WO2021098223A1 - 钕铁硼磁体材料、原料组合物及制备方法和应用 - Google Patents

钕铁硼磁体材料、原料组合物及制备方法和应用 Download PDF

Info

Publication number
WO2021098223A1
WO2021098223A1 PCT/CN2020/100586 CN2020100586W WO2021098223A1 WO 2021098223 A1 WO2021098223 A1 WO 2021098223A1 CN 2020100586 W CN2020100586 W CN 2020100586W WO 2021098223 A1 WO2021098223 A1 WO 2021098223A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
boron magnet
neodymium iron
iron boron
magnet material
Prior art date
Application number
PCT/CN2020/100586
Other languages
English (en)
French (fr)
Inventor
付刚
黄佳莹
黄吉祥
权其琛
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Priority to JP2022513461A priority Critical patent/JP7220331B2/ja
Priority to KR1020227006886A priority patent/KR102574303B1/ko
Priority to US17/639,758 priority patent/US20220328218A1/en
Priority to EP20889698.5A priority patent/EP4016559B1/en
Publication of WO2021098223A1 publication Critical patent/WO2021098223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention specifically relates to a neodymium iron boron magnet material, a raw material composition, and a preparation method and application.
  • the neodymium iron boron (NdFeB) magnet material with Nd 2 Fe 14 B as the main component has high remanence (Br), coercivity and maximum energy product (BHmax), comprehensive magnetism It has excellent performance and is used in wind power generation, new energy vehicles, inverter home appliances, etc.
  • the rare earth components in the neodymium iron boron magnet materials in the prior art are usually neodymium with only a small amount of praseodymium.
  • the technical problem to be solved by the present invention is to overcome the defect that the coercivity and remanence of the magnet material can not be significantly improved after the neodymium is replaced with part of the praseodymium in the neodymium iron boron magnet material in the prior art, and provides Neodymium iron boron magnet material, raw material composition, preparation method and application.
  • the neodymium iron boron magnet material of the present invention can increase the content of praseodymium and gallium at the same time, which can overcome the defect that the coercive force cannot be significantly improved by increasing the high praseodymium alone or the high gallium alone in the prior art. Under the premise of heavy rare earth elements, the obtained NdFeB magnet material has higher remanence and coercivity.
  • the present invention solves the above technical problems through the following technical solutions.
  • the present invention also provides a raw material composition of neodymium iron boron magnet material, which includes the following components in terms of mass percentage: R': 29.5-32%, said R'is a rare earth element, and said R' Including Pr and Nd; wherein, the Pr ⁇ 17.15%;
  • Fe 64-69%; the percentage is the mass percentage of the content of each component in the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the content of Pr is preferably 17.15-29%, for example, 17.15%, 18.15%, 19.15%, 20.15%, 21.15%, 22.15%, 23.15%, 24.15%, 25.15%, 26.15%, 27.15%, 27.85% or 28.85%, more preferably 20.15-26.15%, the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the Nd content is preferably 1.85% to 14%, such as 1.85%, 2.85%, 3.85%, 4.85%, 5.85%, 6.15%, 6.85%, 7.85%, 8.85%, 9.85%, 10.65 %, 10.85%, 11.15%, 11.35%, 11.75%, 12.35%, 12.85%, 13.65% or 13.85%, the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the ratio of the total mass of the Nd to the R' is preferably ⁇ 0.5, more preferably 0.1 to 0.45, for example, 0.06, 0.08, 0.12, 0.18, 0.2, 0.21, 0.22, 0.24, 0.25 , 0.28, 0.29, 0.31, 0.33, 0.35, 0.36, 0.38, 0.39, 0.4, 0.41, 0.41, 0.43, or 0.44.
  • said R' preferably also includes other rare earth elements in addition to Pr and Nd, such as Y.
  • R' preferably further includes RH
  • said RH is a heavy rare earth element
  • the type of said RH preferably includes one or more of Dy, Tb and Ho, more preferably Dy and/ Or Tb.
  • the quality of the RH and the R' is preferably ⁇ 0.253, more preferably 0-0.07%, such as 0.5/31.5, 0.5/31.8, 1.2/31.2, 1.5/31.5, 1.6/30.9, 1/ 30.3, 1/30.5, 1/31.9, 1/32, 2.2/31.9, 2/31.3 or 2/32.
  • the content of the RH is preferably 1 to 2.5%, for example, 0.5%, 1%, 1.2%, 1.5%, 1.6%, 2% or 2.2%, and the percentage refers to the proportion of the neodymium iron boron magnet material The mass percentage of the total mass of the raw material composition.
  • the content of Tb is preferably 0.5-2%, such as 0.5%, 0.7%, 0.8%, 1%, 1.2%, 1.4%, 1.5%, 1.7% or 2% ,
  • the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the content of Dy is preferably less than 1%, for example, 0.1%, 0.2%, 0.3%, 0.5% or 1%, and the percentage refers to the proportion of the neodymium iron boron magnet material The mass percentage of the total mass of the raw material composition.
  • the content of Ho is preferably 0.8-2%, for example 1%, and the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the content of Ga is preferably 0.25-1%, for example, 0.25%, 0.27%, 0.28%, 0.29%, 0.3%, 0.31%, 0.32%, 0.33%, 0.35%, 0.36% , 0.37%, 0.38%, 0.39%, 0.4%, 0.41%, 0.43%, 0.45%, 0.47%, 0.49%, 0.5%, 0.51%, 0.53%, 0.55%, 0.57%, 0.6%, 0.7%, 0.8 %, 0.85%, 0.9%, 0.95% or 1%, more preferably 0.42-1.05%, the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the content of B is preferably 0.95% to 1.2%, such as 0.95%, 0.96%, 0.97%, 0.98%, 0.985%, 1%, 1.1% or 1.2%, and the percentage refers to the proportion of the neodymium The mass percentage of the total mass of the raw material composition of the iron-boron magnet material.
  • the Fe content is preferably 65-68.3%, such as 65.015%, 65.215%, 65.315%, 65.335%, 65.55%, 65.752%, 65.87%, 65.95%, 66.015%, 66.165%, 66.185 %, 66.315%, 66.395%, 66.405%, 66.415%, 66.465%, 66.475%, 66.515%, 66.537%, 66.602%, 66.605%, 66.615%, 66.62%, 66.665%, 66.695%, 66.755%, 66.785%, 66.915%, 66.915%, 66.935%, 67.005%, 67.055%, 67.065%, 67.085%, 67.125%, 67.145%, 67.185%, 67.195%, 67.215%, 67.245%, 67.31%, 67.315%, 67.325%, 67.415% , 67
  • the raw material composition of the neodymium iron boron magnet material preferably further includes Cu.
  • the content of Cu is preferably 0.1% to 0.8%, for example, 0.1%, 0.2%, 0.25%, 0.35%, 0.4%, 0.45%, 0.48%, 0.5%, 0.55%, 0.58%, 0.7% or 0.8%, more preferably 0.1-0.35%, the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the raw material composition of the neodymium iron boron magnet material preferably further includes Al.
  • the content of Al is preferably below 1%, more preferably 0.01-1%, such as 0.02%, 0.03%, 0.05%, 0.1%, 0.12%, 0.15%, 0.2%, 0.3% , 0.4%, 0.45%, 0.6%, 0.8% or 1%, the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the raw material composition of the neodymium iron boron magnet material preferably further includes Zr.
  • the content of Zr is preferably below 0.4%, such as 0.1%, 0.15%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.3%, 0.35% or 0.4%, more preferably
  • the ground is 0.25-0.3%, and the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the raw material composition of the neodymium iron boron magnet material preferably further includes Co.
  • the content of Co is preferably 0.5-2%, for example 1%, and the percentage refers to the mass percentage of the total mass of the raw material composition of the neodymium iron boron magnet material.
  • the raw material composition of the neodymium iron boron magnet material preferably further includes Mn.
  • the content of Mn is preferably below 0.02%, such as 0.01%, 0.013%, 0.015% or 0.018%, and the percentage is the percentage of the mass of each component to the total mass of the neodymium iron boron magnet material.
  • the raw material composition of the neodymium iron boron magnet material can also include other elements commonly found in the art, such as one of Zn, Ag, In, Sn, V, Cr, Mo, Ta, Hf and W Or multiple.
  • the content of Zn can be a conventional content in the art, preferably less than 0.1%, more preferably 0.01 to 0.08%, such as 0.01%, 0.04% or 0.06%, and the percentage refers to the proportion of the neodymium iron The mass percentage of the total mass of the raw material composition of the boron magnet material.
  • the content of Mo can be a conventional content in the art, preferably less than 0.1%, more preferably 0.01 to 0.08%, such as 0.03% or 0.06%, and the percentage refers to the proportion of the neodymium iron boron magnet material The mass percentage of the total mass of the raw material composition.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%; Cu: ⁇ 0.35%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R' It also includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; preferably the content of Cu is 0.1 to 0.8%; the content of Pr is preferably It is 17.15 to 29%.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr: ⁇ 17.15%; Ga: 0.25 to 1.05%; Al: ⁇ 0.03%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R 'Also including RH, the RH is a heavy rare earth element, the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr: ⁇ 17.15%; Ga: 0.25 to 1.05%; Zr: 0.25 to 0.3%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R'also includes RH.
  • the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%; Cu: ⁇ 0.35%; Al: ⁇ 0.03%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably
  • the R′ further includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; preferably, the content of Cu is 0.1 to 0.8%; The content of Pr is preferably 17.15-29%.
  • the raw material composition of the neodymium iron boron magnet material preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%; Cu: ⁇ 0.35%; Zr: 0.25 to 0.3%; B: 0.9 to 1.2%; Fe: 64 to 69%;
  • the R' also includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; preferably, the content of Cu is 0.1 to 0.8%;
  • the content of Pr is preferably 17.15-29%.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd, wherein the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%, Al: ⁇ 0.03%, Zr: 0.25 to 0.3%, B: 0.9 to 1.2%, Fe: 64 to 69%;
  • the R′ further includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the raw material composition of the neodymium iron boron magnet material preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%; Cu: ⁇ 0.35%; Al: ⁇ 0.03%; Zr: 0.25 to 0.3%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R'also includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; preferably, the content of Cu is 0.1% to 0.8%; the content of Pr is preferably 17.15% to 29%.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%, Mn: ⁇ 0.02%, B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R' It also includes RH, the RH is a heavy rare earth element, the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the raw material composition of the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R 'Including Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.25 to 1.05%, Mn ⁇ 0.02%, Zr: 0.25 to 0.3%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably Wherein, said R'also includes RH, said RH is a heavy rare earth element, and the content of said heavy rare earth element is preferably 1 to 2.5%; the content of Pr is preferably 17.15 to 29%; The content of Ga is preferably 0.8 to 1%.
  • percentage refers to the mass percentage of each component in the total mass of the raw material composition of the neodymium iron boron magnet material
  • the present invention also provides a method for preparing the neodymium iron boron magnet material, which is prepared by using the raw material composition of the neodymium iron boron magnet material.
  • the preparation method preferably includes the following steps: subjecting the molten liquid of the raw material composition of the neodymium iron boron magnet material to the melting and casting, hydrogen breaking, forming, sintering and aging treatment.
  • the molten liquid of the raw material composition of the neodymium iron boron magnet material can be prepared by a conventional method in the art, for example, smelting in a high-frequency vacuum induction melting furnace.
  • the vacuum degree of the melting furnace may be 5 ⁇ 10 -2 Pa.
  • the temperature of the smelting may be below 1500°C.
  • the casting operations and conditions can be conventional operations and conditions in the field, for example, in an Ar gas atmosphere (for example, under an Ar gas atmosphere of 5.5 ⁇ 10 4 Pa), at 10 2 °C/sec- Cool down at a rate of 10 4 °C/sec.
  • an Ar gas atmosphere for example, under an Ar gas atmosphere of 5.5 ⁇ 10 4 Pa
  • the operation and conditions of the hydrogen breaker can be conventional operations and conditions in the art.
  • it can be treated by hydrogen absorption, dehydrogenation, and cooling.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.15 MPa.
  • the dehydrogenation can be carried out under the conditions of raising the temperature while drawing a vacuum.
  • the pulverization process may be a conventional pulverization process in the field, such as jet mill pulverization.
  • the jet mill pulverization is preferably performed in a nitrogen atmosphere with an oxidizing gas content of 150 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure in the pulverizing chamber of the jet mill is preferably 0.38 MPa; the time for the jet mill to pulverize is preferably 3 hours.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.10-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the operation and conditions of the forming may be conventional operations and conditions in the art, such as a magnetic field forming method or a hot pressing and thermal deformation method.
  • the sintering operation and conditions can be conventional operations and conditions in the field.
  • it can be preheated, sintered, and cooled under vacuum conditions (for example, under a vacuum of 5 ⁇ 10 -3 Pa).
  • the preheating temperature is usually 300-600°C.
  • the preheating time is usually 1 to 2 hours.
  • the preheating is preheating at a temperature of 300°C and 600°C for 1 hour each.
  • the sintering temperature is preferably 1030 to 1080°C, for example, 1040°C.
  • the sintering time can be conventional in the field, for example, 2h.
  • Ar gas can be introduced before the cooling to make the gas pressure reach 0.1 MPa.
  • a grain boundary diffusion treatment is preferably performed.
  • the operation and conditions of the grain boundary diffusion can be conventional operations and conditions in the art.
  • the surface of the neodymium-iron-boron magnet material is vapor-deposited, coated, or sputtered to adhere a substance containing Tb and/or a substance containing Dy, and then performing diffusion heat treatment.
  • the Tb-containing material may be Tb metal, Tb-containing compound, for example, Tb-containing fluoride or alloy.
  • the Dy-containing substance may be Dy metal, Dy-containing compound, for example, Dy-containing fluoride or alloy.
  • the temperature of the diffusion heat treatment may be 800 to 900°C, for example, 850°C.
  • the time of the diffusion heat treatment may be 12-48h, such as 24h.
  • the temperature of the secondary aging treatment is preferably 460-650°C, for example 500°C.
  • the heating rate to 460-650°C is preferably 3-5°C/min.
  • the starting point of the temperature increase may be room temperature.
  • the present invention also provides a neodymium iron boron magnet material, which is prepared by the above-mentioned preparation method.
  • the present invention provides a neodymium iron boron magnet material, which includes the following components in terms of mass percentage: R': 29.5% to 32%, the R'includes Pr and Nd; wherein, the Pr ⁇ 17.15% ;
  • Ga 0.245 ⁇ 1.05%
  • Fe 64-69%; the percentage is the mass percentage of the content of each component in the total mass of the neodymium iron boron magnet material.
  • the content of Pr is preferably 17.15-29%, such as 17.145%, 17.147%, 17.149%, 17.15%, 17.151%, 17.152%, 18.132%, 18.146%, 18.148%, 19.146%, 19.148 %, 19.149%, 19.149%, 19.151%, 19.153%, 20.146%, 20.147%, 20.148%, 20.149%, 20.151%, 20.154%, 21.146%, 21.148%, 22.148%, 23.147%, 23.148%, 23.149%, 23.15%, 23.151%, 23.152%, 24.148%, 24.151%, 24.152%, 25.152%, 26.151%, 27.152%, 27.851% or 28.852%, the percentage is the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the Nd content is preferably 1.85-14%, such as 1.852%, 2.848%, 3.848%, 4.852%, 5.845%, 5.848%, 5.85%, 5.851%, 5.852%, 6.147%, 6.148 %, 6.149%, 6.151%, 6.846%, 6.847%, 6.848%, 6.853%, 7.846%, 7.849%, 7.851%, 7.852%, 8.851%, 9.549%, 9.848%, 9.851%, 9.852%, 10.651%, 10.848%, 10.849%, 10.851%, 11.148%, 11.149%, 11.352%, 11.355%, 11.746%, 11.747%, 11.748%, 11.751%, 11.752%, 12.345%, 12.347%, 12.35%, 12.451%, 12.848% , 12.851%, 12.89%, 13.348%, 13.651%, 13.848%, 13.849% or 13.856%, and the percentage is the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the ratio of the total mass of the Nd and the R' is preferably ⁇ 0.5, more preferably 0.06 to 0.45, such as 0.06, 0.08, 0.12, 0.18, 0.2, 0.21, 0.22, 0.24, 0.25, 0.28 , 0.29, 0.31, 0.33, 0.35, 0.36, 0.38, 0.39, 0.4, 0.41, 0.41, 0.43, or 0.44.
  • said R' preferably also includes other rare earth elements in addition to Pr and Nd, such as Y.
  • said R' preferably further includes RH, said RH is a heavy rare earth element, and the type of said RH preferably includes one or more of Dy, Tb and Ho, such as Dy and/or Tb.
  • the quality of the RH and the R' is preferably ⁇ 0.253, more preferably 0.01 to 0.07, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 or 0.07.
  • the RH content is preferably 1 to 2.5%, for example, 0.421%, 0.501%, 0.502%, 0.503%, 0.51%, 0.99%, 1.004%, 1.005%, 1.006%, 1.01%, 1.02% , 1.03%, 1.212%, 1.223%, 1.512%, 1.521%, 1.593%, 1.604%, 2.001%, 2.002%, 2.01% or 2.253%, and the percentage is the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the content of Tb is preferably 0.5 to 2.01%, such as 0.501%, 0.502%, 0.503%, 0.702%, 0.703%, 0.704%, 0.705%, 0.802%, 1.01% , 1.02%, 1.03%, 1.21%, 1.402%, 1.42%, 1.492%, 1.701%, 2.001% or 2.01%, the percentage refers to the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the content of Dy is preferably below 1.05%, more preferably 0.1-1.03%, for example, 0.101%, 0.202%, 0.203%, 0.301%, 0.302%, 0.303% , 0.421%, 0.51% or 1.03%, the percentage refers to the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the content of Ho is preferably 0.8-2%, such as 0.99%, 1.01% or 1.02%, and the percentage refers to the mass percentage of the total mass of the neodymium iron boron magnet material .
  • the content of Ga is preferably 0.247 to 1.03%, such as 0.247%, 0.248%, 0.249%, 0.251%, 0.252%, 0.268%, 0.281%, 0.291%, 0.3%, 0.301%, 0.302 %, 0.303%, 0.312%, 0.323%, 0.332%, 0.351%, 0.352%, 0.361%, 0.362%, 0.371%, 0.38%, 0.392%, 0.402%, 0.413%, 0.433%, 0.45%, 0.451%, 0.452%, 0.471%, 0.472%, 0.491%, 0.492%, 0.502%, 0.512%, 0.531%, 0.55%, 0.551%, 0.572%, 0.589%, 0.6%, 0.602%, 0.701%, 0.703%, 0.712% , 0.791%, 0.804%, 0.82%, 0.848%, 0.892%, 0.912%, 0.951%, 1.02% or 1.03%, the percentage refers to the mass percentage of the total mass of the neodymium iron
  • the content of B is preferably 0.95% to 1.2%, such as 0.949%, 0.956%, 0.969%, 0.982%, 0.983%, 0.984%, 0.985%, 0.986%, 0.987%, 0.991%, 1.02 %, 1.11%, 1.18% or 1.19%, the percentage refers to the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the content of Fe is preferably 64.8-68.2%, for example, 64.981%, 65.157%, 65.296%, 65.308%, 65.54%, 65.729%, 65.849%, 65.9895%, 66.002%, 66.15%, 66.209%, 66.296%, 66.392%, 66.393%, 66.404%, 66.445%, 66.451%, 66.458%, 66.503%, 66.532%, 66.595%, 66.607%, 66.6145%, 66.62%, 66.644%, 66.664%, 66.756% , 66.782%, 66.909%, 66.912%, 66.913%, 66.941%, 67.007%, 67.058%, 67.072%, 67.093%, 67.125%, 67.14%, 67.187%, 67.188%, 67.195%, 67.24
  • the neodymium iron boron magnet material preferably further includes Cu.
  • the content of Cu is preferably 0.1% to 0.9%, for example, 0.1%, 0.102%, 0.202%, 0.205%, 0.25%, 0.351%, 0.352%, 0.402%, 0.405%, 0.451%, 0.452%, 0.481%, 0.5%, 0.501%, 0.502%, 0.552%, 0.581%, 0.7% or 0.803%, the percentage refers to the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the neodymium iron boron magnet material preferably further includes Al.
  • the content of Al is preferably 1.1 wt% or less, more preferably 0.01 to 1.02%, such as 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.101%, 0.102%, 0.12 %, 0.15%, 0.202%, 0.301%, 0.402%, 0.451%, 0.601%, 0.602%, 0.603%, 0.801% or 1.02%, the percentage refers to the mass percentage of the total mass of the neodymium iron boron magnet material.
  • the neodymium iron boron magnet material preferably further includes Zr.
  • the content of Zr is preferably below 0.4%, for example, 0.1%, 0.15%, 0.248%, 0.25%, 0.251%, 0.252%, 0.26%, 0.27%, 0.28%, 0.29%, 0.3 %, 0.301%, 0.302%, 0.35% or 0.4%, more preferably 0.25-0.3%, and the percentage is the percentage of the mass of each component to the total mass of the neodymium iron boron magnet material.
  • the neodymium iron boron magnet material preferably further includes Co.
  • the content of Co is preferably 0.5-2%, for example 1%.
  • the neodymium iron boron magnet material preferably further includes Mn.
  • the content of Mn is preferably below 0.02%, such as 0.01%, 0.013%, 0.014%, 0.015%, 0.018% or 0.02%, and the percentage is the percentage of the mass of each component to the total mass of the neodymium iron boron magnet material .
  • the neodymium iron boron magnet material usually also includes O.
  • the content of O is preferably below 0.13%.
  • the neodymium iron boron magnet material may also include other elements commonly found in the art, such as one or more of Zn, Ag, In, Sn, V, Cr, Mo, Ta, Hf, and W.
  • the content of Zn can be a conventional content in the art, preferably less than 0.1%, more preferably 0.01-0.08%, such as 0.01%, 0.04% or 0.06%.
  • the content of Mo may be a conventional content in the art, preferably less than 0.1%, more preferably 0.01-0.08%, such as 0.03% or 0.06%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein, the Pr: ⁇ 17.15%; Ga: 0.245 to 1.05%; Cu: ⁇ 0.35%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R'also includes RH
  • the RH is a heavy rare earth element, the content of the heavy rare earth element is preferably 1 to 2.5%; the content of Cu is preferably 0.1 to 0.9%; the content of Pr is preferably 17.15 to 29%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein, the Pr: ⁇ 17.15%; Ga: 0.245 to 1.05%; Al: ⁇ 0.03%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R'also includes RH
  • the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein, the Pr: ⁇ 17.15%; Ga: 0.0.245 to 1.05%; Zr: 0.25 to 0.3%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R' It also includes RH, the RH is a heavy rare earth element, the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the iron-boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5-32%, the R'is a rare earth element, and the R'includes Pr and Nd Wherein, said Pr ⁇ 17.15%; Ga: 0.245 ⁇ 1.05%%; Cu: ⁇ 0.35%; Al: ⁇ 0.03%; B: 0.9 ⁇ 1.2%; Fe: 64 ⁇ 69%; preferably, the R'also includes RH.
  • the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; preferably, the content of Cu is 0.1 to 0.9%; the content of Pr is higher than Preferably, it is 17.15-29%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein the Pr ⁇ 17.15%; Ga: 0.245 ⁇ 1.05%; Cu: ⁇ 0.35%; Zr: 0.25 ⁇ 0.3%; B: 0.9 ⁇ 1.2%; Fe: 64 ⁇ 69%; preferably,
  • the R' also includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; preferably, the content of Cu is 0.1 to 0.9%; the content of Pr Preferably it is 17.15-29%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd, wherein the Pr ⁇ 17.15%; Ga: 0.245 to 1.05%, Al: ⁇ 0.03%, Zr: 0.25 to 0.3%, B: 0.9 to 1.2%, Fe: 64 to 69%; preferably,
  • the R' also includes RH, the RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 28.85%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein the Pr ⁇ 17.15%; Ga: 0.245 ⁇ 1.05%; Cu: ⁇ 0.35%; Al: ⁇ 0.03%; Zr: 0.25 ⁇ 0.3%; B: 0.9 ⁇ 1.2%; Fe: 64 ⁇ 69% ;
  • the R' also includes RH, the RH is a heavy rare earth element, the content of the heavy rare earth element is preferably 1 to 2.5%; preferably the content of Cu is 0.1 to 0.9% ; The content of Pr is preferably 17.15-29%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.245 to 1.05%, Mn: ⁇ 0.02%, B: 0.9 to 1.2%; Fe: 64 to 69%; preferably, the R'also includes RH, The RH is a heavy rare earth element, and the content of the heavy rare earth element is preferably 1 to 2.5%; the content of the Pr is preferably 17.15 to 29%.
  • the neodymium iron boron magnet material in terms of mass percentage, preferably includes the following components: R': 29.5 to 32%, the R'is a rare earth element, and the R'includes Pr and Nd; wherein, the Pr ⁇ 17.15%; Ga: 0.245 to 1.05%, Mn: ⁇ 0.02%, Zr: 0.25 to 0.3%; B: 0.9 to 1.2%; Fe: 64 to 69%; preferably,
  • the R' also includes RH, the RH is a heavy rare earth element, the content of the heavy rare earth element is preferably 1 to 2.5%; the content of Pr is preferably 17.15 to 29%; the content of Ga Preferably it is 0.8 to 1%.
  • percentage refers to the mass percentage of each component in the total mass of the neodymium iron boron magnet material.
  • the present invention provides a neodymium iron boron magnet material.
  • the ratio of the total mass of Pr and Ga to the total mass of Nd and Ga is ⁇ 1.0;
  • the ratio of the total mass of Pr and Ga to the total mass of Nd and Ga is greater than or equal to 0.1; preferably, the composition of the neodymium iron boron magnet material is the composition of the aforementioned neodymium iron boron magnet material Minute.
  • the grain boundary refers to the boundary between two crystal grains
  • the intergranular triangle region refers to the gap formed by three or more crystal grains.
  • the invention also provides an application of the above-mentioned neodymium iron boron magnet material as an electronic component in a motor.
  • the motor is preferably a new energy vehicle drive motor, an air-conditioning compressor or an industrial servo motor, a wind generator, an energy-saving elevator or a speaker assembly.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention lies in: adding praseodymium and gallium to the neodymium iron boron magnet material in the prior art, although it will increase the coercive force, but at the same time will reduce the remanence.
  • the inventor provided a large number of experiments and found that a specific content of praseodymium and gallium can produce a synergistic effect, that is to say, adding a specific content of praseodymium and gallium at the same time can make the coercivity of the neodymium iron boron magnet have a more significant improvement, and The remanence is only slightly reduced.
  • the coercive force and remanence of the magnet material are still relatively high.
  • Fig. 1 is an element distribution diagram of the neodymium iron boron magnet material prepared in Example 23 formed by scanning the FE-EPMA surface.
  • Example 2 is a diagram of the element distribution at the grain boundary of the neodymium iron boron magnet material prepared in Example 23, and 1 in the figure is the point taken by the quantitative analysis at the grain boundary.
  • Fig. 3 is a diagram of the element distribution in the intergranular triangle region of the neodymium iron boron magnet material prepared in Example 23, and 1 in the figure is the point taken by the quantitative analysis in the inter-triangular region.
  • wt.% refers to the mass percentage of the composition in the total mass of the raw material composition of the neodymium iron boron magnet material, and "/" means that the element is not added.
  • Br is the residual magnetic flux density, and "Hcj” is the intrinsic coercivity.
  • Table 1 The formula (wt.%) of the raw material composition of the neodymium iron boron magnet material in each embodiment and comparative example
  • the preparation method of neodymium iron boron magnet material is as follows:
  • Magnetic field forming process Using a right-angle orientation type magnetic field forming machine, the above-mentioned zinc stearate-added powder is formed into a side length at one time in an orientation magnetic field of 1.6T and a forming pressure of 0.35ton/cm 2 It is a 25mm cube; it is demagnetized in a 0.2T magnetic field after one-time forming. In order to prevent the molded body from being exposed to air, the molded body after the primary molding was sealed, and then a secondary molding machine (isostatic press) was used to perform secondary molding at a pressure of 1.3 ton/cm 2.
  • a secondary molding machine isostatic press
  • each compact is moved to a sintering furnace for sintering, sintered in a vacuum of 5 ⁇ 10 -3 Pa and maintained at 300°C and 600°C for 1 hour; then at a temperature of 1040°C Sintering for 2 hours; then pass Ar gas to make the pressure reach 0.1 MPa, and then cool to room temperature to obtain a sintered body.
  • Example 53 uses the Dy grain boundary diffusion method
  • Example 1 Using the raw material composition of Example 1 in Table 1, according to the preparation of the sintered body of Example 1, a sintered body was first prepared, followed by grain boundary diffusion, and then an aging treatment.
  • the process of aging treatment is the same as that of Example 1, and the process of grain boundary diffusion is as follows:
  • the sintered body is processed into a magnet with a diameter of 20mm and a sheet thickness of less than 3mm.
  • the thickness direction is the direction of the magnetic field orientation.
  • the raw material prepared with Dy fluoride is used to spray and coat the magnet on the entire surface.
  • the magnet is dried, and the metal with Tb element is sputtered on the surface of the magnet in a high-purity Ar gas atmosphere, followed by diffusion heat treatment at 850°C for 24 hours. Cool to room temperature.
  • Embodiment 54 adopts Tb grain boundary diffusion method
  • the preparation of the sintered body numbered 1 in Table 1 according to Example 1 is first prepared to obtain a sintered body, which is first subjected to grain boundary diffusion, and then subjected to aging treatment.
  • the process of aging treatment is the same as that of Example 1, and the process of grain boundary diffusion is as follows:
  • the sintered body is processed into a magnet with a diameter of 20mm and a sheet thickness of less than 7mm.
  • the thickness direction is the direction of the magnetic field orientation.
  • raw materials made of Tb fluoride are used to spray and coat the magnet on the entire surface.
  • the magnet is dried, and the metal with Tb element is sputtered on the surface of the magnet in a high-purity Ar gas atmosphere, followed by diffusion heat treatment at 850°C for 24 hours. Cool to room temperature.
  • Magnetic performance evaluation The magnet material uses the NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute for magnetic performance testing. Table 2 below shows the magnetic performance test results.
  • FE-EPMA detection the vertical orientation surface of the magnet material of Example 23 was polished, and a field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) was used for detection.
  • the main analysis elements are Pr, Nd, Ga, Zr, O, and quantitative analysis of the elements at the grain boundaries and intercrystalline triangles.
  • Figure 1 is the distribution diagram of each element in the NdFeB magnet material. From Figure 1, it can be seen that Pr and Nd are mainly distributed in the main phase, part of the rare earth appears in the grain boundary, and the element Ga is also distributed in the main phase and crystal. In the boundary phase, the element Zr is distributed at the grain boundary.
  • Pr and Nd exist in the grain boundaries in the form of rare earth-rich phases and oxides, which are ⁇ -Pr and ⁇ -Nd, Pr 2 O 3 , Nd 2 O 3 and NdO, except for Ga
  • the grain boundary outside the main phase occupies a certain content of about 5.26wt.%, and Zr is dispersed as a high melting point element in the entire area.
  • the distribution of Pr and Nd elements is different.
  • the content of Pr in the intergranular triangle area is significantly lower than the content of Nd, although the rare earth is partially enriched here.
  • the enrichment of Pr is less than that of Nd, which is one of the reasons why high Pr and Ga work together to increase the coercivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种钕铁硼磁体材料、原料组合物及制备方法和应用。其中,钕铁硼磁体材料的原料组合物以质量百分比计,其包括如下含量的组分:R':29.5~32%,所述R'为稀土元素,所述R'包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%;B:0.9~1.2%;Fe:64~69%。该钕铁硼磁体材料在不添加重稀土元素的前提下,得到的钕铁硼磁体材料的剩磁和矫顽力均较高。

Description

钕铁硼磁体材料、原料组合物及制备方法和应用 技术领域
本发明具体涉及钕铁硼磁体材料、原料组合物及制备方法和应用。
背景技术
以Nd 2Fe 14B为主要成分的钕铁硼(NdFeB)磁体材料,具有较高的剩磁(remanence,简称Br)、矫顽力和最大磁能积(maximum energy product,简称BHmax),综合磁性能优良,应用在风力发电、新能源汽车、变频家电等方面。目前现有技术中的钕铁硼磁体材料中的稀土成分通常以钕为主,只少量的镨。目前现有技术中虽然有少量报道将镨替换一部分的钕可提高磁体材料的性能,但是提高的程度有限,仍然没有显著的提升,且需要添加较为昂贵的重稀土元素。
发明内容
本发明所要解决的技术问题在于克服了现有技术中钕铁硼磁体材料中将钕用部分的镨替代之后,磁体材料的矫顽力和剩磁仍然无法得到显著的提升的缺陷,而提供了钕铁硼磁体材料、原料组合物及制备方法和应用。本发明中的钕铁硼磁体材料同时提升镨和镓的含量,可克服现有技术中单独提升高镨或单独提升高镓仍然无法使得矫顽力有显著提升的缺陷,且本发明在不添加重稀土元素的前提下,得到的钕铁硼磁体材料的剩磁和矫顽力均较高。
本发明是通过如下技术方案解决上述技术问题的。
本发明还提供了一种钕铁硼磁体材料的原料组合物,以质量百分比计,其包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;
Ga:0.25~1.05%;
B:0.9~1.2%;
Fe:64~69%;百分比为各组分含量占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述Pr的含量较佳地为17.15~29%,例如,17.15%、18.15%、19.15%、20.15%、21.15%、22.15%、23.15%、24.15%、25.15%、26.15%、27.15%、27.85%或28.85%,更佳地为20.15~26.15%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述Nd的含量较佳地为1.85~14%,例如1.85%、2.85%、3.85%、4.85%、5.85%、6.15%、6.85%、7.85%、8.85%、9.85%、10.65%、10.85%、11.15%、11.35%、11.75%、12.35%、12.85%、13.65%或13.85%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述Nd与所述R’的总质量的比值较佳地<0.5,更佳地为0.1~0.45,例如,0.06、0.08、0.12、0.18、0.2、0.21、0.22、0.24、0.25、0.28、0.29、0.31、0.33、0.35、0.36、0.38、0.39、0.4、0.41、0.41、0.43或0.44。
本发明中,所述的R’较佳地还包括除Pr和Nd以外的其他稀土元素,例如Y。
本发明中,R’较佳地还包括RH,所述RH为重稀土元素,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种,更佳地为Dy和/或Tb。
其中,所述RH和所述R’的质量比较佳地<0.253,更佳地为0~0.07%,例如0.5/31.5、0.5/31.8、1.2/31.2、1.5/31.5、1.6/30.9、1/30.3、1/30.5、1/31.9、1/32、2.2/31.9、2/31.3或2/32。
其中,所述RH的含量较佳地为1~2.5%,例如,0.5%、1%、1.2%、1.5%、1.6%、2%或2.2%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
当所述RH中含有Tb时,所述Tb的含量较佳地为0.5~2%,例如0.5%、0.7%、0.8%、1%、1.2%、1.4%、1.5%、1.7%或2%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
当所述RH中含有Dy时,所述Dy的含量较佳地在1%以下,例如,0.1%、0.2%、0.3%、0.5%或1%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
当所述的RH中含有Ho时,所述Ho的含量较佳地为0.8~2%,例如1%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述Ga的含量较佳地为0.25~1%,例如可为0.25%、0.27%、0.28%、0.29%、0.3%、0.31%、0.32%、0.33%、0.35%、0.36%、0.37%、0.38%、0.39%、0.4%、0.41%、0.43%、0.45%、0.47%、0.49%、0.5%、0.51%、0.53%、0.55%、0.57%、0.6%、0.7%、0.8%、0.85%、0.9%、0.95%或1%,更佳地为0.42~1.05%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述B的含量较佳地为0.95~1.2%,例如0.95%、0.96%、0.97%、0.98%、0.985%、1%、1.1%或1.2%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述Fe的含量较佳地为65~68.3%,例如65.015%、65.215%、65.315%、65.335%、65.55%、65.752%、65.87%、65.985%、66.015%、66.165%、66.185%、66.315%、66.395%、66.405%、66.415%、66.465%、66.475%、66.515%、66.537%、66.602%、66.605%、66.615%、66.62%、66.665%、66.695%、66.755%、66.785%、66.915%、66.915%、66.935%、67.005%、67.055%、67.065%、67.085%、67.125%、67.145%、67.185%、67.195%、67.215%、67.245%、67.31%、67.315%、67.325%、67.415%、67.42%、67.54%、67.57%、67.6%、67.705%、67.745%、67.765%、67.795%、67.815%、68.065%或68.225%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料的原料组合物中较佳地还包括Cu。
本发明中,所述Cu的含量较佳地为0.1~0.8%,例如,0.1%、0.2%、0.25%、0.35%、0.4%、0.45%、0.48%、0.5%、0.55%、0.58%、0.7%或0.8%,更佳地为0.1~0.35%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料的原料组合物中较佳地还包括Al。
本发明中,所述Al的含量较佳地在1%以下,更佳地为0.01~1%,例如0.02%、0.03%、0.05%、0.1%、0.12%、0.15%、0.2%、0.3%、0.4%、0.45%、0.6%、0.8%或1%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料的原料组合物中较佳地还包括Zr。
本发明中,所述Zr的含量较佳地在0.4%以下,例如0.1%、0.15%、0.25%、0.26%、0.27%、0.28%、0.29%、0.3%、0.35%或0.4%,更佳地为0.25~0.3%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料的原料组合物中较佳地还包括Co。
本发明中,所述Co的含量较佳地为0.5~2%,例如1%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料的原料组合物中较佳地还包括Mn。
其中,所述Mn的含量较佳地在0.02%以下,例如0.01%、0.013%、0.015%或0.018%,百分比为各组分质量占钕铁硼磁体材料总质量的百分比。
本发明中,所述的钕铁硼磁体材料的原料组合物还可包括本领域常见的其他元素,例如Zn、Ag、In、Sn、V、Cr、Mo、Ta、Hf和W中的一种或多种。
其中,所述Zn的含量可为本领域常规的含量,较佳地在0.1%以下,更佳地为0.01~0.08%,例如0.01%、0.04%或0.06%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
其中,所述Mo的含量可为本领域常规的含量,较佳地在0.1%以下,更佳地为0.01~0.08%,例如0.03%或0.06%,百分比是指占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%;Cu:≥0.35%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.8%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr:≥17.15%;Ga:0.25~1.05%;Al:≤0.03%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr:≥17.15%;Ga:0.25~1.05%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%;Cu:≥0.35%;Al:≤0.03%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.8%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%;Cu:≥0.35%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.8%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd,其中,所述Pr≥17.15%;Ga:0.25~1.05%,Al:≤0.03%,Zr:0.25~0.3%,B:0.9~1.2%,Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%;Cu:≥0.35%;Al:≤0.03%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.8%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥ 17.15%;Ga:0.25~1.05%,Mn:≤0.02%,B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料的原料组合物,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%,Mn≤0.02%,Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%;所述Ga的含量较佳地为0.8~1%。
本发明中,百分比是指各组分占所述钕铁硼磁体材料的原料组合物总质量的质量百分比
本发明还提供了一种钕铁硼磁体材料的制备方法,其采用上述的钕铁硼磁体材料的原料组合物制得。
本发明中,所述的制备方法较佳地包括以下步骤:将上述的钕铁硼磁体材料的原料组合物的熔融液经熔铸、氢破、成形、烧结和时效处理,即可。
本发明中,所述钕铁硼磁体材料的原料组合物的熔融液可通过本领域常规的方法制得,例如:在高频真空感应熔炼炉中熔炼,即可。所述熔炼炉的真空度可为5×10 -2Pa。所述熔炼的温度可为1500℃以下。
本发明中,所述的铸造的操作和条件可为本领域常规的操作和条件,例如,在Ar气气氛中(例如5.5×10 4Pa的Ar气气氛下),以10 2℃/秒-10 4℃/秒的速度冷却,即可。
本发明中,所述氢破的操作和条件可为本领域常规的操作和条件。例如,经吸氢、脱氢、冷却处理,即可。
其中,所述吸氢可在氢气压力0.15MPa的条件下进行。
其中,所述脱氢可在边抽真空边升温的条件下进行。
本发明中,所述氢破后还可按本领域常规手段进行粉碎。所述粉碎的工艺可为本领域常规的粉碎工艺,例如气流磨粉碎。所述气流磨粉碎较佳地在在氧化气体含量150ppm以下的氮气气氛下进行。所述氧化气体指的是氧气或水分含量。所述气流磨粉碎的粉碎室压力较佳地为0.38MPa;所述气流磨粉碎的时间较佳地为3h。
其中,所述粉碎后,可按本领域常规手段在粉体中添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.10~0.15%,例如0.12%。
本发明中,所述成形的操作和条件可为本领域常规的操作和条件,例如磁场成形法或热压热变形法。
本发明中,所述的烧结的操作和条件可为本领域常规的操作和条件。例如,在真空条件下(例如在5×10 -3Pa的真空下),经预热、烧结、冷却,即可。
其中,所述预热的温度通常为300~600℃。所述预热的时间通常为1~2h。较佳地所述预热为在300℃和600℃的温度下各预热1h。
其中,所述烧结的温度较佳地为1030~1080℃,例如1040℃。
其中,所述烧结的时间可为本领域常规,例如2h。
其中,所述冷却前可通入Ar气体使气压达到0.1MPa。
本发明中,所述烧结之后、所述时效处理之前,较佳地还进行晶界扩散处理。
其中,所述的晶界扩散的操作和条件可为本领域常规的操作和条件。例如,在所述的钕铁硼磁体材料的表面蒸镀、涂覆或溅射附着含有Tb的物质和/或含有Dy的物质,经扩散热处理,即可。
所述含有Tb的物质可为Tb金属、含有Tb的化合物,例如含有Tb的氟化物或合金。
所述含有Dy的物质可为Dy金属、含有Dy的化合物,例如含有Dy的氟化物或合金。
所述扩散热处理的温度可为800~900℃,例如850℃。
所述扩散热处理的时间可为12-48h,例如24h。
本发明中,所述时效处理中,二级时效处理的温度较佳地为460~650℃,例如500℃。
本发明中,所述二级时效处理中,升温至460~650℃的升温速率较佳地为3~5℃/min。所述升温的起点可为室温。
本发明还提供了一种钕铁硼磁体材料,其采用上述的制备方法制得。
本发明提供了一种钕铁硼磁体材料,以质量百分比计,其包括如下含量的组分:R’:29.5~32%,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;
Ga:0.245~1.05%;
B:0.9~1.2%;
Fe:64~69%;百分比为各组分含量占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述Pr的含量较佳地为17.15~29%,例如17.145%、17.147%、17.149%、17.15%、17.151%、17.152%、18.132%、18.146%、18.148%、19.146%、19.148%、19.149%、19.149%、19.151%、19.153%、20.146%、20.147%、20.148%、20.149%、20.151%、20.154%、21.146%、21.148%、22.148%、23.147%、23.148%、23.149%、23.15%、23.151%、23.152%、24.148%、24.151%、24.152%、25.152%、26.151%、27.152%、27.851%或28.852%,百分比是占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述Nd的含量较佳地为1.85~14%,例如1.852%、2.848%、3.848%、4.852%、5.845%、5.848%、5.85%、5.851%、5.852%、6.147%、6.148%、6.149%、6.151%、6.846%、6.847%、6.848%、6.853%、7.846%、7.849%、7.851%、7.852%、8.851%、9.549%、9.848%、9.851%、9.852%、10.651%、10.848%、10.849%、10.851%、11.148%、11.149%、11.352%、11.355%、11.746%、11.747%、11.748%、11.751%、11.752%、12.345%、12.347%、12.35%、12.451%、12.848%、12.851%、12.89%、13.348%、13.651%、13.848%、13.849%或13.856%,百分比是占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述Nd与所述R’的总质量的比较佳地<0.5,更佳地为0.06~0.45,例如0.06、0.08、0.12、0.18、0.2、0.21、0.22、0.24、0.25、0.28、0.29、0.31、0.33、0.35、0.36、0.38、0.39、0.4、0.41、0.41、0.43或0.44。
本发明中,所述的R’较佳地还包括除Pr和Nd以外的其他稀土元素,例如Y。
本发明中,所述R’较佳地还包括RH,所述RH为重稀土元素,所述RH的种类较佳地包括Dy、Tb和Ho中的一种或多种,例如Dy和/或Tb。
其中,所述RH和所述R’的质量比较佳地<0.253,更佳地为0.01~0.07,例如,0.01、0.02、0.03、0.04、0.05、0.06或0.07。
其中,所述RH的含量较佳地为1~2.5%,例如,0.421%、0.501%、0.502%、0.503%、0.51%、0.99%、1.004%、1.005%、1.006%、1.01%、1.02%、1.03%、1.212%、1.223%、1.512%、1.521%、1.593%、1.604%、2.001%、2.002%、2.01%或2.253%,百分比是占所述钕铁硼磁体材料总质量的质量百分比。
当所述RH中含有Tb时,所述Tb的含量较佳地为0.5~2.01%,例如0.501%、0.502%、 0.503%、0.702%、0.703%、0.704%、0.705%、0.802%、1.01%、1.02%、1.03%、1.21%、1.402%、1.42%、1.492%、1.701%、2.001%或2.01%,百分比是指在所述钕铁硼磁体材料总质量的质量百分比。
当所述RH中含有Dy时,所述Dy的含量较佳地在1.05%以下,更佳地为0.1~1.03%,例如,0.101%、0.202%、0.203%、0.301%、0.302%、0.303%、0.421%、0.51%或1.03%,百分比是指在所述钕铁硼磁体材料总质量的质量百分比。
当所述的RH中含有Ho时,所述Ho的含量较佳地为0.8~2%,例如0.99%、1.01%或1.02%,百分比是指占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述Ga的含量较佳地为0.247~1.03%,例如0.247%、0.248%、0.249%、0.251%、0.252%、0.268%、0.281%、0.291%、0.3%、0.301%、0.302%、0.303%、0.312%、0.323%、0.332%、0.351%、0.352%、0.361%、0.362%、0.371%、0.38%、0.392%、0.402%、0.413%、0.433%、0.45%、0.451%、0.452%、0.471%、0.472%、0.491%、0.492%、0.502%、0.512%、0.531%、0.55%、0.551%、0.572%、0.589%、0.6%、0.602%、0.701%、0.703%、0.712%、0.791%、0.804%、0.82%、0.848%、0.892%、0.912%、0.951%、1.02%或1.03%,百分比是指占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述B的含量较佳地为0.95~1.2%,例如0.949%、0.956%、0.969%、0.982%、0.983%、0.984%、0.985%、0.986%、0.987%、0.991%、1.02%、1.11%、1.18%或1.19%,百分比是指占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述Fe的含量较佳地为64.8~68.2%,例如,64.981%、65.157%、65.296%、65.308%、65.54%、65.729%、65.849%、65.9895%、66.002%、66.15%、66.209%、66.296%、66.392%、66.393%、66.404%、66.445%、66.451%、66.458%、66.503%、66.532%、66.595%、66.607%、66.6145%、66.62%、66.644%、66.664%、66.756%、66.782%、66.909%、66.912%、66.913%、66.941%、67.007%、67.058%、67.072%、67.093%、67.125%、67.14%、67.187%、67.188%、67.195%、67.247%、67.267%、67.279%、67.294%、67.327%、67.347%、67.405%、67.425%、67.468%、67.47%、67.517%、67.535%、67.571%、67.6%、67.621%、67.667%、67.739%、67.769%、67.801%、67.813%、67.816%、68.07%或68.143%,百分比是指占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料较佳地还包括Cu。
本发明中,所述Cu的含量较佳地为0.1~0.9%,例如,0.1%、0.102%、0.202%、0.205%、0.25%、0.351%、0.352%、0.402%、0.405%、0.451%、0.452%、0.481%、0.5%、0.501%、0.502%、0.552%、0.581%、0.7%或0.803%,百分比是指占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料较佳地还包括Al。
本发明中,所述Al的含量较佳地在1.1wt%以下,更佳地为0.01~1.02%,例如0.01%、0.02%、0.03%、0.04%、0.05%、0.101%、0.102%、0.12%、0.15%、0.202%、0.301%、0.402%、0.451%、0.601%、0.602%、0.603%、0.801%或1.02%,百分比是指占所述钕铁硼磁体材料总质量的质量百分比。
本发明中,所述的钕铁硼磁体材料较佳地还包括Zr。
本发明中,所述Zr的含量较佳地在0.4%以下,例如,0.1%、0.15%、0.248%、0.25%、0.251%、0.252%、0.26%、0.27%、0.28%、0.29%、0.3%、0.301%、0.302%、0.35%或0.4%,更佳地为0.25~0.3%,百分比为各组分质量占钕铁硼磁体材料总质量的百分比。
本发明中,所述的钕铁硼磁体材料较佳地还包括Co。
其中,所述Co的含量较佳地为0.5~2%,例如1%。
本发明中,所述的钕铁硼磁体材料较佳地还包括Mn。
其中,所述Mn的含量较佳地在0.02%以下,例如0.01%、0.013%、0.014%、0.015%、0.018%或0.02%,百分比为各组分质量占钕铁硼磁体材料总质量的百分比。
本发明中,所述的钕铁硼磁体材料中通常还包括O。
其中,所述O的含量较佳地在0.13%以下。
本发明中,所述的钕铁硼磁体材料还可包括本领域常见的其他元素,例如Zn、Ag、In、Sn、V、Cr、Mo、Ta、Hf和W中的一种或多种。
其中,所述Zn的含量可为本领域常规的含量,较佳地在0.1%以下,更佳地为0.01~0.08%,例如0.01%、0.04%或0.06%。
其中,所述Mo的含量可为本领域常规的含量,较佳地为在0.1%以下,更佳地为0.01~0.08%,例如0.03%或0.06%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr:≥17.15%;Ga:0.245~1.05%;Cu:≥0.35%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.9%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr:≥17.15%;Ga:0.245~1.05%;Al:≤0.03%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr:≥17.15%;Ga:0.0.245~1.05%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.245~1.05%%;Cu:≥0.35%;Al:≤0.03%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.9%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.245~1.05%;Cu:≥0.35%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.9%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd,其中,所述Pr≥17.15%;Ga: 0.245~1.05%,Al:≤0.03%,Zr:0.25~0.3%,B:0.9~1.2%,Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~28.85%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.245~1.05%;Cu:≥0.35%;Al:≤0.03%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.9%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.245~1.05%,Mn:≤0.02%,B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%。
本发明中,所述钕铁硼磁体材料,以质量百分比计,较佳地包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.245~1.05%,Mn:≤0.02%,Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%;所述Ga的含量较佳地为0.8~1%。
本发明中,百分比是指各组分占所述钕铁硼磁体材料总质量的质量百分比。
本发明提供了一种钕铁硼磁体材料,在所述钕铁硼磁体材料的晶间三角区中,Pr和Ga的总质量与Nd和Ga的总质量的比值≤1.0;在所述钕铁硼磁体材料的晶界处,Pr和Ga的总质量与Nd和Ga的总质量的比值≥0.1;较佳地,所述钕铁硼磁体材料的组分为上述的钕铁硼磁体材料的组分。
本发明中,所述的晶界处是指两个晶粒之间的界限,所述的晶间三角区是指三个及三个以上的晶粒所形成的空隙。
本发明还提供了一种上述钕铁硼磁体材料在电机中作为电子元件的应用。
本发明中,所述的电机较佳地为新能源汽车驱动电机、空调压缩机或工业伺服电机、 风力发电机、节能电梯或扬声器组件。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:现有技术中在钕铁硼磁体材料中添加镨和镓,虽然会增加矫顽力,但是同时会降低剩磁。发明人提供大量的实验发现,特定含量的镨和镓配伍可产生协同作用,也就是说,同时添加特定含量的镨和镓可使得钕铁硼磁体的矫顽力有更为显著的提升,同时剩磁也只有略微的降低。且本发明中的磁体材料在不添加重稀土元素的情况下,磁体材料的矫顽力和剩磁仍然较高。
附图说明
图1为实施例23中制得的钕铁硼磁体材料由FE-EPMA面扫描形成的元素分布图。
图2为实施例23中制得的钕铁硼磁体材料的晶界处的元素分布图,图中1为晶界处中定量分析所取的点。
图3为实施例23中制得的钕铁硼磁体材料的晶间三角区的元素分布图,图中1为间三角区中定量分析所取的点。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。下表中,wt.%是指组分在所述钕铁硼磁体材料的原料组合物总质量的质量百分比,“/”表示未添加该元素。“Br”为剩余磁通密度,“Hcj”为内禀矫顽力(intrinsic coercivity)。
各实施例和对比例中的钕铁硼磁体材料的原料组合物的配方如下表1所示。
表1各实施例和对比例中的钕铁硼磁体材料的原料组合物的配方(wt.%)
编号 Nd Pr Dy Tb Ho Ga Cu Al Zr Co Mn Zn Mo B Fe
1 13.85 17.15 / / / 0.25 / / / / / / / 0.985 67.765
2 13.85 17.15 / / / 0.27 / / / / / / / 0.985 67.745
3 12.35 18.15 / / / 0.29 / / / / / / / 0.985 68.225
4 12.85 18.15 / / / 0.31 / / / / / / / 0.985 67.705
5 12.35 19.15 / / / 0.33 / / / / / / / 0.985 67.185
6 12.85 19.15 / / / 0.35 / / / / / / / 0.985 66.665
7 11.35 20.15 / / / 0.37 / / / / / / / 0.985 67.145
8 11.35 20.15 / / / 0.39 / / / / / / / 0.985 67.125
9 10.85 21.15 / / / 0.41 / / / / / / / 0.985 66.605
10 10.65 21.15 / / / 0.43 / / / / / / / 0.985 66.785
11 8.85 22.15 / / / 0.45 / / / / / / / 0.95 67.6
12 7.85 23.15 / / / 0.47 / / / / / / / 0.96 67.57
13 6.85 24.15 / / / 0.49 / / / / / / / 0.97 67.54
14 5.85 25.15 / / / 0.6 / / / / / / / 0.98 67.42
15 4.85 26.15 / / / 0.7 / / / / / / / 0.99 67.31
16 3.85 27.15 / / / 0.8 / / / / / / / 0.985 67.215
17 2.85 27.85 / / / 0.9 / / / / / / / 0.985 67.415
18 1.85 28.85 / / / 1.0 / / / / / / / 0.985 67.315
19 13.65 17.15 / / / 0.3 0.1 / / / / / / 0.985 67.815
20 13.35 17.15 / / / 0.47 0.25 / / / / / / 0.985 67.795
21 10.85 21.15 / / / 0.53 0.5 / / / / / / 0.985 65.985
22 10.85 21.15 / / / 1.0 0.7 / / / / / / 0.985 65.315
23 7.85 23.15 / / / 0.49 / 0.2 / / / / / 0.985 67.325
24 7.85 23.15 / / / 0.51 / 0.45 / / / / / 0.985 67.055
25 5.85 24.15 / 2 / 0.53 / 0.6 / / / / / 1 65.87
26 5.85 24.15 0.3 1.7 / 0.55 / 0.8 / / / / / 1.1 65.55
27 9.85 20.15 0.3 1.2 / 0.57 / / 0.1 / 0.01 / / 1.2 66.62
28 9.85 20.15 0.1 1.4 / 0.28 / / 0.25 / 0.015 / / 1.2 66.755
29 11.15 20.15 / 0.5 / 0.32 / / 0.28 / 0.013 / / 0.985 66.602
30 11.15 20.15 / 0.5 / 0.36 / / 0.3 / 0.018 / / 0.985 66.537
31 6.15 23.15 0.1 1.5 / 0.7 / / 0.35 / / / / 0.985 67.065
32 6.15 23.15 0.2 1.4 / 0.8 / / 0.4 / / / / 0.985 66.915
32.1 7.85 23.15 0.5 / / 0.85 / / 0.25 / 0.01 / / 0.985 66.405
32.2 7.85 23.15 / 1 / 0.95 / / 0.3 / 0.013 / / 0.985 65.752
33 6.85 24.15 0.3 0.7 / 1.0 / / / 1 / / / 0.985 65.015
34 6.85 24.15 0.3 0.7 / 0.25 0.1 0.2 / / / / / 0.985 66.465
35 6.85 24.15 0.3 0.7 / 0.4 0.2 0.4 / / / / / 0.985 66.015
36 5.85 24.15 0.2 0.8 / 0.5 0.4 0.6 / / / / / 0.985 66.515
37 5.85 24.15 0.2 0.8 / 1.0 0.8 1 / / / / / 0.985 65.215
38 12.35 19.15 / / / 0.3 0.2 / 0.1 / / / / 0.985 66.915
39 11.75 19.15 / / / 1.0 0.4 / 0.25 / / / / 0.985 66.465
40 12.35 17.15 0.3 0.7 / 0.3 / 0.05 0.1 / / / / 0.985 68.065
41 12.35 17.15 0.3 0.7 / 0.35 / 0.1 0.25 / / / / 0.985 67.815
42 11.75 19.15 / / / 0.45 / 0.3 0.28 / / / / 0.985 67.085
43 11.75 19.15 / / / 0.6 / 0.6 0.3 / / / / 0.985 66.615
44 12.85 18.15 / / / 0.25 0.35 0.02 0.15 / / / / 0.985 67.245
45 12.85 18.15 / / / 0.28 0.45 0.03 0.25 / / / / 0.985 67.005
46 11.75 19.15 / / / 0.36 0.48 0.1 0.26 / / / / 0.985 66.915
47 11.75 19.15 / / / 0.38 0.5 0.03 0.27 / / / / 0.985 66.935
48 9.85 20.15 0.2 1 / 0.55 0.55 0.02 0.28 / / / / 0.985 66.415
49 9.85 20.15 0.2 1 / 0.6 0.58 0.03 0.29 / / / / 0.985 66.315
49.1 6.15 23.15 / 2 / 0.7 0.35 0.02 0.25 / / / / 0.985 66.395
49.2 6.15 23.15 / 1 / 0.8 0.45 0.02 0.25 / / / / 0.985 67.195
49.3 5.85 25.15 1   / 0.9 0.45 0.03 0.3 / / / / 0.985 65.335
49.4 5.85 25.15 / / / 1 0.5 0.03 0.3 / / / / 0.985 66.185
50 9.55 20.15 0.2 1 1 0.3 / 0.05 / / / 0.02 0.05 0.985 66.695
51 11.75 19.15 / / 1 0.45 / 0.12 / / / 0.05 0.02 0.985 66.475
52 12.85 18.15 / / 1 0.6 / 0.15 / / / 0.05 0.05 0.985 66.165
55 6.85 24.15 / / / 0.1 0.1 0.2 / / / / / 0.985 67.615
56 6.85 24.15 / / / 0.2 0.1 0.2 / / / / / 0.985 67.515
57 15.15 15.85 / / / 0.25 0.1 0.2 / / / / / 0.985 67.465
58 22.15 8.85 / / / 0.25 0.1 0.2 / / / / / 0.985 67.465
实施例1
钕铁硼磁体材料的制备方法如下:
(1)熔铸过程:按表1所示配方,将配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中且在5×10 -2Pa的真空中,以1500℃以下的温度进行真空熔炼。在真空熔炼后的熔炼炉中通入Ar气体使气压达到5.5×10 4Pa后,进行铸造,并以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(2)氢破粉碎过程:在室温下将放置急冷合金的熔炼炉抽真空,然后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.15MPa;充分吸氢后,边抽真空边升温,充分脱氢;然后进行冷却,取出氢破粉碎后的粉末。
(3)微粉碎工序:在氧化气体含量150ppm以下的氮气气氛下,在粉碎室压力为0.38MPa的条件下对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉。氧化气体指的是氧或水分。
(4)在气流磨粉碎后的粉末中添加硬脂酸锌,硬脂酸锌的添加量为混合后粉末重量的0.12%,再用V型混料机充分混合。
(5)磁场成形过程:使用直角取向型的磁场成型机,在1.6T的取向磁场中以及在0.35ton/cm 2的成型压力下,将上述添加了硬脂酸锌的粉末一次成形成边长为25mm的立方体;一次成形后在0.2T的磁场中退磁。为了使一次成形后的成形体不接触到空气,将其进行密封,然后再使用二次成形机(等静压成形机),在1.3ton/cm 2的压力下进行二次成形。
(6)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下以及分别在300℃和600℃的温度下各保持1小时;然后以1040℃的温度烧结2小时;然后通入Ar气体使气压达到0.1MPa后,冷却至室温,得烧结体。
(7)时效处理过程:烧结体在高纯度Ar气中,以500℃温度进行3小时热处理后,冷却至室温后取出。
实施例53采用Dy晶界扩散法
将表1中实施例1的原料组合物,按照实施例1的烧结体的制备首先制备得到烧结体,接着进行晶界扩散,再进行时效处理。其中时效处理的工艺同实施例1,晶界扩散的处理过程如下:
将烧结体加工成直径为20mm、片料厚度小于3mm的磁铁,厚度方向为磁场取向方向,表面洁净化后,使用Dy氟化物配制成的原料,全面喷雾涂覆在磁铁上,将涂覆后的磁铁干燥,在高纯度Ar气体气氛中,在磁铁表面溅射附着Tb元素的金属,以850℃的温度扩散热处理24小时。冷却至室温。
实施例54采用Tb晶界扩散法
将表1中编号1按照实施例1的烧结体的制备首先制备得到烧结体,先进行晶界扩散,再进行时效处理。其中时效处理的工艺同实施例1,晶界扩散的处理过程如下:
将烧结体加工成直径20mm、片料厚度小于7mm的磁铁,厚度方向为磁场取向方向,表面洁净化后,分别使用Tb氟化物配制成的原料,全面喷雾涂覆在磁铁上,将涂覆后的磁铁干燥,在高纯度Ar气体气氛中,在磁铁表面溅射附着Tb元素的金属,以850℃的温度扩散热处理24小时。冷却至室温。
效果实施例
测定实施例1~54和对比例55~58制得的钕铁硼磁体材料的磁性能和成分,通过FE-EPMA观察其磁体的晶相结构。
(1)磁性能评价:磁体材料使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。下表2所示为磁性能检测结果。
表2
Figure PCTCN2020100586-appb-000001
Figure PCTCN2020100586-appb-000002
Figure PCTCN2020100586-appb-000003
(2)成分测定:各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定。下表3所示为成分检测结果。
表3成分检测结果(wt.%)
Figure PCTCN2020100586-appb-000004
Figure PCTCN2020100586-appb-000005
(3)FE-EPMA检测:将实施例23的磁体材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。主要分析的元素Pr,Nd,Ga,Zr,O,并对晶界处及晶间三角区的元素进行定量分析。
图1为钕铁硼磁体材料中各元素的分布图,由图1可知,Pr,Nd元素主要分布在主相中,晶界出也出现了部分的稀土,元素Ga也分布于主相和晶界相中,元素Zr分布于晶界处。
如图2所示,为实施例23的钕铁硼磁体材料的晶界处的元素分布,取图2中1标记的点对晶界处的元素通过定量结果如下表4所示:
表4
Figure PCTCN2020100586-appb-000006
从以上的数据可以看明确,Pr和Nd以富稀土相及氧化物的形式存在与晶界中,分别为α-Pr和α-Nd,Pr 2O 3,Nd 2O 3和NdO,Ga除了在主相外晶界处占有一定的含量约为5.26wt.%,Zr作为高熔点元素弥散分布于整个区域。
如图3所示,为实施例23的钕铁硼磁体材料的晶间三角区的元素分布,取图3中1标记的点对晶间三角区的元素通过定量结果如下表5所示:
表5
Figure PCTCN2020100586-appb-000007
在晶间三角区中,Pr及Nd元素分布与其中,在高Pr的配方中,很清楚的发现,在晶间三角区Pr的含量明显相对Nd的含量低,虽然稀土有部分富集于此处,但Pr的富集程度相对Nd要少,这也是高Pr和Ga共同作用提高矫顽力的原因之一。同时该处含有部分的O及Ga的分布。

Claims (10)

  1. 一种钕铁硼磁体材料的原料组合物,其特征在于,以质量百分比计,其包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;
    Ga:0.25~1.05%;
    B:0.9~1.2%;
    Fe:64~69%;百分比为各组分含量占所述钕铁硼磁体材料的原料组合物总质量的质量百分比。
  2. 如权利要求1所述的原料组合物,其特征在于,所述Pr的含量为17.15~29%,较佳地为17.15%、18.15%、19.15%、20.15%、21.15%、22.15%、23.15%、24.15%、25.15%、26.15%、27.15%、27.85%或28.85%;
    和/或,所述Nd的含量为1.85~14%,较佳地为1.85%、2.85%、3.85%、4.85%、5.85%、6.15%、6.85%、7.85%、8.85%、9.85%、10.65%、10.85%、11.15%、11.35%、11.75%、12.35%、12.85%、13.65%或13.85%;
    和/或,所述Nd与所述R’的总质量的比值小于0.5,较佳地为0.1~0.45;
    和/或,所述的R’还包括除Pr和Nd以外的其他稀土元素,较佳地为Y;
    和/或,R’还包括RH,所述RH为重稀土元素;较佳地,所述RH的种类包括Dy、Tb和Ho中的一种或多种,更佳地为Dy和/或Tb;所述RH和所述R’的质量比较佳地<0.253,更佳地为0~0.07%;较佳地,所述RH的含量为1~2.5%;当所述RH中含有Tb时,所述Tb的含量较佳地为0.5~2%;当所述RH中含有Dy时,所述Dy的含量较佳地在1%以下;当所述的RH中含有Ho时,所述Ho的含量较佳地为0.8~2%%;
    和/或,所述Ga的含量为0.25~1%,较佳地为0.25%、0.27%、0.28%、0.29%、0.3%、0.31%、0.32%、0.33%、0.35%、0.36%、0.37%、0.38%、0.39%、0.4%、0.41%、0.43%、0.45%、0.47%、0.49%、0.5%、0.51%、0.53%、0.55%、0.57%、0.6%、0.7%、0.8%、0.85%、0.9%、0.95%或1%;
    和/或,所述B的含量为0.95~1.2%,较佳地为0.95%、0.96%、0.97%、0.98%、0.985%、1%、1.1%或1.2%;
    和/或,所述Fe的含量为65~68.3%,较佳地为65.015%、65.215%、65.315%、65.335%、65.55%、65.752%、65.87%、65.985%、66.015%、66.165%、66.185%、66.315%、66.395%、66.405%、66.415%、66.465%、66.475%、66.515%、66.537%、66.602%、66.605%、66.615%、66.62%、66.665%、66.695%、66.755%、66.785%、66.915%、66.915%、66.935%、67.005%、67.055%、67.065%、67.085%、67.125%、67.145%、67.185%、67.195%、67.215%、67.245%、67.31%、67.315%、67.325%、67.415%、67.42%、67.54%、67.57%、67.6%、67.705%、67.745%、67.765%、67.795%、67.815%、68.065%或68.225%;
    和/或,所述的钕铁硼磁体材料的原料组合物中还包括Cu;较佳地,所述Cu的含量为0.1~0.8%,较佳地为0.1%、0.2%、0.25%、0.35%、0.4%、0.45%、0.48%、0.5%、0.55%、0.58%、0.7%或0.8%;
    和/或,所述的钕铁硼磁体材料的原料组合物中还包括Al;较佳地,所述Al的含量在1%以下,较佳地为0.01~1%,更佳地为0.02%、0.03%、0.05%、0.1%、0.12%、0.15%、0.2%、0.3%、0.4%、0.45%、0.6%、0.8%或1%;
    和/或,所述的钕铁硼磁体材料的原料组合物中还包括Zr;较佳地,所述Zr的含量在0.4%以下,较佳地为0.1%、0.15%、0.25%、0.26%、0.27%、0.28%、0.29%、0.3%、0.35%或0.4%;
    和/或,所述的钕铁硼磁体材料的原料组合物中还包括Co;较佳地所述Co的含量为0.5~2%;
    和/或,所述的钕铁硼磁体材料的原料组合物中还包括Mn;较佳地,所述Mn的含量在0.02%以下,较佳地为0.01%、0.013%、0.015%或0.018%;
    和/或,所述的钕铁硼磁体材料的原料组合物还可包括Zn、Ag、In、Sn、V、Cr、Mo、Ta、Hf和W中的一种或多种;其中,所述Zn的含量较佳地在0.1%以下,更佳地为0.01~0.08%;其中,所述Mo的含量较佳地在0.1%以下,更佳地为0.01~0.08%。
  3. 如权利要求1或2所述的原料组合物,其特征在于,以质量百分比计,包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%;Cu:≥0.35%;Al:≤0.03%;Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;
    较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;较佳地所述Cu的含量为0.1~0.8%;所述Pr的含量较佳地为17.15~29%。
  4. 如权利要求1或2所述的原料组合物,其特征在于,以质量百分比计,包括如下含量的组分:R’:29.5~32%,所述R’为稀土元素,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;Ga:0.25~1.05%,Mn≤0.02%,Zr:0.25~0.3%;B:0.9~1.2%;Fe:64~69%;
    较佳地,所述R’还包括RH,所述RH为重稀土元素,所述重稀土元素的含量较佳地为1~2.5%;所述Pr的含量较佳地为17.15~29%;所述Ga的含量较佳地为0.8~1%。
  5. 一种钕铁硼磁体材料的制备方法,其特征在于,其采用权利要求1-4中任一项所述的原料组合物制得;
    较佳地,所述的制备方法包括以下步骤:将权利要求1-4中任一项所述的原料组合物的熔融液经熔铸、氢破、成形、烧结和时效处理,即可;
    更佳地,所述烧结之后、所述时效处理之前,还进行晶界扩散处理。
  6. 一种钕铁硼磁体材料,其特征在于,其采用权利要求5所述的制备方法制得。
  7. 一种钕铁硼磁体材料,其特征在于,以质量百分比计,其包括如下含量的组分:R’:29.5~32%,所述R’包括Pr和Nd;其中,所述Pr≥17.15%;
    Ga:0.245~1.05%;
    B:0.9~1.2%;
    Fe:64~69%;百分比为各组分含量占所述钕铁硼磁体材料总质量的质量百分比。
  8. 如权利要求7所述的钕铁硼磁体材料,其特征在于,所述Pr的含量为17.15~29%,较佳地为17.145%、17.147%、17.149%、17.15%、17.151%、17.152%、18.132%、18.146%、18.148%、19.146%、19.148%、19.149%、19.149%、19.151%、19.153%、20.146%、20.147%、20.148%、20.149%、20.151%、20.154%、21.146%、21.148%、22.148%、23.147%、23.148%、23.149%、23.15%、23.151%、23.152%、24.148%、24.151%、24.152%、25.152%、26.151%、27.152%、27.851%或28.852%;
    和/或,所述Nd的含量为1.85~14%,较佳地为1.852%、2.848%、3.848%、4.852%、5.845%、5.848%、5.85%、5.851%、5.852%、6.147%、6.148%、6.149%、6.151%、6.846%、6.847%、6.848%、6.853%、7.846%、7.849%、7.851%、7.852%、8.851%、9.549%、9.848%、 9.851%、9.852%、10.651%、10.848%、10.849%、10.851%、11.148%、11.149%、11.352%、11.355%、11.746%、11.747%、11.748%、11.751%、11.752%、12.345%、12.347%、12.35%、12.451%、12.848%、12.851%、12.89%、13.348%、13.651%、13.848%、13.849%或13.856%;
    和/或,所述Nd与所述R’的总质量的比<0.5,较佳地为0.06~0.45;
    和/或,所述的R’还包括除Pr和Nd以外的其他稀土元素,较佳地为Y;
    和/或,所述R’还包括RH,所述RH为重稀土元素;较佳地,所述RH的种类包括Dy、Tb和Ho中的一种或多种,较佳地为Dy和/或Tb;较佳地,所述RH和所述R’的质量比<0.253,更佳地为0.01~0.07;较佳地,所述RH的含量为1~2.5%;其中,当所述RH中含有Tb时,所述Tb的含量为0.5~2.01%;其中,当所述RH中含有Dy时,所述Dy的含量在1.05%以下,较佳地为0.1~1.03%;其中,当所述的RH中含有Ho时,所述Ho的含量为0.8~2%%;
    和/或,所述Ga的含量为0.247~1.03%,较佳地为0.247%、0.248%、0.249%、0.251%、0.252%、0.268%、0.281%、0.291%、0.3%、0.301%、0.302%、0.303%、0.312%、0.323%、0.332%、0.351%、0.352%、0.361%、0.362%、0.371%、0.38%、0.392%、0.402%、0.413%、0.433%、0.45%、0.451%、0.452%、0.471%、0.472%、0.491%、0.492%、0.502%、0.512%、0.531%、0.55%、0.551%、0.572%、0.589%、0.6%、0.602%、0.701%、0.703%、0.712%、0.791%、0.804%、0.82%、0.848%、0.892%、0.912%、0.951%、1.02%或1.03%;
    和/或,所述B的含量较佳地为0.95~1.2%,较佳地为0.949%、0.956%、0.969%、0.982%、0.983%、0.984%、0.985%、0.986%、0.987%、0.991%、1.02%、1.11%、1.18%或1.19%;
    和/或,所述Fe的含量为64.8~68.2%,较佳地为64.981%、65.157%、65.296%、65.308%、65.54%、65.729%、65.849%、65.9895%、66.002%、66.15%、66.209%、66.296%、66.392%、66.393%、66.404%、66.445%、66.451%、66.458%、66.503%、66.532%、66.595%、66.607%、66.6145%、66.62%、66.644%、66.664%、66.756%、66.782%、66.909%、66.912%、66.913%、66.941%、67.007%、67.058%、67.072%、67.093%、67.125%、67.14%、67.187%、67.188%、67.195%、67.247%、67.267%、67.279%、67.294%、67.327%、67.347%、67.405%、67.425%、67.468%、67.47%、67.517%、67.535%、67.571%、67.6%、67.621%、67.667%、67.739%、67.769%、67.801%、67.813%、67.816%、68.07%或68.143%;
    和/或,所述的钕铁硼磁体材料还包括Cu;较佳地,所述Cu的含量为0.1~0.9%,更佳地为0.1%、0.102%、0.202%、0.205%、0.25%、0.351%、0.352%、0.402%、0.405%、0.451%、0.452%、0.481%、0.5%、0.501%、0.502%、0.552%、0.581%、0.7%或0.803%;
    和/或,所述的钕铁硼磁体材料还包括Al;较佳地,所述Al的含量地1.1wt%以下,更佳地为0.01~1.02%;
    和/或,所述的钕铁硼磁体材料还包括Zr;较佳地,所述Zr的含量在0.4%以下;
    和/或,所述的钕铁硼磁体材料还包括Co;较佳地,所述Co的含量为0.5~2%;
    和/或,所述的钕铁硼磁体材料还包括Mn;较佳地,所述Mn的含量在0.02%以下,更佳地为0.01%、0.013%、0.015%、0.014%、0.018%或0.02%;
    和/或,所述的钕铁硼磁体材料中还包括O;较佳地,所述O的含量在0.13%以下;
    和/或,所述的钕铁硼磁体材料还可包括Zn、Ag、In、Sn、V、Cr、Mo、Ta、Hf和W中的一种或多种;其中,所述Zn的含量较佳地在0.1%以下,更佳地为0.01~0.08%;其中,所述Mo的含量较佳地为在0.1%以下,更佳地为0.01~0.08%。
  9. 一种钕铁硼磁体材料,其特征在于,在所述钕铁硼磁体材料的晶间三角区中,Pr和Ga的总质量与Nd和Ga的总质量的比值≤1.0;
    在所述钕铁硼磁体材料的晶界处,Pr和Ga的总质量与Nd和Ga的总质量的比值≥0.1;
    较佳地,所述钕铁硼磁体材料的组分为如权利要求6-8中任一项所述的钕铁硼磁体材料。
  10. 一种如权利要求6-9中任一项所述的钕铁硼磁体材料在电机中作为电子元器件的应用。
PCT/CN2020/100586 2019-11-21 2020-07-07 钕铁硼磁体材料、原料组合物及制备方法和应用 WO2021098223A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022513461A JP7220331B2 (ja) 2019-11-21 2020-07-07 ネオジム鉄ホウ素磁石材料、原料組成物及び製造方法、並びに応用
KR1020227006886A KR102574303B1 (ko) 2019-11-21 2020-07-07 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용
US17/639,758 US20220328218A1 (en) 2019-11-21 2020-07-07 Neodymium-iron-boron magnet material, raw material composition,preparation method therefor and use thereof
EP20889698.5A EP4016559B1 (en) 2019-11-21 2020-07-07 Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911150996.3 2019-11-21
CN201911150996.3A CN110957091B (zh) 2019-11-21 2019-11-21 钕铁硼磁体材料、原料组合物及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021098223A1 true WO2021098223A1 (zh) 2021-05-27

Family

ID=69977985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100586 WO2021098223A1 (zh) 2019-11-21 2020-07-07 钕铁硼磁体材料、原料组合物及制备方法和应用

Country Status (7)

Country Link
US (1) US20220328218A1 (zh)
EP (1) EP4016559B1 (zh)
JP (1) JP7220331B2 (zh)
KR (1) KR102574303B1 (zh)
CN (1) CN110957091B (zh)
TW (1) TWI755152B (zh)
WO (1) WO2021098223A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384071A1 (en) * 2021-05-31 2022-12-01 Baotou Jinshan Magnetic Material Co., Ltd. Neodymium-iron-boron permanent magnet and preparation method and use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957091B (zh) * 2019-11-21 2021-07-13 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111599564A (zh) * 2020-05-29 2020-08-28 福建省长汀金龙稀土有限公司 一种r-t-b系磁性材料及其制备方法
CN111613408B (zh) * 2020-06-03 2022-05-10 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
CN111613406B (zh) * 2020-06-03 2022-05-03 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
CN111627633B (zh) * 2020-06-28 2022-05-31 福建省长汀金龙稀土有限公司 一种r-t-b系磁性材料及其制备方法
CN111627634B (zh) * 2020-06-28 2022-05-20 福建省长汀金龙稀土有限公司 一种r-t-b系磁性材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077796A (zh) * 2013-02-06 2013-05-01 江苏南方永磁科技有限公司 一种耐蚀钕铁硼永磁材料及其制备方法
CN103366918A (zh) * 2012-03-29 2013-10-23 通用电气公司 永磁体及其制造方法
JP2013225533A (ja) * 2012-03-19 2013-10-31 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN105513737A (zh) * 2016-01-21 2016-04-20 烟台首钢磁性材料股份有限公司 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN106128673A (zh) * 2016-06-22 2016-11-16 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
JP2018056334A (ja) * 2016-09-29 2018-04-05 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2019169542A (ja) * 2018-03-22 2019-10-03 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN110957091A (zh) * 2019-11-21 2020-04-03 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311051B2 (zh) * 1973-06-29 1978-04-19
JPS6477102A (en) * 1987-09-18 1989-03-23 Hitachi Metals Ltd Magnet for disc rotor type brushless motor
JPH04206805A (ja) * 1990-11-30 1992-07-28 Kobe Steel Ltd 磁気特性および耐食性の優れた希土類元素―Fe―B系磁石の製造方法
JP3143156B2 (ja) * 1991-07-12 2001-03-07 信越化学工業株式会社 希土類永久磁石の製造方法
JPH06251917A (ja) * 1993-02-23 1994-09-09 Seiko Epson Corp 希土類永久磁石
JPH08264308A (ja) * 1995-03-22 1996-10-11 Seiko Epson Corp 希土類磁石およびその製造方法
JP2010263172A (ja) * 2008-07-04 2010-11-18 Daido Steel Co Ltd 希土類磁石およびその製造方法
CN104979062B (zh) * 2014-04-14 2018-09-11 北京中科三环高技术股份有限公司 烧结镨铁硼永磁体材料及其生产方法
JP6569408B2 (ja) * 2015-09-10 2019-09-04 Tdk株式会社 希土類永久磁石
CN106448985A (zh) * 2015-09-28 2017-02-22 厦门钨业股份有限公司 一种复合含有Pr和W的R‑Fe‑B系稀土烧结磁铁
JP6501038B2 (ja) * 2016-08-17 2019-04-17 日立金属株式会社 R−t−b系焼結磁石
JP2018174205A (ja) * 2017-03-31 2018-11-08 大同特殊鋼株式会社 R−t−b系焼結磁石およびその製造方法
CN109256250B (zh) * 2017-07-13 2021-07-13 北京中科三环高技术股份有限公司 一种含Ce稀土永磁体及其制备方法
CN107369512A (zh) * 2017-08-10 2017-11-21 烟台首钢磁性材料股份有限公司 一种r‑t‑b类烧结永磁体
JP6972886B2 (ja) * 2017-10-13 2021-11-24 日立金属株式会社 R−t−b系焼結磁石及びその製造方法
CN108730086A (zh) * 2018-04-09 2018-11-02 安徽宝隽机车部件有限公司 一种燃油泵磁瓦及燃油泵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225533A (ja) * 2012-03-19 2013-10-31 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
CN103366918A (zh) * 2012-03-29 2013-10-23 通用电气公司 永磁体及其制造方法
CN103077796A (zh) * 2013-02-06 2013-05-01 江苏南方永磁科技有限公司 一种耐蚀钕铁硼永磁材料及其制备方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN105513737A (zh) * 2016-01-21 2016-04-20 烟台首钢磁性材料股份有限公司 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN106128673A (zh) * 2016-06-22 2016-11-16 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
JP2018056334A (ja) * 2016-09-29 2018-04-05 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2019169542A (ja) * 2018-03-22 2019-10-03 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN110957091A (zh) * 2019-11-21 2020-04-03 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384071A1 (en) * 2021-05-31 2022-12-01 Baotou Jinshan Magnetic Material Co., Ltd. Neodymium-iron-boron permanent magnet and preparation method and use thereof
US11705256B2 (en) * 2021-05-31 2023-07-18 Baotou Jinshan Magnetic Material Co., Ltd. Neodymium-iron-boron permanent magnet and preparation method and use thereof

Also Published As

Publication number Publication date
TWI755152B (zh) 2022-02-11
EP4016559B1 (en) 2024-03-13
EP4016559A1 (en) 2022-06-22
CN110957091A (zh) 2020-04-03
JP2022542188A (ja) 2022-09-29
EP4016559A4 (en) 2022-10-12
JP7220331B2 (ja) 2023-02-09
CN110957091B (zh) 2021-07-13
TW202121453A (zh) 2021-06-01
KR102574303B1 (ko) 2023-09-01
KR20220042195A (ko) 2022-04-04
US20220328218A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
JP7220330B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
WO2021098225A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN111326304B (zh) 一种稀土永磁材料及其制备方法和应用
CN111243812B (zh) 一种r-t-b系永磁材料及其制备方法和应用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN111312463B (zh) 一种稀土永磁材料及其制备方法和应用
WO2021169895A1 (zh) 一种钕铁硼材料及其制备方法和应用
CN111524672A (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN114284018A (zh) 钕铁硼磁体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513461

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227006886

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020889698

Country of ref document: EP

Effective date: 20220315

NENP Non-entry into the national phase

Ref country code: DE