WO2021169899A1 - 一种稀土永磁材料及其制备方法和应用 - Google Patents

一种稀土永磁材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021169899A1
WO2021169899A1 PCT/CN2021/077185 CN2021077185W WO2021169899A1 WO 2021169899 A1 WO2021169899 A1 WO 2021169899A1 CN 2021077185 W CN2021077185 W CN 2021077185W WO 2021169899 A1 WO2021169899 A1 WO 2021169899A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
percentage
mass
content
earth permanent
Prior art date
Application number
PCT/CN2021/077185
Other languages
English (en)
French (fr)
Inventor
付刚
范宇峰
黄清芳
兰文辉
许德钦
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021169899A1 publication Critical patent/WO2021169899A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention specifically relates to a rare earth permanent magnet material and its preparation method and application.
  • Rare earth permanent magnet materials are widely used in electronic products, automobiles, wind power, home appliances, elevators and industrial robots due to their excellent magnetic properties, such as hard disks, mobile phones, earphones, and permanent magnet motors such as elevator traction machines and generators.
  • As an energy source its demand is increasing, and the requirements of various manufacturers for magnet properties such as remanence, coercivity performance, temperature stability, magnet squareness, etc. are gradually increasing.
  • the rare earth permanent magnetic material is mainly composed of a main phase containing an R 2 T 14 B compound and a grain boundary phase located in the grain boundary portion of the main phase.
  • the R 2 T 14 B compound has a ferromagnetic material with high saturation magnetization and anisotropic magnetic field.
  • the coercive force of rare earth permanent magnetic materials will decrease at high temperatures, resulting in irreversible thermal demagnetization. It is currently known that: replacing part of the light rare earth RL in R in the R 2 T 14 B compound as the main phase with heavy rare earth element RH, the coercive force will increase, and the coercive force will increase with the increase in the amount of substitution. improve. On the other hand, the residual magnetic flux Br will decrease. In addition, RH resources are scarce and expensive.
  • a high squareness is a necessary condition for high-quality magnets.
  • the invention aims to overcome the need to add a large amount of heavy rare earth elements when the prior art rare earth permanent magnet materials adopt low-B system to improve the magnetic performance, and even if the heavy rare earth elements are added, the magnetic performance (remanence, coercivity, temperature stability)
  • it provides a rare earth permanent magnet material and its preparation method and application.
  • the rare earth permanent magnetic material of the present invention can still be prepared with a low boron and aluminum-free system without adding heavy rare earth elements to obtain better magnetic properties (remanence, coercivity, temperature stability, squareness), and the same batch
  • the magnetic properties of the second permanent magnet materials are uniform.
  • rare earth permanent magnet materials usually require the addition of a certain amount of Al to obtain better performance magnet materials.
  • the inventors have verified through multiple tests that the addition of Al will increase the magnetic properties of the magnet material. Yes, but in the preparation of the same batch of products, the magnetic properties are not uniform, that is, the difference between the maximum value and the minimum value of the coercive force in the same batch of products is greater than 1.5kOe.
  • the final rare earth permanent magnet material obtained has better uniformity.
  • the present invention adopts the following technical solutions to solve the above technical problems.
  • the present invention provides a raw material composition of a rare earth permanent magnet material, which includes the following components in mass content:
  • R 28.5-33%; the R is a rare earth element, and the R includes at least Nd;
  • Ga 0.6 ⁇ Ga ⁇ 1.8%
  • N contains one or more of Ti, Zr and Nb;
  • N contains Zr
  • the content of Zr is 0.2-0.35%
  • Nb When N contains Nb, the content of Nb is 0.2-0.5%;
  • the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material.
  • the components and corresponding contents in the raw material composition are all actively added, and do not include the components and/or contents introduced in the preparation process and/or impurities.
  • the content of R in the raw material composition is preferably 29.3 to 32%, such as 29.3%, 29.5%, 30%, 30.5%, 31%, 31.3% or 32%, more preferably It is 29.4 to 31.5%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the Nd content is preferably 8-13%, such as 8.5%, 9.5%, 12.3%, 12.5%; or the Nd content is preferably 28-31%, such as 28.5% , 29%, 29.3%, 30.2% or 31%, the percentage is the mass percentage of the total mass of the raw material composition.
  • the raw material composition preferably does not contain Cu.
  • the raw material composition preferably does not contain Al; it means that Al is not actively added, but it may be added during the addition of other elements (for example, Fe) or during the preparation process (for example, alumina crucible to prepare molten liquid) A small amount of Al (less than 0.08%) will be introduced.
  • the R in the raw material composition, the R may also include Pr.
  • the content of Pr is preferably less than 1.5% and not 0, more preferably 0.1 to 0.5%, such as 0.2% or 0.3%; or the content of Pr is preferably 17 to 25%, More preferably, it is 18.5% to 21.5%, such as 18.5% or 21.5%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the raw material composition may not contain heavy rare earth elements, and may also reach a level equivalent or even better than the magnetic properties of the prior art magnet materials.
  • the raw material composition may further include RH, which is a heavy rare earth element.
  • the content of the RH is preferably 1 to 2.5%, and the percentage is a mass percentage of the total mass of the raw material composition.
  • the type of RH preferably includes one or more of Dy, Tb and Ho.
  • the content of Dy is preferably 1 to 2.5%, for example 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Tb is preferably 1 to 2.5%, for example 2%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of B is preferably 0.86-0.94%, such as 0.86%, 0.88%, 0.9%, 0.92% or 0.94%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the atomic percentage of R and the atomic percentage of B in the raw material composition preferably satisfy the following relationship: B/R ⁇ 0.38, where the B is in the raw material composition The atomic percentage of R in the raw material composition.
  • the B and Nd satisfy the following relational formula: B/(Pr+Nd) ⁇ 0.405, where B refers to the B In the atomic percentage in the raw material composition, Pr refers to the atomic percentage of the Pr in the raw material composition, and Nd refers to the atomic percentage of the Nd in the raw material composition.
  • the content of Ga is preferably 0.65% to 1.8%, for example 0.65%, 0.85%, 1%, 1.05%, 1.2%, 1.25%, 1.45%, 1.55% or 1.8%, more preferably It is 0.65 to 1.25%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Co is preferably 0.5 to 2.5%, such as 0.5%, 1.05%, 1.5%, 1.55%, 2%, 2.45% or 2.5%, more preferably 1.05 to 2%, in percentage It is the mass percentage of the total mass of the raw material composition.
  • the content of Fe is preferably 61.8-68.36%, such as 61.88%, 63.31%, 63.93%, 64.01%, 64.41%, 64.98%, 65.56%, 65.58%, 66.34%, 66.95%, 67.06 %, 67.16%, 67.69% or 68.36%, more preferably 63.3-68%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Ti is preferably 0.2-0.25%, such as 0.2%, 0.22% or 0.25%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of Zr is preferably 0.25-0.35%, such as 0.26%, 0.3% or 0.35%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the content of the Zr preferably satisfies: 0.20% ⁇ Zr ⁇ (3.48B-2.67)%, where B means that the B accounts for the raw material composition The mass percentage of the total mass.
  • the content of Nb is preferably 0.2-0.25%, and the percentage is the mass percentage of the total mass of the raw material composition.
  • the N contains Ti and Nb, preferably the Ti/Nb ⁇ 1.5, where the Ti is the mass percentage in the raw material composition, and the Nb is the The mass percentage in the raw material composition.
  • the raw material composition of the rare earth permanent magnet material preferably includes the following components by mass content: R: 29.3 to 32%; the R is a rare earth element, and the R includes at least Nd; B: 0.86 ⁇ 0.94%; Ga: 0.65 ⁇ 1.8%; Co: 0.5 ⁇ 2.5%; Fe: 61.8 ⁇ 68.36%; N: contains one or more of Ti, Zr and Nb; when N contains Ti, the The content of Ti is 0.2 to 0.25%; when N contains Zr, the content of Zr is 0.25 to 0.35%; when N contains Nb, the content of Nb is 0.2 to 0.35%; Contains Cu and Al; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material preferably includes the following components by mass content: R: 29.4 to 31.5%; the R is a rare earth element, and the R includes Nd and Pr; Pr: 0.1 to 0.5% or 17 to 25%; B: 0.86 to 0.94%; Ga: 0.65 to 1.8%; Co: 0.5 to 2.5%; Fe: 63.3 to 68% N: containing one of Ti, Zr and Nb or When N contains Ti, the content of Ti is 0.2-0.25%; when N contains Zr, the content of Zr is 0.25-0.35%; when N contains Nb, the content of Nb The content is 0.2-0.35%; the raw material composition does not contain Cu and Al; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material preferably includes the following components by mass content: R: 29.4 to 31.5%; the R is a rare earth element, and the R includes at least Nd; B: 0.86 ⁇ 0.94%; Ga: 0.65 ⁇ 1.8%; Co: 0.5 ⁇ 2.5%; Fe: 63.3 ⁇ 68.5%; Ti: 0.2 ⁇ 0.25%; the raw material composition does not contain Cu and Al; the percentage is the mass of each component It accounts for the mass percentage of the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material preferably includes the following components by mass content: R: 29.3 to 32%; the R is a rare earth element, and the R includes at least Nd; B: 0.86 ⁇ 0.94%; Ga: 0.65 ⁇ 1.8%; Co: 0.5 ⁇ 2.5%; Fe: 62 ⁇ 67.5%; Zr: 0.25 ⁇ 0.35%; the raw material composition does not contain Cu and Al; the percentage is the mass of each component It accounts for the mass percentage of the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 29.3%; Pr 0.2%; Ga 0.65%; Co 0.5%; Ti 0.15%; B 0.84% Fe 68.36%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 30.2%; Pr 0.3%; Ga 0.85%; Co 1.05%; Ti 0.2%; Nb 0.2% B 0.86%; Fe 68.34%; The percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 31%; Pr 0.3%; Ga 1.05%; Co 1.55%; Ti 0.22%; B 0.9% ; Fe 64.98%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 12.5%; Pr 18.5%; Ga 1.45%; Co 2%; Ti 0.22%; B 0.92% Fe 64.41%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 9.5%; Pr 21.5%; Ga 1.8%; Co 2.45%; Ti 0.25%; Nb 0.25% B 0.94%; Fe 63.31%; The percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 30.2%; Pr 0.3%; Ga 1.05%; Co 1.5%; Zr 0.26%; Nb 0.25% B 0.88; Fe 65.56%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 8.5%; Pr 21.5%; Ga 1.2%; Co 0.5%; Zr 0.3%; B 0.94% Fe 67.06%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material of the rare earth permanent magnet material includes the following components by mass content: Nd 8.5%; Pr 21.5%; Ga 1.2%; Co 0.5%; Zr 0.2%; B 0.94 %; Fe 67.16%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 29.3%; Pr 0.2%; Ga 1.25%; Co 0.5%; Zr 0.2%; B 0.86% Fe 67.69%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 12.5%; Pr 18.5%; Ga 1.55%; Co 0.5%; Zr 0.26%; Nb 0.25% B 0.86%; Fe 65.58%; The percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 9.5%; Pr 21.5%; Ga 1.8%; Co 2%; Zr 0.35%; B 0.92% ; Fe 63.93%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 29%; Pr 0.3%; Ga 0.65%; Co 2%; Zr 0.2%; B 0.9% Fe 66.95%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 12.3%; Pr 17%; Ga 0.65%; Co 2%; Zr 0.2%; B 0.9% Fe 66.95%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 28.5%; Pr 1.5%; Tb 2%; Ga 0.85%; Co 2%; Zr 0.26% B 0.88%; Fe 64.01%; The percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the raw material composition of the rare earth permanent magnet material includes the following components: Nd 12.5%; Pr 18.5%; Dy 2%; Ga 1%; Co 2.5%; Ti 0.15% Zr 0.35%; Nb 0.2%; B 0.92%; Fe 61.88%; the percentage is the mass percentage of the mass of each component to the total mass of the raw material composition.
  • the present invention also provides a method for preparing rare earth permanent magnet material, which includes the following steps:
  • the raw material composition of the rare earth permanent magnet material can be cast, powdered, shaped, sintered and aging treated.
  • the operation and conditions of the smelting can be conventional in the art.
  • the vacuum degree of the smelting may be 0.05 Pa.
  • the melting temperature may be 1500°C or less.
  • the melting equipment may be a high-frequency vacuum induction melting furnace.
  • the casting operations and conditions may be conventional casting operations and conditions in the field.
  • the casting is typically 10 2 °C / sec ⁇ 10 4 °C / sec cooling rate of the alloy to prepare a sheet.
  • the atmosphere of the casting may generally be argon.
  • the casting pressure may generally be 5.5 ⁇ 10 4 Pa.
  • the cooling can be achieved by passing cooling water into the rollers.
  • the water inlet temperature of the roller is ⁇ 25°C, for example 23.4°C, 22.5°C, 22.8°C, 23.1°C, 23.4°C, 23.6°C or 23.8°C, more preferably 23-23.8°C.
  • the roller may be a copper roller.
  • the operations and conditions of the powder milling can be conventional operations and conditions in the art.
  • the pulverization usually includes a hydrogen cracking process and a jet milling process.
  • the hydrogen breaking process may be a conventional hydrogen breaking process in the field, such as hydrogen absorption, dehydrogenation, and cooling treatment.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.15 MPa.
  • the dehydrogenation can be carried out under the conditions of raising the temperature while drawing a vacuum.
  • the jet milling process can be a conventional jet milling process in the art, and the jet milling process can be performed in a nitrogen atmosphere with an oxidizing gas content of 120 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure of the crushing chamber of the jet mill process can be 0.3-0.4 MPa, for example 0.38 MPa.
  • the time of the jet milling process may be 2 to 4 hours, for example, 3 hours.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.10-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the molding operation and conditions can be conventional molding operations in the art.
  • it includes a magnetic field forming method or a hot pressing and thermal deformation method.
  • the sintering operation and conditions can be conventional sintering operation conditions in the art.
  • the sintering environment may be a vacuum.
  • the pressure of the vacuum may be 5 ⁇ 10 -3 Pa.
  • preheating is usually included before the sintering.
  • the preheating temperature may be 300-600°C.
  • the preheating time may be 1 to 2 hours.
  • the preheating is preferably at a temperature of 300°C and 600°C for 1 hour each.
  • the sintering temperature is preferably 1050-1095°C, such as 1063°C, 1065°C, 1073°C, 1075°C, 1080°C, 1090°C or 1092°C, more preferably 1063°C to 1090°C.
  • the sintering time is preferably 5-10h, for example 8h.
  • the aging treatment preferably includes a primary aging treatment and a secondary aging treatment.
  • the temperature of the primary aging treatment is preferably 850-950°C, more preferably 900°C.
  • the time of the primary aging treatment is preferably 2 to 4 hours, such as 3 hours, and the time refers to the time at the temperature of the primary aging treatment.
  • the temperature of the secondary aging treatment is preferably 455-470°C, such as 455°C, 460°C, or 470°C.
  • the time of the secondary aging treatment is preferably 2 to 4 hours, such as 3 hours, and the time refers to the time at the temperature of the secondary aging treatment.
  • the rate of heating up to the temperature of the primary aging treatment or secondary aging treatment may be conventional, and is usually 3 to 5° C./min.
  • the invention also provides a rare earth permanent magnet material prepared by the above preparation method.
  • the present invention also provides a rare earth permanent magnet material, which includes the following components in mass content:
  • R 28.5-33%; the R is a rare earth element, and the R includes at least Nd;
  • Ga 0.6 ⁇ Ga ⁇ 1.804%
  • N contains one or more of Ti, Zr and Nb;
  • N contains Nb
  • the content of Nb is 0.2-0.5%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material.
  • the grain boundary phase of the rare earth permanent magnetic material preferably further includes R 6 T 13 M phase.
  • R refers to rare earth elements
  • T refers to Fe and/or Co
  • M refers to Ga.
  • the volume of the R 6 T 13 M phase and the total volume of the "main phase, grain boundary phase, and rare earth-rich phase” are preferably 2-12%; more preferably 2.5-11.5%, such as 2.5%, 3.6%, 3.7%, 4.8%, 5.2%, 5.7%, 6.5%, 10.2%, 10.5%, 11.3% or 11.5%, more preferably 5-11%.
  • the grain boundary phase refers to the general term for the grain boundary phase between two or more Nd 2 T 4 B crystal grains.
  • the Nd 2 T 14 B crystal grains refer to the main phase
  • T refers to Fe and/or Co.
  • the content of R is preferably 29.3% to 32%, for example, 29.296%, 29.308%, 29.486%, 29.494%, 30.004%, 30.01%, 30.485%, 30.5028% , 30.994%, 30.996%, 30.999%, 31.194% or 31.986%, more preferably 29.4-31.5%, and the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the Nd content is preferably 8-13%, such as 8.501%, 8.506%, 9.491%, 9.494%, 12.303%, 12.491%, 12.497% or 12.503%; or, the Nd content Preferably it is 28-31%, such as 28.497%, 29.002%, 29.291%, 29.302%, 30.194%, 30.202% or 30.891%, and the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the rare earth permanent magnet material preferably does not contain Cu.
  • the R in the rare earth permanent magnet material, the R may also include Pr.
  • the content of Pr is preferably less than 1.5% and not 0, more preferably 0.1 to 0.5%, such as 0.192%, 0.195%, 0.291%, 0.294%, 0.301%, 0.303% or 1.502%; Or the content of Pr is preferably 17-25%, such as 17.005%, 18.502%, 18.503%, 21.502%, 21.503%, 21.504% or 21.505%, more preferably 18.5-21.505%, the percentage is The mass percentage of the total mass of the rare earth permanent magnet material.
  • the rare earth permanent magnet material may not contain heavy rare earth elements, and may also reach a level equivalent to or even better than the magnetic properties of the prior art magnet materials.
  • the rare earth permanent magnet material may further include RH, and the RH is a heavy rare earth element.
  • the content of the RH is preferably 1 to 2.5%, and the percentage is a mass percentage of the total mass of the rare earth permanent magnet material.
  • the type of RH preferably includes one or more of Dy, Tb and Ho.
  • the content of Dy is preferably 1 to 2.5%, for example, 1.992%, and the percentage is a mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of Tb is preferably 1 to 2.5%, for example, 1.987%, and the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of B is preferably 0.861% to 0.943%, such as 0.861%, 0.862%, 0.864%, 0.878%, 0.882%, 0.895%, 0.897%, 0.902%, 0.918%, 0.921%, 0.922 %, 0.942% or 0.943%, the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the atomic percentage of R and the atomic percentage of B in the rare earth permanent magnetic material preferably satisfy the following relational formula: B/R ⁇ 0.38, where B is in the rare earth permanent magnet The atomic percentage in the magnetic material, and the R is the atomic percentage in the rare earth permanent magnetic material.
  • the rare earth permanent magnet material contains Pr
  • the B and Nd satisfy the following relational formula: B/(Pr+Nd) ⁇ 0.405, where B refers to the The atomic percentage of B in the rare earth permanent magnetic material, Pr refers to the atomic percentage of the Pr in the rare earth permanent magnetic material, and Nd refers to the atomic percentage of the Nd in the rare earth permanent magnetic material.
  • the Ga content is preferably 0.65 to 1.804%, for example, 0.651%, 0.652%, 0.655%, 0.851%, 0.853%, 1.005%, 1.052%, 1.201%, 1.203%, 1.252%, 1.452%, 1.552%, 1.802%, 1.804%, more preferably 0.65-1.25%, the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of Co is preferably 0.5 to 2.5%, such as 0.502%, 0.503%, 0.504%, 0.505%, 1.047%, 1.502%, 1.554%, 1.987%, 1.989%, 2.003%, 2.005 %, 2.452% or 2.502%, more preferably 1.05-2.005%, and the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of Al is preferably 0.02-0.06%, more preferably 0.025-0.053%, such as 0.025%, 0.031%, 0.035%, 0.042%, 0.043%, 0.051%, 0.052% or 0.053 %, the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of Fe is preferably 61.8-68.36%, such as 61.826%, 63.253%, 63.891%, 63.973%, 64.361%, 65.039%, 65.517%, 65.521%, 66.292%, 66.912%, 66.923 %, 67.017%, 67.1%, 67.647% or 68.323%, more preferably 63.3-68.36%, and the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of Ti is preferably 0.151 to 0.252%, such as 0.151%, 0.154%, 0.205%, 0.222%, 0.224% or 0.252%, more preferably 0.2 to 0.252%, and the percentage is The mass percentage of the total mass of the rare earth permanent magnet material.
  • the content of Zr is preferably 0.25 to 0.351%, such as 0.202%, 0.203%, 0.205%, 0.207%, 0.262%, 0.302% or 0.351%, and the percentage is based on the total rare earth permanent magnetic material The mass percentage of mass.
  • the content of Zr when Zr is contained in the rare earth permanent magnetic material, preferably satisfies: 0.20% ⁇ Zr ⁇ (3.48B-2.67)%, where B refers to the proportion of B occupies The mass percentage of the total mass of the rare earth permanent magnet material.
  • the Nb content is preferably 0.2-0.25%, such as 0.202%, 0.251% or 0.252%, and the percentage is the mass percentage of the total mass of the rare earth permanent magnet material.
  • the rare earth permanent magnet material contains Ti and Nb, preferably, the Ti/Nb ⁇ 1.5, where the Ti is the mass percentage in the rare earth permanent magnet material, so The Nb is the mass percentage in the rare earth permanent magnetic material.
  • the rare earth permanent magnet material preferably includes the following components by mass content: R: 29.3-32%; said R is a rare earth element, and said R includes at least Nd; B: 0.86-0.943%; Ga : 0.65 ⁇ 1.8%; Co: 0.5 ⁇ 2.5%; Al: 0.02 ⁇ 0.06%; Fe: 61.8 ⁇ 68.36%; N: contains one or more of Ti, Zr and Nb; when N contains Ti, The content of Ti is 0.2 to 0.252%; when N contains Zr, the content of Zr is 0.25 to 0.351%; when N contains Nb, the content of Nb is 0.2 to 0.35%; the rare earth The permanent magnet material does not contain Cu; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; the grain boundary phase of the rare earth permanent magnet material also includes the R 6 T 13 Ga phase, and the R The ratio of the volume of the 6 T 13 Ga phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is 2.5 to 11.
  • the rare earth permanent magnetic material preferably includes the following components by mass: R: 29.4 to 31.5%; the R is a rare earth element, and the R includes Nd and Pr; Pr: 0.1 to 0.5% or 17 to 25%; B: 0.86 to 0.943%; Ga: 0.65 to 1.8%; Co: 0.5 to 2.5%; Al: 0.025 to 0.053%; Fe: 63.3 to 68.36%; N: including Ti, Zr and Nb One or more; when N contains Ti, the content of Ti is 0.2 to 0.252%; when N contains Zr, the content of Zr is 0.25 to 0.351%; when N contains Nb, the content of Ti is 0.2 to 0.252%; The Nb content is 0.2-0.35%; the rare earth permanent magnet material does not contain Cu; the percentage is the mass percentage of the mass of each component to the total mass of the rare earth permanent magnet material; the grain boundary phase of the rare earth permanent magnet material It also includes the R 6 T 13 Ga phase, and the ratio of the volume of the R 6 T 13 Ga
  • the rare earth permanent magnet material preferably includes the following components by mass: R: 29.4-31.5 %; the R is a rare earth element, and the R includes at least Nd; B: 0.86-0.943%; Ga :0.65 ⁇ 1.8%; Co: 0.5 ⁇ 2.5%; Al: 0.025 ⁇ 0.053%; Fe: 63.3 ⁇ 68.5%; Ti: 0.2 ⁇ 0.252%; the rare earth permanent magnet material does not contain Cu; the percentage is each component mass percentage of the mass of the total mass of the rare earth permanent magnet material; grain boundary phase, rare earth permanent magnet material further comprises R 6 T 13 Ga phase, the volume of the R 6 T 13 Ga with the "main phase, crystal The ratio of the total volume of the "boundary phase and the rare earth-rich phase" is 5.7 to 11.3%.
  • the rare earth permanent magnet material preferably includes the following components by mass content: R: 29.3-32%; said R is a rare earth element, and said R includes at least Nd; B: 0.86-0.943%; Ga :0.65 ⁇ 1.8%; Co: 0.5 ⁇ 2.5%; Al: 0.025 ⁇ 0.053%; Fe: 62 ⁇ 67.5%; Zr: 0.25 ⁇ 0.351%; the rare earth permanent magnet material does not contain Cu; the percentage is each component mass percentage of the mass of the total mass of the rare earth permanent magnet material; grain boundary phase, rare earth permanent magnet material further comprises R 6 T 13 Ga phase, the volume of the R 6 T 13 Ga with the "main phase, crystal The ratio of the total volume of the "boundary phase and the rare earth-rich phase" is 2.5 to 11.5%.
  • the rare earth permanent magnet material includes the following components: Nd 29.302%; Pr 0.192%; Ga 0.651%; Co 0.505%; Al 0.031%; Ti 0.151%; B0.845 %; Fe 68.323%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material is related to the "main phase, grain boundary phase and rich The ratio of the total volume of the "rare earth phase" is 5.7%.
  • the rare earth permanent magnet material includes the following components by mass content: Nd 30.194%; Pr 0.291%; Ga 0.853%; Co 1.047%; Al 0.052%; Ti 0.205%; Nb 0.202 %; B 0.864%; Fe 66.292%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnet The ratio of the total volume of the "boundary phase and the rare earth-rich phase" is 5.2%.
  • the rare earth permanent magnet material includes the following components: Nd 30.891%; Pr 0.303%; Ga 1.052%; Co 1.554%; Al 0.042%; Ti 0.222%; B 0.897% Fe 65.039%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material is related to the "main phase, grain boundary phase and The ratio of the total volume of the "rare earth-rich phase" is 3.6%.
  • the rare earth permanent magnet material includes the following components: Nd 12.497%; Pr 18.502%; Ga 1.452%; Co 1.989%; Al 0.053%; Ti 0.224%; B 0.922% Fe 64.361%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material is related to the "main phase, grain boundary phase and The ratio of the total volume of the "rare earth-rich phase" is 11.3%.
  • the rare earth permanent magnet material includes the following components: Nd 9.491%; Pr 21.505%; Ga 1.802%; Co 2.452%; Al 0.051%; Ti 0.252%; Nb 0.252% B 0.942%; Fe 63.253%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material and the "main phase, grain boundary The ratio of the total volume of the "phase to the rare earth-rich phase" is 10.2%.
  • the rare earth permanent magnet material includes the following components: Nd 30.202%; Pr 0.301%; Ga 1.052%; Co 1.502%; Al 0.035%; Zr 0.262%; Nb 0.251% B 0.878%; Fe 65.517%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material and the "main phase, grain boundary The ratio of the total volume of the phase and the rare earth-rich phase is 6.5%.
  • the rare earth permanent magnet material includes the following components: Nd 8.506%; Pr 21.504%; Ga 1.201%; Co 0.502%; Al 0.025%; Zr 0.302%; B 0.943%; Fe 67.017%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material is related to the main phase, grain boundary phase and rare earth-rich phase "The ratio of the total volume is 5.7%.
  • the rare earth permanent magnet material includes the following components: Nd 8.501%; Pr 21.503%; Ga 1.203%; Co 0.503%; Al 0.043%; Zr 0.205%; B 0.942% Fe 67.1%; The percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnet material and the "main phase, grain boundary phase and rare earth-rich The ratio of the total volume of "phase" is 5.2%.
  • the rare earth permanent magnet material includes the following components: Nd 29.291%; Pr 0.195%; Ga 1.252%; Co 0.504%; Al 0.042%; Zr 0.207%; B 0.862% Fe 67.647%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnet material is related to the main phase, grain boundary phase and rare earth-rich The ratio of the total volume of "phase" is 3.6%.
  • the rare earth permanent magnetic material includes the following components: Nd 12.491%; Pr 18.503%; Ga 1.552%; Co 0.505%; Al 0.053%; Zr 0.262%; Nb 0.252% B 0.861%; Fe 65.521%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material and the "main phase, grain boundary The ratio of the total volume of the phase and the rare earth-rich phase is 11.3%.
  • the rare earth permanent magnet material includes the following components: Nd 9.494%; Pr 21.502%; Ga 1.804%; Co 1.989%; Al 0.051%; Zr 0.351%; B 0.918% Fe 63.891%; The percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnet material is related to the main phase, grain boundary phase and rare earth-rich The ratio of the total volume of "phase" is 11.5%.
  • the rare earth permanent magnet material includes the following components: Nd 29.002%; Pr 0.294%; Ga 0.655%; Co 2.005%; Al 0.035%; Zr 0.202%; B 0.895% Fe 66.912%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnet material is related to the main phase, grain boundary phase and rare earth-rich The ratio of the total volume of "phase" is 3.7%.
  • the rare earth permanent magnet material includes the following components: Nd 12.303%; Pr 17.005%; Ga 0.652%; Co 1.987%; Al 0.025%; Zr 0.203%; B 0.902% Fe 66.923%; The percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnetic material is related to the main phase, grain boundary phase and rare earth-rich The ratio of the total volume of "phase" is 4.8%.
  • the rare earth permanent magnet material includes the following components by mass content: Nd 28.497%; Pr 1.502%; Tb 1.987%; Ga 0.851%; Co 2.003%; Al 0.043%; Zr 0.262 %; B 0.882%; Fe 63.973%; the percentage is the mass percentage of each component in the total mass of the rare earth permanent magnetic material; the volume of the R 6 T 13 Ga phase in the rare earth permanent magnet The ratio of the total volume of the boundary phase to the rare earth-rich phase is 2.5%.
  • the rare earth permanent magnet material includes the following components: Nd 12.503%; Pr 18.502%; Dy 1.992%; Ga 1.005%; Co 2.502%; Al 0.042%; Ti 0.154% Zr 0.351%; Nb 0.202%; B 0.921%; Fe 61.826%; The percentage is the mass percentage of each component in the total mass of the rare earth permanent magnet material; R 6 T 13 Ga in the rare earth permanent magnet material.
  • the ratio of the volume of the phase to the total volume of the "main phase, grain boundary phase, and rare earth-rich phase" is 10.5%.
  • the invention also provides an application of the rare earth permanent magnet material as an electronic component.
  • the application fields can be the automotive drive field, wind power field, servo motor and home appliance field (for example, air conditioner).
  • the room temperature refers to 25°C ⁇ 5°C.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the elements with a specific content are coordinated with each other, and the prepared rare earth permanent magnetic material contains a specific content of R 6 T 13 Ga.
  • the rare earth permanent magnetic material of the present invention contains a small amount (0.84-0.943%) of boron element, and can obtain good remanence, coercivity, squareness, and temperature stability without adding heavy rare earth elements.
  • the rare earth permanent magnetic material of the present invention not only obtains a permanent magnet material with better magnetic properties without adding an appropriate amount of Al, but also improves the consistency of the rare earth permanent magnet material, that is, the magnetic properties of the same batch of products Uniform.
  • the raw materials used in the preparation of the rare earth permanent magnet material in this embodiment are shown in Table 1, and the preparation process is as follows:
  • Example 1 (1) Melting process: According to the formula shown in Example 1 in Table 1, take the prepared raw materials and put them in a crucible made of alumina, and place them in a high-frequency vacuum induction melting furnace in a vacuum of 5 ⁇ 10 -2 Pa. Vacuum melting is performed at a temperature below 1500°C.
  • Hydrogen breaking and pulverizing process Vacuum the hydrogen breaking furnace containing the quench alloy at room temperature, and then pass hydrogen with a purity of 99.9% into the hydrogen breaking furnace, maintain the hydrogen pressure at 0.15MPa, and fully absorb hydrogen. The temperature is raised while vacuuming, and the hydrogen is fully dehydrogenated, and then it is cooled, and the powder after the hydrogen cracking and pulverization is taken out.
  • Fine pulverization process Under the nitrogen atmosphere with an oxidizing gas content of 120 ppm or less, the powder after hydrogen pulverization is pulverized by jet milling for 3 hours under the condition of a pulverizing chamber pressure of 0.38 MPa to obtain a fine powder.
  • Oxidizing gas refers to oxygen or moisture.
  • Magnetic field molding process using a right-angle orientation magnetic field molding machine, in a 1.6T orientation magnetic field, under a molding pressure of 0.35ton/cm 2 , the above-mentioned zinc stearate-added powder is formed into a side length at a time It is a 25mm cube, which is demagnetized in a 0.2T magnetic field after a single forming.
  • a secondary molding machine isostatic press
  • each molded body is moved to a sintering furnace for sintering, sintered in a vacuum of 5 ⁇ 10 -3 Pa, kept at a temperature of 300°C and 600°C for 1 hour, and then sintered at a temperature of 1090°C After 8 hours, Ar gas was introduced to bring the pressure to 0.1 MPa, and then cooled to room temperature.
  • the sintered body is heated from 20°C to 900°C at a heating rate of 3 to 5°C/min in high-purity Ar gas, and then subjected to primary aging treatment at 900°C for 3 hours, and then cooled to room temperature After removing. Then, the temperature is increased from 20°C to 470°C at a heating rate of 3 to 5°C/min, and the secondary aging temperature is performed at a temperature of 470°C.
  • the magnetic properties of the neodymium-iron-boron materials in Comparative Examples 1 to 6 are the best properties that can be obtained after the formulations of Comparative Examples 1 to 6 are optimized by process (aging temperature, sintering temperature or water inlet temperature).
  • Example 2 30.194 0.291 / / 0.853 1.047 0.052 0.205 / 0.202 0.864 66.292
  • Example 3 30.891 0.303 / / 1.052 1.554 0.042 0.222 / / 0.897 65.039
  • Example 4 12.497 18.502 / / 1.452 1.989 0.053 0.224 / / 0.922 64.361
  • Example 5 9.491 21.505 / / 1.802 2.452 0.051 0.252 / 0.252 0.942 63.253
  • Example 6 30.202 0.301 / / 1.052 1.502 0.035 / 0.262 0.251 0.878 65.517
  • Example 7 8.506 21.504 / / 1.201 0.502 0.025 / 0.302 / 0.943 67.017
  • Example 7.1 8.501 21.503 / / 1.203 0.503 0.043 / 0.205 / 0.942 67.100
  • Example 8 29.291 0.195
  • Effect Example 1 The magnetic properties of rare-earth permanent magnet materials in Examples 1-13 and Comparative Examples 1-6 1.
  • Microstructure FE-EPMA inspection is used to polish the vertical orientation surface of rare earth permanent magnetic materials, and field emission is used Electron probe microanalyzer (FE-EPMA) (JEOL, 8530F). The R 6 T 13 Ga phase and the R 6 T 13 Al phase in the grain boundary are detected, and T refers to Fe and/or Co. The test results are shown in Table 3 below.
  • the proportion of R 6 T 13 Ga phase and R 6 T 13 Al phase content is measured by the proportion of 5 rare earth permanent magnetic materials in the same batch of rare earth permanent magnetic materials in each example and comparative example, and calculated average of.
  • the average value of Br or Hcj refers to the average value calculated by testing the remanence or coercivity of 5 rare earth permanent magnetic materials in the same batch.
  • the relative permeability is Br/Hcb; among them, Br is the remanence and Hcb is the magnetic coercivity.
  • Br is the remanence
  • Hcb is the magnetic coercivity.
  • Max(Hcj)-Min(Hcj) The maximum value of the coercive force minus the minimum value of the coercive force in the same embodiment or the same comparative example. If it is greater than 1.5kOe, the magnetic performance consistency is poor. The test results are shown in Table 3 below.
  • each neodymium iron boron material refers to a cylinder of 10mm*10mm cut out according to the unit of the performance test.
  • refers to the absence of R 6 T 13 Ga phase or R 6 T 13 Al phase. Except Max(Hcj)-Min(Hcj), the remaining parameters in Table 3 are the average values of 5 neodymium iron boron materials in the same batch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种稀土永磁材料及其制备方法和应用。该稀土永磁材料的原料组合物包括如下组分:R:28.5~33%;R为稀土元素,包括Nd;B:0.84~0.94%;Ga:0.6<Ga≤1.8%;Co:≤2.5%;Fe:61.6~69%;N包含Ti、Zr和Nb中的一种或多种;N包含Ti时,Ti为0.15~0.25%;N包含Zr时,Zr为0.2~0.35%;N包含Nb时,Nb为0.2~0.5%;百分比为各组分占稀土永磁材料总质量的百分比。该稀土永磁材料在不添加重稀土元素的条件下,采用低硼无铝体系,如剩磁、矫顽力、温度稳定性、方形度等磁性能仍然较佳,同时同一批次的永磁材料的磁性能均一。

Description

一种稀土永磁材料及其制备方法和应用 技术领域
本发明具体涉及一种稀土永磁材料及其制备方法和应用。
背景技术
稀土永磁材料由于其优异的磁特性而被广泛应用于电子产品、汽车、风电、家电、电梯及工业机器人等领域,例如硬盘、手机、耳机、和电梯曳引机、发电机等永磁电机中作为能量源等,其需求日益扩大,且各产商对于磁铁性能例如剩磁、矫顽力性能、温度稳定性、磁体方形度等的要求也逐步提升。
稀土永磁材料主要由包含R 2T 14B化合物的主相和位于该主相的晶界部分的晶界相构成。该R 2T 14B化合物具有高饱和磁化和各向异性磁场的强磁性材料。而稀土永磁材料的矫顽力在高温下会降低,因而发生不可逆热退磁。目前已知的是:用重稀土元素RH置换作为主相的R 2T 14B化合物中的R中的部分轻稀土RL,则矫顽力会提高,矫顽力会随着置换量的增加而提高。但另一方面,剩余磁通量Br会降低。此外,RH的资源稀少,价格昂贵。为了提升稀土永磁材料的剩磁,通常需要降低B含量。但是当B的含量在较低水平时,会形成R 2T 17相。而R 2T 17不具有室温单轴各向异性,进而使得磁体的性能劣化。
另外,磁体材料的方形度是指在J-H退磁曲线上磁极化强度J=0.9Jr(Jr为剩余磁极化强度,其值与剩余磁感应强度Br相同,二者统称为剩磁)-所对应的磁场值Hk(膝点矫顽力),与J-H退磁曲线上J=0对应的磁场值Hcj(内禀矫顽力)的比值,即Hk/Hcj。具有较高的方形度是高品质磁体所必须具备的条件。以减少在使用过程中尤其是在相对使用温度较高的环境下的失磁,确保磁体在上述环境中长期使用时仍旧具有高的磁性能。目前现有技术中的永磁材料即使矫顽力和剩磁较高,其方形度也无法同时提升到较佳的水平。
因此,在不添加或少量添加重稀土的情况下,如何采用低B无Al体系的方法制得高矫顽力、高剩磁、方形度以及一致性较佳的稀土永磁材料是本领域亟待解决的技术问题。
发明内容
本发明旨在克服现有技术稀土永磁材料采用低B体系提升磁性能时,通常需要添加大量的重稀土元素,且即使添加了重稀土元素,磁性能(剩磁、矫顽力、温度稳定性、方形度)仍然无法得到显著提升的缺陷,而提供了一种稀土永磁材料及其制备方法和应用。本发明的稀土永磁材料在不添加重稀土元素的前提下,采用低硼无铝体系仍然能够制备得到磁性能(剩磁、矫顽力、温度稳定性、方形度)较佳,同时同批次的永磁材料磁性能均一。
需要说明的是,现有技术中稀土永磁材料通常需要添加一定量的Al才能够得到性能较佳的磁体材料,但是发明人通过多次试验的验证发现:虽然添加Al会提升磁体材料的磁性能,但是在制备同一批次的产品中,磁性能不均一,即同一批次产品中矫顽力的最大值和最小值之间的差值大于1.5kOe。且本发明通过特定的配方,最终得到的稀土永磁材料的均一性较佳。
本发明采用以下技术方案解决上述技术问题。
本发明提供了一种稀土永磁材料的原料组合物,其包括如下质量含量的组分:
R:28.5~33%;所述R为稀土元素,所述R至少包括Nd;
B:0.84~0.94%;
Ga:0.6<Ga≤1.8%;
Co:≤2.5%且不为0;
Fe:61.6~69%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.15~0.25%;
当N中包含Zr时,所述Zr的含量为0.2~0.35%;
当N中包含Nb时,所述Nb的含量为0.2~0.5%;
百分比为各组分质量占所述稀土永磁材料总质量的质量百分比。
本发明中,所述原料组合物中的各组分及相应的含量均为主动添加,不包括制备工艺和/或杂质中所引入的组分和/或含量。
本发明中,所述原料组合物中,所述R的含量较佳地为29.3~32%,例如29.3%、29.5%、30%、30.5%、31%、31.3%或32%,更佳地为29.4~31.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Nd的含量较佳地为8~13%,例如8.5%、9.5%、12.3%、12.5%;或者,所述Nd的含量较佳地为28~31%,例如28.5%、29%、29.3%、30.2%或31%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中较佳地不含Cu。
本发明中,所述原料组合物中较佳地不含Al;指的是不主动添加Al,但是可能会在添加其他元素(例如Fe时)或者制备工艺中(例如氧化铝坩埚制备熔融液)会引入微量的Al(0.08%以下)。
本发明中,所述原料组合物中,所述R通常还可包括Pr。
其中,所述Pr的含量较佳地在1.5%以下且不为0,更佳地为0.1~0.5%,例如0.2%或0.3%;或者所述Pr的含量较佳地为17~25%,更佳地为18.5~21.5%,例如18.5%或21.5%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中可不含重稀土元素,也可达到与现有技术的磁体材料的磁性能相当甚至更佳的水平。或者,所述原料组合物中还可包括RH,所述RH为重稀土元素。
其中,当所述原料组合物中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比。
其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种。
当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,例如2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述B的含量较佳地为0.86~0.94%,例如0.86%、0.88%、0.9%、0.92%或0.94%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述原料组合物中的所述R的原子百分比和所述B的原子百分比较佳地满足如下关系式:B/R≥0.38,式中,所述B在所述原料组合物中的原子百分比,所述R在所述原料组合物中的原子百分比。
本发明中,当所述原料组合物中包含Pr时,较佳地所述B、所述Nd满足如下关系式:B/(Pr+Nd)≥0.405,式中,B指的是所述B在原料组合物中的原子百分比,Pr指的是所述Pr在原料组合物中的原子百分比,Nd指的是所述Nd在原料组合物中的原子百分比。
本发明中,所述Ga的含量较佳地为0.65~1.8%,例如为0.65%、0.85%、1%、1.05%、1.2%、1.25%、1.45%、1.55%或1.8%,更佳地为0.65~1.25%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Co的含量较佳地为0.5~2.5%,例如0.5%、1.05%、1.5%、1.55%、2%、2.45%或2.5%,更佳地为1.05~2%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,所述Fe的含量较佳地为61.8~68.36%,例如61.88%、63.31%、63.93%、64.01%、64.41%、64.98%、65.56%、65.58%、66.34%、66.95%、67.06%、67.16%、67.69%或68.36%,更佳地为63.3~68%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Ti时,所述Ti的含量较佳地为0.2~0.25%,例如0.2%、0.22%或0.25%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地为0.25~0.35%,例如0.26%、0.3%或0.35%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Zr时,所述Zr的含量较佳地满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述原料组合物总质量的质量百分比。
本发明中,当所述N包含Nb时,所述Nb的含量较佳地为0.2~0.25%,百分比为占所述原料组合物总质量的质量百分比。
本发明中,当所述N中包含Ti和Nb时,较佳地所述Ti/Nb≥1.5,式中,所述Ti为在所述原料组合物中的质量百分比,所述Nb为在所述原料组合物中的质量百分比。
本发明中,所述稀土永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:61.8~68.36%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.25%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述稀土永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者17~25%;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:63.3~68%N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.25%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述稀土永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:63.3~68.5%;Ti:0.2~0.25%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
本发明中,所述稀土永磁材料的原料组合物,较佳地包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:62~67.5%;Zr:0.25~0.35%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 29.3%;Pr 0.2%;Ga 0.65%;Co 0.5%;Ti 0.15%;B 0.84%;Fe 68.36%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 30.2%;Pr 0.3%;Ga 0.85%;Co 1.05%;Ti 0.2%;Nb 0.2%;B 0.86%;Fe 68.34%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 31%;Pr 0.3%;Ga 1.05%;Co 1.55%;Ti 0.22%;B 0.9%;Fe 64.98%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 12.5%;Pr 18.5%;Ga 1.45%;Co 2%;Ti 0.22%;B 0.92%;Fe 64.41%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 9.5%;Pr 21.5%;Ga 1.8%;Co 2.45%;Ti 0.25%;Nb 0.25%;B 0.94%;Fe 63.31%;所述百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 30.2%;Pr 0.3%;Ga 1.05%;Co 1.5%;Zr 0.26%;Nb 0.25%;B 0.88;Fe 65.56%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含 量的组分:Nd 8.5%;Pr 21.5%;Ga 1.2%;Co 0.5%;Zr 0.3%;B 0.94%;Fe 67.06%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合地包括如下质量含量的组分:Nd 8.5%;Pr 21.5%;Ga 1.2%;Co 0.5%;Zr 0.2%;B 0.94%;Fe 67.16%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 29.3%;Pr 0.2%;Ga 1.25%;Co 0.5%;Zr 0.2%;B 0.86%;Fe 67.69%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 12.5%;Pr 18.5%;Ga 1.55%;Co 0.5%;Zr 0.26%;Nb 0.25%;B 0.86%;Fe 65.58%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 9.5%;Pr 21.5%;Ga 1.8%;Co 2%;Zr 0.35%;B 0.92%;Fe 63.93%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 29%;Pr 0.3%;Ga 0.65%;Co 2%;Zr 0.2%;B 0.9%;Fe 66.95%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 12.3%;Pr 17%;Ga 0.65%;Co 2%;Zr 0.2%;B 0.9%;Fe 66.95%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 28.5%;Pr 1.5%;Tb 2%;Ga 0.85%;Co 2%;Zr 0.26%;B 0.88%;Fe 64.01%;百分比为各组分质量占所述原料组合物总质量的质量百分比。
在本发明一较佳实施例中,所述稀土永磁材料的原料组合物包括如下含量的组分:Nd 12.5%;Pr 18.5%;Dy 2%;Ga 1%;Co 2.5%;Ti 0.15%;Zr 0.35%;Nb 0.2%;B 0.92%;Fe 61.88%;所述百分比为各组分质量占所述原料组合 物总质量的质量百分比。
本发明还提供了一种稀土永磁材料的制备方法,其包括下述步骤:
将所述稀土永磁材料的原料组合物经铸造、制粉、成型、烧结和时效处理即可。
本发明中,本领域技术人员知晓所述铸造之前通常还包括熔炼。
其中,所述熔炼的操作和条件可为本领域常规。所述熔炼的真空度可为0.05Pa。所述熔炼的温度可为1500℃以下。所述熔炼的设备可为高频真空感应熔炼炉。
本发明中,所述铸造的操作和条件可为本领域常规的铸造操作和条件。所述铸造通常是以10 2℃/秒~10 4℃/秒的速度冷却以制备合金片。所述铸造的气氛通常可为氩气。所述铸造的压力通常可为5.5×10 4Pa。
所述冷却可通过辊轮中通入冷却水实现。优选地,所述辊轮的进水温度≤25℃,例如23.4℃、22.5℃、22.8℃、23.1℃、23.4℃、23.6℃或23.8℃,更佳地为23~23.8℃。所述辊轮可为铜辊。
本发明中,所述制粉的操作和条件可为本领域常规的操作和条件。所述制粉通常包括氢破工艺和气流磨工艺。
其中,所述氢破工艺可为本领域常规的氢破工艺,例如经吸氢、脱氢、冷却处理,即可。所述吸氢可在氢气压力0.15MPa的条件下进行。所述脱氢可在边抽真空边升温的条件下进行。
其中,所述气流磨工艺可为本领域常规的气流磨工艺,所述气流磨工艺可在氧化气体含量120ppm以下的氮气气氛下进行。所述氧化气体指的是氧气或水分含量。
所述气流磨工艺的粉碎室压力可为0.3~0.4MPa,例如0.38MPa。
所述气流磨工艺的时间可为2~4小时,例如3小时。
所述气流磨工艺后,可按本领域常规手段在粉体中添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.10~0.15%,例如0.12%。
本发明中,所述成型的操作和条件可为本领域常规的成型操作。例如包括磁场成形法或热压热变形法。
本发明中,所述烧结的操作和条件可为本领域常规的烧结操作条件。
其中,所述烧结的环境可为真空。所述真空的压力可为5×10 -3Pa。
其中,所述烧结之前通常还包括预热。所述预热的温度可为300~600℃。所述预热的时间可为1~2h。所述预热较佳地为在300℃和600℃的温度下各预热1h。
其中,所述烧结的温度较佳地为1050~1095℃,例如1063℃、1065℃、1073℃、1075℃、1080℃、1090℃或1092℃,更佳地为1063~1090℃。
其中,所述烧结的时间较佳地为5~10h,例如8h。
本发明中,所述时效处理较佳地包括一级时效处理和二级时效处理。
其中,所述一级时效处理的温度较佳地为850~950℃,更佳地为900℃。
其中,所述一级时效处理的时间较佳地为2~4h,例如3h,该时间指的是在所述一级时效处理的温度下的时间。
其中,所述二级时效处理的温度较佳地为455~470℃,例如455℃、460℃或470℃。
其中,所述二级时效处理的时间较佳地为2~4h,例如3h,该时间指的是在所述二级时效处理的温度下的时间。
其中,升温至所述一级时效处理或二级时效处理的温度的速率可为本领常规,通常为3~5℃/min。
本发明还提供了一种由上述制备方法制得的稀土永磁材料。
本发明还提供了一种稀土永磁材料,其包括如下质量含量的组分:
R:28.5~33%;所述R为稀土元素,所述R至少包括Nd;
B:0.84~0.943%;
Ga:0.6<Ga≤1.804%;
Co:≤2.5%且不为0;
Al:<0.08%;
Fe:61.6~69%;
N:包含Ti、Zr和Nb中的一种或多种;
当N中包含Ti时,所述Ti的含量为0.15~0.252%;
当N中包含Zr时,所述Zr的含量为0.2~0.351%;
当N中包含Nb时,所述Nb的含量为0.2~0.5%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比。
本发明中,所述稀土永磁材料的晶界相中较佳地还包括R 6T 13M相。其中,R指的是稀土元素,T指的是Fe和/或Co,M指的是Ga。
其中,所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比较佳地为2~12%;更佳地为2.5~11.5%,例如2.5%、3.6%、3.7%、4.8%、5.2%、5.7%、6.5%、10.2%、10.5%、11.3%或11.5%,更佳地为5~11%。
本发明中,所述晶界相指的是两个或两个以上的Nd 2T 4B晶粒间的晶界相的总称。其中,所述Nd 2T l4B晶粒指的是主相,T指的是Fe和/或Co。
本发明中,所述稀土永磁材料中,所述R的含量较佳地为29.3~32%,例如29.296%、29.308%、29.486%、29.494%、30.004%、30.01%、30.485%、30.5028%、30.994%、30.996%、30.999%、31.194%或31.986%,更佳地为29.4~31.5%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Nd的含量较佳地为8~13%,例如8.501%、8.506%、9.491%、9.494%、12.303%、12.491%、12.497%或12.503%;或者,所述Nd的含量较佳地为28~31%,例如28.497%、29.002%、29.291%、29.302%、30.194%、30.202%或30.891%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述稀土永磁材料中较佳地不含Cu。
本发明中,所述稀土永磁材料中,所述R通常还可包括Pr。
其中,所述Pr的含量较佳地在1.5%以下且不为0,更佳地为0.1~0.5%,例如0.192%、0.195%、0.291%、0.294%、0.301%、0.303%或1.502%;或者所述Pr的含量较佳地为17~25%,例如17.005%、18.502%、18.503%、21.502%、 21.503%、21.504%或21.505%,更佳地为18.5~21.505%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述稀土永磁材料中可不含重稀土元素,也可达到与现有技术的磁体材料的磁性能相当甚至更佳的水平。或者,所述稀土永磁材料中还可包括RH,所述RH为重稀土元素。
其中,当所述稀土永磁材料中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述稀土永磁材料总质量的质量百分比。
其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种。
当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,例如1.992%,百分比为占所述稀土永磁材料总质量的质量百分比。
当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,例如1.987%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述B的含量较佳地为0.861~0.943%,例如0.861%、0.862%、0.864%、0.878%、0.882%、0.895%、0.897%、0.902%、0.918%、0.921%、0.922%、0.942%或0.943%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述稀土永磁材料中所述R的原子百分比和所述B的原子百分比较佳地满足如下关系式:B/R≥0.38,式中,所述B为在所述稀土永磁材料中的原子百分比,所述R为在所述稀土永磁材料中的原子百分比。
本发明中,当所述稀土永磁材料中包含Pr时,较佳地所述B、所述Nd满足如下关系式:B/(Pr+Nd)≥0.405,式中,B指的是所述B在稀土永磁材料中的原子百分比,Pr指的是所述Pr在稀土永磁材料中的原子百分比,Nd指的是所述Nd在稀土永磁材料中的原子百分比。
本发明中,所述Ga的含量较佳地为0.65~1.804%,例如为0.651%、0.652%、0.655%、0.851%、0.853%、1.005%、1.052%、1.201%、1.203%、1.252%、1.452%、1.552%、1.802%、1.804%,更佳地为0.65~1.25%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Co的含量较佳地为0.5~2.5%,例如0.502%、0.503%、0.504%、0.505%、1.047%、1.502%、1.554%、1.987%、1.989%、2.003%、2.005%、2.452%或2.502%,更佳地为1.05~2.005%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Al的含量较佳地为0.02~0.06%,更佳地为0.025~0.053%,例如0.025%、0.031%、0.035%、0.042%、0.043%、0.051%、0.052%或0.053%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Fe的含量较佳地为61.8~68.36%,例如61.826%、63.253%、63.891%、63.973%、64.361%、65.039%、65.517%、65.521%、66.292%、66.912%、66.923%、67.017%、67.1%、67.647%或68.323%,更佳地为63.3~68.36%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Ti的含量较佳地为0.151~0.252%,例如0.151%、0.154%、0.205%、0.222%、0.224%或0.252%,更佳地为0.2~0.252%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Zr的含量较佳地为0.25~0.351%,例如0.202%、0.203%、0.205%、0.207%、0.262%、0.302%或0.351%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,当所述稀土永磁材料中包含Zr时,所述Zr的含量较佳地满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述稀土永磁材料总质量的质量百分比。
本发明中,所述Nb的含量较佳地为0.2~0.25%,例如0.202%、0.251%或0.252%,百分比为占所述稀土永磁材料总质量的质量百分比。
本发明中,当所述稀土永磁材料中包含Ti和Nb时,较佳地,所述Ti/Nb≥1.5,式中,所述Ti为在所述稀土永磁材料中的质量百分比,所述Nb为在所述稀土永磁材料中的质量百分比。
本发明中,所述稀土永磁材料较佳地包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga: 0.65~1.8%;Co:0.5~2.5%;Al:0.02~0.06%;Fe:61.8~68.36%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.252%;当N中包含Zr时,所述Zr的含量为0.25~0.351%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为2.5~11.5%。
本发明中,所述稀土永磁材料较佳地包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者17~25%;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.025~0.053%;Fe:63.3~68.36%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.252%;当N中包含Zr时,所述Zr的含量为0.25~0.351%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5~11%。
本发明中,所述稀土永磁材料较佳地包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.025~0.053%;Fe:63.3~68.5%;Ti:0.2~0.252%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5.7~11.3%。
本发明中,所述稀土永磁材料较佳地包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.025~0.053%;Fe:62~67.5%;Zr:0.25~0.351%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总 质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为2.5~11.5%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 29.302%;Pr 0.192%;Ga 0.651%;Co 0.505%;Al 0.031%;Ti 0.151%;B0.845%;Fe 68.323%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5.7%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下质量含量的组分:Nd 30.194%;Pr 0.291%;Ga 0.853%;Co 1.047%;Al 0.052%;Ti 0.205%;Nb 0.202%;B 0.864%;Fe 66.292%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5.2%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 30.891%;Pr 0.303%;Ga 1.052%;Co 1.554%;Al 0.042%;Ti 0.222%;B 0.897%;Fe 65.039%;所述百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为3.6%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 12.497%;Pr 18.502%;Ga 1.452%;Co 1.989%;Al 0.053%;Ti 0.224%;B 0.922%;Fe 64.361%;所述百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为11.3%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 9.491%;Pr 21.505%;Ga 1.802%;Co 2.452%;Al 0.051%;Ti 0.252%;Nb 0.252%;B 0.942%;Fe 63.253%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为10.2%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 30.202%;Pr 0.301%;Ga 1.052%;Co 1.502%;Al 0.035%;Zr 0.262%;Nb 0.251%;B 0.878%;Fe 65.517%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为6.5%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分Nd 8.506%;Pr 21.504%;Ga 1.201%;Co 0.502%;Al 0.025%;Zr 0.302%;B 0.943%;Fe 67.017%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5.7%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 8.501%;Pr 21.503%;Ga 1.203%;Co 0.503%;Al 0.043%;Zr 0.205%;B 0.942%;Fe 67.1%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5.2%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 29.291%;Pr 0.195%;Ga 1.252%;Co 0.504%;Al 0.042%;Zr 0.207%;B 0.862%;Fe 67.647%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为3.6%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 12.491%;Pr 18.503%;Ga 1.552%;Co 0.505%;Al 0.053%;Zr 0.262%;Nb 0.252%;B 0.861%;Fe 65.521%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为11.3%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 9.494%;Pr 21.502%;Ga 1.804%;Co 1.989%;Al 0.051%;Zr 0.351%;B  0.918%;Fe 63.891%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为11.5%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 29.002%;Pr 0.294%;Ga 0.655%;Co 2.005%;Al 0.035%;Zr 0.202%;B 0.895%;Fe 66.912%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为3.7%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 12.303%;Pr 17.005%;Ga 0.652%;Co 1.987%;Al 0.025%;Zr 0.203%;B 0.902%;Fe 66.923%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为4.8%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下质量含量的组分:Nd 28.497%;Pr 1.502%;Tb 1.987%;Ga 0.851%;Co 2.003%;Al 0.043%;Zr 0.262%;B 0.882%;Fe 63.973%;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为2.5%。
在本发明一较佳实施例中,所述稀土永磁材料包括如下含量的组分:Nd 12.503%;Pr 18.502%;Dy 1.992%;Ga 1.005%;Co 2.502%;Al 0.042%;Ti 0.154%;Zr 0.351%;Nb 0.202%;B 0.921%;Fe 61.826%;所述百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料中R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为10.5%。
本发明还提供了一种所述稀土永磁材料作为电子元器件的应用。
其中,所述应用的领域可为汽车驱动领域、风电领域、伺服电机和家电领域(例如空调)。
本发明中,所述室温是指25℃±5℃。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明的稀土永磁材料中特定含量的各元素之间相互配合,制得的稀土永磁材料含有特定含量的R 6T 13Ga。本发明的稀土永磁材料含有少量(0.84~0.943%)的硼元素,可在不添加重稀土元素下,得到剩磁、矫顽力、方形度、温度稳定性均较佳。
(2)本发明的稀土永磁材料在不添加适量Al的条件下,不仅得到了磁性能较佳的永磁材料,还提升了稀土永磁材料的一致性,即同一批次产品的磁性能均一。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
1、实施例1
本实施例中制备稀土永磁材料所用的原料如表1所示,其制备的工艺如下:
(1)熔炼过程:按表1中实施例1所示配方,取配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在5×10 -2Pa的真空中以1500℃以下的温度进行真空熔炼。
(2)铸造过程:在真空熔炼后的熔炼炉中通入Ar气体使气压达到5.5万Pa后,进行铸造,将熔融液通过29转/分转速的铜辊制得0.12-0.35mm厚度的速凝合金片,浇铸过程中,铜辊需通入冷冻水,其进水温度23.4℃;以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(3)氢破粉碎过程:在室温下将放置急冷合金的氢破用炉抽真空,而 后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.15MPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。
(4)微粉碎工序:在氧化气体含量120ppm以下的氮气气氛下,在粉碎室压力为0.38MPa的条件下对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉。氧化气体指的是氧或水分。
(5)在气流磨粉碎后的粉末中添加硬脂酸锌,硬脂酸锌的添加量为混合后粉末重量的0.12%,再用V型混料机充分混合。
(6)磁场成型过程:使用直角取向型的磁场成型机,在1.6T的取向磁场中,在0.35ton/cm 2的成型压力下,将上述添加了硬脂酸锌的粉末一次成形成边长为25mm的立方体,一次成形后在0.2T的磁场中退磁。为使一次成形后的成形体不接触到空气,将其进行密封,再使用二次成形机(等静压成形机)在1.3ton/cm 2的压力下进行二次成形。
(7)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下,在300℃和600℃的温度下各保持1小时后,以1090℃的温度烧结8小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
(8)时效处理过程:烧结体在高纯度Ar气中,以3~5℃/min的升温速率从20℃升温至900℃,以900℃温度进行3小时一级时效处理后,冷却至室温后取出。接着以3~5℃/min的升温速率从20℃升温至470℃,以470℃温度进行二级时效温度。
2、实施例1~13和对比例1~12稀土永磁材料的原料组合物的配方以及制备方法中的铜辊进水温度、烧结温度、二级时效温度如下表1所示。
表1
Figure PCTCN2021077185-appb-000001
Figure PCTCN2021077185-appb-000002
注:“/”是指不含有该元素。wt%为质量百分比。
2、实施例2~13和对比例1~12中稀土永磁材料的原料组合物的配方如表1所示,制备方法中的参数除烧结温度、铜辊进水温度和二级时效温度按照表1中的参数外,其余制备方法的参数与实施例1相同。
需要说明的是:对比例1~6中钕铁硼材料的磁性能为对比例1~6的配方经工艺优化(时效温度、烧结温度或是进水温度)后所能够获得的最佳性能。
3、成分测定:对实施例1~13和对比例1~12中的稀土永磁材料使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。测试结果如下表2所示。
表2稀土永磁材料的组分和含量(wt%)
编号/wt% Nd Pr Tb Dy Ga Co Al Ti Zr Nb B Fe
实施例1 29.302 0.192 / / 0.651 0.505 0.031 0.151 / / 0.845 68.323
实施例2 30.194 0.291 / / 0.853 1.047 0.052 0.205 / 0.202 0.864 66.292
实施例3 30.891 0.303 / / 1.052 1.554 0.042 0.222 / / 0.897 65.039
实施例4 12.497 18.502 / / 1.452 1.989 0.053 0.224 / / 0.922 64.361
实施例5 9.491 21.505 / / 1.802 2.452 0.051 0.252 / 0.252 0.942 63.253
实施例6 30.202 0.301 / / 1.052 1.502 0.035 / 0.262 0.251 0.878 65.517
实施例7 8.506 21.504 / / 1.201 0.502 0.025 / 0.302 / 0.943 67.017
实施例7.1 8.501 21.503 / / 1.203 0.503 0.043 / 0.205 / 0.942 67.100
实施例8 29.291 0.195 / / 1.252 0.504 0.042 / 0.207 / 0.862 67.647
实施例9 12.491 18.503 / / 1.552 0.505 0.053 / 0.262 0.252 0.861 65.521
实施例10 9.494 21.502 / / 1.804 1.989 0.051 / 0.351 / 0.918 63.891
实施例11 29.002 0.294 / / 0.655 2.005 0.035 / 0.202 / 0.895 66.912
实施例11.1 12.303 17.005 / / 0.652 1.987 0.025 / 0.203 / 0.902 66.923
实施例12 28.497 1.502 1.987 / 0.851 2.003 0.043 / 0.262 / 0.882 63.973
实施例13 12.503 18.502 / 1.992 1.005 2.502 0.042 0.154 0.351 0.202 0.921 61.826
对比例1 30.987 0.303 / / 0.552 1.552 0.053 0.222 / / 0.905 65.426
对比例2 8.502 21.491 / / 1.902 0.504 0.051 / 0.305 / 0.942 66.303
对比例3 30.988 0.194 / / 1.052 1.552 0.035 0.105 / / 0.897 65.177
对比例4 31.012 0.291 / / 1.051 1.552 0.025 0.348 / / 0.905 64.816
对比例5 8.502 21.506 / / 1.202 0.492 0.043 / 0.394 / 0.942 66.919
对比例6 8.493 21.504 / / 1.205 0.498 0.192 / 0.297 / 0.941 66.870
注:“/”是指不含有该元素。wt%为质量百分比。
效果实施例1实施例1~13和对比例1~6中稀土永磁材料的磁性能检测1、微观结构:采用FE-EPMA检测,对稀土永磁材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。检测晶界中的R 6T 13Ga相和R 6T 13Al相,T指Fe和/或Co。测试结果如下表3所示。
其中,R 6T 13Ga相和R 6T 13Al相含量的占比测量的是各个实施例和对比例中稀土永磁材料中同一批次中5个稀土永磁材料的占比,计算出的平均值。
2、剩磁、矫顽力:烧结磁铁使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行检测。并通过计算得出剩磁温度系数和矫顽力温度系数。测试结果如下表3所示。
其中,Br或Hcj均值是指:通过测试同一批次中5个稀土永磁材料的剩磁或矫顽力,计算出的平均值。
3、稀土永磁材料的磁性能一致性检测
方形度=Hk/Hcj;其中,Hk为当Br为90%Br时,外磁场H的值,Hcj为矫顽力。
相对磁导率为Br/Hcb;其中,Br为剩磁,Hcb为磁感矫顽力,当J-H曲线存在拐点时,磁导率在拐点之前取值。
Max(Hcj)-Min(Hcj):同一实施例或同一对比例中矫顽力最大值减去矫顽力最小值,若大于1.5kOe,则是磁性能一致性差。测试结果如下表3所示。
本发明每一实施例和对比例中制备出的是若干个钕铁硼材料,同一批次指的就是每一实施例和对比例中所获得的若干个钕铁硼材料。针对表3中的每项检测而言,每个钕铁硼材料指的是按照性能测试的单位切割出来10mm*10mm的圆柱体。
表3
Figure PCTCN2021077185-appb-000003
Figure PCTCN2021077185-appb-000004
注:“×”指的是不含R 6T 13Ga相或R 6T 13Al相。除Max(Hcj)-Min(Hcj)外,表3中的其余参数均是测量同一批次中的5个钕铁硼材料取的平均值。表3中20-80℃Br温度系数α(Br)%/℃、20-80℃Hcj温度系数β(Hcj)%/℃、20-150℃Br温度系数β(Hcj)%/℃、20-150℃Hcj温度系数β(Hcj)%/℃的数据是绝对值。

Claims (10)

  1. 一种稀土永磁材料的原料组合物,其特征在于,其包括如下质量含量的组分:
    R:28.5~33%;所述R为稀土元素,所述R至少包括Nd;
    B:0.84~0.94%;
    Ga:0.6<Ga≤1.8%;
    Co:≤2.5%且不为0;
    Fe:61.6~69%;
    N:包含Ti、Zr和Nb中的一种或多种;
    当N中包含Ti时,所述Ti的含量为0.15~0.25%;
    当N中包含Zr时,所述Zr的含量为0.2~0.35%;
    当N中包含Nb时,所述Nb的含量为0.2~0.5%;
    百分比为各组分质量占所述稀土永磁材料总质量的质量百分比。
  2. 如权利要求1所述的原料组合物,其特征在于,所述原料组合物中,所述R的含量为29.3~32%,较佳地为29.4~31.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Nd的含量为8~13%,或者为28~31%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中不含Cu;
    和/或,所述原料组合物中不含Al;
    和/或,所述原料组合物中,所述R还包括Pr;
    其中,所述Pr的含量较佳地在1.5%以下且不为0,或者为17~25%;所述Pr的含量更佳地为0.1~0.5%,或18.5~21.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中还包括RH,所述RH为重稀土元素;
    其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种;
    当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比;
    当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述B的含量为0.86~0.94%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述原料组合物中所述R的原子百分比和所述B的原子百分比满足如下关系式:B/R≥0.38,式中,所述B为在所述稀土永磁材料中的原子百分比,所述R为在所述稀土永磁材料中的原子百分比;
    和/或,所述Ga的含量为0.65~1.8%,较佳地为0.65~1.25%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Co的含量为0.5~2.5%,较佳地为1.05~2%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,所述Fe的含量为61.8~68.36%,较佳地为63.3~68.36%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,当所述N包含Ti时,所述Ti的含量为0.2~0.25%,百分比为占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Zr时,所述Zr的含量为0.25~0.35%,百分比为占所述原料组合物总质量的质量百分比;
    其中,当所述N包含Zr时,所述Zr的质量含量较佳地满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述原料组合物总质量的质量百分比;
    和/或,当所述N包含Nb时,所述Nb的含量为0.2~0.25%,百分比为占所述原料组合物总质量的质量百分比。
  3. 如权利要求1或2所述的原料组合物,其特征在于,所述稀土永磁材料的原料组合物,包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:61.8~68.36%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.25%;当N中包含Zr时,所述Zr的含量为 0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述稀土永磁材料的原料组合物,包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者17~25%;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:63.3~68%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.25%;当N中包含Zr时,所述Zr的含量为0.25~0.35%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述稀土永磁材料的原料组合物,包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:63.3~68.5%;Ti:0.2~0.25%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比;
    或者,所述稀土永磁材料的原料组合物,包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.94%;Ga:0.65~1.8%;Co:0.5~2.5%;Fe:62~67.5%;Zr:0.25~0.35%;所述原料组合物中不含Cu和Al;百分比为各组分质量占所述原料组合物总质量的质量百分比。
  4. 一种稀土永磁材料的制备方法,其特征在于,其包括下述步骤:将如权利要求1~3中任一项所述稀土永磁材料的原料组合物经铸造、制粉、成型、烧结和时效处理即可。
  5. 如权利要求4所述的制备方法,其特征在于,所述铸造之前还包括熔炼;
    其中,所述熔炼的温度较佳地在1500℃以下;
    和/或,所述铸造是以10 2℃/秒~10 4℃/秒的速度冷却;
    其中,所述冷却较佳地通过辊轮中通入冷却水实现;
    所述辊轮的进水温度较佳地≤25℃,更佳地为23~23.8℃;
    和/或,所述制粉包括氢破工艺和气流磨工艺;
    其中,所述氢破工艺较佳地包括吸氢、脱氢和冷却处理;
    其中,所述气流磨工艺较佳地在在氧化气体含量120ppm以下的氮气气氛下进行;
    其中,所述气流磨工艺的粉碎室压力较佳地为0.3~0.4MPa;
    其中,所述气流磨工艺的时间较佳地为2~3小时;
    其中,所述气流磨工艺后,较佳地在粉体中添加润滑剂;所述润滑剂的添加量较佳地为混合后粉末重量的0.10~0.15%;
    和/或,所述成型包括磁场成形法或热压热变形法;
    和/或,所述烧结之前还包括预热;所述预热的温度较佳地为300~600℃;所述预热的时间较佳地为1~2h;
    和/或,所述烧结的温度为1050~1095℃,较佳地为1063~1090℃;
    和/或,所述烧结的时间为5~10h;
    和/或,所述时效处理包括一级时效处理和二级时效处理;
    其中,所述一级时效处理的温度较佳地为850~950℃,更佳地为900℃;
    其中,所述一级时效处理的时间较佳地为2~4h;
    其中,所述二级时效处理的温度较佳地为455~470℃,更佳地为455℃、460℃或470℃;
    其中,所述二级时效处理的时间较佳地为2~4h;
    其中,升温至所述一级时效处理或二级时效处理的温度的速率较佳地为3~5℃/min。
  6. 一种如权利要求4或5所述的制备方法制得的稀土永磁材料。
  7. 一种稀土永磁材料,其特征在于,其包括如下质量含量的组分:
    R:28.5~33%;所述R为稀土元素,所述R至少包括Nd;
    B:0.84~0.943%;
    Ga:0.6<Ga≤1.804%;
    Co:≤2.5%、但不为0;
    Al:<0.08%;
    Fe:61.6~69%;
    N:包含Ti、Zr和Nb中的一种或多种;
    当N中包含Ti时,所述Ti的含量为0.15~0.252%;
    当N中包含Zr时,所述Zr的含量为0.2~0.351%;
    当N中包含Nb时,所述Nb的含量为0.2~0.5%;
    百分比为各组分质量占所述稀土永磁材料总质量的质量百分比。
  8. 如权利要求7所述的稀土永磁材料,其特征在于,所述稀土永磁材料的晶界相中还包括R 6T 13M相;
    其中,所述R 6T 13M相的体积与“主相、晶界相和富稀土相”总体积的比较佳地为2~12%;更佳地为2.5~11.5%;
    和/或,所述稀土永磁材料中,所述R的含量为29.3~32%,较佳地为29.4~31.5%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Nd的含量为8~13%,或者,为28~31%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述稀土永磁材料中不含Cu;
    和/或,所述Pr的含量在1.5%以下且不为0,或者为17~25%;较佳地为0.1~0.5%,或者为18.5~21.505%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述稀土永磁材料中还包括RH,所述RH为重稀土元素;
    其中,当所述稀土永磁材料中包含RH时,所述RH的含量较佳地为1~2.5%,百分比为占所述稀土永磁材料总质量的质量百分比;
    其中,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种;
    当所述RH包含Dy时,所述Dy的含量较佳地为1~2.5%,百分比为占所述稀土永磁材料总质量的质量百分比;
    当所述RH包含Tb时,所述Tb的含量较佳地为1~2.5%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述B的含量为0.861~0.943%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述稀土永磁材料中的所述R的原子百分比和所述B的原子百分比满足如下关系式:B/R≥0.38,式中,所述B为在所述稀土永磁材料中的原子百分比,所述R为在所述稀土永磁材料中的原子百分比;
    和/或,所述Ga的含量为0.65~1.804%,较佳地为0.65~1.25%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Co的含量为0.5~2.5%,较佳地为1.05~2.005%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Al的含量为0.02~0.06%,较佳地为0.025~0.053%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Fe的含量为61.8~68.36%,较佳地为63.3~68.36%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Ti的含量为0.151~0.252%,较佳地为0.2~0.252%,百分比为占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Zr的含量为0.25~0.351%,百分比为占所述稀土永磁材料总质量的质量百分比;
    当所述稀土永磁材料中包含Zr时,所述Zr的含量较佳地满足:0.20%≤Zr<(3.48B-2.67)%,式中B指的是所述B占所述稀土永磁材料总质量的质量百分比;
    和/或,所述Nb的含量为0.2~0.25%,百分比为占所述稀土永磁材料总质量的质量百分比。
  9. 如权利要求7或8所述的稀土永磁材料,其特征在于,所述稀土永磁材料包括如下含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.02~0.06%; Fe:61.88~68.36%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.252%;当N中包含Zr时,所述Zr的含量为0.25~0.351%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为2.5~11.5%;
    或者,所述稀土永磁材料包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R包括Nd和Pr;Pr:0.1~0.5%或者17~25%;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.025~0.053%;Fe:63.3~68.36%;N:包含Ti、Zr和Nb中的一种或多种;当N中包含Ti时,所述Ti的含量为0.2~0.252%;当N中包含Zr时,所述Zr的含量为0.25~0.351%;当N中包含Nb时,所述Nb的含量为0.2~0.35%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5~11%;
    或者,所述稀土永磁材料包括如下质量含量的组分:R:29.4~31.5%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.025~0.053%;Fe:63.3~68.5%;Ti:0.2~0.252%;所述稀土永磁材料中不含Cu;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为5.7~11.3%;
    或者,所述稀土永磁材料,包括如下质量含量的组分:R:29.3~32%;所述R为稀土元素,所述R至少包括Nd;B:0.86~0.943%;Ga:0.65~1.8%;Co:0.5~2.5%;Al:0.025~0.053%;Fe:62~67.5%;Zr:0.25~0.351%;所述稀土永磁材料中不含Cu和Al;百分比为各组分质量占所述稀土永磁材料总质量的质量百分比;所述稀土永磁材料的晶界相中还包括R 6T 13Ga相,所述R 6T 13Ga相的体积与“主相、晶界相和富稀土相”总体积的比为2.5~11.5%。
  10. 如权利要求7~9中任一项所述的稀土永磁材料在作为电子元器件的应用。
PCT/CN2021/077185 2020-02-29 2021-02-22 一种稀土永磁材料及其制备方法和应用 WO2021169899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132231.3A CN111312463B (zh) 2020-02-29 2020-02-29 一种稀土永磁材料及其制备方法和应用
CN202010132231.3 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169899A1 true WO2021169899A1 (zh) 2021-09-02

Family

ID=71147811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077185 WO2021169899A1 (zh) 2020-02-29 2021-02-22 一种稀土永磁材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111312463B (zh)
WO (1) WO2021169899A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312463B (zh) * 2020-02-29 2022-05-03 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用
CN112992462B (zh) * 2021-03-17 2023-01-24 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130183A (zh) * 2016-02-26 2017-09-05 Tdk株式会社 R‑t‑b系永久磁铁
US20190276917A1 (en) * 2018-03-12 2019-09-12 Tdk Corporation R-t-b based permanent magnet
CN110619984A (zh) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111312463A (zh) * 2020-02-29 2020-06-19 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572146B (zh) * 2008-05-04 2012-01-25 比亚迪股份有限公司 一种钕铁硼永磁材料及其制备方法
CN101582317B (zh) * 2008-05-15 2012-09-19 三环瓦克华(北京)磁性器件有限公司 新型烧结钕铁硼稀土永磁材料及其制造方法
JP6992634B2 (ja) * 2018-03-22 2022-02-03 Tdk株式会社 R-t-b系永久磁石
JP7180095B2 (ja) * 2018-03-23 2022-11-30 Tdk株式会社 R‐t‐b系焼結磁石

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130183A (zh) * 2016-02-26 2017-09-05 Tdk株式会社 R‑t‑b系永久磁铁
US20190276917A1 (en) * 2018-03-12 2019-09-12 Tdk Corporation R-t-b based permanent magnet
CN110619984A (zh) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111312463A (zh) * 2020-02-29 2020-06-19 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111312463A (zh) 2020-06-19
CN111312463B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
KR102527128B1 (ko) R-t-b계 희토류 영구자석 재료, 제조방법 및 응용
WO2021169897A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
TW202000944A (zh) 低B含量的R-Fe-B系燒結磁鐵及其製備方法
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
KR102589802B1 (ko) 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용
TW202127474A (zh) 釹鐵硼永磁材料、製備方法、應用
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111326304B (zh) 一种稀土永磁材料及其制备方法和应用
CN111243812B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169899A1 (zh) 一种稀土永磁材料及其制备方法和应用
CN111261355B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169895A1 (zh) 一种钕铁硼材料及其制备方法和应用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
WO2021169898A1 (zh) 一种钕铁硼材料及其制备方法和应用
CN111243811B (zh) 一种钕铁硼材料及其制备方法和应用
CN111223628A (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169901A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169900A1 (zh) 一种稀土永磁材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759936

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21759936

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.07.2023)