WO2021010087A1 - ニッケル合金スパッタリングターゲット - Google Patents

ニッケル合金スパッタリングターゲット Download PDF

Info

Publication number
WO2021010087A1
WO2021010087A1 PCT/JP2020/024031 JP2020024031W WO2021010087A1 WO 2021010087 A1 WO2021010087 A1 WO 2021010087A1 JP 2020024031 W JP2020024031 W JP 2020024031W WO 2021010087 A1 WO2021010087 A1 WO 2021010087A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
nickel alloy
mass
nickel
less
Prior art date
Application number
PCT/JP2020/024031
Other languages
English (en)
French (fr)
Inventor
加藤 慎司
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73452885&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021010087(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020217040257A priority Critical patent/KR20220032523A/ko
Priority to US17/619,354 priority patent/US20220380884A1/en
Publication of WO2021010087A1 publication Critical patent/WO2021010087A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials

Definitions

  • the present invention relates to a nickel alloy sputtering target used when forming a nickel alloy thin film.
  • the present application claims priority based on Japanese Patent Application No. 2019-130518 filed in Japan on July 12, 2019, the contents of which are incorporated herein by reference.
  • a sputtering method using a sputtering target made of a nickel alloy having a predetermined composition is applied. Since nickel is a ferromagnet, when a film is formed by a magnetron sputtering apparatus, a sputtering target made of a nickel alloy is attracted to the apparatus by a magnetic force, and stable film formation cannot be performed. Further, when the sputtering progresses, a narrow erosion portion is formed, which causes a problem that the utilization efficiency of the sputtering target is lowered.
  • Patent Document 1 proposes a technique for weakening the magnetism of a nickel alloy by dissolving silicon in nickel.
  • the solid solution of Si atoms in nickel changes the spin direction of Ni atoms, making it possible to weaken the magnetism.
  • Patent Document 1 for the purpose of sufficiently solid-solving Si atoms in nickel, an ingot obtained by melting and casting is heated under high temperature conditions such as 1000 to 1200 ° C. to carry out homogenization heat treatment. After that, a sputtering target is manufactured by performing hot rolling or hot forging.
  • Patent Document 1 since the heat treatment is performed under high temperature conditions as described above, the crystal grains become coarse. When the crystal grains are coarsened, Si that has not been solid-solved is concentrated at the grain boundaries, and abnormal discharge is likely to occur during sputter film formation, which may prevent stable sputter film formation. It was. Further, in the sputtering target in which the crystal grains are coarsened, the sputtering rate on the sputtering surface may vary, and the film thickness of the formed nickel alloy thin film may become non-uniform.
  • the present invention has been made in view of the above-mentioned circumstances, and the magnetism is weakened, the leakage magnetic field is large, the coarsening of crystal grains is suppressed, and a nickel alloy thin film having a uniform film thickness is stabilized. It is an object of the present invention to provide a nickel alloy sputtering target capable of forming a film thickness and forming a wide erosion portion when sputtering progresses to improve the use efficiency.
  • the nickel alloy sputtering target according to one aspect of the present invention is made of a nickel alloy containing an element that lowers the curry temperature of nickel, and has a Ni content of 99.0 mass% or more.
  • the area ratio of the phase is 13% or less, and the average crystal grain size is 100 ⁇ m or less.
  • the area ratio of the Ni phase which contains an element that lowers the curry temperature of nickel and has a Ni content of 99.0 mass% or more, is 13% or less.
  • the element that lowers the Curie temperature is sufficiently dissolved in nickel, the magnetism is weakened and the leakage magnetic field becomes large, and even when a magnetron sputtering device is used, it is possible to suppress the adsorption of the sputtering target to the device. , Stable spatter film formation can be performed. Further, even when sputtering progresses, the erosion portion is formed relatively wide, and it is possible to improve the efficiency of using the sputtering target.
  • the average crystal grain size is 100 ⁇ m or less, it is possible to suppress the concentration of elements that lower the Curie temperature of nickel at the grain boundaries. As a result, the occurrence of abnormal discharge can be suppressed, and sputter film formation can be stably performed. Further, the variation in the sputtering rate on the sputtering surface is suppressed, and a nickel alloy film having a uniform film thickness can be formed. Further, by setting the average crystal grain size to 100 ⁇ m or less and suppressing the concentration of the additive element at the grain boundary, the additive element can be sufficiently dissolved in nickel, and the magnetism can be weakened more stably. ..
  • the area ratio of the high-purity Ni phase having a Ni content of 99.5 mass% or more is 5% or less.
  • the element that lowers the Curie temperature is more sufficiently dissolved in nickel, the magnetism is weakened and the leakage magnetic field becomes large, and even when a magnetron sputtering device is used, the sputtering target is attracted to the device. Can be suppressed, and more stable sputter film formation can be performed. Further, even when the sputtering progresses, the erosion portion is formed relatively wide, and it becomes possible to further improve the usage efficiency of the sputtering target.
  • the area ratios of the Ni phase and the high-purity Ni phase can be measured by a method described later.
  • the average crystal grain size can also be measured by the method described later.
  • the nickel alloy sputtering target of the present invention one or both of Si and Al are contained as elements for lowering the Curie temperature of nickel, and the total content of Si and Al is within the range of 3 mass% or more and 10 mass% or less. It is preferable that it is.
  • the solid solution of Si atoms and Al atoms weakens the magnetism and increases the leakage magnetic field, and even when a magnetron sputtering device is used, it is possible to suppress the sputtering target from being adsorbed on the device, making it stable. Sputter film formation can be performed. Further, even when sputtering progresses, the erosion portion is formed relatively wide, and it is possible to improve the efficiency of using the sputtering target.
  • the magnetism is weakened, the leakage magnetic field is large, the coarsening of crystal grains is suppressed, and a nickel alloy thin film having a uniform film thickness is stably formed. Can be done. Further, since a wide erosion portion is formed as the sputtering progresses, it is possible to improve the usage efficiency.
  • it is explanatory drawing which shows the sampling position of the measurement sample (sample) in the nickel alloy sputtering target of the rectangular flat plate shape.
  • the shape of the nickel alloy sputtering target of the present embodiment is not limited, and it may be a rectangular flat plate type sputtering target having a rectangular sputtered surface or a disc type sputtering target having a circular sputtered surface. Good. Alternatively, it may be a cylindrical sputtering target in which the sputtering surface is a cylindrical surface.
  • the nickel alloy sputtering target of this embodiment is composed of a nickel alloy containing an element that lowers the Curie temperature of nickel.
  • the element that lowers the Curie temperature of nickel include Si, Al, Ti, Cr, V and the like.
  • the nickel alloy sputtering target of the present embodiment preferably contains either or both of Si and Al as an element that lowers the Curie temperature of nickel.
  • the total content of Si and Al is not limited, but is preferably in the range of 3 mass% or more and 10 mass% or less.
  • the above-mentioned elements such as Si and Al that lower the curry temperature of nickel are solid solutions dissolved in the nickel matrix.
  • the area ratio of the Ni phase having a Ni content of 99.0 mass% or more is 13% or less.
  • the area ratio of the high-purity Ni phase having a Ni content of 99.5 mass% or more is 5% or less.
  • the average crystal grain size of the nickel alloy sputtering target of the present embodiment is 100 ⁇ m or less.
  • the elements that lower the curry temperature of nickel, the total content of Si and Al, the area ratio of the Ni phase, the area ratio of the high-purity Ni phase, The reason for defining the average crystal grain size will be described.
  • the element that lower the curry temperature of nickel is composed of a solid solution dissolved in nickel, and the magnetism is sufficiently weakened.
  • Total content of Si and Al are elements that lower the Curie temperature of nickel.
  • the magnetism of the nickel alloy sputtering target can be sufficiently weakened.
  • the concentration of Si and Al at the grain boundaries can be sufficiently suppressed, and the occurrence of abnormal discharge during sputtering can be suppressed. It will be possible. Therefore, in the nickel alloy sputtering target of the present embodiment, it is preferable to specify the total content of Si and Al within the range of 3 mass% or more and 10 mass% or less.
  • the lower limit of the total content of Si and Al is more preferably 5 mass% or more, and more preferably 6 mass% or more. Further, the upper limit of the total content of Si and Al is more preferably 9 mass% or less.
  • the total content of Ti, Cr, and V may be 5 mass% or more and 15 mass% or less, and 7 mass% or more and 10 mass%. It may be as follows.
  • the magnetism of nickel is weakened by the solid solution of elements (Si and Al in this embodiment) that lower the Curie temperature of nickel in the nickel matrix.
  • the area ratio of the Ni phase having a Ni content of 99.0 mass% or more increases, the area ratio of the phase in which the element that lowers the curry temperature of nickel is solidified in nickel decreases, and the magnetism of the nickel alloy sputtering target decreases. May not be sufficiently weakened. Therefore, in the nickel alloy sputtering target of the present embodiment, the area ratio of the Ni phase having a Ni content of 99.0 mass% or more is limited to 13% or less.
  • the area ratio of the Ni phase having a Ni content of 99.0 mass% or more is more preferably 9% or less, and further preferably 7% or less.
  • the lower limit of the area ratio of the Ni phase having a Ni content of 99.0 mass% or more is not limited, but may be 1.0% or more, for example.
  • the area ratio of the high-purity Ni phase having a Ni content of 99.5 mass% or more is limited to 5% or less in order to surely weaken the magnetism.
  • the area ratio of the high-purity Ni phase having a Ni content of 99.5 mass% or more is more preferably 4% or less, and further preferably 2% or less.
  • the lower limit of the area ratio of the high-purity Ni phase is not limited, but may be, for example, 0.1% or more.
  • the area ratio of the Ni phase can be obtained as follows. Draw two virtual lines that intersect through the center point of the sputtering surface on the sputtering surface of the nickel alloy sputtering target (if it is not a flat surface such as a cylinder, consider the state of being developed on a flat surface). When the sputtered surface is rectangular, these virtual lines are diagonal lines, and when the sputtered surface is circular or elliptical, they are two line segments orthogonal to the center point of the sputtered surface. Samples are taken from the intersection (1) where the two virtual lines intersect and the five points (2), (3), (4), and (5) at the ends on each virtual line. The end portion is a range within 10% of the total length of the virtual line from both ends of the virtual line.
  • the area ratio of the Ni phase having a Ni content of 99.0 mass% or more in the visual field and the area ratio of the high-purity Ni phase having a Ni content of 99.5 mass% or more are calculated.
  • the area ratio is calculated by counting the number of pixels having a Ni content of 99.0 mass% or more or 99.5 mass% or more and dividing by the total number of pixels in the field of view. Further, the average value of the values in (1) to (5) is calculated and used as the area ratio of the Ni phase.
  • the average crystal grain size is set to 100 ⁇ m or less.
  • the average crystal grain size of the nickel alloy sputtering target is preferably 90 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the average crystal grain size can be obtained as follows. As in the case of obtaining the area ratio of the Ni phase, two virtual lines are determined on the sputtered surface, the intersection (1) of these virtual lines and the ends (2), (3), (3) on each virtual line. Samples are taken from the 5 points of 4) and (5). After polishing the surface of each sample (the surface corresponding to the sputtered surface) with, for example, diamond abrasive grains, the polished surface is etched with an etching solution (for example, in a 30 mass% nitric acid aqueous solution at room temperature 2). Soak for minutes). Next, the polished surface is micro-observed using an optical microscope, and the crystal grain size is measured by the cutting method specified in JIS H 0501: 1986. The crystal grain size is measured in each of the five samples (1) to (5) described above, and the average crystal grain size is calculated by averaging them.
  • an etching solution for example, in a 30 mass% nitric acid aqueous solution at room temperature 2). Soak
  • a Ni plate and grains of additive elements such as Si and Al are prepared as raw materials.
  • the purity of the Ni raw material is preferably 99.9 mass% or more.
  • the purity of the Si raw material and the Al raw material is preferably 99.9 mass% or more, respectively.
  • the above-mentioned Ni raw material, Si raw material, and Al raw material are weighed so as to have a desired target composition.
  • Various weighed raw materials are melted in a melting furnace, and the generated molten metal is discharged into a mold to produce an ingot.
  • a vacuum melting furnace as the melting furnace.
  • carbonization of Ni it is preferable to use a ceramic crucible or the like without using a carbonaceous member.
  • Hot rolling step S02 Next, the ingot obtained in the melt casting step S01 is hot-rolled to produce a rolled plate.
  • the total rolling reduction in hot rolling is preferably in the range of 50% or more and 80% or less.
  • the temperature of hot rolling is preferably in the range of 500 ° C. or higher and 900 ° C. or lower. In order to suppress rolling cracks, when the temperature drops to less than 500 ° C, it is preferable to reheat to 500 ° C or higher and 900 ° C or lower to perform rolling.
  • Heat treatment step S03 Next, the rolled plate obtained in the hot rolling step S02 is heat-treated to recrystallize the crystal grains.
  • the average crystal grain size is adjusted to 100 ⁇ m or less.
  • the heat treatment temperature should be within the range of 600 ° C. or higher and 900 ° C. or lower in order to reduce the area ratio of the Ni phase having an average crystal grain size of 100 ⁇ m or less and a Ni content of 99.0 mass% or more to 13% or less. Is preferable.
  • the holding time at the heat treatment temperature is preferably in the range of 30 minutes or more and 90 minutes or less.
  • the nickel alloy sputtering target of the present embodiment is manufactured.
  • the nickel alloy sputtering target of the present embodiment having the above configuration, since the average crystal grain size is 100 ⁇ m or less, it is possible to suppress the concentration of Si at the crystal grain boundaries, and abnormal discharge occurs. Occurrence can be suppressed, and sputter film formation can be stably performed. Further, the variation in the sputtering rate on the sputtering surface is suppressed, and a nickel alloy film having a uniform film thickness can be formed.
  • the area ratio of the Ni phase which contains an element that lowers the Curie temperature of nickel and has a Ni content of 99.0 mass% or more, is 13% or less, the element that lowers the Curie temperature is contained in nickel. It is sufficiently solid-dissolved, the magnetism is weakened and the leakage magnetic field becomes large, and even when a magnetron sputtering device is used, it is possible to prevent the sputtering target from adhering to the device, and stable spatter film formation can be performed. it can. Further, even when sputtering progresses, the erosion portion is formed relatively wide, and it is possible to improve the efficiency of using the sputtering target.
  • the curry temperature is lowered.
  • the element is more sufficiently dissolved in nickel, the magnetism is weakened and the leakage magnetic field becomes large, and even when a magnetron sputtering device is used, it is possible to suppress the sputtering target from being adsorbed on the device, resulting in stable sputtering.
  • a film can be formed. Further, even when sputtering progresses, the erosion portion is formed relatively wide, and it is possible to improve the efficiency of using the sputtering target.
  • nickel alloy sputtering target of the present embodiment when one or both of Si and Al are contained as elements for lowering the Curie temperature and the total content of Si and Al is 3 mass% or more, nickel is used. A sufficient amount of Si atoms and Al atoms that dissolve in the solid will be secured, the magnetism will be weakened and the leakage magnetic field will increase, and the sputtering target will be attracted to the device even when a magnetron sputtering device is used. Can be suppressed, and sputter film formation can be performed stably. Further, even when sputtering progresses, the erosion portion is formed relatively wide, and it is possible to improve the efficiency of using the sputtering target.
  • the total content of Si and Al is 10 mass% or less, the formation of a compound containing Si and Al can be sufficiently suppressed, and the occurrence of abnormal discharge during sputtering is suppressed. This makes it possible to perform sputter film formation more stably.
  • Ni raw material (Ni plate) having a purity of 99.9 mass% or more, a Si raw material (Si grain) having a purity of 99.9 mass% or more, and an Al raw material (Al grain) having a purity of 99.9 mass% or more were prepared.
  • the component composition, composition variation, average crystal grain size, Ni phase area ratio of Ni content of 99.0 mass% or more, and Ni content of 99.5 mass% or more were evaluated as follows.
  • the evaluation results are shown in Table 2.
  • a sputtering film was formed as follows, and the number of abnormal discharges and the variation in the film thickness of the obtained nickel film were evaluated. The evaluation results are shown in Table 2.
  • FIG. 3A shows Example 2 of the present invention
  • FIG. 3B shows the results of microstructure observation of Comparative Example 4.
  • the area ratio of the Ni phase having a Ni content of 99.0 mass% or more in the visual field and the area ratio of the high-purity Ni phase having a Ni content of 99.5 mass% or more were calculated.
  • the area ratio the number of pixels having a Ni content of 99.0 mass% or more or 99.5 mass% or more is counted, and the value of each measurement point is calculated by dividing by the total number of pixels in the field of view.
  • the average value of the values in 1) to (5) was calculated and used as the area ratio of the Ni phase.
  • the evaluation results are shown in Table 2.
  • a nickel alloy sputtering target in which a magnet for generating magnetic flux (horseshoe-shaped magnet: Alnico magnet 5K215 manufactured by Dexter) is placed under a table made of a non-magnetic material (for example, aluminum) and placed on the table.
  • a hole probe capable of adjusting the relative measurement position was placed on the upper side of the hole probe, and a magnetic flux measuring device having a structure in which a gauss meter was connected to this hole probe was prepared.
  • the specific resistance of the nickel alloy sputtering target was measured by the four-probe method. As a measuring device, Loresta-GP of Mitsubishi Chemical Analytech Co., Ltd. was used. The evaluation results are shown in Table 2.
  • the nickel alloy sputtering target was soldered to a backing plate made of oxygen-free copper, and this was mounted on a magnetron type DC sputtering device. Further, a 100 mm square glass substrate was mounted on a magnetron type DC sputtering apparatus.
  • a nickel alloy film was formed on the surface of the glass substrate under the following sputtering conditions with a target thickness of 300 nm.
  • Target-glass substrate distance 60 mm Ultimate vacuum: 5 x 10-5 Pa Ar gas pressure: 0.3Pa Sputter output: DC 1000W
  • the film thickness was measured at 5 points ⁇ 4> and ⁇ 5> using a step measuring device.
  • the corners ⁇ 2>, ⁇ 3>, ⁇ 4>, and ⁇ 5> were set within a range of 10% or less of the diagonal total length from the corner to the inside.
  • the average value of the measured film thickness was obtained, the maximum value (maximum film thickness) and the minimum value (minimum film thickness) of the measured film thickness were extracted, and the difference between the maximum film thickness and the minimum film thickness was calculated.
  • the evaluation results are shown in Table 2.
  • Comparative Example 1 containing no element that lowers the Curie temperature of nickel, the area ratio of the Ni phase and the high-purity Ni phase was 100%. In addition, the leakage flux was as low as 22%, and the magnetism could not be weakened. Further, the film thickness difference became large, and the uniformity of the film decreased. In addition, the utilization efficiency of the sputtering target was as low as 15%.
  • Comparative Example 2 and Comparative Example 5 in which the hot rolling temperature in the hot rolling step and the heat treatment temperature in the heat treatment step were 1000 ° C., the average crystal grain size was coarsened to exceed 100 ⁇ m. In particular, in Comparative Example 2, it was remarkably coarsened to 364 ⁇ m. For this reason, the number of abnormal discharges during sputter film formation has increased. In addition, the difference in film thickness became large, and the uniformity of the film decreased.
  • Comparative Example 3 and Comparative Example 6 in which the hot rolling temperature in the hot rolling step was 450 ° C., cracks occurred during hot rolling. Therefore, the process and evaluation after hot working were stopped.
  • Comparative Example 4 and Comparative Example 7 in which the total processing ratio of the hot rolling process was 20%, the area ratio of the Ni phase exceeded 13% and the leakage flux was 25%. In addition, the difference in film thickness became large, and the uniformity of the film decreased. Furthermore, the utilization efficiency of the sputtering target was as low as 16%.
  • the area ratio of the Ni phase containing Si and Al, which are elements that lower the Curie temperature of nickel, and the Ni content is 99.0 mass% or more is 13% or less, and the average crystal grain size is 13% or less.
  • the number of abnormal discharges was small and the difference in film thickness was kept small.
  • the usage efficiency of the sputtering target was 19% or more.
  • the magnetism is weakened, the leakage magnetic field is large, the coarsening of crystal grains is suppressed, and a nickel alloy thin film having a uniform film thickness is stably formed. I was able to. It was also confirmed that a wide erosion portion is formed when sputtering progresses, and it is possible to provide a nickel alloy sputtering target capable of improving use efficiency.
  • the magnetism is weakened, the leakage magnetic field is large, the coarsening of crystal grains is suppressed, and a nickel alloy thin film having a uniform film thickness can be stably formed. Further, it is possible to provide a nickel alloy sputtering target capable of improving the use efficiency by forming a wide erosion portion when the sputtering progresses. Therefore, the present invention can be used industrially.

Abstract

このニッケル合金スパッタリングターゲットは、ニッケルのキュリー温度を低下させる元素を含有するニッケル合金からなり、Niの含有量が99.0mass%以上であるNi相の面積率が13%以下とされ、平均結晶粒径が100μm以下である。Niの含有量が99.5mass%以上である高純度Ni相の面積率が5%以下とされていることが好ましい。

Description

ニッケル合金スパッタリングターゲット
 本発明は、ニッケル合金薄膜を成膜する際に用いられるニッケル合金スパッタリングターゲットに関する。
 本願は、2019年7月12日に、日本に出願された特願2019-130518号に基づき優先権を主張し、その内容をここに援用する。
 上述のニッケル合金薄膜を成膜する場合には、例えば、特許文献1に記載されているように、所定の組成のニッケル合金からなるスパッタリングターゲットを用いたスパッタリング法が適用される。
 ニッケルは強磁性体であるため、マグネトロンスパッタリング装置によって成膜する場合、ニッケル合金からなるスパッタリングターゲットが磁力によって装置に吸着してしまい、安定して成膜を行うことができなかった。
 また、スパッタが進行した際に、狭いエロージョン部が形成されてしまい、スパッタリングターゲットの使用効率が低下するといった問題があった。
 特許文献1においては、ニッケルにシリコンを固溶させることによって、ニッケル合金の磁性を弱める技術が提案されている。ニッケル中にSi原子が固溶することにより、Ni原子のスピン方向が変化し、磁性を弱めることが可能となる。
特許第3532063号公報
 特許文献1においては、ニッケル中にSi原子を十分に固溶させることを目的として、溶解鋳造して得られたインゴットを、1000~1200℃といった高温条件で加熱して均質化熱処理を実施し、その後、熱間圧延または熱間鍛造を実施することで、スパッタリングターゲットを製造している。
 特許文献1においては、上述のように高温条件で熱処理を実施しているため、結晶粒が粗大化する。結晶粒が粗大化した場合には、固溶しなかったSiが結晶粒界に濃化し、スパッタ成膜時に異常放電が発生しやすくなり、安定してスパッタ成膜を行うことができないおそれがあった。
 また、結晶粒が粗大化したスパッタリングターゲットにおいては、スパッタ面におけるスパッタレートにばらつきが生じ、成膜されたニッケル合金薄膜の膜厚が不均一となるおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、磁性が弱められて漏れ磁場が大きく、かつ、結晶粒の粗大化が抑制されており、均一な膜厚のニッケル合金薄膜を安定して成膜することができるとともに、スパッタが進行した際に広いエロージョン部が形成され、使用効率を向上させることが可能なニッケル合金スパッタリングターゲットを提供することを課題としている。
 上記の課題を解決するために、本発明の一態様に係るニッケル合金スパッタリングターゲットは、ニッケルのキュリー温度を低下させる元素を含有するニッケル合金からなり、Ni含有量が99.0mass%以上であるNi相の面積率が13%以下とされ、平均結晶粒径が100μm以下であることを特徴としている。
 本発明のニッケル合金スパッタリングターゲットによれば、ニッケルのキュリー温度を低下させる元素を含有するとともに、Niの含有量が99.0mass%以上であるNi相の面積率が13%以下とされているので、キュリー温度を低下させる元素がニッケル中に十分に固溶しており、磁性が弱められて漏れ磁場が大きくなり、マグネトロンスパッタリング装置を用いた場合でも、スパッタリングターゲットが装置に吸着することを抑制でき、安定してスパッタ成膜を行うことができる。また、スパッタが進行した際でも、エロージョン部が比較的広く形成され、スパッタリングターゲットの使用効率を向上させることが可能となる。
 さらに、平均結晶粒径が100μm以下とされているので、結晶粒界に、ニッケルのキュリー温度を低下させる元素が濃化することを抑制できる。これにより、異常放電の発生を抑制することができ、安定してスパッタ成膜を行うことが可能となる。また、スパッタ面におけるスパッタレートのばらつきが抑えられ、膜厚が均一なニッケル合金膜を成膜することが可能となる。また、平均結晶粒径を100μm以下とし、添加元素が粒界に濃化するのを抑制することで、添加元素をニッケル中に十分に固溶させることができ、より磁性を安定して弱められる。
 本発明のニッケル合金スパッタリングターゲットにおいては、Niの含有量が99.5mass%以上である高純度Ni相の面積率が5%以下とされていることがより好ましい。この場合、キュリー温度を低下させる元素がニッケル中にさらに十分に固溶しており、磁性が弱められて漏れ磁場が大きくなり、マグネトロンスパッタリング装置を用いた場合でも、スパッタリングターゲットが装置に吸着することを抑制でき、さらに安定してスパッタ成膜を行うことができる。また、スパッタが進行した際でも、エロージョン部が比較的広く形成され、スパッタリングターゲットの使用効率をさらに向上させることが可能となる。前記Ni相および前記高純度Ni相の面積率は、後述する方法で測定可能である。平均結晶粒径も、後述する方法で測定可能である。
 また、本発明のニッケル合金スパッタリングターゲットにおいては、ニッケルのキュリー温度を低下させる元素として、Si及びAlの一方又は両方を含み、SiとAlの合計含有量が3mass%以上10mass%以下の範囲内とされていることが好ましい。この場合、Si原子及びAl原子が固溶することによって、磁性が弱められて漏れ磁場が大きくなり、マグネトロンスパッタリング装置を用いた場合でも、スパッタリングターゲットが装置に吸着することを抑制でき、安定してスパッタ成膜を行うことができる。また、スパッタが進行した際でも、エロージョン部が比較的広く形成され、スパッタリングターゲットの使用効率を向上させることが可能となる。
 本発明のニッケル合金スパッタリングターゲットによれば、磁性が弱められて漏れ磁場が大きく、かつ、結晶粒の粗大化が抑制されており、均一な膜厚のニッケル合金薄膜を安定して成膜することができる。また、スパッタが進行した際に広いエロージョン部が形成されるから、使用効率を向上させることが可能である。
本発明の実施形態であるニッケル合金スパッタリングターゲットの製造方法の一例を示すフロー図である。 本発明例および比較例において、矩形平板形状のニッケル合金スパッタリングターゲットにおける測定試料(サンプル)の採取位置を示す説明図である。 本発明例2のニッケル合金スパッタリングターゲットのミクロ組織の観察写真である。 比較例4のスパッタリングターゲットのミクロ組織の観察写真である。 本発明例および比較例において、成膜されたニッケル合金膜における膜厚の測定位置を示す説明図である。
 以下、本発明の一実施形態に係るニッケル合金スパッタリングターゲットについて説明する。本実施形態のニッケル合金スパッタリングターゲットの形状は限定されず、スパッタ面が矩形状をなす矩形平板型スパッタリングターゲットであってもよいし、スパッタ面が円形状をなす円板型スパッタリングターゲットであってもよい。あるいは、スパッタ面が円筒面とされた円筒型スパッタリングターゲットであってもよい。
 本実施形態のニッケル合金スパッタリングターゲットは、ニッケルのキュリー温度を低下させる元素を含有するニッケル合金で構成されている。ニッケルのキュリー温度を低下させる元素としては、例えば、Si,Al,Ti,Cr,V等が挙げられる。
 本実施形態であるニッケル合金スパッタリングターゲットにおいては、ニッケルのキュリー温度を低下させる元素として、Si,Alのいずれか一方又は両方を含有することが好ましい。Si及びAlの合計含有量は限定されないが、3mass%以上10mass%以下の範囲内とすることが好ましい。
 本実施形態であるニッケル合金スパッタリングターゲットにおいては、上述のSi,Alといったニッケルのキュリー温度を低下させる元素が、ニッケルの母相に固溶した固溶体とされている。これにより、Niの含有量が99.0mass%以上であるNi相の面積率が13%以下とされている。
 さらに、本実施形態であるニッケル合金スパッタリングターゲットにおいては、Niの含有量が99.5mass%以上である高純度Ni相の面積率が5%以下とされていることが好ましい。
 そして、本実施形態であるニッケル合金スパッタリングターゲットにおいては、その平均結晶粒径が100μm以下とされている。
 以下に、本実施形態であるニッケル合金スパッタリングターゲットにおいて、上述のように、ニッケルのキュリー温度を低下させる元素、Si及びAlの合計含有量、Ni相の面積率、高純度Ni相の面積率、平均結晶粒径、を規定した理由について説明する。
(ニッケルのキュリー温度を低下させる元素)
 ニッケルは、強磁性体であるため、容易に磁化する。ニッケルのキュリー温度を低下させる元素(例えばSi原子、Al原子)を固溶させることにより、Ni原子のスピン方向が変化して磁性を弱めることが可能となる。
 このため、本実施形態であるニッケル合金スパッタリングターゲットにおいては、ニッケルのキュリー温度を低下させる元素がニッケル中に固溶した固溶体で構成されており、磁性が十分に弱められている。
(Si及びAlの合計含有量)
 上述のように、Si及びAlは、ニッケルのキュリー温度を低下させる元素である。Si及びAlの合計含有量を3mass%以上とすることにより、ニッケル合金スパッタリングターゲットの磁性を十分に弱めることが可能となる。一方、Si及びAlの合計含有量を10mass%以下とすることにより、結晶粒界でのSi及びAlの濃化を十分に抑制することができ、スパッタ時における異常放電の発生を抑制することが可能となる。そこで、本実施形態であるニッケル合金スパッタリングターゲットにおいては、Si及びAlの合計含有量を3mass%以上10mass%以下の範囲内に規定することが好ましい。
 Si及びAlの合計含有量の下限は、5mass%以上とすることがさらに好ましく、6mass%以上とすることがより好ましい。また、Si及びAlの合計含有量の上限は、9mass%以下とすることがさらに好ましい。
 ニッケルのキュリー温度を低下させる元素として、さらにTi,Cr,Vを含む場合には、Ti,Cr,Vの合計含有量は5mass%以上15mass%以下であってもよく、7mass%以上かつ10mass%以下であってもよい。
(Ni相の面積率)
 上述のように、ニッケルの母相中に、ニッケルのキュリー温度を低下させる元素(本実施形態では、Si及びAl)が固溶することにより、ニッケルの磁性が弱められる。
 Niの含有量が99.0mass%以上であるNi相の面積率が多くなると、ニッケルのキュリー温度を低下させる元素がニッケル中に固溶した相の面積率が少なくなり、ニッケル合金スパッタリングターゲットの磁性を十分に弱めることができないおそれがある。
 そこで、本実施形態であるニッケル合金スパッタリングターゲットにおいては、Niの含有量が99.0mass%以上であるNi相の面積率を13%以下に制限している。Niの含有量が99.0mass%以上であるNi相の面積率は、9%以下であることがより好ましく、7%以下であることがさらに好ましい。Niの含有量が99.0mass%以上であるNi相の面積率の下限は限定されないが、例えば1.0%以上であってもよい。
(高純度Ni相の面積率)
 Niの含有量が99.5mass%以上である高純度Ni相においては、ニッケルのキュリー温度を低下させる元素が十分に固溶しておらず、ニッケルの磁性が弱められていない。
 本実施形態であるニッケル合金スパッタリングターゲットにおいては、磁性を確実に弱めるために、Niの含有量が99.5mass%以上である高純度Ni相の面積率を5%以下に制限している。
 Niの含有量が99.5mass%以上である高純度Ni相の面積率は、4%以下であることがより好ましく、2%以下であることがさらに好ましい。高純度Ni相の面積率の下限は限定されないが、例えば0.1%以上であってもよい。
 Ni相の面積率は、次のようにして求めることができる。ニッケル合金スパッタリングターゲットのスパッタ面(円筒形など平面でない場合には平面に展開した状態を考える)にスパッタ面の中心点を通って交差する二本の仮想線を引く。これら仮想線は、スパッタ面が矩形状であるときはその対角線とし、スパッタ面が円形または楕円形であるときはスパッタ面の中心点で直交する二本の線分とする。二本の仮想線が交差する交点(1)と、各仮想線上の端部(2)、(3)、(4)、(5)の5点からサンプルを採取する。前記端部とは、仮想線の両端からその仮想線の全長の10%以内の範囲とする。採取した各サンプルをエポキシ樹脂に埋め込み、表面(スパッタ面に該当する面)を研磨加工した後、FE-EPMA(例えば日本電子株式会社製JXA-8500F)を用いて、60倍の視野(1400μm×2000μm)でNi,Si,Alのマッピングを行う。各マッピング結果について、FE-EPMAの定量マップ機能を用いて、各ピクセル毎にNi,Si,Alのみがいると仮定した半定量計算を行い、Ni,Si,Alのそれぞれのピクセル毎の含有量(mass%)を示す定量マップを作成する。作成した定量マップを元に、視野内のNi含有量99.0mass%以上のNi相の面積率、及び、Ni含有量99.5mass%以上の高純度Ni相の面積率を算出する。面積率は、Ni含有量が99.0mass%以上あるいは99.5mass%以上であるピクセルの数をカウントし、視野内の全ピクセル数で割ることにより、算出する。さらに(1)~(5)での値の平均値を計算してNi相の面積率とする。
(平均結晶粒径)
 ニッケル合金スパッタリングターゲットにおいて、結晶粒径が大きい場合には、固溶しなかったSi及びAl等の元素が、結晶粒界に濃化することにより、部分的に磁化しやすくなるため、スパッタ成膜時に異常放電が発生しやすくなる。また、結晶粒径が大きいと、スパッタ面におけるスパッタレートのばらつきが生じ、膜厚が不均一となるおそれがある。
 このため、本実施形態であるニッケル合金スパッタリングターゲットにおいては、平均結晶粒径を100μm以下としている。ニッケル合金スパッタリングターゲットの平均結晶粒径は、90μm以下とすることが好ましく、80μm以下とすることがさらに好ましい。
 平均結晶粒径は、次のようにして求めることができる。前記Ni相の面積率を求める場合と同様に、スパッタ面に二本の仮想線を決め、これら仮想線の交点(1)と、各仮想線上の前記端部(2)、(3)、(4)、(5)の5点からサンプルを採取する。採取した各サンプルの表面(スパッタ面に該当する面)を例えばダイヤモンド砥粒で研磨加工した後、研磨された表面を、エッチング液を用いてエッチング処理する(例えば30mass%の硝酸水溶液に室温で2分間浸漬する)。次に、光学顕微鏡を用いて研磨面をミクロ観察し、JIS H 0501:1986に規定された切断法により、結晶粒径を測定する。上述(1)~(5)の5つのサンプルでそれぞれ結晶粒径を測定し、それらを平均して平均結晶粒径を算出する。
 次に、本実施形態であるニッケル合金スパッタリングターゲットの製造方法について、図1のフロー図を用いて説明する。
(溶解鋳造工程S01)
 まず、原料として、Ni板と、Si,Al等の添加元素の粒をそれぞれ準備する。Ni原料の純度は99.9mass%以上であることが好ましい。また、Si原料及びAl原料の純度はそれぞれ99.9mass%以上であることが好ましい。
 次に、所望のターゲット組成となるように、上述のNi原料、Si原料、Al原料を秤量する。秤量した各種原料を溶解炉によって溶解し、生成した溶湯を鋳型に出湯して、鋳塊を製造する。
 溶湯状態での金属の酸化や窒化を防止するために、溶解炉としては真空溶解炉を用いることが好ましい。また、Niの炭化を防止するために、炭素質部材を用いず、セラミックス坩堝等を使用することが好ましい。
(熱間圧延工程S02)
 次に、溶解鋳造工程S01で得られた鋳塊に熱間圧延を施して圧延板を製造する。熱間圧延での総圧下率は、50%以上80%以下の範囲内とすることが好ましい。この熱間圧延工程S02により、鋳造組織が破壊され、次の熱処理工程の再結晶ならびに添加元素の均一な固溶が促進される。
 また、熱間圧延の温度は、500℃以上900℃以下の範囲内とすることが好ましい。圧延割れを抑制するために、500℃未満まで温度が低下した場合には、500℃以上900℃以下にまで再加熱し、圧延を行うことが好ましい。
(熱処理工程S03)
 次に、熱間圧延工程S02で得られた圧延板に対して熱処理を行い、結晶粒を再結晶化する。この熱処理工程S03により、平均結晶粒径が100μm以下に調整される。平均結晶粒径が100μm以下かつNiの含有量が99.0mass%以上であるNi相の面積率を13%以下にするために、熱処理温度は、600℃以上900℃以下の範囲内とすることが好ましい。また、熱処理温度での保持時間は、30分以上90分以下の範囲内とすることが好ましい。
(機械加工工程S04)
 次に、熱処理工程S03を経た圧延板に対して、切削加工及び研削加工等を行い、所定形状及び所定寸法のニッケル合金スパッタリングターゲットを得る。
 以上のようにして、本実施形態であるニッケル合金スパッタリングターゲットが製造される。
 以上のような構成とされた本実施形態のニッケル合金スパッタリングターゲットによれば、平均結晶粒径が100μm以下とされているので、結晶粒界にSiが濃化することを抑制でき、異常放電の発生を抑制することができ、安定してスパッタ成膜を行うことが可能となる。また、スパッタ面におけるスパッタレートのばらつきが抑えられ、膜厚が均一なニッケル合金膜を成膜することが可能となる。
 ニッケルのキュリー温度を低下させる元素を含有するとともに、Niの含有量が99.0mass%以上であるNi相の面積率が13%以下とされているので、キュリー温度を低下させる元素がニッケル中に十分に固溶しており、磁性が弱められて漏れ磁場が大きくなり、マグネトロンスパッタリング装置を用いた場合でも、スパッタリングターゲットが装置に吸着することを抑制でき、安定してスパッタ成膜を行うことができる。また、スパッタが進行した際でも、エロージョン部が比較的広く形成され、スパッタリングターゲットの使用効率を向上させることが可能となる。
 また、本実施形態であるニッケル合金スパッタリングターゲットにおいて、Niの含有量が99.5mass%以上である高純度Ni相の面積率が5%以下に制限されている場合には、キュリー温度を低下させる元素がニッケル中にさらに十分に固溶しており、磁性が弱められて漏れ磁場が大きくなり、マグネトロンスパッタリング装置を用いた場合でも、スパッタリングターゲットが装置に吸着することを抑制でき、安定してスパッタ成膜を行うことができる。また、スパッタが進行した際でも、エロージョン部が比較的広く形成され、スパッタリングターゲットの使用効率を向上させることが可能となる。
 さらに、本実施形態であるニッケル合金スパッタリングターゲットにおいて、キュリー温度を低下させる元素としてSi及びAlの一方又は両方を含み、Si及びAlの合計含有量が3mass%以上とされている場合には、ニッケル中に固溶するSi原子及びAl原子の量が十分に確保されることになり、磁性が弱められて漏れ磁場が大きくなり、マグネトロンスパッタリング装置を用いた場合でも、スパッタリングターゲットが装置に吸着することを抑制でき、安定してスパッタ成膜を行うことができる。また、スパッタが進行した際でも、エロージョン部が比較的広く形成され、スパッタリングターゲットの使用効率を向上させることが可能となる。
 さらに、Si及びAlの合計含有量が10mass%以下とされている場合には、Si及びAlを含む化合物が生成することを十分に抑制することができ、スパッタ時における異常放電の発生を抑制することが可能となり、さらに安定してスパッタ成膜を行うことができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 以下に、前述した本発明のニッケル合金スパッタリングターゲットについて評価した評価試験の結果について説明する。
 本実施形態に記載された製造方法に準じて、本発明例及び比較例のニッケル合金スパッタリングターゲットを製造した。
 まず、純度99.9mass%以上のNi原料(Ni板)と、純度99.9mass%以上のSi原料(Si粒)と、純度99.9mass%以上のAl原料(Al粒)を準備した。
 これらの原料を、表1に示す組成となるように秤量した。秤量した各種原料を、真空溶解炉を用いて1500℃以上まで加熱して溶解し、得られた溶湯を鋳型に出湯して、鋳塊(幅155mm×厚さ40mm×長さ220mm)を得た。表1に示す条件で、熱間圧延、熱処理を実施し、矩形平板形状をなす本発明例及び比較例のニッケル合金スパッタリングターゲット(150mm×500mm×5mm厚さ)を製造した。
 上述のようにして得られたニッケル合金スパッタリングターゲットについて、成分組成、組成ばらつき、平均結晶粒径、Niの含有量99.0mass%以上のNi相の面積率、Niの含有量99.5mass%以上の高純度Ni相の面積率、漏れ磁場、比抵抗値を、以下のように評価した。評価結果を表2に示す。
 また、得られたニッケル合金スパッタリングターゲットを用いて、以下のようにスパッタ成膜を行い、異常放電回数、得られたニッケル膜の膜厚ばらつき、について評価した。評価結果を表2に示す。
(成分組成/組成ばらつき)
 図2に示すように、得られたニッケル合金スパッタリングターゲットのスパッタ面の対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5点から測定試料を採取し、これを酸で前処理した後、ICP分析を実施した。角部(2)、(3)、(4)、(5)は、角部から内側に向かって対角線全長の10%以内の範囲内とした。測定の結果、平均組成は、配合組成と略同等であることを確認した。
 また、5つの測定試料におけるSi及びAlの分析値の最大値と最小値の差を「組成ばらつき」として表2に記載した。
(平均結晶粒径)
 図2に示すように、得られたニッケル合金スパッタリングターゲットのスパッタ面の対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5点からサンプルを採取した。採取した各サンプルの表面(スパッタ面に該当する面)を研磨加工した後、研磨された表面を、エッチング液を用いてエッチング処理した。
 次に、光学顕微鏡を用いて研磨面をミクロ観察し、JIS H 0501:1986に規定された切断法により、結晶粒径を測定した。
 上述の5つのサンプルでそれぞれ結晶粒径を測定し、平均結晶粒径を算出した。評価結果を表2に示す。また、本発明例2を図3A、比較例4のミクロ組織観察結果を図3Bにそれぞれ示す。
(Ni相/高純度Ni相の面積率)
 図2に示すように、得られたニッケル合金スパッタリングターゲットのスパッタ面の対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5点からサンプルを採取した。採取した各サンプルをエポキシ樹脂に埋め込み、表面(スパッタ面に該当する面)を研磨加工した後、FE-EPMA(日本電子株式会社製JXA-8500F)を用いて、60倍の視野(1400μm×2000μm)でNi,Si,Alのマッピングを行った。
 各マッピング結果について、装置付属ソフトの定量マップ機能を用いて、各ピクセル毎に、Ni,Si,Alのみがいると仮定した半定量計算を行い、Ni,Si,Alのそれぞれのピクセル毎の含有量(mass%)を示す定量マップを作成した。
 作成された定量マップを元に、視野内のNi含有量99.0mass%以上のNi相の面積率、及び、Ni含有量99.5mass%以上の高純度Ni相の面積率を算出した。面積率は、Ni含有量が99.0mass%以上あるいは99.5mass%以上であるピクセルの数をカウントし、視野内の全ピクセル数で割ることにより個々の測定箇所の値を算出し、さらに(1)~(5)での値の平均値を計算してNi相の面積率とした。評価結果を表2に示す。
(漏れ磁場)
 非磁性体の材質(例えばアルミニウム)からなるテーブルの下に、磁束を発生させるための磁石(馬蹄形磁:Dexter社製アルニコ磁石5K215)が配置され、テーブルの上に載置されるニッケル合金スパッタリングターゲットの上側に、相対的な測定位置を調整できるホールプローブが配置され、このホールプローブにガウスメータが接続された構造の磁束測定装置を準備した。
 この磁束測定装置を用いて、ニッケル合金スパッタリングターゲットをテーブル上に載置しない状態でのテーブル上面における磁束量A(KG)と、ニッケル合金スパッタリングターゲットをテーブル上に載置した際のニッケル合金スパッタリングターゲットの上側表面の磁束量B(KG)を測定した。以下の式により、漏れ磁束(%)を算出した。評価結果を表2に示す。
  漏れ磁束(%)=B/A×100
(比抵抗値)
 ニッケル合金スパッタリングターゲットの比抵抗を、四探針法によって測定した。測定装置として、株式会社三菱ケミカルアナリテックのLoresta-GPを使用した。評価結果を表2に示す。
(異常放電)
 ニッケル合金スパッタリングターゲットを無酸素銅製のバッキングプレートにはんだ付けし、これをマグネトロン式のDCスパッタ装置に装着した。
 次いで、以下のスパッタ条件にて、60分間連続して、スパッタ法による成膜を実施した。このスパッタ成膜の間、DCスパッタ装置の電源に付属されたアークカウンターを用いて、異常放電の発生回数をカウントした。評価結果を表2に示す。
  到達真空度:5×10-5Pa
  Arガス圧:0.3Pa
  スパッタ出力:直流1000W
(膜厚のばらつき)
 ニッケル合金スパッタリングターゲットを無酸素銅製のバッキングプレートにはんだ付けし、これをマグネトロン式のDCスパッタ装置に装着した。また、100mm角のガラス基板をマグネトロン式のDCスパッタ装置に装着した。
 次いで、以下のスパッタ条件にて、ガラス基板の表面に目標厚さ300nmとしてニッケル合金膜を成膜した。
  ターゲット-ガラス基板の距離:60mm
  到達真空度:5×10-5Pa
  Arガス圧:0.3Pa
  スパッタ出力:直流1000W
 ガラス基板に成膜されたニッケル合金膜について、図4に示すように、ガラス基板の成膜面の対角線が交差する交点<1>と、各対角線上の角部<2>、<3>、<4>、<5>の5点で膜厚を、段差測定器を用いて測定した。角部<2>、<3>、<4>、<5>は、角部から内側に向かって対角線全長の10%以内の範囲内とした。測定した膜厚の平均値を求め、膜厚の測定値の最大値(最大膜厚)と最小値(最小膜厚)とを抽出し、最大膜厚と最小膜厚の差を算出した。評価結果を表2に示す。
(使用効率)
 以下のスパッタ条件にて連続スパッタを行い、ニッケル合金スパッタリングターゲットを使用完了時(ターゲットの最も薄い箇所が1.5mmになるまで)の使用効率を測定した。評価結果を表2に示す。
  到達真空度:5×10-5Pa
  Arガス圧:0.3Pa
  スパッタ出力:直流1000W
 使用効率は、以下の式で算出した。
  使用効率(%)=(1-(使用後のターゲット重量/使用前のターゲット重量))×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ニッケルのキュリー温度を低下させる元素を含有していない比較例1においては、Ni相及び高純度Ni相の面積率が100%となった。また、漏れ磁束が22%と低くなり、磁性を弱めることができなかった。さらに、膜厚差が大きくなり、膜の均一性が低下した。また、スパッタリングターゲットの使用効率が15%と低くなった。
 熱間圧延工程の熱間圧延温度及び熱処理工程の熱処理温度が1000℃とされた比較例2及び比較例5においては、平均結晶粒径が100μmを超えて粗大化した。特に、比較例2では、364μmと著しく粗大化した。このため、スパッタ成膜時における異常放電回数が多くなった。また、膜厚差が大きくなり、膜の均一性が低下した。
 熱間圧延工程の熱間圧延温度が450℃とされた比較例3及び比較例6においては、熱間圧延時に割れが生じた。このため、熱間加工後の工程及び評価を中止した。熱間圧延工程の総加工率が20%とされた比較例4及び比較例7においては、Ni相の面積率が13%を超えており、漏れ磁束が25%となった。また、膜厚差が大きくなり、膜の均一性が低下した。さらに、スパッタリングターゲットの使用効率が16%と低くなった。
 これに対して、ニッケルのキュリー温度を低下させる元素であるSi及びAlを含有し、Ni含有量が99.0mass%以上であるNi相の面積率が13%以下とされ、平均結晶粒径が100μm以下とされた本発明例1-25においては、異常放電回数が少なく、かつ、膜厚差が小さく抑えられていた。また、スパッタリングターゲットの使用効率が19%以上であった。
 以上のことから、本発明例によれば、磁性が弱められて漏れ磁場が大きく、かつ、結晶粒の粗大化が抑制されており、均一な膜厚のニッケル合金薄膜を安定して成膜することができた。また、スパッタが進行した際に広いエロージョン部が形成され、使用効率を向上させることが可能なニッケル合金スパッタリングターゲットを提供可能であることが確認された。
 本発明によれば、磁性が弱められて漏れ磁場が大きく、かつ、結晶粒の粗大化が抑制されており、均一な膜厚のニッケル合金薄膜を安定して成膜することができる。また、スパッタが進行した際に広いエロージョン部が形成され、使用効率を向上させることが可能なニッケル合金スパッタリングターゲットを提供することができる。したがって、本発明は産業上の利用が可能である。

Claims (4)

  1.  ニッケルのキュリー温度を低下させる元素を含有するニッケル合金からなり、
     Niの含有量が99.0mass%以上であるNi相の面積率が13%以下とされ、
     平均結晶粒径が100μm以下であることを特徴とするニッケル合金スパッタリングターゲット。
  2.  Niの含有量が99.5mass%以上である高純度Ni相の面積率が5%以下とされていることを特徴とする請求項1に記載のニッケル合金スパッタリングターゲット。
  3.  ニッケルのキュリー温度を低下させる元素として、Si及びAlの一方又は両方を含み、SiとAlの合計含有量が3mass%以上10mass%以下の範囲内とされていることを特徴とする請求項1に記載のニッケル合金スパッタリングターゲット。
  4.  ニッケルのキュリー温度を低下させる元素として、Si及びAlの一方又は両方を含み、SiとAlの合計含有量が3mass%以上10mass%以下の範囲内とされていることを特徴とする請求項2に記載のニッケル合金スパッタリングターゲット。
PCT/JP2020/024031 2019-07-12 2020-06-18 ニッケル合金スパッタリングターゲット WO2021010087A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217040257A KR20220032523A (ko) 2019-07-12 2020-06-18 니켈 합금 스퍼터링 타겟
US17/619,354 US20220380884A1 (en) 2019-07-12 2020-06-18 Nickel alloy sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130518 2019-07-12
JP2019130518A JP6791313B1 (ja) 2019-07-12 2019-07-12 ニッケル合金スパッタリングターゲット

Publications (1)

Publication Number Publication Date
WO2021010087A1 true WO2021010087A1 (ja) 2021-01-21

Family

ID=73452885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024031 WO2021010087A1 (ja) 2019-07-12 2020-06-18 ニッケル合金スパッタリングターゲット

Country Status (4)

Country Link
US (1) US20220380884A1 (ja)
JP (1) JP6791313B1 (ja)
KR (1) KR20220032523A (ja)
WO (1) WO2021010087A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424231A (en) * 1977-07-25 1979-02-23 Motorola Inc Method and apparatus for magnetronnsputtering ferro magnetic materials
JPS6379933A (ja) * 1986-09-24 1988-04-09 Hitachi Ltd Ni基合金及びその製造法,並びにNi基合金製回転電機ダンパ−及びリテイニング・リング
JP2005500434A (ja) * 2001-04-25 2005-01-06 プラクスエアー エス ティー テクノロジー インコーポレーテッド ニッケル−チタン合金スパッタターゲットとその製造法
JP2006322039A (ja) * 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd スパッタリングターゲット
JP2015079941A (ja) * 2013-09-10 2015-04-23 日立金属株式会社 積層配線膜およびその製造方法ならびにNi合金スパッタリングターゲット材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532063A (en) 1976-06-28 1978-01-10 Iwanaka Denki Seisakushiyo Kk Cr timer circuit
JP5143649B2 (ja) * 2007-07-24 2013-02-13 株式会社コベルコ科研 Al−Ni−La−Si系Al合金スパッタリングターゲットおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424231A (en) * 1977-07-25 1979-02-23 Motorola Inc Method and apparatus for magnetronnsputtering ferro magnetic materials
JPS6379933A (ja) * 1986-09-24 1988-04-09 Hitachi Ltd Ni基合金及びその製造法,並びにNi基合金製回転電機ダンパ−及びリテイニング・リング
JP2005500434A (ja) * 2001-04-25 2005-01-06 プラクスエアー エス ティー テクノロジー インコーポレーテッド ニッケル−チタン合金スパッタターゲットとその製造法
JP2006322039A (ja) * 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd スパッタリングターゲット
JP2015079941A (ja) * 2013-09-10 2015-04-23 日立金属株式会社 積層配線膜およびその製造方法ならびにNi合金スパッタリングターゲット材

Also Published As

Publication number Publication date
KR20220032523A (ko) 2022-03-15
JP6791313B1 (ja) 2020-11-25
US20220380884A1 (en) 2022-12-01
JP2021014620A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
US7618505B2 (en) Target of high-purity nickel or nickel alloy and its producing method
TWI245076B (en) Tungsten spattering target and method of manufacturing the target
US6780295B2 (en) Method for making Ni-Si magnetron sputtering targets and targets made thereby
WO2021010087A1 (ja) ニッケル合金スパッタリングターゲット
JP4264302B2 (ja) 銀合金スパッタリングターゲットとその製造方法
WO2017022320A1 (ja) アルミニウムスパッタリングターゲット
JP6652007B2 (ja) Ni−V合金スパッタリングターゲット
JP4006620B2 (ja) 高純度ニッケルターゲットの製造方法及び高純度ニッケルターゲット
JP5958183B2 (ja) Ni又はNi合金スパッタリングターゲット及びその製造方法
WO2019203258A1 (ja) Cu-Ni合金スパッタリングターゲット
JP2003213405A (ja) 高純度ニッケル又はニッケル合金ターゲット及びその製造方法
JP6384523B2 (ja) Ni又はNi合金スパッタリングターゲット
JP4582465B2 (ja) 高純度ニッケル又はニッケル合金ターゲット及びその製造方法
JP2002069626A (ja) スパッタリングターゲットおよびその製造方法
JP2021075749A (ja) スパッタリングターゲット
WO2000031316A1 (fr) CIBLE POUR PULVERISATION CATHODIQUE EN ALLIAGE Co-Ti ET PROCEDE DE FABRICATION CORRESPONDANT
JP5113100B2 (ja) 高純度ニッケル合金ターゲット
WO2022102765A1 (ja) 白金系スパッタリングターゲット及びその製造方法
JPS62186511A (ja) タ−ゲツト部材
JP2021075748A (ja) スパッタリングターゲット
TW201837220A (zh) 鉭濺射靶
WO2004099458A2 (en) METHODS FOR MAKING LOW SILICON CONTENT Ni-Si SPUTTERING TARGETS AND TARGETS MADE THEREBY
JP2000160330A (ja) Co−Ni合金スパッタリングターゲット及びその製造方法
JPH11158566A (ja) 希土類金属−鉄系の超磁歪材料用合金およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840258

Country of ref document: EP

Kind code of ref document: A1