WO2021169901A1 - 一种r-t-b系永磁材料及其制备方法和应用 - Google Patents

一种r-t-b系永磁材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021169901A1
WO2021169901A1 PCT/CN2021/077192 CN2021077192W WO2021169901A1 WO 2021169901 A1 WO2021169901 A1 WO 2021169901A1 CN 2021077192 W CN2021077192 W CN 2021077192W WO 2021169901 A1 WO2021169901 A1 WO 2021169901A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtb
content
percentage
permanent magnet
based permanent
Prior art date
Application number
PCT/CN2021/077192
Other languages
English (en)
French (fr)
Inventor
付刚
黄佳莹
权其琛
黄清芳
许德钦
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021169901A1 publication Critical patent/WO2021169901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to an R-T-B series permanent magnet material and a preparation method and application thereof.
  • RTB series sintered magnets (R refers to rare earth elements, T refers to transition metal elements and metal elements of the third main group, B refers to boron element) are widely used in electronic products, automobiles, wind power, home appliances, elevators and Industrial robots and other fields, such as hard disks, mobile phones, headsets, and permanent magnet motors such as elevator traction machines, generators, etc., are used as energy sources, and their demand is increasing. The requirements have gradually increased.
  • the Nd-Fe-B ternary phase diagram shows that R 2 T is easily formed 17 , and R 2 T 17 does not have uniaxial anisotropy at room temperature, which in turn degrades the performance of the magnet.
  • heavy rare earth elements such as Dy, Tb, Gd, etc. are generally added to increase the coercivity of materials and improve the temperature coefficient.
  • the price of heavy rare earths is high. This method is used to increase the coercivity of RTB-based sintered magnet products. Force, will increase the cost of raw materials, is not conducive to the application of RTB series sintered magnets.
  • the technical problem to be solved by the present invention is to overcome the defects of degraded magnet performance and poor consistency of magnet performance when B ⁇ 5.88at% in the RTB system magnet in the prior art, and provides an RTB system permanent magnet material and a preparation method thereof And application.
  • the present invention provides an RTB-based permanent magnet material, which contains: R, Ga, Cu, B, Al and Fe, and also contains one or more of Ti, Zr and Nb.
  • the content is as follows in weight percentage :
  • R 28.4-33.1wt%; said R is a rare earth element containing at least Nd;
  • Ga ⁇ 0.35wt%
  • the content of Ti is 0.15-0.255wt%
  • the content of Zr is 0.195-0.35 wt%
  • the content of Nb is 0.195-0.5wt%
  • the R-T-B-based permanent magnet material does not contain Co.
  • the content of R is preferably 28.491-33.007wt%, such as 28.491wt%, 28.503wt%, 29.493wt%, 29.503wt%, 30.009wt%, 30.011wt%, 30.5wt%, 30.501wt%, 31.001wt%, 31.007wt%, 31.013wt%, 31.998wt%, 32.042wt%, 32.048wt%, 32.061wt%, 32.983wt%, 33.004wt%, 33.006wt% or 33.007wt%, the percentages refer to the RTB is the weight percentage in permanent magnet materials.
  • the Nd content is preferably 17.5-26.0wt%, such as 17.987wt%, 21.374wt%, 22.124wt%, 22.505wt%, 22.508wt%, 22.875wt%, 23.253wt%, 23.259wt%, 24.004wt%, 24.008wt%, 24.752wt%, 24.753wt%, 24.987wt% or 25.987wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the R may also include Pr and/or heavy rare earth RH.
  • the content of Pr may be ⁇ 0.2 at% or> 8 at%, and the percentage refers to the atomic percentage in the R-T-B series permanent magnetic material.
  • the content of Pr is preferably 2.5-12.0wt%, such as 2.504wt%, 7.129wt%, 7.379wt%, 7.503wt%, 7.504wt%, 7.506wt%, 7.625wt%, 7.626wt%, 7.748wt %, 7.754wt%, 7.994wt%, 7.996wt%, 8.034wt%, 8.252wt%, 8.254wt% or 11.506wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the atomic percentage of B/(Pr+Nd) is ⁇ 0.405, such as 0.405, 0.409 or 0.428.
  • the type of RH can be Tb or Dy.
  • the content of the RH may be 1.5-6.0 wt%, such as 2.04 wt% or 2.05 wt%, and the percentage refers to the weight percentage in the R-T-B series permanent magnetic material.
  • the content of Ga is preferably 0.35-0.55wt%, such as 0.35wt%, 0.352wt%, 0.353wt%, 0.393wt%, 0.4wt%, 0.404wt%, 0.45wt%, 0.451wt%, 0.5wt%, 0.505wt% or 0.55wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the content of Ga is preferably 0.35wt% ⁇ Ga ⁇ 0.55wt%, and the percentage refers to the weight percentage in the R-T-B series permanent magnetic material.
  • the content of Al is preferably 0.08-0.124wt%, such as 0.08wt%, 0.082wt%, 0.083wt%, 0.084wt%, 0.094wt%, 0.095wt%, 0.098wt%, 0.1wt%, 0.102wt%, 0.103wt%, 0.106wt%, 0.12wt% or 0.124wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the content of Cu is preferably 0.4-0.905wt%, such as 0.4wt%, 0.401wt%, 0.447wt%, 0.451wt%, 0.452wt%, 0.454wt%, 0.501wt%, 0.502wt%, 0.504wt%, 0.551wt%, 0.552wt%, 0.602wt%, 0.604wt%, 0.651wt%, 0.652wt%, 0.703wt%, 0.804wt% or 0.905wt%, the percentage refers to the RTB series permanent magnet The weight percentage in the material.
  • the Cu content is ⁇ 0.4wt%, for example, 0.45wt% ⁇ Cu ⁇ 0.65wt% or Cu ⁇ 0.65wt%, and the percentage refers to the weight percentage in the RTB-based permanent magnet material .
  • the content of B is preferably 0.849-0.941wt%, such as 0.849wt%, 0.9wt%, 0.901wt%, 0.902wt%, 0.903wt%, 0.904wt%, 0.915wt%, 0.92wt%, 0.922wt%, 0.923wt% or 0.941wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the content of B is preferably ⁇ 0.915wt% or ⁇ 5.55at%; more preferably, the content of B is 0.915wt% and 5.55at%, whichever is greater; wt% refers to The weight percentage in the RTB-based permanent magnetic material, at% refers to the atomic percentage in the RTB-based permanent magnetic material.
  • the ratio of the atomic percentage of B and TRE is ⁇ 0.38; wherein, the TRE is the total rare earth content; for example, when the R includes Nd and Pr, the TRE is the Nd and The sum of the content of Pr.
  • the atomic percentage of the Ga and the B satisfies the following condition: Ga>7.2941-1.24B.
  • the content of Fe is preferably 64.184-69.673wt%, such as 64.184wt%, 64.464wt%, 64.773wt%, 64.969wt%, 65.328wt%, 65.626wt%, 65.78wt%, 65.811wt%, 66.567wt%, 66.622wt%, 66.626wt%, 67.273wt%, 67.312wt%, 67.383wt%, 67.587wt%, 67.749wt%, 67.999wt%, 68.451wt%, 69.131wt% or 69.673wt%, the percentage is Refers to the weight percentage in the RTB-based permanent magnet material.
  • the content of Ti is preferably 0.152-0.252wt%, such as 0.152wt%, 0.154wt%, 0.185wt%, 0.207wt%, 0.209wt%, 0.251wt% or 0.252wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the content of Zr is preferably 0.197-0.35% by weight, such as 0.197% by weight, 0.202% by weight, 0.248% by weight, 0.253% by weight, 0.262% by weight, 0.3wt%, 0.303wt%, 0.348wt% or 0.35wt%, the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the content of Nb is preferably 0.195-0.491 wt%, such as 0.195 wt%, 0.298 wt%, 0.301 wt%, 0.401 wt% or 0.491 wt%,
  • the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the content of Zr is preferably 0.20wt% ⁇ Zr ⁇ (3.48B-2.67)wt%, for example 0.26wt% ⁇ Zr ⁇ (3.48B-2.67) ) wt%, where the B is the weight percentage of B in the RTB-based permanent magnetic material; the percentage refers to the weight percentage in the RTB-based permanent magnetic material.
  • the RTB-based permanent magnetic material includes R 2 T 14 B main phase, grain boundary phase and rare earth-rich phase.
  • the grain boundary phase refers to the general term of the grain boundary phase between two or more R 2 Fe 14 B crystal grains.
  • the grain boundary phase of the RTB-based permanent magnetic material includes R 6 T 13 M phase, where T is Fe and M is Cu and/or Ga.
  • the RTB-based permanent magnet material contains the following components: R: 28.4-33.1wt%, Ga: 0.35-0.55wt%, Al: 0.08-0.125wt%, Cu: ⁇ 0.45 wt%, B: 0.84-0.945wt%, Fe: 64.1-69.7wt%, Ti: 0.15-0.255wt%, the percentage refers to the weight percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material contains the following components: R: 28.4-33.1wt%, Ga: 0.35-0.55wt%, Al: 0.08-0.125wt%, Cu: 0.45- 0.65wt%, B: 0.84-0.945wt%, Fe: 64.1-69.7wt%, Zr: 0.195-0.35wt%; wherein, preferably, the content of Zr is 0.26wt% ⁇ Zr ⁇ (3.48B-2.67 ) wt%; percentage refers to the weight percentage in the RTB-based permanent magnet material.
  • the RTB-based permanent magnet material contains the following components: R: 28.4-33.1wt%, Ga: 0.35-0.55wt%, Al: 0.08-0.125wt%, Cu: ⁇ 0.65 wt%, B: 0.84-0.945wt%, Fe: 64.1-69.7wt%, Zr: 0.195-0.35wt%; wherein, preferably, the content of Zr is 0.20wt% ⁇ Zr ⁇ (3.48B-2.67) wt%; percentage refers to the weight percentage in the RTB-based permanent magnet material.
  • the present invention also provides a raw material composition of RTB-based permanent magnet material, which contains: R, Ga, Cu, B, Al and Fe, and also contains one or more of Ti, Zr and Nb, in weight percentage
  • RTB-based permanent magnet material which contains: R, Ga, Cu, B, Al and Fe, and also contains one or more of Ti, Zr and Nb, in weight percentage
  • Ti, Zr and Nb in weight percentage
  • R 28.5-33.0wt%; said R is a rare earth element containing at least Nd;
  • Ga ⁇ 0.35wt%
  • the content of Ti is 0.15-0.25 wt%;
  • the content of the Zr is 0.20-0.35 wt%
  • the content of the Nb is 0.2-0.5 wt%
  • the raw material composition of the R-T-B-based permanent magnet material does not contain Co.
  • the raw material composition of the R-T-B permanent magnetic material generally refers to the raw material actively added during the preparation of the permanent magnetic material, and does not include the components and/or content introduced in the preparation process or impurities.
  • the content of R is preferably 29.5-33.0wt%, such as 29.5wt%, 30.0wt%, 30.5wt%, 31.0wt%, 32.0wt% or 33.0wt%, and the percentage refers to the RTB system The weight percentage in the raw material composition of the permanent magnet material.
  • the Nd content is preferably 17.5-26.0wt%, such as 18.0wt%, 21.38wt%, 22.13wt%, 22.5wt%, 22.88wt%, 23.25wt%, 24.0wt%, 24.75wt% or 26.0wt%, the percentage refers to the weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the R may also include Pr and/or heavy rare earth RH.
  • the content of Pr may be ⁇ 0.2 at% or> 8 at%, and the percentage refers to the atomic percentage in the raw material composition of the R-T-B permanent magnetic material.
  • the content of Pr is preferably 2.5-12.0wt%, for example 2.5wt%, 7.13wt%, 7.38wt%, 7.5wt%, 7.63wt%, 7.75wt%, 8.0wt%, 8.25wt% or 11.5wt %, the percentage refers to the weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the atomic percentage of B/(Pr+Nd) is ⁇ 0.405.
  • the type of RH can be Tb or Dy.
  • the content of the RH may be 1.5-6.0 wt.%, for example 2.0 wt%, and the percentage refers to the weight percentage in the raw material composition of the R-T-B permanent magnetic material.
  • the content of Ga is preferably 0.35-0.55wt%, such as 0.35wt%, 0.4wt%, 0.45wt%, 0.5wt% or 0.55wt%, and the percentage refers to the amount of the RTB permanent magnet material The weight percentage in the raw material composition.
  • the content of Ga is preferably 0.35wt% ⁇ Ga ⁇ 0.55wt%, and the percentage refers to the weight percentage in the raw material composition of the R-T-B permanent magnet material.
  • the content of Al is preferably 0.06-0.07% by weight, such as 0.06% by weight or 0.07% by weight, and the percentage refers to the weight percentage in the raw material composition of the R-T-B permanent magnet material.
  • the content of Cu is preferably 0.4-0.9wt%, such as 0.4wt%, 0.45wt%, 0.5wt%, 0.55wt%, 0.6wt%, 0.65wt%, 0.7wt%, 0.8wt% or 0.9wt%, the percentage refers to the weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the Cu content is ⁇ 0.4wt%, for example, 0.45wt% ⁇ Cu ⁇ 0.65wt% or Cu ⁇ 0.65wt%, and the percentage refers to the raw material composition of the RTB-based permanent magnet material Percent by weight in.
  • the content of B is preferably 0.90-0.94wt%, such as 0.90wt%, 0.915wt%, 0.92wt% or 0.94wt%, and the percentage means in the raw material composition of the RTB-based permanent magnet material The weight percentage.
  • the content of B is preferably ⁇ 0.915wt% or ⁇ 5.55at%; more preferably, the content of B is 0.915wt% and 5.55at%, whichever is greater; wt% refers to The weight percentage in the raw material composition of the RTB-based permanent magnetic material, at% refers to the atomic percentage in the raw material composition of the RTB-based permanent magnetic material.
  • the ratio of the atomic percentage of B and TRE is ⁇ 0.38; wherein, the TRE is the total rare earth content; for example, when the R includes Nd and Pr, the TRE is the Nd and The sum of the content of Pr.
  • the atomic percentage of Ga and B satisfies the following condition Ga>7.2941-1.24B, and the atomic percentage refers to the atomic percentage in the raw material composition of the R-T-B permanent magnet material.
  • the content of Fe is preferably 64.23-69.71wt%, such as 64.23wt%, 64.5wt%, 64.81wt%, 65.43wt%, 65.68wt%, 65.88wt%, 65.89wt%, 66.01wt%, 66.63wt%, 66.68wt%, 66.69wt%, 67.3wt%, 67.34wt%, 67.41wt%, 67.65wt%, 67.815wt%, 68.03wt%, 68.48wt%, 69.16wt% or 69.71wt%, the percentage is Refers to the weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the content of Ti is preferably 0.18-0.25wt%, such as 0.18wt%, 0.2wt% or 0.25wt%, and the percentage refers to The weight percentage in the raw material composition of the permanent magnet material.
  • the content of Zr is preferably 0.25-0.35wt%, such as 0.25wt%, 0.26wt%, 0.3wt% or 0.35wt%, and the percentage refers to The weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the content of Nb is preferably 0.3-0.5wt%, such as 0.3wt%, 0.4wt% or 0.5wt%, and the percentage refers to the amount in the RTB-based permanent magnet material.
  • the weight percentage in the raw material composition of the permanent magnet material is preferably 0.3-0.5wt%, such as 0.3wt%, 0.4wt% or 0.5wt%, and the percentage refers to the amount in the RTB-based permanent magnet material.
  • the content of Zr is preferably 0.20wt% ⁇ Zr ⁇ (3.48B-2.67)wt%, for example 0.26wt% ⁇ Zr ⁇ (3.48B-2.67)wt%, where B is the weight percentage of B in the raw material composition of the RTB-based permanent magnetic material; the percentage refers to the raw material composition of the RTB-based permanent magnetic material The weight percentage.
  • the raw material composition of the RTB-based permanent magnet material contains the following components: R: 28.5-33.0wt%, Ga: 0.35-0.55wt%, Al: 0.05-0.07wt% , Cu: ⁇ 0.45wt%, B: 0.84-0.94wt%, Fe: 64.2-69.75wt%, Ti: 0.15-0.25wt%, the percentage refers to the weight in the raw material composition of the RTB-based permanent magnet material percentage.
  • the raw material composition of the RTB-based permanent magnet material contains the following components: R: 28.5-33.0wt%, Ga: 0.35-0.55wt%, Al: 0.05-0.07wt% , Cu: 0.45-0.65wt%, B: 0.84-0.94wt%, Fe: 64.2-69.75wt%, Zr: 0.20-0.35wt%; wherein, preferably, the content of Zr is 0.26wt% ⁇ Zr ⁇ (3.48B-2.67)wt%; percentage refers to the weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the raw material composition of the RTB-based permanent magnet material contains the following components: R: 28.5-33.0wt%, Ga: 0.35-0.55wt%, Al: 0.05-0.07wt% , Cu: ⁇ 0.65wt%, B: 0.84-0.94wt%, Fe: 64.2-69.75wt%, Zr: 0.20-0.35wt%; wherein, preferably, the content of Zr is 0.20wt% ⁇ Zr ⁇ ( 3.48B-2.67)wt%; percentage refers to the weight percentage in the raw material composition of the RTB-based permanent magnet material.
  • the present invention also provides a preparation method of R-T-B series permanent magnet material, which includes the following steps:
  • the molten liquid of the raw material composition of the R-T-B series permanent magnet material is subjected to casting, hydrogen breaking, forming, sintering and aging treatments.
  • the molten liquid of the raw material composition of the R-T-B series permanent magnet material can be prepared according to a conventional method in the art, for example, smelting in a high-frequency vacuum induction melting furnace.
  • the vacuum degree of the melting furnace may be 5 ⁇ 10 -2 Pa.
  • the melting temperature may be 1500°C or less.
  • the smelting is generally performed in a crucible made of alumina.
  • the alumina crucible introduces a part of Al into the R-T-B-based permanent magnet material.
  • the casting process can be a conventional casting process in the field, for example: cooling in an Ar atmosphere (for example, under an Ar atmosphere of 5.5 ⁇ 10 4 Pa) at a rate of 10 2 °C/sec-10 4 °C/sec , You can.
  • the cooling can be achieved by passing cooling water into the rollers.
  • the inlet water temperature of the roller is ⁇ 25°C, such as 23.3°C, 23.4°C, 23.5°C, 23.6°C or 24.5°C.
  • the roller may be a copper roller.
  • the hydrogen breaking process may be a conventional hydrogen breaking process in the art, such as hydrogen absorption, dehydrogenation, and cooling treatment.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.15 MPa.
  • the dehydrogenation can be carried out under the conditions of raising the temperature while drawing a vacuum.
  • the pulverization process can be a conventional pulverization process in the field, such as jet mill pulverization.
  • the jet mill pulverization can be performed in a nitrogen atmosphere with an oxidizing gas content of 120 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure of the crushing chamber of the jet mill crushing may be 0.38 MPa.
  • the pulverization time of the jet mill may be 3 hours.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.10-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the forming process may be a conventional forming process in the field, such as a magnetic field forming method or a hot pressing and thermal deformation method.
  • the sintering process may be a conventional sintering process in the field, for example, preheating, sintering, and cooling under vacuum conditions (for example, under a vacuum of 5 ⁇ 10 -3 Pa).
  • the preheating temperature may be 300-600°C.
  • the preheating time can be 1-2h.
  • the preheating is a preheating at a temperature of 300°C and 600°C for 1 hour each.
  • the sintering temperature may be a conventional sintering temperature in the art, for example, 1040-1090°C, for example 1067°C, 1070°C, 1072°C, 1073°C, 1077°C, 1078°C, 1080°C, 1085°C, 1087°C or 1090 °C.
  • the sintering time may be a conventional sintering time in the art, for example, 5-10h, and for example 8h.
  • Ar gas Before the cooling, Ar gas can be introduced to make the gas pressure reach 0.1 MPa.
  • the aging treatment includes primary aging treatment and secondary aging treatment.
  • the temperature of the primary aging treatment is preferably 860-960°C, such as 900°C.
  • the heating rate to 860-960°C is preferably 3-5°C/min.
  • the starting point of the temperature increase may be room temperature.
  • the time of the primary aging treatment may be 1 to 6 hours, for example, 3 hours.
  • the temperature of the secondary aging treatment is preferably 430-560°C, such as 450-490°C, and further such as 450°C, 470°C, 480°C, or 490°C.
  • the heating rate to 430-560°C is preferably 3-5°C/min.
  • the starting point of the temperature increase may be room temperature.
  • the treatment time of the secondary aging may be 1 to 6 hours, for example, 3 hours.
  • the invention also provides an R-T-B series permanent magnet material prepared by the above method.
  • the invention also provides an application of the R-T-B series permanent magnet material as an electronic component.
  • the application fields can be the automotive drive field, wind power field, servo motor and home appliance field (for example, air conditioner).
  • the room temperature refers to 25°C ⁇ 5°C.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the demagnetization curve is smooth, without steps, and the relative permeability is low.
  • the coercive force is less than or equal to 1.5kOe in the same batch, and the magnet performance is consistent.
  • Fig. 1 is the J-H curve of the R-T-B series permanent magnetic material prepared in Comparative Example 2, wherein the circled part in Fig. 1 indicates that the J-H curve has a step.
  • (1) melting process according to the formulation shown in Table 1, the prepared feedstock take placed in an alumina crucible, a high-frequency vacuum induction melting furnace at 1500 deg.] C or less in a vacuum of 5 ⁇ 10 -2 Pa in The temperature is vacuum smelted to obtain a molten liquid.
  • Hydrogen breaking and pulverizing process Vacuum the hydrogen breaking furnace containing the quench alloy at room temperature, and then pass hydrogen with a purity of 99.9% into the hydrogen breaking furnace, maintain the hydrogen pressure at 0.15MPa, and fully absorb hydrogen. The temperature is raised while vacuuming, and the hydrogen is fully dehydrogenated, and then cooled, and the powder after the hydrogen cracking and pulverization is taken out.
  • Fine pulverization process Under the nitrogen atmosphere with an oxidizing gas content of 120 ppm or less, the powder after hydrogen pulverization is pulverized by jet milling for 3 hours under the condition of a pulverizing chamber pressure of 0.38 MPa to obtain a fine powder.
  • Oxidizing gas refers to oxygen or moisture.
  • Magnetic field forming process using a right-angle orientation magnetic field forming machine, in a 1.6T orientation magnetic field, under a forming pressure of 0.35 ton/cm 2 , the above-mentioned zinc stearate-added powder is formed into a side length at a time It is a 25mm cube, which is demagnetized in a 0.2T magnetic field after one-time forming.
  • a secondary molding machine isostatic press
  • each molded body is moved to a sintering furnace for sintering, sintered in a vacuum of 5 ⁇ 10 -3 Pa, kept at a temperature of 300°C and 600°C for 1 hour, and then sintered at a temperature of 1090°C After 8 hours, Ar gas was introduced to bring the pressure to 0.1 MPa, and then cooled to room temperature.
  • Example 1 Number/wt% TRE Pr Nd Tb Dy Ga Cu Al Co Ti Zr Nb Fe B
  • Example 2 29.5 11.5 18 / / 0.4 0.45 0.07 0 0.2 0 0 68.48 0.9
  • Example 3 30.0 7.50 22.50 / / 0.45 0.5 0.07 0 0.25 0 0 67.815 0.915
  • Example 4 30.5 7.63 22.88 / / 0.5 0.55 0.05 0 0.15 0 67.3 0.94
  • Example 5 31.0 7.75 23.25 / / 0.55 0.6 0.05 0 0.25 0 0 66.63 0.92
  • Example 6 32.0 8.00 24.00 / / 0.35 0.45 0.07 0 0 0.2 0 66.01 0.92
  • Example 8 28.5 7.13
  • Comparative example 4 30.5 7.63 22.88 / / 0.4 0.45 0 0 0.25 0.23 0 67.25 0.91 Comparative example 5 30.5 7.63 22.88 / / 0.4 0.45 0 0 0 0 0 67.72 0.92 Comparative example 6 30.5 7.63 22.88 / / 0.4 0.45 0.05 0 0.1 0.12 0.6 66.85 0.92 Comparative example 7 30.5 7.63 22.88 / / 0.2 0.3 0.2 0 0.3 0.4 0 67.19 0.9 Comparative example 8 31.0 7.75 23.25 / / 0.4 0.7 0.05 0 0 0.26 0 66.61 0.98
  • TRE refers to the total rare earth content, including Nd, Pr and heavy rare earth RH; "/" means that it does not contain this element.
  • the raw materials were prepared according to the formula shown in Table 1, and except for the conditions shown in Table 2, the other process conditions were the same as those in Example 1, and the R-T-B series sintered magnet was prepared.
  • the powders of the sintered magnets of Examples 1-20 and Comparative Examples 1-8 were taken, and specific components were measured using a high-frequency inductively coupled plasma emission spectrometer (ICP-OES).
  • ICP-OES high-frequency inductively coupled plasma emission spectrometer
  • Example 1 2.504 25.987 / 0.000 0.353 0.400 0.080 0.000 0.154 0.000 0.000 69.673 0.849
  • Example 2 11.506 17.987 / 0.000 0.400 0.447 0.102 0.000 0.207 0.000 0.000 68.451 0.900
  • Example 3 7.504 22.505 / 0.000 0.450 0.502 0.124 0.000 0.251 0.000 0.000 67.749 0.915
  • Example 4 7.625 22.875 / 0.000 0.500 0.552 0.082 0.000 0.152 0.000 0.000 67.273 0.941
  • Example 5 7.748 23.253 / 0.000 0.550 0.602 0.106 0.000 0.252 0.000 0.000 66.567 0.922
  • Example 6 7.996 24.987 / 0.000 0.350 0.454 0.124 0.000 0.000 0.197 0.000 64.969 0.923
  • Example 7 8.254 24.752 / 0.000 0.450 0.504 0.094 0.000 0.000 0.253 0.000 64.773 0.920
  • Example 8 7.129 21.374 / 0.000 0.500 0.551 0.095 0.000 0.000 0.300 0.000 69.131 0.920
  • Example 9 7.379 22.124 / 0.000 0.550 0.604 0.095 0.000 0.000 0.348 0.000 67.999 0.901
  • Example 10 7.506 22.505 / 0.000 0.500 0.652 0.100 0.000 0.000 0.248 0.000 67.587 0.902
  • Example 11 7.625 22.875 / 0.000 0.350 0.651 0.082 0.000 0.000 0.202 0.000 67.312 0.903
  • Example 12 7.754 23.253 / 0.000 0.400 0.703 0.100 0.000 0.000 0.262 0.000 66.626 0.902
  • Example 13 8.034 24.008 / 0.000 0.500 0.804 0.120 0.000 0.000 0.303 0.000 65.328 0.903
  • Example 14
  • the Al content in the sintered magnets of Examples 1-20 and Comparative Examples 1-8 is the sum of the Al content in the raw materials and the Al content introduced in other raw materials and processes (such as alumina crucibles during smelting) .
  • FE-EPMA field emission electron probe microanalyzer
  • JEOL, 8530F field emission electron probe microanalyzer
  • Br or Hcj refers to the average value: the average value calculated by testing the remanence or coercivity of 5 rare earth permanent magnetic material samples (cylinder 10mm*10mm) in the same batch; the temperature coefficient is also measured by measuring the same batch The average value of the performance of the 5 rare earth permanent magnet material samples (cylinder 10mm*10mm) in the second time.
  • the same batch refers to the products obtained in the same time period according to the raw materials and processes shown in the examples or comparative examples.
  • the 6-13-1 phase in Table 4 refers to the RE 6 Fe 13 (CuGa) phase; the magnetic properties of the RTB-based permanent magnet materials in the comparative examples 1-8 are the formulas of the comparative examples 1-8 through process optimization (water inlet Temperature, sintering temperature and aging treatment temperature) can obtain the best performance.
  • Relative permeability The calculation formula is Br/Hcb (Br is remanence, Hcb is magnetic coercivity). When the J-H curve has an inflection point, the permeability is taken before the inflection point.
  • Squareness and relative permeability are average values obtained by measuring the performance of 5 R-T-B series permanent magnetic material samples (cylinder 10mm*10mm) in the same batch.
  • Max(Hcj)-Min(Hcj) The maximum value of the coercive force minus the minimum value of the coercive force in the same batch of products. If it is greater than 1.5kOe, the magnetic performance consistency is poor.
  • the same batch refers to the products obtained in the same time period according to the raw materials and processes shown in the examples or comparative examples.
  • the demagnetization curve of the sintered NdFeB prepared by the conventional formula will have a step, as shown in Figure 1.
  • the appearance of the step means that the RE 6 Fe 13 Al phase appears inside the magnet.
  • the RE 6 Fe 13 (CuGa) phase works together with RE 2 Fe 14 B, resulting in phase separation, resulting in deterioration of magnetic properties.
  • the data of Max(Hcj)-Min(Hcj) also shows that the performance of sintered NdFeB prepared by conventional formula is uneven, which is not conducive to large-scale industrial production, and the coercivity of the same batch is extremely poor> 1.5kOe.
  • the inventors of the present invention have discovered through a lot of research that the addition of Al element is the cause of this phenomenon. Based on this, the permanent magnet material of the present invention is obtained. As shown in Figure 2, the demagnetization curve of the sintered NdFeB prepared in Example 5 of the present invention is smooth and has no steps.
  • the permanent magnet material in the present invention has obtained temperature stability equivalent to that of the permanent magnet material added with Co without adding Co element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种R-T-B系永磁材料及其制备方法和应用,该永磁材料包含下述组分:R:28.4-33.1wt%;Ga:≥0.35wt%;Al:0.08-0.125wt%;Cu:≥0.4wt%;B:0.84-0.945wt%;Fe:64.1-69.7wt%;其中:当永磁材料包含Ti时,Ti的含量为0.15-0.255wt%;当永磁材料包含Zr时,Zr的含量为0.195-0.35wt%;当永磁材料包含Nb时,Nb的含量为0.195-0.5wt%;所述R-T-B系永磁材料中不含有Co。该永磁材料磁性能优异,退磁曲线光滑,无台阶,相对磁导率低,磁体性能一致性好。

Description

一种R-T-B系永磁材料及其制备方法和应用 技术领域
本发明涉及一种R-T-B系永磁材料及其制备方法和应用。
背景技术
R-T-B系烧结磁铁(R指稀土元素,T指过渡金属元素及第三主族金属元素,B指硼元素)由于其优异的磁特性而被广泛应用于电子产品、汽车、风电、家电、电梯及工业机器人等领域,例如硬盘、手机、耳机、和电梯曳引机、发电机等永磁电机中作为能量源等,其需求日益扩大,且各产商对于磁铁性能例如剩磁、矫顽力性能的要求也逐步提升。
为了降低富B相的比例,提升R-T-B系烧结磁铁的剩磁,通常需要降低B含量,但是当B含量低于5.88at%时,由Nd-Fe-B三元相图可知易形成R 2T 17,而R 2T 17不具有室温单轴各向异性,进而使得磁体的性能劣化。
现有技术中,一般通过添加重稀土元素例如Dy、Tb、Gd等,以提高材料的矫顽力以及改善温度系数,但重稀土价格高昂,采用这种方法提高R-T-B系烧结磁体产品的矫顽力,会增加原材料成本,不利于R-T-B系烧结磁体的应用。
因此,在不添加或少量添加重稀土的情况下,如何采用低B体系(B<5.88at%)制备得到高矫顽力、高剩磁的R-T-B系磁铁是本领域亟待解决的技术问题。
发明内容
本发明所要解决的技术问题在于克服现有技术中当R-T-B系磁体中B<5.88at%时,磁体性能劣化且磁体性能一致性差的缺陷,而提供了一种R-T-B系永磁材料及其制备方法和应用。
本发明提供了一种R-T-B系永磁材料,其包含:R、Ga、Cu、B、Al和 Fe,还包含Ti、Zr和Nb中的一种或多种,以重量百分比计,其含量如下:
R:28.4-33.1wt%;所述R为至少含有Nd的稀土元素;
Ga:≥0.35wt%;
Al:0.08-0.125wt%;
Cu:≥0.4wt%;
B:0.84-0.945wt%;
Fe:64.1-69.7wt%;其中:
当所述R-T-B系永磁材料包含Ti时,所述Ti的含量为0.15-0.255wt%;
当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.195-0.35wt%;
当所述R-T-B系永磁材料包含Nb时,所述Nb的含量为0.195-0.5wt%;
所述R-T-B系永磁材料中不含有Co。
本发明中,所述R的含量优选为28.491-33.007wt%,例如28.491wt%、28.503wt%、29.493wt%、29.503wt%、30.009wt%、30.011wt%、30.5wt%、30.501wt%、31.001wt%、31.007wt%、31.013wt%、31.998wt%、32.042wt%、32.048wt%、32.061wt%、32.983wt%、33.004wt%、33.006wt%或33.007wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述Nd的含量优选为17.5-26.0wt%,例如17.987wt%、21.374wt%、22.124wt%、22.505wt%、22.508wt%、22.875wt%、23.253wt%、23.259wt%、24.004wt%、24.008wt%、24.752wt%、24.753wt%、24.987wt%或25.987wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述R中还可包括Pr和/或重稀土RH。
其中,所述Pr的含量可为<0.2at%或者>8at%,百分比是指在所述R-T-B系永磁材料中的原子百分比。
其中,所述Pr的含量优选为2.5-12.0wt%,例如2.504wt%、7.129wt%、7.379wt%、7.503wt%、7.504wt%、7.506wt%、7.625wt%、7.626wt%、7.748wt%、7.754wt%、7.994wt%、7.996wt%、8.034wt%、8.252wt%、 8.254wt%或11.506wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
其中,当所述R中还包括Pr时,优选地,B/(Pr+Nd)的原子百分比≥0.405,例如0.405、0.409或0.428。
其中,所述RH的种类可为Tb或Dy。
其中,所述RH的含量可为1.5-6.0wt%,例如2.04wt%或2.05wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述Ga的含量优选为0.35-0.55wt%,例如0.35wt%、0.352wt%、0.353wt%、0.393wt%、0.4wt%、0.404wt%、0.45wt%、0.451wt%、0.5wt%、0.505wt%或0.55wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述Ga的含量优选为0.35wt%≤Ga<0.55wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述Al的含量优选为0.08-0.124wt%,例如0.08wt%、0.082wt%、0.083wt%、0.084wt%、0.094wt%、0.095wt%、0.098wt%、0.1wt%、0.102wt%、0.103wt%、0.106wt%、0.12wt%或0.124wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述Cu的含量优选为0.4-0.905wt%,例如0.4wt%、0.401wt%、0.447wt%、0.451wt%、0.452wt%、0.454wt%、0.501wt%、0.502wt%、0.504wt%、0.551wt%、0.552wt%、0.602wt%、0.604wt%、0.651wt%、0.652wt%、0.703wt%、0.804wt%或0.905wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,优选地,所述Cu的含量为≥0.4wt%,例如0.45wt%≤Cu<0.65wt%或者Cu≥0.65wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述B的含量优选为0.849-0.941wt%,例如0.849wt%、0.9wt%、0.901wt%、0.902wt%、0.903wt%、0.904wt%、0.915wt%、0.92wt%、 0.922wt%、0.923wt%或0.941wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述B的含量优选为≥0.915wt%或者≥5.55at%;更优选地,所述B的含量为0.915wt%和5.55at%中的大者;wt%是指在所述R-T-B系永磁材料中的重量百分比,at%是指在所述R-T-B系永磁材料中的原子百分比。
本发明中,优选地,所述B和TRE的原子百分比的比值≥0.38;其中,所述TRE为总稀土量;例如当所述R中包括Nd、Pr时,所述TRE为所述Nd和所述Pr的含量之和。
本发明中,优选地,所述Ga和所述B的原子百分比满足下述条件:Ga>7.2941-1.24B。
本发明中,所述Fe的含量优选为64.184-69.673wt%,例如64.184wt%、64.464wt%、64.773wt%、64.969wt%、65.328wt%、65.626wt%、65.78wt%、65.811wt%、66.567wt%、66.622wt%、66.626wt%、67.273wt%、67.312wt%、67.383wt%、67.587wt%、67.749wt%、67.999wt%、68.451wt%、69.131wt%或69.673wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Ti时,所述Ti的含量优选为0.152-0.252wt%,例如0.152wt%、0.154wt%、0.185wt%、0.207wt%、0.209wt%、0.251wt%或0.252wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Zr时,所述Zr的含量优选为0.197-0.35wt%,例如0.197wt%、0.202wt%、0.248wt%、0.253wt%、0.262wt%、0.3wt%、0.303wt%、0.348wt%或0.35wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Nb时,所述Nb的含量优选为0.195-0.491wt%,例如0.195wt%、0.298wt%、0.301wt%、0.401wt%或0.491wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Zr时,所述Zr的含量优选为0.20wt%≤Zr<(3.48B-2.67)wt%,例如0.26wt%≤Zr<(3.48B-2.67)wt%,式中,所述B为B在所述R-T-B系永磁材料中的重量百分比;百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明中,所述R-T-B系永磁材料包含R 2T 14B主相、晶界相和富稀土相。
其中,所述晶界相指的是两个或两个以上的R 2Fe l4B晶粒间的晶界相的总称。
其中,优选地,所述R-T-B系永磁材料的晶界相中包括R 6T 13M相,其中,T为Fe,M为Cu和/或Ga。
在本发明一优选实施方式中,所述R-T-B系永磁材料包含下述组分:R:28.4-33.1wt%,Ga:0.35-0.55wt%,Al:0.08-0.125wt%,Cu:≥0.45wt%,B:0.84-0.945wt%,Fe:64.1-69.7wt%,Ti:0.15-0.255wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料包含下述组分:R:28.4-33.1wt%,Ga:0.35-0.55wt%,Al:0.08-0.125wt%,Cu:0.45-0.65wt%,B:0.84-0.945wt%,Fe:64.1-69.7wt%,Zr:0.195-0.35wt%;其中,优选地,所述Zr的含量为0.26wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料中的重量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料包含下述组分:R:28.4-33.1wt%,Ga:0.35-0.55wt%,Al:0.08-0.125wt%,Cu:≥0.65wt%,B:0.84-0.945wt%,Fe:64.1-69.7wt%,Zr:0.195-0.35wt%;其中,优选地,所述Zr的含量为0.20wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料中的重量百分比。
本发明还提供了一种R-T-B系永磁材料的原料组合物,其包含:R、Ga、Cu、B、Al和Fe,还包含Ti、Zr和Nb中的一种或多种,以重量百分比计,其含量如下:
R:28.5-33.0wt%;所述R为至少含有Nd的稀土元素;
Ga:≥0.35wt%;
Al:0.05-0.07wt%;
Cu:≥0.4wt%;
B:0.84-0.94wt%;
Fe:64.2-69.75wt%;其中:
当所述R-T-B系永磁材料的原料组合物中包含Ti时,所述Ti的含量为0.15-0.25wt%;
当所述R-T-B系永磁材料的原料组合物中包含Zr时,所述Zr的含量为0.20-0.35wt%;
当所述R-T-B系永磁材料的原料组合物中包含Nb时,所述Nb的含量为0.2-0.5wt%;
所述R-T-B系永磁材料的原料组合物中不含有Co。
本领域技术人员知晓,所述R-T-B系永磁材料的原料组合物一般是指在永磁材料制备过程中所主动添加的原料,不包括制备工艺或者杂质中所引入的组分和/或含量。
本发明中,所述R的含量优选为29.5-33.0wt%,例如29.5wt%、30.0wt%、30.5wt%、31.0wt%、32.0wt%或33.0wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述Nd的含量优选为17.5-26.0wt%,例如18.0wt%、21.38wt%、22.13wt%、22.5wt%、22.88wt%、23.25wt%、24.0wt%、24.75wt%或26.0wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述R中还可包括Pr和/或重稀土RH。
其中,所述Pr的含量可为<0.2at%或者>8at%,百分比是指在所述R-T-B系永磁材料的原料组合物中的原子百分比。
其中,所述Pr的含量优选为2.5-12.0wt%,例如2.5wt%、7.13wt%、 7.38wt%、7.5wt%、7.63wt%、7.75wt%、8.0wt%、8.25wt%或11.5wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
其中,当所述R中还包括Pr时,优选地,B/(Pr+Nd)的原子百分比≥0.405。
其中,所述RH的种类可为Tb或Dy。
其中,所述RH的含量可为1.5-6.0wt.%,例如2.0wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述Ga的含量优选为0.35-0.55wt%,例如0.35wt%、0.4wt%、0.45wt%、0.5wt%或0.55wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述Ga的含量优选为0.35wt%≤Ga<0.55wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述Al的含量优选为0.06-0.07wt%,例如0.06wt%或0.07wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述Cu的含量优选为0.4-0.9wt%,例如0.4wt%、0.45wt%、0.5wt%、0.55wt%、0.6wt%、0.65wt%、0.7wt%、0.8wt%或0.9wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,优选地,所述Cu的含量为≥0.4wt%,例如0.45wt%≤Cu<0.65wt%或者Cu≥0.65wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述B的含量优选为0.90-0.94wt%,例如0.90wt%、0.915wt%、0.92wt%或0.94wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,所述B的含量优选为≥0.915wt%或者≥5.55at%;更优选地,所述B的含量为0.915wt%和5.55at%中的大者;wt%是指在所述R-T-B系永磁材料的原料组合物中的重量百分比,at%是指在所述R-T-B系永磁材料的原料组合物中的原子百分比。
本发明中,优选地,所述B和TRE的原子百分比的比值≥0.38;其中,所述TRE为总稀土量;例如当所述R中包括Nd、Pr时,所述TRE为所述Nd和所述Pr的含量之和。
本发明中,优选地,所述Ga和所述B的原子百分比满足下述条件Ga>7.2941-1.24B,原子百分比是指在所述R-T-B系永磁材料的原料组合物中的原子百分比。
本发明中,所述Fe的含量优选为64.23-69.71wt%,例如64.23wt%、64.5wt%、64.81wt%、65.43wt%、65.68wt%、65.88wt%、65.89wt%、66.01wt%、66.63wt%、66.68wt%、66.69wt%、67.3wt%、67.34wt%、67.41wt%、67.65wt%、67.815wt%、68.03wt%、68.48wt%、69.16wt%或69.71wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Ti时,所述Ti的含量优选为0.18-0.25wt%,例如0.18wt%、0.2wt%或0.25wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Zr时,所述Zr的含量优选为0.25-0.35wt%,例如0.25wt%、0.26wt%、0.3wt%或0.35wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,当所述R-T-B系永磁材料包含Nb时,所述Nb的含量优选为0.3-0.5wt%,例如0.3wt%、0.4wt%或0.5wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明中,当所述R-T-B系永磁材料的原料组合物中包含Zr时,所述Zr的含量优选为0.20wt%≤Zr<(3.48B-2.67)wt%,例如0.26wt%≤Zr<(3.48B-2.67)wt%,式中,所述B为B在所述R-T-B系永磁材料的原料组合物中的重量百分比;百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料的原料组合物中包 含下述组分:R:28.5-33.0wt%,Ga:0.35-0.55wt%,Al:0.05-0.07wt%,Cu:≥0.45wt%,B:0.84-0.94wt%,Fe:64.2-69.75wt%,Ti:0.15-0.25wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料的原料组合物中包含下述组分:R:28.5-33.0wt%,Ga:0.35-0.55wt%,Al:0.05-0.07wt%,Cu:0.45-0.65wt%,B:0.84-0.94wt%,Fe:64.2-69.75wt%,Zr:0.20-0.35wt%;其中,优选地,所述Zr的含量为0.26wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
在本发明一优选实施方式中,所述R-T-B系永磁材料的原料组合物中包含下述组分:R:28.5-33.0wt%,Ga:0.35-0.55wt%,Al:0.05-0.07wt%,Cu:≥0.65wt%,B:0.84-0.94wt%,Fe:64.2-69.75wt%,Zr:0.20-0.35wt%;其中,优选地,所述Zr的含量为0.20wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
本发明还提供了一种R-T-B系永磁材料的制备方法,其包括下述步骤:
将所述R-T-B系永磁材料的原料组合物的熔融液经铸造、氢破、成形、烧结和时效处理,即可。
其中,所述R-T-B系永磁材料的原料组合物的熔融液可按本领域常规方法制得,例如:在高频真空感应熔炼炉中熔炼,即可。
所述熔炼炉的真空度可为5×10 -2Pa。
所述熔炼的温度可为1500℃以下。
所述熔炼一般在氧化铝制的坩埚中进行。该氧化铝制坩埚会引入一部分Al至R-T-B系永磁材料中。
其中,所述铸造的工艺可为本领域常规的铸造工艺,例如:在Ar气氛中(例如5.5×10 4Pa的Ar气氛下),以10 2℃/秒-10 4℃/秒的速度冷却,即可。
所述冷却可通过辊轮中通入冷却水实现。优选地,所述辊轮的进水温度≤25℃,例如23.3℃、23.4℃、23.5℃、23.6℃或24.5℃。所述辊轮可为铜辊。
其中,所述氢破的工艺可为本领域常规的氢破工艺,例如经吸氢、脱氢、 冷却处理,即可。
所述吸氢可在氢气压力0.15MPa的条件下进行。
所述脱氢可在边抽真空边升温的条件下进行。
其中,所述氢破后还可按本领域常规手段进行粉碎。所述粉碎的工艺可为本领域常规的粉碎工艺,例如气流磨粉碎。
所述气流磨粉碎可在氧化气体含量120ppm以下的氮气气氛下进行。所述氧化气体指的是氧气或水分含量。
所述气流磨粉碎的粉碎室压力可为0.38MPa。
所述气流磨粉碎的时间可为3小时。
所述粉碎后,可按本领域常规手段在粉体中添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.10-0.15%,例如0.12%。
其中,所述成形的工艺可为本领域常规的成形工艺,例如磁场成形法或热压热变形法。
其中,所述烧结的工艺可为本领域常规的烧结工艺,例如,在真空条件下(例如在5×10 -3Pa的真空下),经预热、烧结、冷却,即可。
所述预热的温度可为300-600℃。所述预热的时间可为1-2h。优选地,所述预热为在300℃和600℃的温度下各预热1h。
所述烧结的温度可为本领域常规的烧结温度,例如1040-1090℃,再例如1067℃、1070℃、1072℃、1073℃、1077℃、1078℃、1080℃、1085℃、1087℃或1090℃。
所述烧结的时间可为本领域常规的烧结时间,例如5-10h,再例如8h。
所述冷却前可通入Ar气体使气压达到0.1MPa。
其中,所述时效处理包括一级时效处理和二级时效处理。
所述一级时效处理的温度优选为860-960℃,例如900℃。
所述一级时效处理中,升温至860-960℃的升温速率优选3-5℃/min。所述升温的起点可为室温。
所述一级时效处理的时间可为1-6h,例如3h。
所述二级时效处理的温度优选为430-560℃,例如450-490℃,再例如450℃、470℃、480℃或490℃。
所述二级时效处理中,升温至430-560℃的升温速率优选3-5℃/min。所述升温的起点可为室温。
所述二级时效的处理时间可为1-6h,例如3h。
本发明还提供了一种采用上述方法制得的R-T-B系永磁材料。
本发明还提供了一种所述R-T-B系永磁材料作为电子元器件的应用。
其中,所述应用的领域可为汽车驱动领域、风电领域、伺服电机和家电领域(例如空调)。
本发明中,所述室温是指25℃±5℃。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)磁性能优异:本发明中的R-T-B系永磁材料Br≥12.72kGs,Hcj≥17.29kOe,添加重稀土元素后,Hcj可达25.23kOe、27.8kOe;磁体温度稳定性好,20-80℃Br温度系数α%/℃的绝对值小于0.105。
(2)退磁曲线光滑,无台阶,相对磁导率低,矫顽力同批次极差≤1.5kOe,磁体性能一致性好。
附图说明
图1为对比例2中所制得的R-T-B系永磁材料的J-H曲线,其中,图1中圆圈部分表示该J-H曲线存在台阶。
图2为实施例5中所制得的R-T-B系永磁材料的J-H曲线。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在 所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
本实施例中制备R-T-B系永磁材料所用的原料如表1所示,其制备的工艺如下:
(1)熔炼过程:按表1所示配方,取配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在5×10 -2Pa的真空中以1500℃以下的温度进行真空熔炼得熔融液。
(2)铸造过程:在真空熔炼后的熔炼炉中通入Ar气体使气压达到5.5万Pa后,进行铸造,将熔融液通过29转/分转速的铜辊制得0.12-0.35mm厚度的速凝合金片,浇铸过程中,铜辊需通入冷冻水,其进水温度≤25℃;以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(3)氢破粉碎过程:在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.15MPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。
(4)微粉碎工序:在氧化气体含量120ppm以下的氮气气氛下,在粉碎室压力为0.38MPa的条件下对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉。氧化气体指的是氧或水分。
(5)在气流磨粉碎后的粉末中添加硬脂酸锌,硬脂酸锌的添加量为混合后粉末重量的0.12%,再用V型混料机充分混合。
(6)磁场成形过程:使用直角取向型的磁场成形机,在1.6T的取向磁场中,在0.35ton/cm 2的成形压力下,将上述添加了硬脂酸锌的粉末一次成形成边长为25mm的立方体,一次成形后在0.2T的磁场中退磁。为使一次成形后的成形体不接触到空气,将其进行密封,再使用二次成形机(等静压成形机)在1.3ton/cm 2的压力下进行二次成形。
(7)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下,在300℃和600℃的温度下各保持1小时后,以1090℃的温度烧结 8小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
(8)时效处理过程:烧结体在高纯度Ar气中,以3-5℃/min的升温速率从20℃升温至900℃进行一级时效处理,具体步骤如下:以900℃温度进行3小时热处理后,冷却至室温后取出。之后,进行二级时效处理,二级时效处理的时间为3小时,二级时效温度参见表2。
表1各实施例、对比例中原料质量百分比
编号/wt% TRE Pr Nd Tb Dy Ga Cu Al Co Ti Zr Nb Fe B
实施例1 28.5 2.5 26 / / 0.35 0.4 0.05 0 0.15 0 0 69.71 0.84
实施例2 29.5 11.5 18 / / 0.4 0.45 0.07 0 0.2 0 0 68.48 0.9
实施例3 30.0 7.50 22.50 / / 0.45 0.5 0.07 0 0.25 0 0 67.815 0.915
实施例4 30.5 7.63 22.88 / / 0.5 0.55 0.05 0 0.15 0 0 67.3 0.94
实施例5 31.0 7.75 23.25 / / 0.55 0.6 0.05 0 0.25 0 0 66.63 0.92
实施例6 32.0 8.00 24.00 / / 0.35 0.45 0.07 0 0 0.2 0 66.01 0.92
实施例7 33.0 8.25 24.75 / / 0.45 0.5 0.06 0 0 0.26 0 64.81 0.92
实施例8 28.5 7.13 21.38 / / 0.5 0.55 0.06 0 0 0.3 0 69.16 0.92
实施例9 29.5 7.38 22.13 / / 0.55 0.6 0.06 0 0 0.35 0 68.03 0.9
实施例10 30.0 7.50 22.50 / / 0.5 0.65 0.05 0 0 0.25 0 67.65 0.9
实施例11 30.5 7.63 22.88 / / 0.35 0.65 0.05 0 0 0.2 0 67.34 0.9
实施例12 31.0 7.75 23.25 / / 0.4 0.7 0.06 0 0 0.26 0 66.68 0.9
实施例13 32.0 8.00 24.00 / / 0.5 0.8 0.07 0 0 0.3 0 65.43 0.9
实施例14 33.0 8.25 24.75 / / 0.55 0.9 0.07 0 0 0.35 0 64.23 0.9
实施例15 30.5 7.63 22.88 / / 0.35 0.4 0.05 0 0.18 0 0.2 67.41 0.9
实施例16 31.0 7.75 23.25 / / 0.4 0.45 0.06 0 0.2 0 0.3 66.69 0.9
实施例17 32.0 8.00 24.00 / / 0.45 0.5 0.07 0 0 0 0.4 65.68 0.9
实施例18 33.0 8.25 24.75 / / 0.5 0.55 0.05 0 0 0 0.5 64.5 0.9
实施例19 32.0 7.50 22.50 2 / 0.4 0.45 0.06 0 0 0 0.3 65.89 0.9
实施例20 32.0 7.50 22.50 / 2 0.4 0.45 0.07 0 0 0 0.3 65.88 0.9
对比例1 30.5 7.63 22.88 / / 0.4 0.45 0.2 0 0 0 0.3 67.23 0.91
对比例2 31.0 7.75 23.25 / / 0.4 0.45 0.2 1 0 0.3 0 65.72 0.93
对比例3 32.0 8.00 24.00 / / 0.4 0.45 0 1 0.15 / 0 65.08 0.92
对比例4 30.5 7.63 22.88 / / 0.4 0.45 0 0 0.25 0.23 0 67.25 0.91
对比例5 30.5 7.63 22.88 / / 0.4 0.45 0 0 0 0 0 67.72 0.92
对比例6 30.5 7.63 22.88 / / 0.4 0.45 0.05 0 0.1 0.12 0.6 66.85 0.92
对比例7 30.5 7.63 22.88 / / 0.2 0.3 0.2 0 0.3 0.4 0 67.19 0.9
对比例8 31.0 7.75 23.25 / / 0.4 0.7 0.05 0 0 0.26 0 66.61 0.98
注:TRE是指总稀土量,包括Nd、Pr和重稀土RH;“/”是指不含有该元素。
实施例2-实施例20、对比例1-8
按表1所示配方配制原料,除表2所示条件外,其他工艺条件均同实施例1,制得R-T-B系烧结磁铁。
表2
Figure PCTCN2021077192-appb-000001
Figure PCTCN2021077192-appb-000002
效果实施例
(1)成分测定
取实施例1-20、对比例1-8的烧结磁体的粉末,使用高频电感耦合等离子体发射光谱仪(ICP-OES)测定具体成分。下表所示为成分检测结果。
表3
编号/wt% Pr Nd Tb Dy Ga Cu Al Co Ti Zr Nb Fe B
实施例1 2.504 25.987 / 0.000 0.353 0.400 0.080 0.000 0.154 0.000 0.000 69.673 0.849
实施例2 11.506 17.987 / 0.000 0.400 0.447 0.102 0.000 0.207 0.000 0.000 68.451 0.900
实施例3 7.504 22.505 / 0.000 0.450 0.502 0.124 0.000 0.251 0.000 0.000 67.749 0.915
实施例4 7.625 22.875 / 0.000 0.500 0.552 0.082 0.000 0.152 0.000 0.000 67.273 0.941
实施例5 7.748 23.253 / 0.000 0.550 0.602 0.106 0.000 0.252 0.000 0.000 66.567 0.922
实施例6 7.996 24.987 / 0.000 0.350 0.454 0.124 0.000 0.000 0.197 0.000 64.969 0.923
实施例7 8.254 24.752 / 0.000 0.450 0.504 0.094 0.000 0.000 0.253 0.000 64.773 0.920
实施例8 7.129 21.374 / 0.000 0.500 0.551 0.095 0.000 0.000 0.300 0.000 69.131 0.920
实施例9 7.379 22.124 / 0.000 0.550 0.604 0.095 0.000 0.000 0.348 0.000 67.999 0.901
实施例10 7.506 22.505 / 0.000 0.500 0.652 0.100 0.000 0.000 0.248 0.000 67.587 0.902
实施例11 7.625 22.875 / 0.000 0.350 0.651 0.082 0.000 0.000 0.202 0.000 67.312 0.903
实施例12 7.754 23.253 / 0.000 0.400 0.703 0.100 0.000 0.000 0.262 0.000 66.626 0.902
实施例13 8.034 24.008 / 0.000 0.500 0.804 0.120 0.000 0.000 0.303 0.000 65.328 0.903
实施例14 8.254 24.753 / 0.000 0.550 0.905 0.100 0.000 0.000 0.350 0.000 64.184 0.904
实施例15 7.626 22.875 / 0.000 0.352 0.401 0.083 0.000 0.185 0.000 0.195 67.383 0.900
实施例16 7.754 23.259 / 0.000 0.404 0.452 0.100 0.000 0.209 0.000 0.298 66.622 0.902
实施例17 7.994 24.004 / 0.000 0.451 0.501 0.120 0.000 0.000 0.000 0.401 65.626 0.903
实施例18 8.252 24.752 / 0.000 0.505 0.552 0.084 0.000 0.000 0.000 0.491 64.464 0.900
实施例19 7.503 22.505 2.040 / 0.393 0.452 0.098 0.000 0.000 0.000 0.298 65.811 0.900
实施例20 7.503 22.508 / 2.050 0.404 0.451 0.103 0.000 0.000 0.000 0.301 65.78 0.900
对比例1 7.624 22.876 / 0.000 0.439 0.452 0.234 0.000 0.000 0.000 0.305 67.157 0.913
对比例2 7.753 23.254 / 0.000 0.397 0.452 0.237 0.992 0.000 0.305 0.000 65.678 0.932
对比例3 7.997 23.987 / 0.000 0.402 0.451 0.03 0.995 0.151 0.000 0.000 65.066 0.921
对比例4 7.620 22.887 / 0.000 0.403 0.454 0.040 0.000 0.247 0.232 0.000 67.205 0.912
对比例5 7.624 22.881 / 0.000 0.404 0.454 0.050 0.000 0.000 0.000 0.000 67.666 0.921
对比例6 7.623 22.879 / 0.000 0.405 0.452 0.098 0.000 0.097 0.122 0.601 66.800 0.923
对比例7 7.622 22.876 / 0.000 0.204 0.304 0.230 0.000 0.298 0.409 0.000 67.153 0.904
对比例8 7.755 23.252 / 0.000 0.393 0.693 0.081 0.000 0 0.258 0 66.576 0.992
注:实施例1-20、对比例1-8的烧结磁体中Al的含量是原料中的Al以及在其他原料和工艺(例如熔炼过程中氧化铝制的坩埚)中引入的Al的含量之和。
(2)磁性能检测
①微观结构:采用FE-EPMA检测,对R-T-B系永磁材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。检测晶界中的R 6T 13M相,T指Fe,M指Ga和 /或Cu。测试结果如下表4所示。
②磁性能评价:烧结磁铁使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。下表4所示为磁性能检测结果。
其中,Br或Hcj均是指均值:通过测试同一批次中5份稀土永磁材料样品(圆柱10mm*10mm)的剩磁或矫顽力,计算出的平均值;温度系数也是通过测量同一批次中的5份稀土永磁材料样品(圆柱10mm*10mm)的性能所取的平均值。同一批次指的是按照实施例或对比例所示的原料和工艺在同一个时间段所获得的产品。
表4
Figure PCTCN2021077192-appb-000003
Figure PCTCN2021077192-appb-000004
注:表4中6-13-1相是指RE 6Fe 13(CuGa)相;对比例1-8中R-T-B系永磁材料的磁性能为对比例1-8的配方经工艺优化(进水温度、烧结温度和时效处理温度)后所能够获得的最佳性能。
(3)磁性能一致性检测
方形度:其计算公式为Hk/Hcj(Hk为当B为90%Br时,外磁场H的值;Hcj为矫顽力)。
相对磁导率:其计算公式为Br/Hcb(Br为剩磁,Hcb为磁感矫顽力),当J-H曲线存在拐点时,磁导率在拐点之前取值。
方形度和相对磁导率是通过测量同一批次中的5份R-T-B系永磁材料样品(圆柱10mm*10mm)的性能所取的平均值。
Max(Hcj)-Min(Hcj):同一批次产品中矫顽力最大值减去矫顽力最小值,若大于1.5kOe,则是磁性能一致性差。同一批次指的是按照实施例或对比例所示的原料和工艺在同一个时间段所获得的产品。
下表所示为磁性能一致性检测结果。
表5
编号 方形度(%) 相对磁导率 Max(Hcj)-Min(Hcj) 磁钢产品一致性
实施例1 98.6 1.032 0.75 优异
实施例2 98.3 1.034 0.65 优异
实施例3 98.2 1.031 0.52 优异
实施例4 98.2 1.032 0.83 优异
实施例5 98.4 1.035 0.72 优异
实施例6 98.5 1.037 0.71 优异
实施例7 98.5 1.032 0.56 优异
实施例8 98.6 1.032 0.75 优异
实施例9 98.6 1.034 0.65 优异
实施例10 98.3 1.031 0.52 优异
实施例11 98.2 1.032 0.83 优异
实施例12 98.2 1.035 0.79 优异
实施例13 98.4 1.032 0.71 优异
实施例14 98.5 1.032 0.75 优异
实施例15 98.5 1.032 0.43 优异
实施例16 98.6 1.034 0.52 优异
实施例17 98.6 1.031 0.83 优异
实施例18 98.3 1.032 0.72 优异
实施例19 98.2 1.035 0.71 优异
实施例20 98.2 1.035 0.56 优异
对比例1 72.5 1.12 1.65
对比例2 67.4 1.13 1.89
对比例3 98.5 1.034 1.93
对比例4 98.6 1.031 1.85
对比例5 98.6 1.032 0.65 优异
对比例6 98.3 1.035 1.96
对比例7 98.2 1.035 1.85
对比例8 98.6 1.031 0.65 优异
根据表4、表5,结合图1、图2可知:
对于低B体系而言,常规配方制得的烧结钕铁硼的退磁曲线会出现台阶,如图1所示,该台阶的出现意味着在磁体内部出现了RE 6Fe 13Al相,该相与RE 6Fe 13(CuGa)相共同与RE 2Fe 14B作用,出现了相分离的情况,导致磁性能恶化。Max(Hcj)-Min(Hcj)数据也说明,常规配方制得的烧结钕铁硼性能不均一,不利于工业化大生产,矫顽力同批次极差>1.5kOe。
基于该现象,本发明的发明人通过大量研究发现,Al元素的添加是该现象出现的原因,基于此,获得本发明的永磁材料。如图2所示,本发明中实施例5所制得的烧结钕铁硼退磁曲线光滑,无台阶。
此外,本发明中的永磁材料在未添加Co元素的条件下,获得了和添加Co元素的永磁材料相当的温度稳定性。

Claims (10)

  1. 一种R-T-B系永磁材料,其特征在于,其包含:R、Ga、Cu、B、Al和Fe,还包含Ti、Zr和Nb中的一种或多种,以重量百分比计,其含量如下:
    R:28.4-33.1wt%;所述R为至少含有Nd的稀土元素;
    Ga:≥0.35wt%;
    Al:0.08-0.125wt%;
    Cu:≥0.4wt%;
    B:0.84-0.945wt%;
    Fe:64.1-69.7wt%;其中:
    当所述R-T-B系永磁材料包含Ti时,所述Ti的含量为0.15-0.255wt%;
    当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.195-0.35wt%;
    当所述R-T-B系永磁材料包含Nb时,所述Nb的含量为0.195-0.5wt%;
    所述R-T-B系永磁材料中不含有Co。
  2. 如权利要求1所述的R-T-B系永磁材料,其特征在于,所述R的含量为28.491-33.007wt%,例如28.491wt%、28.503wt%、29.493wt%、29.503wt%、30.009wt%、30.011wt%、30.5wt%、30.501wt%、31.001wt%、31.007wt%、31.013wt%、31.998wt%、32.042wt%、32.048wt%、32.061wt%、32.983wt%、33.004wt%、33.006wt%或33.007wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,所述Nd的含量为17.5-26.0wt%,例如17.987wt%、21.374wt%、22.124wt%、22.505wt%、22.508wt%、22.875wt%、23.253wt%、23.259wt%、24.004wt%、24.008wt%、24.752wt%、24.753wt%、24.987wt%或25.987wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,所述R中还包括Pr和/或重稀土RH;其中,所述Pr的含量优选为2.5-12.0wt%,例如2.504wt%、7.129wt%、7.379wt%、7.503wt%、7.504wt%、7.506wt%、7.625wt%、7.626wt%、7.748wt%、7.754wt%、7.994wt%、7.996wt%、8.034wt%、8.252wt%、8.254wt%或11.506wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;所述RH的种类可为 Tb或Dy;所述RH的含量可为1.5-6.0wt%,例如2.04wt%或2.05wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;优选地,当所述R中还包括Pr时,B/(Pr+Nd)的原子百分比≥0.405,例如0.405、0.409或0.428;
    和/或,所述Ga的含量为0.35-0.55wt%,例如0.35wt%、0.352wt%、0.353wt%、0.393wt%、0.4wt%、0.404wt%、0.45wt%、0.451wt%、0.5wt%、0.505wt%或0.55wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    或者,所述Ga的含量为0.35wt%≤Ga<0.55wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,所述Al的含量为0.08-0.124wt%,例如0.08wt%、0.082wt%、0.083wt%、0.084wt%、0.094wt%、0.095wt%、0.098wt%、0.1wt%、0.102wt%、0.103wt%、0.106wt%、0.12wt%或0.124wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,所述Cu的含量为0.4-0.905wt%,例如0.4wt%、0.401wt%、0.447wt%、0.451wt%、0.452wt%、0.454wt%、0.501wt%、0.502wt%、0.504wt%、0.551wt%、0.552wt%、0.602wt%、0.604wt%、0.651wt%、0.652wt%、0.703wt%、0.804wt%或0.905wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    或者,所述Cu的含量为≥0.4wt%,例如0.45wt%≤Cu<0.65wt%或者Cu≥0.65wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,所述B的含量为0.849-0.941wt%,例如0.849wt%、0.9wt%、0.901wt%、0.902wt%、0.903wt%、0.904wt%、0.915wt%、0.92wt%、0.922wt%、0.923wt%或0.941wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    或者,所述B的含量为≥0.915wt%或者≥5.55at%;优选地,所述B的含量为0.915wt%和5.55at%中的大者;wt%是指在所述R-T-B系永磁材料中的重量百分比,at%是指在所述R-T-B系永磁材料中的原子百分比;
    和/或,所述Fe的含量为64.184-69.673wt%,例如64.184wt%、64.464wt%、64.773wt%、64.969wt%、65.328wt%、65.626wt%、65.78wt%、65.811wt%、66.567wt%、66.622wt%、66.626wt%、67.273wt%、67.312wt%、67.383wt%、67.587wt%、67.749wt%、67.999wt%、68.451wt%、69.131wt%或69.673wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,当所述R-T-B系永磁材料包含Ti时,所述Ti的含量为0.152-0.252wt%,例如0.152wt%、0.154wt%、0.185wt%、0.207wt%、0.209wt%、0.251wt%或0.252wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.197-0.35wt%,例如0.197wt%、0.202wt%、0.248wt%、0.253wt%、0.262wt%、0.3wt%、0.303wt%、0.348wt%或0.35wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,当所述R-T-B系永磁材料包含Nb时,所述Nb的含量为0.195-0.491wt%,例如0.195wt%、0.298wt%、0.301wt%、0.401wt%或0.491wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    或者,当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.20wt%≤Zr<(3.48B-2.67)wt%,例如0.26wt%≤Zr<(3.48B-2.67)wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    和/或,所述R-T-B系永磁材料的晶界相中包括R 6T 13M相,其中,T为Fe,M为Cu和/或Ga。
  3. 如权利要求1或2所述的R-T-B系永磁材料,其特征在于,所述R-T-B系永磁材料包含下述组分:R:28.4-33.1wt%,Ga:0.35-0.55wt%,Al:0.08-0.125wt%,Cu:≥0.45wt%,B:0.84-0.945wt%,Fe:64.1-69.7wt%,Ti:0.15-0.255wt%,百分比是指在所述R-T-B系永磁材料中的重量百分比;
    或者,所述R-T-B系永磁材料包含下述组分:R:28.4-33.1wt%,Ga: 0.35-0.55wt%,Al:0.08-0.125wt%,Cu:0.45-0.65wt%,B:0.84-0.945wt%,Fe:64.1-69.7wt%,Zr:0.195-0.35wt%;其中,优选地,所述Zr的含量为0.26wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料中的重量百分比;
    或者,所述R-T-B系永磁材料包含下述组分:R:28.4-33.1wt%,Ga:0.35-0.55wt%,Al:0.08-0.125wt%,Cu:≥0.65wt%,B:0.84-0.945wt%,Fe:64.1-69.7wt%,Zr:0.195-0.35wt%;其中,优选地,所述Zr的含量为0.20wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料中的重量百分比。
  4. 一种R-T-B系永磁材料的原料组合物,其特征在于,其包含:R、Ga、Cu、B、Al和Fe,还包含Ti、Zr和Nb中的一种或多种,以重量百分比计,其含量如下:
    R:28.5-33.0wt%;所述R为至少含有Nd的稀土元素;
    Ga:≥0.35wt%;
    Al:0.05-0.07wt%;
    Cu:≥0.4wt%;
    B:0.84-0.94wt%;
    Fe:64.2-69.75wt%;其中:
    当所述R-T-B系永磁材料的原料组合物中包含Ti时,所述Ti的含量为0.15-0.25wt%;
    当所述R-T-B系永磁材料的原料组合物中包含Zr时,所述Zr的含量为0.20-0.35wt%;
    当所述R-T-B系永磁材料的原料组合物中包含Nb时,所述Nb的含量为0.2-0.5wt%;
    所述R-T-B系永磁材料的原料组合物中不含有Co。
  5. 如权利要求4所述的R-T-B系永磁材料,其特征在于,所述R的含量为29.5-33.0wt%,例如29.5wt%、30.0wt%、30.5wt%、31.0wt%、32.0 wt%或33.0wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,所述Nd的含量为17.5-26.0wt%,例如18.0wt%、21.38wt%、22.13wt%、22.5wt%、22.88wt%、23.25wt%、24.0wt%、24.75wt%或26.0wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,所述R中还包括Pr和/或重稀土RH;其中,所述Pr的含量优选为2.5-12.0wt%,例如2.5wt%、7.13wt%、7.38wt%、7.5wt%、7.63wt%、7.75wt%、8.0wt%、8.25wt%或11.5wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;所述RH的种类可为Tb或Dy;所述RH的含量可为1.5-6.0wt.%,例如2.0wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;当所述R中还包括Pr时,优选地,B/(Pr+Nd)的原子百分比≥0.405;
    和/或,所述Ga的含量为0.35-0.55wt%,例如0.35wt%、0.4wt%、0.45wt%、0.5wt%或0.55wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    或者,所述Ga的含量为0.35wt%≤Ga<0.55wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,所述Al的含量为0.06-0.07wt%,例如0.06wt%或0.07wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,所述Cu的含量为0.4-0.9wt%,例如0.4wt%、0.45wt%、0.5wt%、0.55wt%、0.6wt%、0.65wt%、0.7wt%、0.8wt%或0.9wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    或者,所述Cu的含量为≥0.4wt%,例如0.45wt%≤Cu<0.65wt%或者Cu≥0.65wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,所述B的含量为0.90-0.94wt%,例如0.90wt%、0.915wt%、0.92 wt%或0.94wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    或者,所述B的含量为≥0.915wt%或者≥5.55at%;优选地,所述B的含量为0.915wt%和5.55at%中的大者;wt%是指在所述R-T-B系永磁材料的原料组合物中的重量百分比,at%是指在所述R-T-B系永磁材料的原料组合物中的原子百分比;
    和/或,所述Fe的含量为64.23-69.71wt%,例如64.23wt%、64.5wt%、64.81wt%、65.43wt%、65.68wt%、65.88wt%、65.89wt%、66.01wt%、66.63wt%、66.68wt%、66.69wt%、67.3wt%、67.34wt%、67.41wt%、67.65wt%、67.815wt%、68.03wt%、68.48wt%、69.16wt%或69.71wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,当所述R-T-B系永磁材料包含Ti时,所述Ti的含量为0.18-0.25wt%,例如0.18wt%、0.2wt%或0.25wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.25-0.35wt%,例如0.25wt%、0.26wt%、0.3wt%或0.35wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    和/或,当所述R-T-B系永磁材料包含Nb时,所述Nb的含量为0.3-0.5wt%,例如0.3wt%、0.4wt%或0.5wt%,百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    或者,当所述R-T-B系永磁材料的原料组合物中包含Zr时,所述Zr的含量为0.20wt%≤Zr<(3.48B-2.67)wt%,例如0.26wt%≤Zr<(3.48B-2.67)wt%。
  6. 如权利要求4或5所述的R-T-B系永磁材料,其特征在于,所述R-T-B系永磁材料的原料组合物中包含下述组分:R:28.5-33.0wt%,Ga:0.35-0.55wt%,Al:0.05-0.07wt%,Cu:≥0.45wt%,B:0.84-0.94wt%,Fe:64.2-69.75wt%,Ti:0.15-0.25wt%,百分比是指在所述R-T-B系永磁材料的原料组合 物中的重量百分比;
    或者,所述R-T-B系永磁材料的原料组合物中包含下述组分:R:28.5-33.0wt%,Ga:0.35-0.55wt%,Al:0.05-0.07wt%,Cu:0.45-0.65wt%,B:0.84-0.94wt%,Fe:64.2-69.75wt%,Zr:0.20-0.35wt%;其中,优选地,所述Zr的含量为0.26wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比;
    或者,所述R-T-B系永磁材料的原料组合物中包含下述组分:R:28.5-33.0wt%,Ga:0.35-0.55wt%,Al:0.05-0.07wt%,Cu:≥0.65wt%,B:0.84-0.94wt%,Fe:64.2-69.75wt%,Zr:0.20-0.35wt%;其中,优选地,所述Zr的含量为0.20wt%≤Zr<(3.48B-2.67)wt%;百分比是指在所述R-T-B系永磁材料的原料组合物中的重量百分比。
  7. 一种R-T-B系永磁材料的制备方法,其特征在于,其包括下述步骤:
    将如权利要求4-6中任一项所述R-T-B系永磁材料的原料组合物的熔融液经铸造、氢破、成形、烧结和时效处理,即可。
  8. 如权利要求7所述的R-T-B系永磁材料的制备方法,其特征在于,所述R-T-B系永磁材料的原料组合物的熔融液按下述方法制得:在高频真空感应熔炼炉中熔炼,即可;所述熔炼炉的真空度可为5×10 -2Pa;所述熔炼的温度可为1500℃以下;
    和/或,所述铸造的工艺按下述步骤进行:在Ar气氛中,以10 2℃/秒-10 4℃/秒的速度冷却,即可;所述冷却可通过辊轮中通入冷却水实现,优选地,所述辊轮的进水温度≤25℃,例如23.3℃、23.4℃、23.5℃、23.6℃或24.5℃;
    和/或,所述氢破的工艺按下述步骤进行:经吸氢、脱氢、冷却处理,即可;
    和/或,所述氢破后还进行粉碎,所述粉碎的工艺优选为气流磨粉碎;所述气流磨粉碎可在氧化气体含量120ppm以下的氮气气氛下进行;所述气流磨粉碎的粉碎室压力可为0.38MPa;所述气流磨粉碎的时间可为3小时;
    和/或,所述成形的方法为磁场成形法或热压热变形法;
    和/或,所述烧结的工艺按下述步骤进行:在真空条件下,经预热、烧结、冷却,即可;所述预热的温度可为300-600℃,所述预热的时间可为1-2h,优选地,所述预热为在300℃和600℃的温度下各预热1h;所述烧结的温度可为1040-1090℃,例如1067℃、1070℃、1072℃、1073℃、1077℃、1078℃、1080℃、1085℃、1087℃或1090℃;所述烧结的时间可为5-10h;
    和/或,所述时效处理包括一级时效处理和二级时效处理;所述一级时效处理的温度优选为860-960℃,例如900℃;所述一级时效处理中,升温至860-960℃的升温速率优选3-5℃/min;所述一级时效处理的时间可为3h;所述二级时效处理的温度优选为430-560℃,例如450-490℃,再例如450℃、470℃、480℃或490℃;所述二级时效处理中,升温至430-560℃的升温速率优选3-5℃/min;所述二级时效的处理时间可为3h。
  9. 一种如权利要求7或8所述的R-T-B系永磁材料的制备方法制得的R-T-B系永磁材料。
  10. 一种如权利要求1-3和9中任一项所述的R-T-B系永磁材料作为电子元器件的应用。
PCT/CN2021/077192 2020-02-29 2021-02-22 一种r-t-b系永磁材料及其制备方法和应用 WO2021169901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132237.0A CN111261356B (zh) 2020-02-29 2020-02-29 一种r-t-b系永磁材料及其制备方法和应用
CN202010132237.0 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169901A1 true WO2021169901A1 (zh) 2021-09-02

Family

ID=70951673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077192 WO2021169901A1 (zh) 2020-02-29 2021-02-22 一种r-t-b系永磁材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111261356B (zh)
WO (1) WO2021169901A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261356B (zh) * 2020-02-29 2022-03-15 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078176A (zh) * 2013-03-28 2014-10-01 Tdk株式会社 稀土类磁体
WO2016133067A1 (ja) * 2015-02-17 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
CN105960690A (zh) * 2014-02-28 2016-09-21 日立金属株式会社 R-t-b系烧结磁体及其制造方法
CN106024235A (zh) * 2015-03-30 2016-10-12 日立金属株式会社 R-t-b系烧结磁体
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111261356A (zh) * 2020-02-29 2020-06-09 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508571B2 (ja) * 2015-06-30 2019-05-08 日立金属株式会社 R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石
US10943717B2 (en) * 2016-02-26 2021-03-09 Tdk Corporation R-T-B based permanent magnet
JP6750543B2 (ja) * 2017-03-24 2020-09-02 日立金属株式会社 R−t−b系焼結磁石
JP6992634B2 (ja) * 2018-03-22 2022-02-03 Tdk株式会社 R-t-b系永久磁石
CN108878090B (zh) * 2018-06-25 2020-05-12 天津三环乐喜新材料有限公司 一种无重稀土的钕铁硼烧结磁体及其制备方法
CN110571007B (zh) * 2019-09-03 2021-06-11 厦门钨业股份有限公司 一种稀土永磁材料、原料组合物、制备方法、应用、电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078176A (zh) * 2013-03-28 2014-10-01 Tdk株式会社 稀土类磁体
CN105960690A (zh) * 2014-02-28 2016-09-21 日立金属株式会社 R-t-b系烧结磁体及其制造方法
WO2016133067A1 (ja) * 2015-02-17 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
CN106024235A (zh) * 2015-03-30 2016-10-12 日立金属株式会社 R-t-b系烧结磁体
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111261356A (zh) * 2020-02-29 2020-06-09 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111261356A (zh) 2020-06-09
CN111261356B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
TWI751789B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021042864A1 (zh) 一种稀土永磁材料、原料组合物、制备方法、应用、电机
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021109568A1 (zh) 一种r-t-b系永磁材料、制备方法和应用
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169894A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2021169906A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021114648A1 (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
KR20210151946A (ko) R-t-b계 희토류 영구자석 재료와 그 제조방법, 및 응용
WO2021169889A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
WO2021169898A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169895A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169905A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169899A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2021169901A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169900A1 (zh) 一种稀土永磁材料及其制备方法和应用
WO2022199232A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2023207020A1 (zh) 钕铁硼磁体材料及其制备方法、应用
CN116110672A (zh) 一种钕铁硼磁体材料及其制备方法、含其的电子装置
CN116544016A (zh) 一种钕铁硼磁体材料及其制备方法、含其的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759950

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21759950

Country of ref document: EP

Kind code of ref document: A1