均一性较佳。
本发明采用以下技术方案解决上述技术问题。
本发明提供了一种钕铁硼材料的原料组合物,其包括如下质量含量的组分:R:28.5~34%;所述R为稀土元素,所述R包括Nd;
B:0.84~0.94%;
Cu:0.45<Cu≤2%;
Co:≤2.5%、但不为0;
Fe:61~69%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.15~0.25%;
当N中包含Zr时,所述Zr的含量为0.2~0.35%;
当N中包含Nb时,所述Nb的含量为0.2~0.5%;
百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中的各组分及相应的含量均为主动添加,不包括制备工艺和/或杂质中所引入的组分和/或含量。
本发明中,所述R的含量较佳地为29~33%,例如29%、29.4%、29.5%、30%、30.4%、30.5%、31%、31.5%、32.5%或33%,更佳地为29~32.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Nd的含量较佳地为7.5~13%或者20~31.5%,例如7.5%、8.5%、9.5%、10.5%、12.5%、20%、29%、29.3%、30%、30.2%、30.3%、31%或31.4%,更佳地为7.5~10.5%或者30~31.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中较佳地不含Ga。
本发明中,所述原料组合物中较佳地不含Al;指的是不主动添加Al,但是可能会在添加其他元素(例如Fe时)或者制备工艺中(例如氧化铝坩埚制备熔融液)会引入微量的Al(0.08%以下)。
本发明中,所述原料组合物中,所述R通常还可包括Pr。
其中,所述Pr的含量较佳地在0.5%以下且不为0,或者为11.5~30%,例如0.1、0.2、0.3、0.4%、0.5%、11.5%、18.5%、21.5%、22%或22.5%,更佳地为0.1~0.5%或者18.5~21.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中可不含重稀土元素,也可达到与现有技术的磁体材料的剩磁、矫顽力相当的水平。或者,所述原料组合物中还可包括RH,所述RH为重稀土元素。
其中,当所述原料组合物中包含RH时,所述RH的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种。
当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述B的含量较佳地为0.85~0.94%,例如0.85%、0.86%、0.88%、0.9%、0.92%或0.94%,更佳地为0.86~0.92%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中的所述R的原子百分比和所述B的原子百分比较佳地满足如下关系式:B/R≥0.38,式中,所述B在所述原料组合物中的原子百分比,所述R在所述原料组合物中的原子百分比。
本发明中,当所述原料组合物中包含Pr时,较佳地所述B、所述Nd满足如下关系式:B/(Pr+Nd)≥0.405,式中,B指的是所述B在原料组合物中的原子百分比,Pr指的是所述Pr在原料组合物中的原子百分比,Nd指的是所述Nd在原料组合物中的原子百分比。
本发明中,所述Cu的含量较佳地为0.48~2%,例如0.48%、0.6%、0.65%、0.85%、0.95%、1%、1.15%、1.5%、1.85%或2%,更佳地为0.65~1.85%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Co的含量较佳地为0.45~2.5%,例如0.45%、0.85%、0.95%、1.15%、1.25%、1.55%、1.85%、2%、2.4%或2.5%,更佳地为0.85~2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Fe的含量较佳地为61.2~68.7%,例如61.26%、61.61%、62.87%、63.43%、64.36%、64.43%、64.49%、64.73%、65.61%、66.42%、66.59%、66.69%、68.04%、68.41%、68.45%、68.49%、68.57%或68.61%,更佳地为63~68.61%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Ti时,所述Ti的含量较佳地为0.18~0.25%,例如0.18%、0.2%、0.22%、0.24%或0.25%,更佳地为0.22~0.25%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地为0.25~0.35%,例如0.25%、0.26%、0.28%或0.32%,更佳地为0.26~0.32%,百分比为占所 述原料组合物总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述原料组合物总质量的质量百分比。例如当所述B的含量为0.86%时,式中的B为0.86。
本发明中,当所述N包含Nb时,所述Nb的含量较佳地为0.2~0.3%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述原料组合物中包含Ti和Nb时,较佳地所述Ti/Nb≥1.5,式中,所述Ti为在所述原料组合物中的质量百分比,所述Nb为在所述原料组合物中的质量百分比。
本发明中,所述钕铁硼材料的原料组合物较佳地包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd;B:0.85~0.94%;Cu:0.48~2%;Co:0.45~2.5%;Fe:61.2~68.7%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.18~0.25%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.25~0.35%;所述百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述钕铁硼材料的原料组合物较佳地包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd和Pr;所述Pr的含量为0.1~0.5%或11.5~30%;B:0.86~0.92%;Cu:0.65~1.85%;Co:0.85~2%;Fe:63~68.61%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.22~0.25%;当N中包含Zr时,所述Zr的含量为0.26~0.32%;当N中包含Nb时,所述Nb的含量为0.2~0.3%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述钕铁硼材料的原料组合物较佳地包括如下含量的组分:R:29.5~31%;所述R为稀土元素,所述R包括Nd;B:0.85~0.94%;Cu:0.48~2%;Co:0.45~2.5%;Ti:0.15~0.25%;Fe:62.8~68.8%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述钕铁硼材料的原料组合物较佳地包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd;B:0.85~0.94%;Cu:0.48~2%;Co:0.45~2.5%;Zr:0.25~0.35%;Fe:63~68.8%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明还提供了一种钕铁硼材料的制备方法,其包括下述步骤:将所述钕铁硼材料的原料组合物经铸造、制粉、成型、烧结和时效处理即可;
所述时效处理包括一级时效处理和二级时效处理,所述一级时效处理的温度为830~870℃。
本发明中,本领域技术人员知晓所述铸造之前通常还包括熔炼。
其中,所述熔炼的操作和条件可为本领域常规。所述熔炼的真空度可为0.05Pa。所述熔炼的温度可为1500℃以下。所述熔炼的设备可为高频真空感应熔炼炉。
本发明中,所述铸造的操作和条件可为本领域常规的铸造操作和条件。所述铸造通常是以10 2℃/秒~10 4℃/秒的速度冷却以制备合金片。所述铸造的气氛通常可为氩气。所述铸造的压力通常可为5.5×10 4Pa。
所述冷却可通过辊轮中通入冷却水实现。优选地,所述辊轮的进水温度≤25℃,例如22.6℃、22.8℃、23.1℃、23.4℃、23.5℃、23.6℃、23.8℃或23.9℃,更佳地为22.6~23.9℃。所述辊轮可为铜辊。
本发明中,所述制粉的操作和条件可为本领域常规的操作和条件。所述制粉通常包括氢破工艺和气流磨工艺。
其中,所述氢破工艺可为本领域常规的氢破工艺,例如经吸氢、脱氢、冷却处理,即可。所述吸氢可在氢气压力0.15MPa的条件下进行。所述脱氢可在边抽真空边升温的条件下进行。
其中,所述气流磨工艺可为本领域常规的气流磨工艺,所述气流磨粉碎可在氧化气体含量120ppm以下的氮气气氛下进行。所述氧化气体指的是氧气或水分含量。
所述气流磨粉碎的粉碎室压力可为0.3~0.5MPa,例如0.38MPa。
所述气流磨粉碎的时间可为2~4小时,例如3小时。
所述气流磨工艺后,可按本领域常规手段在粉体中添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.10~0.15%,例如0.12%。
本发明中,所述成型的操作和条件可为本领域常规的成型操作。例如磁场成形法或热压热变形法。
本发明中,所述烧结的操作和条件可为本领域常规的烧结操作条件。
其中,所述烧结的环境可为真空。所述真空的压力可为5×10 -3Pa。
其中,所述烧结之前通常还包括预热。所述预热的温度可为300~600℃。所述预热的时间可为1~2h。所述预热较佳地为在300℃和600℃的温度下各预热1h。
其中,所述烧结的温度较佳地为1065~1090℃,例如1065℃、1070℃、1075℃、1078℃、1085℃、1088℃或1090℃。
其中,所述烧结的时间较佳地为5~10h,例如8h。
本发明中,所述一级时效处理的温度较佳地为840~865℃,例如840℃、845℃、850℃或865℃。
本发明中,所述一级时效处理的时间可为本领域常规,较佳地为2~4h,例如3h。
本发明中,所述二级时效处理的温度较佳地为440~470℃,更佳地为450~465℃,例如450℃、455℃、460℃或465℃。
本发明中,所述二级时效处理的时间可为本领域常规,较佳地为2~4h,例如3h。
本发明还提供了一种上述制备方法制得的钕铁硼材料。
本发明还提供了一种钕铁硼材料,其包括如下质量含量的组分:
R:28.5~34.01%;所述R为稀土元素,所述R至少包括Nd;
B:0.84~0.945%;
Cu:0.45<Cu≤2.03%;
Al:<0.08%;
Co:≤2.5%、但不为0;
Fe:61~69%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.15~0.252%;
当N中包含Zr时,所述Zr的含量为0.2~0.35%;
当N中包含Nb时,所述Nb的含量为0.2~0.5%;
所述百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比在3.5%以上。
本发明中,所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比较佳地为5~10%;更佳地为5.5~8.5%,例如5.1%、5.60%、6.70%、7.3%、7.4%、7.60%、7.80%、8.20%或8.40%。
本发明中,所述晶界相指的是两个或两个以上的Nd 2T l4B晶粒间的晶界相的总称。其中,所述Nd 2T l4B晶粒指的是主相。
本发明中,所述R的含量较佳地为29~33.1%,例如29.002%、29.387%、29.406%、29.424%、29.501%、29.504%、29.996%、30.388%、30.503%、30.504%、31%、31.005%、31.485%、31.504%、31.518%、32.494%、33.004%或34.004%,更佳地为29~32.5%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述Nd的含量较佳地为7.5~13%或者19.9~31.5%,例如7.505%、8.501%、9.502%、10.505%、12.502%、19.982%、28.989%、29.004%、29.021%、29.298%、29.986%、30.202%、30.302%、31.002%、31.012%或31.402%,更佳地为7.5~10.51%或者30~31.5%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述钕铁硼材料中较佳地不含Ga。
本发明中,所述钕铁硼材料中,所述R通常还可包括Pr。
其中,所述Pr的含量较佳地在0.5%以下且不为0,或者为11.5~30%,例如0.102%、0.201%、0.202%、0.203%、0.302%、0.398%、0.402%、0.403%、 0.502%、0.506%、11.503%、18.502%、18.503%、21.495%、21.497%、21.498%、21.989%或22.502%,更佳地为0.1~0.51%或者18.5~21.5%,百分比为占所述钕铁硼材料总质量的质量百分比。
其中,当所述钕铁硼材料中包含Pr时,较佳地所述B、所述Nd满足如下关系式:B/(Pr+Nd)≥0.405,式中,B指的是所述B在钕铁硼材料中的原子百分比,Pr指的是所述Pr在钕铁硼材料中的原子百分比,Nd指的是所述Nd在钕铁硼材料中的原子百分比。
本发明中,所述钕铁硼材料中可不含重稀土元素,也可达到与现有技术的磁体材料的剩磁、矫顽力相当的水平。或者,所述钕铁硼材料中还可包括RH,所述RH为重稀土元素。
其中,当所述钕铁硼材料中包含RH时,所述RH的含量较佳地为1~2.5%,例如2%,百分比为占所述钕铁硼材料总质量的质量百分比。
其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种。
当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,例如2%,百分比为占所述钕铁硼材料总质量的质量百分比。
当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,例如2%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述B的含量较佳地为0.85~0.942%,例如0.852%、0.853%、0.862%、0.862%、0.882%、0.884%、0.902%、0.903%、0.905%、0.919%、0.922%、0.942%或0.945%,更佳地为0.86~0.922%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述钕铁硼材料中的所述R的原子百分比和所述B的原子百分比较佳地满足如下关系式:B/R≥0.38,式中,所述B在所述钕铁硼材料中的原子百分比,所述R在所述钕铁硼材料中的原子百分比。
本发明中,所述Cu的含量较佳地为0.48~2.021%,例如0.481%、0.482%、0.598%、0.602%、0.654%、0.852%、0.952%、0.998%、1.151%、1.152%、1.502%、1.504%、1.852%、2.004%、2.005%或2.021%,更佳地为0.65~1.852%, 百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,本领域技术人员知晓,虽然在原料配方中未主动添加Al,但是其他元素的加入,如Fe、Co等元素,由于根据目前工艺的手段其不是纯度无法达到100%,不可避免的会引入其他的杂质,其中可能会含有Al;另外,在制备工艺中,本领域技术人员通常使用铝制的坩埚进行熔炼,也同样不可避免的会引入微量的Al,因此本发明最终产品的配方中会含有微量(0.08%以下)的Al。
本发明中,所述Al的含量较佳地为0.02~0.05%,例如0.026%、0.029%、0.03%、0.031%、0.032%、0.033%、0.035%、0.036%、0.037%、0.039%、0.041%、0.042%或0.045%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述Co的含量较佳地为0.45~2.5%,例如0.448%、0.449%、0.452%、0.851%、0.852%、0.95%、1.152%、1.252%、1.252%、1.55%、1.552%、1.852%、1.998%、2%、2.402%或2.5%,更佳地为0.85~2%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述Fe的含量较佳地为61.2~68.7%,例如61.245%、61.602%、62.867%、63.415%、63.421%、64.352%、64.4%、64.479%、64.717%、65.597%、66.415%、66.582%、66.697%、68.023%、68.424%、68.441%、68.462%、68.559%或68.599%,更佳地为63~68.61%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,当所述N包含Ti时,所述Ti的含量较佳地为0.18~0.252%,例如0.182%、0.202%、0.202%、0.223%、0.245%或0.252%,更佳地为0.22~0.252%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地为0.25~0.35%,例如0.25%、0.262%、0.264%、0.281%、0.282%、0.319%、0.322%或0.323%,更佳地为0.26~0.323%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,所述N包含Zr时,所述Zr的含量较佳地满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述钕铁硼材料总质量的质量 百分比。例如当所述B的含量为0.86%时,式中的B为0.86。
本发明中,当所述N包含Nb时,所述Nb的含量较佳地为0.2~0.302%,例如0.2%、0.202%、0.203%或0.302%,百分比为占所述钕铁硼材料总质量的质量百分比。
本发明中,当所述钕铁硼材料中包含Ti和Nb时,较佳地所述Ti/Nb≥1.5,式中,所述Ti为在所述钕铁硼材料中的质量百分比,所述Nb为在所述钕铁硼材料中的质量百分比。
本发明中,所述钕铁硼材料较佳地包括如下含量的组分:R:29~33.1%;所述R为稀土元素,所述R包括Nd;
B:0.85~0.942%;
Cu:0.48~2.021%;
Co:0.45~2.5%;
Fe:61.2~68.7%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.18~0.252%;
当N中包含Zr时,所述Zr的含量为0.25~0.35%;
当N中包含Nb时,所述Nb的含量为0.2~0.3%;所述百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13Cu相的体积与“主相、晶界相和富稀土相”总体积的比为5~10%。
本发明中,所述钕铁硼材料较佳地包括如下含量的组分:R:29~33.1%;所述R为稀土元素,所述R包括Nd和Pr;所述Pr的含量为0.1~0.5%或11.5~30%;
B:0.86~0.922%;
Cu:0.65~1.852%;
Co:0.85~2%;
Fe:63~68.61%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.22~0.252%;
当N中包含Zr时,所述Zr的含量为0.26~0.323%;
当N中包含Nb时,所述Nb的含量为0.2~0.302%;所述百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5.5~8.5%。
本发明中,所述钕铁硼材料较佳地包括如下含量的组分:R:29.5~31.1%;所述R为稀土元素,所述R包括Nd;
B:0.85~0.942%;
Cu:0.48~2.021%;
Co:0.45~2.5%;
Ti:0.15~0.252%;
Fe:62.8~68.8%;百分比为各组分质量占所述钕铁硼材料总质量的质量百分比所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5~8.5%。
本发明中,所述钕铁硼材料较佳地包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd;
B:0.85~0.945%;
Cu:0.48~2.021%;
Co:0.45~2.5%;
Zr:0.25~0.35%;
Fe:63~68.8%;所述百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5.5~8.5%。
本发明还提供了一种所述钕铁硼材料作为电子元器件的应用。
其中,所述应用的领域可为汽车驱动领域、风电领域、伺服电机和家电 领域(例如空调)。
本发明中,所述室温是指25℃±5℃。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:(1)本发明的钕铁硼材料中特定含量的各元素之间相互配合,制得的钕铁硼材料含有特定含量的R 6T 13Cu。本发明的钕铁硼材料含有少量(0.84~0.945%)的硼元素,可在不添加重稀土元素下,得到剩磁、矫顽力、方形度、温度稳定性均较佳。
(2)本发明的钕铁硼材料在不添加适量Al的条件下,不仅得到了磁性能较佳的钕铁硼材料,还提升了钕铁硼材料的一致性,即同一批次产品的磁性能均一。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
1、实施例1~16和对比例1~8钕铁硼材料的原料组合物的配方(wt%)如下表1所示。
表1
编号/wt% Nd Pr Dy Tb Cu Al Co Ti Zr Nb B Fe
实施例1 29.3 0.2 / / 0.48 / 0.45 0.15 / / 0.85 68.57
实施例2 29.3 0.2 / / 0.6 / 0.45 0.15 / / 0.85 68.45
实施例3 30.2 0.3 / / 1 / 0.85 0.18 / / 0.88 66.59
实施例4 31 0.5 / / 1.5 / 1.25 0.2 / 0.2 0.92 64.43
实施例4.1 31 0.5 / / 1.5 / 0.95 0.2 / 0.2 0.92 64.73
实施例5 10.5 22 / / 2 / 1.55 0.22 / / 0.86 62.87
实施例6 12.5 18.5 / / 0.85 / 2.5 0.24 / / 0.92 64.49
实施例7 9.5 21.5 / / 1.15 / 2 0.25 / 0.3 0.94 64.36
实施例8 29 0.4 / / 0.48 / 0.45 / 0.2 / 0.86 68.61
实施例9 29 0.4 / / 0.6 / 0.45 / 0.2 / 0.86 68.49
实施例9.1 29 0.4 / / 0.6 / 0.45 / 0.28 / 0.86 68.41
实施例9.2 29 0.4 / / 0.6 / 0.45 / 0.2 / 0.86 68.49
实施例9.3 29 0.4 / / 0.6 / 0.45 / 0.2 / 0.86 68.49
实施例10 30 0.4 / / 0.95 / 0.85 / 0.25 / 0.86 66.69
实施例11 30.3 0.2 / / 1.5 / 1.25 / 0.26 / 0.88 65.61
实施例12 31.4 0.1 / / 2 / 1.85 / 0.32 / 0.9 63.43
实施例12.1 20 11.5 / / 2 / 1.85 / 0.32 / 0.9 63.43
实施例12.2 31.4 0.1 / / 2 / 1.85 / 0.32 / 0.9 63.43
实施例12.3 31.4 0.1 / / 2 / 1.85 / 0.32 / 0.9 63.43
实施例13 7.5 21.5 / / 0.65 / 1.15 / 0.26 / 0.9 68.04
实施例14 8.5 21.5 / / 0.85 / 1.55 / 0.28 / 0.9 66.42
实施例15 9.5 22.5 2 / 1.15 / 2 / 0.32 / 0.92 61.61
实施例16 12.5 18.5 / 2 1.85 / 2.4 0.15 0.2 0.2 0.94 61.26
对比例1 31.4 0.1 / / 2.2 / 1.85 / 0.32 / 0.9 63.23
对比例2 31.4 0.1 / / 2 0.2 1.85 / 0.32 / 0.9 63.23
对比例3 31 0.5 / / 1.5 / 1.25 0.12 / / 0.92 64.71
对比例4 31.4 0.1 / / 2 / 1.85 / 0.4 / 0.9 63.35
对比例5 31.4 0.1 / / 2 / 1.85 / 0.32 / 0.9 63.43
对比例6 31.4 0.1 / / 2.2 / 1.85 / 0.32 / 0.9 63.23
对比例7 31 0.5 / / 1.5 / 1.25 0.12 / / 0.92 64.71
对比例8 31.4 0.1 / / 2 / 1.85 / 0.4 / 0.9 63.35
注:“/”是指不含有该元素。wt%为质量百分比。
2、实施例1的钕铁硼材料的制备方法
本实施例中制备钕铁硼材料所用的原料如表1所示,其制备的工艺如下:
(1)熔炼过程:按表1中实施例1所示配方,取配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在5×10 -2Pa的真空中以1500℃ 以下的温度进行真空熔炼。
(2)铸造过程:铸造过程:在真空熔炼后的熔炼炉中通入Ar气体使气压达到5.5万Pa后,进行铸造,将熔融液通过29转/分转速的铜辊制得0.12-0.35mm厚度的速凝合金片,浇铸过程中,铜辊需通入冷冻水,其进水温度22.6℃;以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(3)氢破粉碎过程:在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.15MPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。
(4)微粉碎工序:在氧化气体含量120ppm以下的氮气气氛下,在粉碎室压力为0.38MPa的条件下对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉。氧化气体指的是氧或水分。
(5)在气流磨粉碎后的粉末中添加硬脂酸锌,硬脂酸锌的添加量为混合后粉末重量的0.12%,再用V型混料机充分混合。
(6)磁场成型过程:使用直角取向型的磁场成型机,在1.6T的取向磁场中,在0.35ton/cm 2的成型压力下,将上述添加了硬脂酸锌的粉末一次成形成边长为25mm的立方体,一次成形后在0.2T的磁场中退磁。为使一次成形后的成形体不接触到空气,将其进行密封,再使用二次成形机(等静压成形机)在1.3ton/cm 2的压力下进行二次成形。
(7)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下,在300℃和600℃的温度下各保持1小时后,以1085℃的温度烧结8小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
(8)时效处理过程:烧结体在高纯度Ar气中,以3~5℃/min的升温速率从20℃升温至850℃,以900℃温度进行3小时一级时效处理后,冷却至室温后取出。接着以3~5℃/min的升温速率从20℃升温至460℃,以460℃温度进行二级时效温度。
3、实施例2~16和对比例1~8钕铁硼材料的原料配方按照表1所示。实施例1~16和对比例1~8钕铁硼材料制备方法中的进水温度、烧结温度、一 级时效温度和二级时效温度如下表2所示。其中,实施例2~16和对比例1~8钕铁硼材料制备方法中的其余参数同实施例1。
表2
编号 烧结温度℃ 一级时效温度℃ 二级时效温度℃ 进水温度℃
实施例1 1085 850.00 460 22.6
实施例2 1085 850.00 460 23.8
实施例3 1085 850.00 450 23.9
实施例4 1075 845.00 465 23.1
实施例4.1 1075 850.00 460 23.6
实施例5 1065 845.00 440 22.8
实施例6 1078 850.00 455 23.6
实施例7 1078 850.00 460 23.5
实施例8 1090 845.00 440 23.4
实施例9 1085 850.00 450 23.8
实施例9.1 1085 845.00 465 22.8
实施例9.2 1065 850.00 450 23.8
实施例9.3 1085 850.00 465 23.8
实施例10 1075 850.00 460 23.9
实施例11 1075 845.00 460 23.1
实施例12 1075 850.00 440 23.6
实施例12.1 1075 850.00 455 22.8
实施例12.2 1075 840.00 440 23.6
实施例12.3 1075 865.00 440 23.6
实施例13 1088 850.00 460 23.1
实施例14 1088 845.00 440 23.6
实施例15 1070 850.00 455 22.8
实施例16 1078 860 450 23.6
对比例1 1075 845 490 23.5
对比例2 1075 900 450 23.4
对比例3 1070 900 490 23.8
对比例4 1085 900 500 23.9
对比例5 1075 900 440 23.6
对比例6 1075 850.00 440 23.6
对比例7 1075 845 465 23.1
对比例8 1075 850.00 440 23.6
需要说明的是:对比例1~4中钕铁硼材料的磁性能为对比例1~4的配方经工艺优化(时效温度、烧结温度或是进水温度)后所能够获得的最佳性能。
4、成分测定:对实施例1~16和对比例1~8中的钕铁硼材料使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。测试结果如下表3所示。
表3钕铁硼材料的组分和含量(wt%)
编号 R Nd Pr Tb Dy Cu Al Co Ti Zr Nb B Fe
实施例1 29.504 29.302 0.202 / / 0.481 0.029 0.452 0.152 / / 0.852 68.53
实施例2 29.501 29.298 0.203 / / 0.602 0.030 0.452 0.151 / / 0.853 68.411
实施例3 30.504 30.202 0.302 / / 0.998 0.026 0.852 0.182 / / 0.882 66.556
实施例4 31.518 31.012 0.506 / / 1.504 0.032 1.252 0.202 / 0.202 0.922 64.4
实施例4.1 31.504 31.002 0.502 / / 1.502 0.036 0.950 0.202 / 0.203 0.922 64.681
实施例5 32.494 10.505 21.989 / / 2.004 0.033 1.550 0.223 / / 0.862 62.834
实施例6 31.005 12.502 18.503 / / 0.852 0.042 2.500 0.245 / / 0.919 64.437
实施例7 31.000 9.502 21.498 / / 1.152 0.026 2.000 0.252 / 0.302 0.942 64.326
实施例8 29.406 29.004 0.402 / / 0.482 0.029 0.449 / 0.202 / 0.862 68.57
实施例9 29.424 29.021 0.403 / / 0.602 0.030 0.448 / 0.202 / 0.862 68.432
实施例9.1 29.387 28.989 0.398 / / 0.598 0.031 0.448 / 0.281 / 0.862 68.393
实施例9.2 29.424 29.021 0.403 / / 0.602 0.029 0.448 / 0.202 / 0.862 68.433
实施例9.3 29.424 29.021 0.403 / / 0.602 0.026 0.448 / 0.202 / 0.862 68.436
实施例10 30.388 29.986 0.402 / / 0.952 0.029 0.851 / 0.250 / 0.862 66.668
实施例11 30.503 30.302 0.201 / / 1.502 0.045 1.252 / 0.262 / 0.884 65.552
实施例12 31.504 31.402 0.102 / / 2.005 0.037 1.852 / 0.322 / 0.902 63.378
实施例12.1 31.485 19.982 11.503 / / 2.021 0.035 1.852 / 0.319 / 0.902 63.386
实施例12.2 31.504 31.402 0.102 / / 2.005 0.039 1.852 / 0.322 / 0.902 63.376
实施例12.3 31.504 31.402 0.102 / / 2.005 0.033 1.852 / 0.322 / 0.902 63.382
实施例13 29.002 7.505 21.497 / / 0.654 0.032 1.152 / 0.264 / 0.905 67.991
实施例14 29.996 8.501 21.495 / / 0.852 0.042 1.552 / 0.282 / 0.903 66.373
实施例15 34.004 9.502 22.502 2.000   1.151 0.030 1.998 / 0.323 / 0.922 61.572
实施例16 33.004 12.502 18.502 / 2.000 1.852 0.041 2.402 0.150 0.202 0.200 0.945 61.204
对比例1 31.492 31.389 0.103 / / 2.202 0.035 1.852 / 0.322 / 0.902 63.195
对比例2 31.499 31.395 0.104 / / 2.000 0.202 1.852 / 0.321 / 0.906 63.22
对比例3 31.497 30.994 0.503 / / 1.502 0.029 1.251 0.120 / / 0.922 64.679
对比例4 31.505 31.402 0.103 / / 1.987 0.030 1.852   0.402 / 0.902 63.322
对比例5 31.504 31.402 0.102     1.986 0.026 1.849   0.321   0.894 63.42
对比例6 31.508 31.403 0.105 / / 2.202 0.032 1.85   0.322   0.902 63.184
对比例7 31.491 30.996 0.495 / / 1.502 0.036 1.252 0.123     0.922 64.674
对比例8 31.504 31.402 0.102 / / 2.06 0.033 1.852   0.401   0.903 63.247
注:“/”是指不含有该元素。wt%为质量百分比。
效果实施例1实施例1~16和对比例1~8中钕铁硼材料的磁性能检测
1、微观结构:采用FE-EPMA检测,对钕铁硼材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。检测晶界中的R 6T 13Cu相和R 6T 13Al相,T指Fe和/或Co。测试结果如下表4所示。其中R 6T 13Cu相或R 6T 13Al相的占比指的是R 6T 13Cu相或R 6T 13Al相的体积与“主相、晶界相和富稀土相”总体积的比。
2、剩磁、矫顽力:烧结磁铁使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行检测。并通过计算得出剩磁温度系数和矫顽力温度系数。测试结果如下表4所示。
其中,Br或Hcj均是指均值:通过测试同一批次中所有钕铁硼材料的剩磁或矫顽力,计算出的平均值。
3、钕铁硼材料的磁性能一致性检测
方形度=Hk/Hcj;其中,Hk为当Br为90%Br时,外磁场H的值,Hcj为矫顽力。
相对磁导率为Br/Hcb;其中,Br为剩磁,Hcb为磁感矫顽力,当J-H曲线存在拐点时,磁导率在拐点之前取值。
Max(Hcj)-Min(Hcj):同一实施例或同一对比例中矫顽力最大值减去矫顽力最小值,若大于1.5kOe,则是磁性能一致性差。
本发明每一实施例和对比例中制备出的是若干个钕铁硼材料,同一批次指的就是每一实施例和对比例中所获得的若干个钕铁硼材料。针对表4中的每项检测而言,每个钕铁硼材料指的是按照性能测试的单位切割出来10mm*10mm的圆柱体。
表4
Figure PCTCN2021077180-appb-000001
Figure PCTCN2021077180-appb-000002
注:“×”指的是不含R 6T 13Cu相或R 6T 13Al相。除Max(Hcj)-Min(Hcj)外,表4中的其余参数均是测量同一批次中的5个钕铁硼材料取的平均值。表4中20-80℃Br温度系数α(Br)%/℃、20-80℃Hcj温度系数β(Hcj)%/℃、20-150℃Br温度系数β(Hcj)%/℃、20-150℃Hcj温度系数β(Hcj)%/℃的数据是绝对值。

Claims (10)

  1. 一种钕铁硼材料的原料组合物,其特征在于,其包括如下质量含量的组分:R:28.5~34%;所述R为稀土元素,所述R包括Nd;
    B:0.84~0.94%;
    Cu:0.45<Cu≤2%;
    Co:≤2.5%、但不为0;
    Fe:61~69%;
    N:包含Ti、Zr和Nb中的一种或多种;
    当N中包含Ti时,所述Ti的含量为0.15~0.25%;
    当N中包含Zr时,所述Zr的含量为0.2~0.35%;
    当N中包含Nb时,所述Nb的含量为0.2~0.5%;
    百分比为各组分质量占所述原料组合物总质量的质量百分比。
  2. 如权利要求1所述的原料组合物,其特征在于,所述R的含量为29~33%,较佳地为29~32.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Nd的含量为7.5~13%或者20~31.5%,较佳地为7.5~10.5%或者30~31.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中不含Ga;
    和/或,所述原料组合物中不含Al;
    和/或,所述原料组合物中,所述R还包括Pr;
    和/或,所述Pr的含量在0.5%以下且不为0,或者为11.5~30%,较佳地为0.1~0.5%或者18.5~21.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中还包括RH,所述RH为重稀土元素;
    其中,当所述原料组合物中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比;
    其中,所述RH的种类包括Dy、Tb和Ho中的一种或多种;
    当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,百分比为占 所述原料组合物总质量的质量百分比;
    当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%;百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述B的含量为0.85~0.94%,较佳地为0.86~0.92%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中的所述R的原子百分比和所述B的原子百分比满足如下关系式:B/R≥0.38,式中,所述B在所述原料组合物中的原子百分比,所述R在所述原料组合物中的原子百分比;
    和/或,所述Cu的含量为0.48~2%,较佳地为0.65~1.85%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Co的含量为0.45~2.5%,较佳地为0.85~2%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Fe的含量为61.2~68.7%,较佳地为63~68.61%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Ti时,所述Ti的含量为0.18~0.25%,较佳地为0.22~0.25%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Zr时,所述Zr的含量为0.25~0.35%,较佳地为0.26~0.32%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述钕铁硼材料的原料组合物中包含Zr时,所述Zr的含量满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Nb时,所述Nb的含量为0.2~0.3%,百分比为占所述原料组合物总质量的质量百分比。
  3. 如权利要求1或2所述的原料组合物,其特征在于,所述钕铁硼材料的原料组合物包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd;B:0.85~0.94%;Cu:0.48~2%;Co:0.45~2.5%;Fe:61.2~68.7%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量 为0.18~0.25%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.25~0.35%;所述百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述钕铁硼材料的原料组合物包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd和Pr;所述Pr的含量为0.1~0.5%或11.5~30%;B:0.86~0.92%;Cu:0.65~1.85%;Co:0.85~2%;Fe:63~68.61%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.22~0.25%;当N中包含Zr时,所述Zr的含量为0.26~0.32%;当N中包含Nb时,所述Nb的含量为0.2~0.3%;所述百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述钕铁硼材料的原料组合物包括如下含量的组分:R:29.5~31%;所述R为稀土元素,所述R包括Nd;B:0.85~0.94%;Cu:0.48~2%;Co:0.45~2.5%;Ti:0.15~0.25%;Fe:62.8~68.8%;所述百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述钕铁硼材料的原料组合物包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd;B:0.85~0.94%;Cu:0.48~2%;Co:0.45~2.5%;Zr:0.25~0.35%;Fe:63~68.8%;所述百分比为各组分质量占所述原料组合物总质量的质量百分比。
  4. 一种钕铁硼材料的制备方法,其特征在于,其包括下述步骤:将如权利要求1~3所述钕铁硼材料的原料组合物经铸造、制粉、成型、烧结和时效处理即可;
    所述时效处理包括一级时效处理和二级时效处理,所述一级时效处理的温度为830~870℃。
  5. 如权利要求4所述的制备方法,其特征在于,所述铸造之前还包括熔炼;
    其中,所述熔炼的温度较佳地在1500℃以下;
    和/或,所述铸造是以10 2℃/秒~10 4℃/秒的速度冷却;
    其中,所述冷却较佳地通过辊轮中通入冷却水实现;
    所述辊轮的进水温度较佳地≤25℃,更佳地为22.6~23.9℃;
    和/或,所述制粉包括氢破工艺和气流磨工艺;
    其中,所述氢破工艺较佳地包括吸氢、脱氢和冷却处理;
    其中,所述气流磨工艺较佳地在在氧化气体含量120ppm以下的氮气气氛下进行;
    其中,所述气流磨工艺的粉碎室压力较佳地为0.3~0.5MPa,例如0.38MPa;
    其中,所述气流磨工艺的时间较佳地为2~4小时,例如3小时;
    其中,所述气流磨工艺后,较佳地在粉体中添加润滑剂;所述润滑剂的添加量较佳地为混合后粉末重量的0.10~0.15%;
    和/或,所述成型包括磁场成形法或热压热变形法;
    和/或,所述烧结之前还包括预热;所述预热的温度较佳地为300~600℃;所述预热的时间较佳地为1~2h;
    和/或,所述烧结的温度为1065~1090℃;
    和/或,所述烧结的时间为5~10h;
    和/或,所述一级时效处理的温度为840~865℃;
    和/或,所述一级时效处理的时间为2~4h;
    和/或,升温至所述一级时效处理的温度的速率为3~5℃/min;
    和/或,所述二级时效处理的温度为440~470℃,较佳地为450~460℃;
    和/或,所述二级时效处理的时间为2~4h;
    其中,升温至所述一级时效处理的温度的速率较佳地为3~5℃/min。
  6. 一种如权利要求4或5所述的制备方法制得的钕铁硼材料。
  7. 一种钕铁硼材料,其特征在于,其包括如下质量含量的组分:R:28.5~34.01%;所述R为稀土元素,所述R至少包括Nd;
    B:0.84~0.945%;
    Cu:0.45<Cu≤2.03%;
    Al:<0.08%;
    Co:≤2.5%、但不为0;
    Fe:61~69%;
    N:包含Ti、Zr和Nb中的一种或多种;
    当N中包含Ti时,所述Ti的含量为0.15~0.252%;
    当N中包含Zr时,所述Zr的含量为0.2~0.35%;
    当N中包含Nb时,所述Nb的含量为0.2~0.5%;
    百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比在3.5%以上。
  8. 如权利要求7所述的钕铁硼材料,其特征在于,所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5~10%;较佳地为5.5~8.5%;
    和/或,所述R的含量为29~33.1%,较佳地为29~32.5%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述Nd的含量为7.5~13%或者19.9~31.5%,较佳地为7.5~10.51%或者30~31.5%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述钕铁硼材料中不含Ga;
    和/或,所述钕铁硼材料中,所述R还包括Pr;
    其中,所述Pr的含量较佳地在0.5%以下且不为0,或者为11.5~30%,更佳地为0.1~0.51%或者18.5~21.5%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述钕铁硼材料中还包括RH,所述RH为重稀土元素;
    其中,当所述钕铁硼材料中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述钕铁硼材料总质量的质量百分比;
    其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种;
    当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,百分比为占所述钕铁硼材料总质量的质量百分比;
    当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述B的含量0.85~0.942%,较佳地为0.86~0.922%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述钕铁硼材料中的所述R的原子百分比和所述B的原子百分比满足如下关系式:B/R≥0.38,式中,所述B在所述钕铁硼材料中的原子百分比,所述R在所述钕铁硼材料中的原子百分比;
    和/或,所述Cu的含量为0.48~2.021%,较佳地为0.65~1.852%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述Al的含量为0.02~0.05%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述Co的含量为0.45~2.5%,较佳地为0.85~2%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述Fe的含量为61.2~68.7%,较佳地为63~68.61%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,当所述N包含Ti时,所述Ti的含量为0.18~0.252%,较佳地为0.22~0.252%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,当所述N包含Zr时,所述Zr的含量为0.25~0.35%,较佳地为0.26~0.323%,百分比为占所述钕铁硼材料总质量的质量百分比;
    和/或,所述N包含Zr时,所述Zr的含量满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述钕铁硼材料总质量的质量百分比;
    和/或,当所述N包含Nb时,所述Nb的含量为0.2~0.302%,百分比为占所述钕铁硼材料总质量的质量百分比。
  9. 如权利要求8所述的钕铁硼材料,其特征在于,所述钕铁硼材料包括如下含量的组分:R:29~33.1%;所述R为稀土元素,所述R包括Nd;B:0.85~0.942%;Cu:0.48~2.021%;Co:0.45~2.5%;61.2~68.7%;N:包含 Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.18~0.252%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.2~0.3%;百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13Cu相的体积与“主相、晶界相和富稀土相”总体积的比为5~10%;
    或者,所述钕铁硼材料包括如下含量的组分:R:29~33.1%;所述R为稀土元素,所述R包括Nd和Pr;所述Pr的含量为0.1~0.5%或11.5~30%;B:0.86~0.922%;Cu:0.65~1.852%;Co:0.85~2%;Fe:63~68.61%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.22~0.252%;当N中包含Zr时,所述Zr的含量为0.26~0.323%;当N中包含Nb时,所述Nb的含量为0.2~0.302%;百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5.5~8.5%;
    或者,所述钕铁硼材料包括如下含量的组分:R:29.5~31.1%;所述R为稀土元素,所述R包括Nd;B:0.85~0.942%;Cu:0.48~2.021%;Co:0.45~2.5%;Ti:0.15~0.252%;Fe:62.8~68.8%;百分比为各组分质量占所述钕铁硼材料总质量的质量百分比所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5~8.5%;
    或者,所述钕铁硼材料包括如下含量的组分:R:29~33%;所述R为稀土元素,所述R包括Nd;B:0.85~0.945%;Cu:0.48~2.021%;Co:0.45~2.5%;Zr:0.25~0.35%;Fe:63~68.8%;百分比为各组分质量占所述钕铁硼材料总质量的质量百分比;所述钕铁硼材料的晶界相中还包括R 6T 13Cu相;T为Fe和/或Co;所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比为5.5~8.5%。
  10. 一种如权利要求6~9中任一项所述的钕铁硼材料作为电子元器件的 应用。
PCT/CN2021/077180 2020-02-29 2021-02-22 一种钕铁硼材料及其制备方法和应用 WO2021169895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132214.XA CN111312462B (zh) 2020-02-29 2020-02-29 一种钕铁硼材料及其制备方法和应用
CN202010132214.X 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169895A1 true WO2021169895A1 (zh) 2021-09-02

Family

ID=71145277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077180 WO2021169895A1 (zh) 2020-02-29 2021-02-22 一种钕铁硼材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111312462B (zh)
WO (1) WO2021169895A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312462B (zh) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 一种钕铁硼材料及其制备方法和应用
CN112992462B (zh) * 2021-03-17 2023-01-24 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223617A (ja) * 1996-12-17 1997-08-26 Mitsubishi Materials Corp 耐食性および磁気特性に優れた希土類−B−Fe系焼結磁石およびその製造方法
CN104078176A (zh) * 2013-03-28 2014-10-01 Tdk株式会社 稀土类磁体
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111312462A (zh) * 2020-02-29 2020-06-19 厦门钨业股份有限公司 一种钕铁硼材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244105A (ja) * 1986-04-16 1987-10-24 Hitachi Metals Ltd 希土類磁石
JP6238444B2 (ja) * 2013-01-07 2017-11-29 昭和電工株式会社 R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石用合金およびその製造方法
CN107251175B (zh) * 2015-02-18 2019-04-09 日立金属株式会社 R-t-b系烧结磁体的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223617A (ja) * 1996-12-17 1997-08-26 Mitsubishi Materials Corp 耐食性および磁気特性に優れた希土類−B−Fe系焼結磁石およびその製造方法
CN104078176A (zh) * 2013-03-28 2014-10-01 Tdk株式会社 稀土类磁体
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111312462A (zh) * 2020-02-29 2020-06-19 厦门钨业股份有限公司 一种钕铁硼材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111312462B (zh) 2021-08-27
CN111312462A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111243809B (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169897A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
TW202000944A (zh) 低B含量的R-Fe-B系燒結磁鐵及其製備方法
KR102527128B1 (ko) R-t-b계 희토류 영구자석 재료, 제조방법 및 응용
TW202127474A (zh) 釹鐵硼永磁材料、製備方法、應用
WO2021114648A1 (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN111326304B (zh) 一种稀土永磁材料及其制备方法和应用
KR20210151946A (ko) R-t-b계 희토류 영구자석 재료와 그 제조방법, 및 응용
TW202108782A (zh) 釹鐵硼永磁材料及其原料組合物、製備方法和應用
CN111243812B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169895A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169899A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2021169898A1 (zh) 一种钕铁硼材料及其制备方法和应用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN111243811B (zh) 一种钕铁硼材料及其制备方法和应用
EP4016562A1 (en) R-t-b series permanent magnet material, raw material composition, preparation method and application
WO2021169901A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169900A1 (zh) 一种稀土永磁材料及其制备方法和应用
CN116344139A (zh) 一种高钴稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761384

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21761384

Country of ref document: EP

Kind code of ref document: A1