WO2021007988A1 - 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用 - Google Patents

铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用 Download PDF

Info

Publication number
WO2021007988A1
WO2021007988A1 PCT/CN2019/113191 CN2019113191W WO2021007988A1 WO 2021007988 A1 WO2021007988 A1 WO 2021007988A1 CN 2019113191 W CN2019113191 W CN 2019113191W WO 2021007988 A1 WO2021007988 A1 WO 2021007988A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal organic
organic framework
iron oxide
iron metal
doped
Prior art date
Application number
PCT/CN2019/113191
Other languages
English (en)
French (fr)
Inventor
万金泉
万勇杰
马邕文
王艳
闫志成
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021007988A1 publication Critical patent/WO2021007988A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Definitions

  • the invention belongs to the technical field of water pollution control, relates to advanced oxidation treatment and advanced oxidation technology of organic pollutants in water, and specifically relates to an iron oxide-doped iron metal organic framework and a green macro preparation method and application.
  • SR-AOP Compared with the traditional advanced oxidation process based on hydroxyl radical ⁇ OH, SR-AOP has many advantages: SO 4 ⁇ - has a higher oxidation potential (SO 4 ⁇ - , 2.6-3.1V; ⁇ OH, 1.8-2.7 V); SO 4 ⁇ - can effectively react with target pollutants in a wide pH range; SO 4 ⁇ - is more selective and has a longer half-life (SO 4 ⁇ - , 30-40 ⁇ s; ⁇ OH, ⁇ 1 ⁇ s). Therefore, SR-AOP has broad prospects in the degradation of pollutants, especially persistent organic pollutants.
  • MOFs water/solvothermal, etc.
  • the traditional synthesis method of MOFs requires high temperature and high pressure conditions
  • the introduction of strong corrosive acids hydrofluoric acid, concentrated nitric acid, etc.
  • a large amount of toxic and harmful solvents N, N -Dimethylformamide, etc.
  • traditional MOFs synthesis methods have long synthesis cycles and low yields, which also limit their promotion and application in the environmental field.
  • the present invention provides a green macro synthesis method of iron oxide-doped iron metal organic framework material, which can greatly shorten the synthesis period, increase the synthesis output, reduce the use of chemical reagents, is environmentally friendly, safe and reliable, and is a synthetic iron Compared with undoped iron metal organic framework materials, oxide-doped iron metal organic framework materials can anchor more unsaturated metal active sites, greatly improve the efficiency of activated persulfate to degrade organic pollutants, and have certain magnetic properties. Conducive to separation and recovery. technical problem
  • the present invention aims at the fact that the existing ferrous ion (iron ion) homogeneous catalyst in the activated persulfate system has ferrous ion which is easy to fail, cannot be recycled and produces iron sludge, and the energy consumption in the synthesis process of metal organic framework material is high, The high temperature and high pressure conditions are harsh, the synthesis cycle is long, the secondary pollution is serious, the separation and recovery is difficult, and the activation efficiency of the iron-containing heterogeneous catalyst is low.
  • a green iron oxide-doped iron metal organic framework that can effectively solve the above problems is proposed A method for macro-preparation and application to activate persulfate to degrade organic pollutants.
  • the invention uses the microwave solid-phase co-crystallization method to synthesize heterogeneous catalysts, the synthesis period is greatly shortened, no more corrosive acids/bases are introduced, no toxic and harmful solvents are needed, and the synthesis process is green and environmentally friendly and efficient, and the synthesized iron Oxide-doped iron metal organic framework materials can make full use of their unsaturated metal sites to efficiently activate persulfate to degrade organic pollutants, and can be easily recycled through magnetic separation, which can avoid the production of iron sludge and reduce non-uniformity. Phase catalysis material synthesis and organic pollutant degradation cost, improve the water environmental quality.
  • the present invention provides a green macro-preparation method of iron oxide doped iron metal organic framework, including the following steps:
  • step (2) Washing the mixed liquid obtained in step (1), centrifuging to obtain a solid, washing the obtained solid, and vacuum drying to obtain an iron oxide-doped iron metal organic framework material, namely Fe-MOFs-MW.
  • the molar ratio of ferrous sulfate heptahydrate and trimesic acid in step (1) is (0.75-2):1;
  • the ratio of the molar amount of sodium hydroxide to the molar amount of ferrous sulfate heptahydrate is (0.4 ⁇ 3):1;
  • the volume of the sodium hydroxide solution is 1/5 to 1/10 of the volume of the microwave reactor.
  • the microwave reactor has a polytetrafluoroethylene lining; the ferrous sulfate heptahydrate and trimellitic acid are separately ground and then mixed uniformly.
  • the grinding time is 20-30 min; the ultrasonic time is 15-30min; cooling refers to ice-water bath or natural cooling when placed in air.
  • heating in step (1) refers to heating the microwave reactor in a microwave heater; the microwave heater is a household adjustable microwave oven; the microwave power is 50-90w, and the microwave heating time is 50-120min.
  • the mixed liquid obtained in the washing step (1) in step (2) refers to washing with deionized water or ultrapure water, adding deionized water or ultrapure water to the mixed liquid, magnetically stirring, and centrifuging.
  • the solid obtained by washing in step (2) refers to first mixing deionized water or ultrapure water with the solid, magnetic stirring, centrifugal pour the supernatant liquid, repeating the washing operation for 2 to 3 times before using absolute ethanol Wash 2-3 times; the volume of deionized water, ultrapure water or absolute ethanol used for each washing solid is 5-30 times the volume of sodium hydroxide solution; the magnetic stirring time is 60-120min; the centrifugal speed is 8000 ⁇ 11000r/min, centrifugation time is 8-15min; vacuum drying temperature is 60-75°C, vacuum drying time is 16-24h.
  • the invention also provides the iron oxide-doped iron metal organic framework prepared by the preparation method.
  • the invention also provides the application of the iron oxide-doped iron metal organic framework material in activating persulfate to degrade organic pollutants, and adding persulfate and iron oxide doped iron metal organic framework material to organic wastewater , Place in a constant temperature shaking incubator or a magnetic stirrer to mix evenly and react.
  • the persulfate is sodium persulfate, potassium persulfate or ammonium persulfate; the molar ratio of the persulfate to the degradation target pollutant in the organic wastewater is (80-800):1;
  • the mass ratio of the iron oxide-doped iron metal organic framework material to the volume of organic wastewater is 0.2-2 g/L.
  • the rotational speed of the constant temperature shaking incubator or the magnetic stirrer is 150-250 r/min, and the reaction temperature is 20-60°C.
  • the green macro synthesis method of iron oxide-doped iron metal organic framework proposed by the present invention does not need to add corrosive substances, does not need to add a large amount of toxic and harmful solvents, and produces less waste liquid during the synthesis process. , No secondary pollution;
  • the green macro synthesis method of iron oxide doped iron metal organic framework material proposed by the present invention has low energy input and high utilization efficiency. Easy to operate, safe and reliable, mild conditions, short synthesis cycle and high output. It has broad application prospects in actual large-scale production;
  • the iron oxide-doped iron metal organic framework material synthesized by the present invention can anchor more unsaturated metal active sites, activate persulfate to degrade pollutants more efficiently, and the iron metal organic framework pore structure It can enhance the mass transfer of pollutants and increase the reaction sites of materials and pollutants;
  • the iron oxide-doped iron metal organic framework material synthesized by the present invention has low iron ions eluted in the process of heterogeneous catalytic activation of persulfate, and basically no iron sludge is produced, which can effectively avoid subsequent processing problems;
  • the application method of the synthetic iron oxide-doped iron metal organic framework material in the present invention for degrading organic pollutants is simple and reliable, has a wide application range, does not require additional energy input, the reaction can proceed spontaneously, and the degradation efficiency is high.
  • the pollutants can be effectively and thoroughly degraded, and the application prospect is broad.
  • Figure 1 is an X-ray crystal diffraction pattern of iron oxide doped iron metal organic framework synthesized with different microwave heating time
  • Figure 2 is a graph showing the degradation efficiency of orange G by activated persulfate of different materials
  • Figure 3 is an X-ray crystal diffraction pattern of the synthesized iron oxide doped iron metal organic framework when the microwave heating time is 90 minutes;
  • Figure 4 shows the addition amount of different iron oxide-doped iron metal organic frameworks on the degradation efficiency of sulfamethoxazole by activated persulfate;
  • Figure 5 shows the degradation efficiency of sulfamethoxazole by iron oxide-doped iron metal organic framework under different initial pH conditions
  • Figure 6 shows the comparison of the iron leaching amount of sulfamethoxazole catalyzed and activated by iron oxide-doped iron metal organic framework at different initial pH values.
  • This embodiment provides a green macro-preparation method of iron oxide-doped iron metal-organic framework. Different microwave heating times are used to prepare iron-oxide-doped iron metal-organic framework by the preparation method described in this embodiment, including the following step:
  • the reaction mixture was transferred to a 150mL beaker, 50mL ultrapure water was added, and the microwave reactor was rinsed, the rinse solution was incorporated into the beaker, and after magnetic stirring for 60 minutes, the mixture was transferred to a 50mL centrifuge tube and placed in a high-speed centrifuge. After centrifugation at 10000r/min for 10 minutes, the supernatant was poured. The centrifuged solid was washed twice with ultrapure water as described above to ensure that the unreacted ferrous sulfate heptahydrate was completely removed. After centrifugation, the supernatant was poured.
  • the orange solids obtained are iron oxides synthesized by different microwave heating times
  • the doped iron metal organic framework is labeled Fe-MOFs-MW-50min, Fe-MOFs-MW-60min, Fe-MOFs-MW-70min, Fe-MOFs-MW-90min, Fe-MOFs-MW-120min.
  • the XRD patterns of the iron oxide-doped iron metal organic framework materials synthesized with different microwave heating times obtained in Example 1 are shown in Fig. 1. They are the XRD crystal diffractions when the microwave time is 50 min, 60 min, 70 min, 90 min, and 120 min.
  • This embodiment provides a method for preparing iron oxide-doped iron metal organic framework material, including the following steps:
  • This embodiment provides a method for preparing an iron oxide-doped iron metal organic framework material, and analyzes the preparation of iron oxide-doped iron metal organic framework materials with different sodium hydroxide addition amounts.
  • the preparation method includes the following steps :
  • Table 1 The yield of iron oxide-doped iron metal organic framework materials synthesized under different microwave-assisted solid-phase synthesis conditions
  • iron oxide-doped iron metal organic framework is used as a catalyst
  • orange G (OG) is used as a simulated organic wastewater for degradation. Comparing the degradation of OG by persulfate catalyzed by different materials.
  • Fe 3 O 4 (purchased from Shanghai Aladdin Company), labeled as Fe 3 O 4 -1;
  • the OG removal efficiency reached more than 98% 2 hours after the addition of sodium persulfate.
  • Fe 3 O 4 -1 and Fe 3 O 4 -2 Its OG degradation efficiency is limited, and only about 25% of the degradation effect is two hours after adding sodium persulfate.
  • This example further illustrates that the iron oxide-doped iron metal organic framework prepared in the green macro-preparation of Example 1 has a significant efficiency in activating sodium persulfate and a good degradation effect on OG.
  • the Fe-MOFs-MW-90min prepared in Example 1 was used as the heterogeneous persulfate catalyst, and sulfamethoxazole (SMX) was used as the simulated organic wastewater polluted by antibiotics to study the effect of different catalyst dosage on SMX. Removal rate.
  • SMX sulfamethoxazole
  • Figure 3 is a crystal diffraction pattern of Fe-MOFs-MW-90min.
  • Figure 4 shows the degradation efficiency of activated persulfate with different Fe-MOFs-MW-90min addition amount on SMX.
  • SMX has almost no degradation effect, but with the addition of Fe-MOFs-MW-90min Increase, the degradation efficiency of SMX is significantly improved, when the Fe-MOFs-MW-90min added amount is increased to 0.05g, the degradation efficiency of SMX has reached 98% after two hours of reaction, and continue to increase Fe-MOFs-MW-90min
  • the degradation efficiency of the dosage of Fe-MOFs can be maintained at about 98%.
  • the optimal dosage of Fe-MOFs-MW-90min is 0.05g.
  • This example fully demonstrates that the green macro-prepared iron oxide-doped iron metal organic framework can efficiently activate persulfate to degrade emerging pollutants such as SMX, and has a broad application prospect in actual organic wastewater treatment.
  • the Fe-MOFs-MW-90min prepared in Example 1 was used as the heterogeneous persulfate catalyst and sulfamethoxazole (SMX) was used as the simulated organic wastewater polluted by antibiotics to study the removal of SMX under different initial pH conditions Analysis of the rate and the amount of iron leaching in the system.
  • SMX sulfamethoxazole
  • Figure 6 shows the comparison of the iron leaching amount of sulfamethoxazole catalyzed and activated by iron oxide-doped iron metal organic framework at different initial pH values. It can be found that the initial pH value gradually changes from acidic to alkaline, and the removal rate of sulfamethoxazole can be maintained at a high level, indicating that iron oxide-doped iron metal organic framework can activate persulfate under a wide range of initial pH conditions Efficiently degrade organic pollutants. At the same time, in the whole reaction stage, regardless of acidic, neutral or even alkaline conditions, the iron leaching amount is always kept at a low level. Under the more acidic initial conditions, the iron leaching amount is only less than 10mg/L, which can greatly reduce iron sludge. The generation of sulphate is of great significance to the application of degraded pollutants in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种铁氧化物掺杂铁金属有机骨架材料及绿色宏量制备方法,其包括以下步骤:(1)将七水硫酸亚铁和均苯三甲酸研磨混合均匀,加入氢氧化钠溶液,转移至微波反应釜中,超声,加热,冷却至室温,得混合液体;(2)洗涤步骤(1)所得的混合液体,离心,得固体,洗涤所得固体,真空干燥,得铁氧化物掺杂的铁金属有机骨架材料。还公开了一种利用该制备方法制备的铁氧化物掺杂铁金属有机骨架及铁氧化物掺杂铁金属有机骨架在活化过硫酸盐降解有机污染物中的应用。

Description

铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用 技术领域
本发明属于水污染控制技术领域,涉及水中有机污染物的深度氧化处理和高级氧化技术,具体涉及一种铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用。
背景技术
全球环境挑战,特别是经济和工业化快速增长造成的水体污染,已成为人类目前面临的最严重威胁之一。有机污染物如工业染料,农药,药品和个人护理产品(PPCPs)由于其高毒性和稳定性而引起更多关注。基于硫酸根自由基(SO 4 ·-)的高级氧化过程(SR-AOPs)也逐渐成为有机污染物处理的热点方向。与传统的基于羟基自由基·OH的高级氧化工艺相比,SR-AOP具有许多优点:SO 4 ·-具有更高的氧化电位(SO 4 ·-,2.6-3.1V;·OH,1.8-2.7V);SO 4 ·-可在很宽的pH范围内有效地与目标污染物发生反应;SO 4 ·-选择性更强,半衰期更长(SO 4 ·-,30-40μs;·OH,<1μs)。因此,SR-AOP在降解污染物,尤其是持久性有机污染物应用中前景广阔。
在活化产生SO 4 ·-的各种方法中,使用非均相催化剂活化过氧单硫酸盐或过硫酸盐已被证明是一种较为理想的策略。因此,SR-AOP的未来发展取决于具有高活性和稳定性的催化剂的开发以及合成。近年来比表面积大,超高孔隙率和可多样化设计的金属-有机骨架(MOFs)及其衍生物已开始被研究用作非均相催化剂,得益于MOFs尤其是铁基MOFs丰富的不饱和金属位点,其活化过硫酸盐产生SO 4 ·-具有较高效率,在应用于有机污染物的降解去除中效果显著。但由于MOFs传统合成方法(水/溶剂热等)需要高温高压条件,引入强腐蚀性酸(氢氟酸、浓硝酸等)容易造成安全隐患,合成过程中还需要大量有毒有害溶剂(N,N-二甲基甲酰胺等)促进结晶导致合成所产生的废液会造成二次污染。除此之外,传统MOFs合成方法合成周期长,产率低下等问题也限制了其在环境领域的推广 应用。本发明提出一种铁氧化物掺杂铁金属有机骨架材料的绿色宏量合成方法,可大幅缩短合成周期,提高合成产量,减少化学试剂的使用,绿色环保,安全可靠,所合成的一种铁氧化物掺杂铁金属有机骨架材料相较于未掺杂的铁金属有机骨架材料,可锚定更多不饱和金属活性位点,大幅提高活化过硫酸盐降解有机污染物效率,同时具有一定磁性有利于分离回收。技术问题
本发明针对现有的亚铁离子(铁离子)均相催化剂在活化过硫酸盐体系中存在亚铁离子容易失效、不能回收利用且产生铁泥,而金属有机骨架材料合成过程中能源消耗高、高温高压条件苛刻,合成周期长、二次污染严重、难以分离回收以及含铁非均相催化剂活化效率低等问题,提出一种能够有效解决上述问题的铁氧化物掺杂铁金属有机骨架的绿色宏量制备以及应用于活化过硫酸盐降解有机污染物的方法。本发明通过微波固相共结晶方法进行非均相催化剂的合成,合成周期大幅缩短,无腐蚀性较强的酸/碱引入,无需有毒有害溶剂,合成过程实现绿色环保高效,而所合成的铁氧化物掺杂铁金属有机骨架材料则可充分利用其不饱和金属位点进行高效活化过硫酸盐降解有机污染物,而且可以通过磁分离进行简易回收利用,可避免铁泥的产生,降低非均相催化材料合成以及有机污染物降解成本,提高水体环境质量。
发明概述
技术问题
问题的解决方案
技术解决方案
为了达到上述目的,本发明采用以下技术方案:
本发明提供了铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,包括以下步骤:
(1)将七水硫酸亚铁和均苯三甲酸混合均匀,加入氢氧化钠溶液,转移至微波反应釜中,超声,加热,冷却至室温,得混合液体;
(2)洗涤步骤(1)所得的混合液体,离心,得固体,洗涤所得固体,真空干燥,得铁氧化物掺杂的铁金属有机骨架材料,即Fe-MOFs-MW。
优选地,步骤(1)中七水硫酸亚铁和均苯三甲酸的摩尔比例为(0.75~2)∶1;
氢氧化钠的摩尔量与七水硫酸亚铁的摩尔量比为(0.4~3)∶1;
氢氧化钠溶液的体积为微波反应釜体积的1/5~1/10。
优选地,步骤(1)中微波反应釜具有聚四氟乙烯内衬;七水硫酸亚铁和均苯三甲酸分别各自研磨粉碎后再混合均匀,研磨的时间为20-30min;超声的时间为15-30min;冷却是指冰水浴或放置于空气中自然冷却。
优选地,步骤(1)中加热是指将微波反应釜放入微波加热器中加热;微波加热器为家用可调微波炉;微波功率为50-90w,微波加热的时间为50-120min。
优选地,步骤(2)中所述洗涤步骤(1)所得的混合液体是指用去离子水或超纯水清洗,将去离子水或超纯水加入到混合液体中,磁力搅拌,离心。
优选地,步骤(2)中所述洗涤所得固体是指先用去离子水或超纯水和固体混合,磁力搅拌,离心倾倒上清液,如此重复洗涤操作2~3次后再用无水乙醇洗涤2-3次;每次洗涤固体时所用去离子水、超纯水或无水乙醇的体积为氢氧化钠溶液体积的5-30倍;磁力搅拌的时间为60-120min;离心转速为8000~11000r/min,离心时间为8~15min;真空干燥的温度为60-75℃,真空干燥时间为16-24h。
本发明还提供了所述制备方法制备的铁氧化物掺杂铁金属有机骨架。
本发明还提供了所述的铁氧化物掺杂铁金属有机骨架材料在活化过硫酸盐降解有机污染物中的应用,向有机废水中加入过硫酸盐和铁氧化物掺杂铁金属有机骨架材料,置于恒温振荡培养箱或磁力搅拌器中混合均匀,反应。
优选地,过硫酸盐为过硫酸钠、过硫酸钾或过硫酸铵;过硫酸盐与有机废水中的降解目标污染物摩尔比例为(80~800)∶1;
铁氧化物掺杂的铁金属有机骨架材料的质量与有机废水的体积比为0.2~2g/L。
优选地,恒温振荡培养箱或磁力搅拌器的转速为150~250r/min,反应温度为20~60℃。
发明的有益效果
有益效果
与现有技术相比,本发明的有益之处主要体现在以下:
(1)本发明提出的一种铁氧化物掺杂铁金属有机骨架材料的绿色宏量合成方法中无需加入腐蚀性较强的物质,无需加入大量有毒有害的溶剂,合成过程产 生废液较少,无二次污染;
(2)本发明提出的一种铁氧化物掺杂铁金属有机骨架材料的绿色宏量合成方法能量输入低,利用效率高。操作简便,安全可靠,条件温和,合成周期短,产量较高。在实际规模化生产合成应用前景广阔;
(3)本发明所合成的铁氧化物掺杂的铁金属有机骨架材料可锚定较多的不饱和金属活性位点,活化过硫酸盐降解污染物效率较高,同时铁金属有机骨架孔隙结构可增强污染物的传质作用,增大材料与污染物的反应位点;
(4)本发明所合成的铁氧化物掺杂的铁金属有机骨架材料在非均相催化活化过硫酸盐过程中铁离子溶出量较低,基本无铁泥产生,可有效避免后续处理问题;
(5)本发明利用合成的铁氧化物掺杂的铁金属有机骨架材料在降解有机污染物的应用方法简便可靠,适用范围广,无额外能量输入需求,反应可自发进行,降解效率较高,污染物可有效彻底降解,应用前景广阔。
对附图的简要说明
附图说明
图1为不同微波加热时间合成的铁氧化物掺杂铁金属有机骨架的X射线晶体衍射图;
图2为不同材料活化过硫酸盐降解橙黄G效率图;
图3为微波加热时间为90min时合成的铁氧化物掺杂铁金属有机骨架的X射线晶体衍射图;
图4为不同铁氧化物掺杂铁金属有机骨架加入量对活化过硫酸盐降解磺胺甲恶唑效率;
图5为不同初始pH条件下铁氧化物掺杂铁金属有机骨架降解磺胺甲恶唑效率;
图6为不同初始pH值铁氧化物掺杂铁金属有机骨架催化活化PS降解磺胺甲恶唑的铁浸出量对比。
发明实施例
本发明的实施方式
下面结合实施例及附图对本发明作进一步详细的描述,阐明本发明的突出特点 和显著进步,仅在于说明本发明而决不局限于以下实例。
实施例1
本实施例提供了一种铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,进行了不同微波加热时间通过本实施例所述制备方法制备铁氧化物掺杂铁金属有机骨架,包括以下步骤:
称取摩尔量为8mmol的七水硫酸亚铁及摩尔量为8mmol的均苯三甲酸置于玛瑙研钵中充分研磨至完全混合均匀,转移至50mL的聚四氟乙烯内衬的微波反应釜中。然后向微波反应釜中加入10mL摩尔浓度为1.6mol/L的氢氧化钠溶液,拧紧微波反应釜盖,超声30min后,将微波反应釜放入普通家用微波炉腔内,设置微波功率为70w,微波加热时间分别设置为50min、60min、70min、90min以及120min,微波加热完成后取出置于空气中冷却3小时至微波反应釜温度降至室温。将反应后的混合物转移至150mL烧杯内,加入50mL超纯水,并冲洗微波反应釜,将冲洗液并入烧杯内,磁力搅拌60min后,将混合液转移至50mL离心管内,在高速离心机以10000r/min转速离心10min后倾倒上清液,将离心后的固体重复超纯水按上述操作洗涤2次,保证将未反应完全的七水硫酸亚铁完全,去除离心后倾倒上清液。在离心后的固体转移至150mL烧杯内,加入50mL无水乙醇,磁力搅拌60min后,将混合液转移至50mL离心管内,在高速离心机以10000r/min转速离心10min后倾倒上清液,将离心后的固体重复用无水乙醇按上述操作洗涤2次,保证将未参与配位结晶的均苯三甲酸完全去除。在高速离心机离心后倾倒上清液,将装有离心后固体的离心管转移至真空干燥箱内,在65℃温度下真空干燥24h,所得橙色固体即为不同微波加热时间合成的铁氧化物掺杂的铁金属有机骨架,标记为Fe-MOFs-MW-50min、Fe-MOFs-MW-60min、Fe-MOFs-MW-70min、Fe-MOFs-MW-90min、Fe-MOFs-MW-120min。
实施例1所得的不同微波加热时间合成的铁氧化物掺杂的铁金属有机骨架材料的XRD图谱如图1所示,分别是微波时间为50min、60min、70min、90min以及120min时的XRD晶体衍射图,铁氧化物掺杂的铁金属有机骨架在2θ=9°、12°、15°、19°、24°、28°的角度范围内有6个特征衍射峰,与MIL-100晶体的特征峰较为匹配,同时还出现2θ=27.4°、36.5°的四氧化三铁的特征峰,说明所合成的为铁氧 化物掺杂的铁金属有机骨架材料。从图1可以发现不同微波加热时间所合成的材料除了衍射峰强度存在差异外,样品出现衍射峰位置高度一致,较短合成时间也可合成结晶度较好的铁氧化物掺杂铁金属有机骨架材料,也进一步说明本发明合成方法的稳定可靠。
实施例2
本实施例提供了一种铁氧化物掺杂铁金属有机骨架材料的制备方法,包括以下步骤:
(1)称取摩尔量为8mmol的七水硫酸亚铁及摩尔量为5.33mmol的均苯三甲酸置于玛瑙研钵中充分研磨至完全混合均匀,得混合物-1;
(2)称取摩尔量为8mmol的七水硫酸亚铁及摩尔量为8mmol的均苯三甲酸置于玛瑙研钵中充分研磨至完全混合均匀,得混合物-2;
(3)称取摩尔量为8mmol的七水硫酸亚铁及摩尔量为10.66mmol的均苯三甲酸置于玛瑙研钵中充分研磨至完全混合均匀,得混合物-3;
(4)将混合物-1、混合物-2和混合物-3分别转移至50mL的聚四氟乙烯内衬的微波反应釜中。然后向微波反应釜中加入10mL摩尔浓度为1.6mol/L的氢氧化钠溶液,拧紧微波反应釜盖,超声30min后,将微波反应釜放入普通家用微波炉腔内,设置微波功率为70w,微波加热时间分别设置为90min,微波加热完成后取出置于空气中冷却3小时至微波反应釜温度降至室温,分别得到混合液体-1、混合液体-2和混合液体-3。将反应后的混合液体-1、混合液体-2和混合液体-3转移至150mL烧杯内,加入50mL超纯水,并冲洗微波反应釜,将冲洗液并入烧杯内,磁力搅拌60min后,将混合液转移至50mL离心管内,在高速离心机以10000r/min转速离心10min后倾倒上清液,将离心后的固体重复超纯水按上述操作洗涤2次,保证将未反应完全的七水硫酸亚铁完全,去除离心后倾倒上清液。在离心后的固体转移至150mL烧杯内,加入50mL无水乙醇,磁力搅拌60min后,将混合液转移至50mL离心管内,在高速离心机以10000r/min转速离心10min后倾倒上清液,将离心后的固体重复用无水乙醇按上述操作洗涤2次,保证将未参与配位结晶的均苯三甲酸完全去除。在高速离心机离心后倾倒上清液,将装有离心后固体的离心管转移至真空干燥箱内,在65℃温度下真空干燥24h,所得橙色固体为不 同均苯三甲酸加入量合成的铁氧化物掺杂铁金属有机骨架即分别为1号样品、2号样品和3号样品。
实施例3
本实施例提供了一种铁氧化物掺杂铁金属有机骨架材料的制备方法,分析不同氢氧化钠加入量的铁氧化物掺杂的铁金属有机骨架材料的制备,所述制备方法包括以下步骤:
称取摩尔量为8mmol的七水硫酸亚铁及摩尔量为8mmol的均苯三甲酸置于玛瑙研钵中充分研磨至完全混合均匀,将上述混合物分别转移至50mL的聚四氟乙烯内衬的微波反应釜中。然后向微波反应釜内分别加入
(1)10mL超纯水;
(2)10mL摩尔浓度为1.6mol/L的氢氧化钠溶液;
(3)10mL摩尔浓度为2.4mol/L的氢氧化钠溶液;
超声30min后,将微波反应釜放入普通家用微波炉腔内,设置微波功率为70w,微波加热时间分别设置为90min,微波加热完成后取出置于空气中冷却3小时至微波反应釜温度降至室温,分别得混合液体-4、混合液体-5和混合液体-6。将反应后的混合液体-4、混合液体-5和混合液体-6转移至150mL烧杯内,加入50mL超纯水,并冲洗微波反应釜,将冲洗液并入烧杯内,磁力搅拌60min后,将混合液转移至50mL离心管内,在高速离心机以10000r/min转速离心10min后倾倒上清液,将离心后的固体重复超纯水按上述操作洗涤2次,保证将未反应完全的七水硫酸亚铁完全,去除离心后倾倒上清液。在离心后的固体转移至150mL烧杯内,加入50mL无水乙醇,磁力搅拌60min后,将混合液转移至50mL离心管内,在高速离心机以10000r/min转速离心10min后倾倒上清液,将离心后的固体重复用无水乙醇按上述操作洗涤2次,保证将未参与配位结晶的均苯三甲酸完全去除。在高速离心机离心后倾倒上清液,将装有离心后固体的离心管转移至真空干燥箱内,在65℃温度下真空干燥24h,所得橙色固体即为不同氢氧化钠加入量合成的铁氧化物掺杂铁金属有机骨架,分别为4号样品、5号样品和6号样品。
分析不同微波辅助固相合成条件合成铁氧化物掺杂铁金属有机骨架材料的产量,不同微波固相合成条件下所制备的铁氧化物掺杂铁金属有机骨架(1号样品、 2号样品、3号样品、4号样品、5号样品和6号样品)均用万分之一天平进行产量分析,同时由产量推算单位时间单位空间内铁氧化物掺杂铁金属有机骨架的STY(space-time-yield)值,其中合成反应总体积以30mL计。由表1可知,相较于传统水热法(STY=500-1000kg/m 3·d),采用本发明方法提出的绿色宏量制备的铁氧化物掺杂铁金属有机骨架产量均有大幅提高,STY值均超过1000kg/m 3·d,同时在不加入氢氧化钠的4号样品中STY值大幅下降,也突出本发明方法对产量提高的作用。对比同样合成条件下合成的2号和5号样品,更进一步证明本发明方法的高效稳定,可实现宏量合成。
表1不同微波辅助固相合成条件合成铁氧化物掺杂铁金属有机骨架材料的产量
Figure PCTCN2019113191-appb-000001
实施例4
本实施例以铁氧化物掺杂铁金属有机骨架为催化剂,利用橙黄G(OG)作为模拟有机废水进行降解。通过不同材料非均相催化过硫酸盐降解OG进行对比。
利用250mL的三角瓶作为反应容器,加入100mL摩尔浓度为0.2mM的OG溶液作为模拟废水,向三角瓶内分别加入下面所述材料:
(1)无材料加入;
(2)0.05g的Fe-MOFs-MW-90min(实施例1制备);
(3)0.05g的Fe-MOFs-MW-120min(实施例1制备);
(4)0.05g的Fe 3O 4-1:Fe 3O 4(购自上海阿拉丁Aladdin公司),标记为Fe 3O 4 -1;
(5)0.05g的Fe 3O 4-2:不加入8mM的均苯三甲酸,其余操作同实施例1中Fe-MOFs-MW-90min的制备,所得黑色固体粉末标记为Fe 3O 4-2;
将三角瓶置于恒温振荡培养内以180r/min转速反应,温度设置为25℃。在反应阶段的前100min内不加入过硫酸钠,取样分析各个材料的吸附OG的作用,吸附饱和后在反应100min时加入摩尔量为1.6mmol的过硫酸钠,比较各个材料活化过硫酸钠降解OG效率,由图2可知,单独加入过硫酸钠对OG几乎无降解作用,OG的去除主要是通过降解作用,而OG去除效率较高的是利用实施例1合成的铁氧化掺杂的铁金属有机骨架材料Fe-MOFs-MW-90min和Fe-MOFs-MW-120min,加入过硫酸钠后2小时OG去除效率均达到98%以上,而对比Fe 3O 4-1和Fe 3O 4-2,其OG降解效率有限,加入过硫酸钠两小时后仅有25%左右的降解作用。本实施例更进一步说明实施例1绿色宏量制备的铁氧化物掺杂铁金属有机骨架活化过硫酸钠效率显著,对OG有较好的降解效果。
实施例5
本实施例以实施例1制备的Fe-MOFs-MW-90min作为过硫酸盐非均相催化剂,以磺胺甲恶唑(SMX)作为抗生素污染的模拟有机废水,研究不同催化剂投加量对SMX的去除率。
图3为Fe-MOFs-MW-90min的晶体衍射图。
利用250mL的三角瓶作为反应容器,加入100mL质量浓度为20mg/L(摩尔浓度约为O.08mmol/L)的SMX溶液作为模拟废水,然后加入摩尔量为6mmol的过硫酸钠,分别向三角瓶内分别加入下面所述质量的Fe-MOFs-MW-90min:
(1)无Fe-MOFs-MW-90min加入;
(2)0.01g的Fe-MOFs-MW-90min;
(3)0.05g的Fe-MOFs-MW-90min;
(4)0.1g的Fe-MOFs-MW-90min;
(5)0.15g的Fe-MOFs-MW-90min;
在磁力搅拌器上以220r/min转速搅拌反应,间隔一段时间取样测定SMX浓度。 图4为不同Fe-MOFs-MW-90min加入量活化过硫酸盐对SMX的降解效率,在只有过硫酸钠加入时,SMX几乎无降解效果,而随着Fe-MOFs-MW-90min加入量的增加,SMX的降解效率显著提高,当Fe-MOFs-MW-90min加入量增大至0.05g后,反应两个小时SMX的降解效率已经达到98%,而继续增大Fe-MOFs-MW-90min的投加量降解效率均可维持在98%左右,考虑处理成本及降解效率,最佳Fe-MOFs-MW-90min投加量为0.05g。本实施例充分说明绿色宏量制备的铁氧化物掺杂的铁金属有机骨架可以高效活化过硫酸盐降解SMX这类新兴污染物,在实际有机废水处理应用前景广阔。
实施例6
本实施例以实施例1制备的Fe-MOFs-MW-90min作为过硫酸盐非均相催化剂,以磺胺甲恶唑(SMX)作为抗生素污染的模拟有机废水,研究不同初始pH条件对SMX的去除率以及体系中铁离子浸出量分析。
利用250mL的三角瓶作为反应容器,加入100mL质量浓度为20mg/L(摩尔浓度约为0.08mmol/L)的SMX溶液作为模拟废水,利用0.1mol/L的硫酸和0.1mol/L的氢氧化钠溶液调节溶液初始pH值,分别为:
(1)不调节初始pH,pH值为5.62;
(2)调节初始pH值至2.92;
(3)调节初始pH值至6.08;
(4)调节初始pH值至6.49;
(5)调节初始pH值至9.13;
然后分别向上述调节初始pH后的溶液中加入摩尔量为6mmol的过硫酸钠,分别向三角瓶内分别加入0.1g实施例1所述制备的Fe-MOFs-MW-90min,将三角瓶置于恒温振荡培养内以180r/min转速反应,温度设置为25℃,设定时间取样测定分析:图5所示为不同初始pH值条件下铁氧化物掺杂铁金属有机骨架催化活化过硫酸盐降解磺胺甲恶唑效率,图6为不同初始pH值铁氧化物掺杂铁金属有机骨架催化活化PS降解磺胺甲恶唑的铁浸出量对比。可以发现初始pH值由酸性逐渐变为碱性,磺胺甲恶唑的去除率均可保持较高水平,说明铁氧化物掺杂铁金属有机骨架可在较为宽泛的初始pH条件下活化过硫酸盐高效降解有机污染物。同时在 整个反应阶段无论酸性或者中性甚至碱性条件下,铁浸出量始终保持在较低水平,较为酸性的初始条件下也仅有不到10mg/L的铁浸出量,可大幅减少铁泥的产生,对今后应用于降解污染物的处理应用中有重要意义。
以上所述,仅为本发明的较佳实施例而已,并非对本发明做任何形式上的限定。凡本领域的技术人员利用本发明的技术方案对上述实施例作出的任何等同的变动、修饰或演变等,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,其特征在于,包括以下步骤:
    (1)将七水硫酸亚铁和均苯三甲酸通过固相研磨混合均匀,加入氢氧化钠溶液,转移至微波反应釜中,超声后微波加热,冷却至室温,得混合液体;
    (2)洗涤步骤(1)所得的混合液体,离心,得固体,洗涤所得固体,真空干燥,得铁氧化物掺杂铁金属有机骨架,即Fe-MOFs-MW。
  2. 根据权利要求1所述的铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,其特征在于,步骤(1)中七水硫酸亚铁和均苯三甲酸的摩尔比例为(0.75~2)∶1;
    氢氧化钠的摩尔量与七水硫酸亚铁的摩尔量比为(0.4~3)∶1;氢氧化钠溶液的体积为微波反应釜体积的1/5~1/10。
  3. 根据权利要求1所述的铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,其特征在于,步骤(1)中微波反应釜具有聚四氟乙烯内衬;七水硫酸亚铁和均苯三甲酸分别各自研磨粉碎后再混合均匀,研磨的时间为20-30min;超声的时间为15-30min;冷却是指冰水浴或放置于空气中自然冷却。
  4. 根据权利要求1所述的铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,其特征在于,步骤(1)中加热是指将微波反应釜放入微波加热器中加热;微波加热器为家用功率可调微波炉;微波功率为50-90w,微波加热的时间为50-120min。
  5. 根据权利要求1所述的铁氧化物掺杂铁金属有机骨架的绿色宏量制备方法,其特征在于,步骤(2)中所述洗涤步骤(1)所得的混合液体是指用去离子水或超纯水清洗,将去离子水或超纯水加入到混合液体中,磁力搅拌,离心。
  6. 根据权利要求1所述的铁氧化物掺杂铁金属有机骨架材料的制备方 法,其特征在于,步骤(2)中所述洗涤所得固体是指先用去离子水或超纯水和固体混合,磁力搅拌,离心倾倒上清液,如此重复洗涤操作2~3次后再用无水乙醇洗涤2-3次;每次洗涤固体时所用去离子水、超纯水或无水乙醇的体积为氢氧化钠溶液体积的5-30倍;磁力搅拌的时间为60-120min;离心转速为8000~11000r/min,离心时间为8~15min;真空干燥的温度为60-75℃,真空干燥时间为16-24h。
  7. 权利要求1至6任一项所述制备方法制备的铁氧化物掺杂铁金属有机骨架。
  8. 权利要求7所述的铁氧化物掺杂铁金属有机骨架在活化过硫酸盐降解有机污染物中的应用,其特征在于,向有机废水中加入过硫酸盐和铁氧化物掺杂铁金属有机骨架材料,置于恒温振荡培养箱或磁力搅拌器中混合均匀,反应。
  9. 根据权利要求8所述的铁氧化物掺杂铁金属有机骨架在活化过硫酸盐降解有机污染物中的应用,其特征在于,过硫酸盐为过硫酸钠、过硫酸钾或过硫酸铵;过硫酸盐与有机废水中的降解目标污染物摩尔比例为(80~800)∶1;
    铁氧化物掺杂的铁金属有机骨架材料的质量与有机废水的体积比为0.2~2g/L。
  10. 根据权利要求8所述的铁氧化物掺杂铁金属有机骨架在活化过硫酸盐降解有机污染物中的应用,其特征在于,恒温振荡培养箱或磁力搅拌器的转速为150~250r/min,反应温度为20~60℃。
PCT/CN2019/113191 2019-07-12 2019-10-25 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用 WO2021007988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910631916.X 2019-07-12
CN201910631916.XA CN110548544B (zh) 2019-07-12 2019-07-12 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021007988A1 true WO2021007988A1 (zh) 2021-01-21

Family

ID=68736438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113191 WO2021007988A1 (zh) 2019-07-12 2019-10-25 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用

Country Status (2)

Country Link
CN (1) CN110548544B (zh)
WO (1) WO2021007988A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209968A (zh) * 2021-04-27 2021-08-06 北京工业大学 一种磁性铜铁双金属生物质炭微球的制备方法及应用
CN113457659A (zh) * 2021-06-24 2021-10-01 四川大学 过渡金属单原子纳米酶及其制备方法和用途
CN114405475A (zh) * 2021-12-30 2022-04-29 广东省科学院化工研究所 一种吸附材料及其制备方法和应用
CN114656648A (zh) * 2022-04-29 2022-06-24 南开大学 一种金属有机框架材料和金属有机框架复合材料的快速制备方法
WO2023274367A1 (zh) * 2021-07-02 2023-01-05 上海交通大学 纳米增强芯片的制备及其在小分子代谢物激光解离质谱检测中的应用
CN115745134A (zh) * 2022-11-23 2023-03-07 南京大学 一种利用铁配合物催化过一硫酸盐高效选择性氧化的方法
CN115888775A (zh) * 2022-11-25 2023-04-04 哈尔滨工业大学水资源国家工程研究中心有限公司 一种基于微波快速活化高碘酸盐氧化降解抗生素废水催化剂及其制备和应用方法
CN116282465A (zh) * 2022-11-25 2023-06-23 哈尔滨工业大学水资源国家工程研究中心有限公司 一种微波活化高碘酸盐快速氧化降解PPCPs废水的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254707B (zh) * 2020-02-25 2022-03-18 南通大学 一种负载Fe-MOF的活性炭纤维材料的制备方法
CN112064381B (zh) * 2020-09-17 2022-03-11 南通大学 一种涤纶室温染色的方法
CN113620390B (zh) * 2021-06-30 2023-04-18 广东省科学院测试分析研究所(中国广州分析测试中心) 一种电辅助Fe-MOF材料催化处理重金属-EDTA络合物废水的方法
CN117861658B (zh) * 2024-03-11 2024-06-07 中国科学院大学 基于超重力反应器的催化剂制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854944A (zh) * 2016-03-31 2016-08-17 华南理工大学 一种铜掺杂铁金属有机骨架材料及其制备方法与应用于活化过硫酸盐处理有机废水的方法
US20170203277A1 (en) * 2013-08-05 2017-07-20 Numat Technologies, Inc. Metal organic frameworks for eletronic gas storage
CN109806844A (zh) * 2019-03-21 2019-05-28 西南大学 一种除磷的磁性金属有机框架材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165911A2 (ko) * 2011-06-01 2012-12-06 한국화학연구원 다공성 유무기 혼성체의 제조방법
CN104525266B (zh) * 2014-12-30 2017-04-12 河南理工大学 一种金属有机骨架材料光催化剂的制备方法与应用
US9421517B2 (en) * 2015-01-20 2016-08-23 Chung Yuan Christian University Metal-organic framework polymer for solid-phase microextraction
CN106076242A (zh) * 2016-06-06 2016-11-09 华南理工大学 一种MOFs双金属吸附材料(Fe,Co)‑BTC及其制备方法
CN106957438B (zh) * 2017-03-21 2020-12-22 华南理工大学 一种改性MIL-53(Fe)金属有机骨架的制备及其活化过硫酸盐处理有机废水的方法
CN107159126A (zh) * 2017-05-10 2017-09-15 上海师范大学 一种基于uio‑66与铜纳米线原位共组装合成吸附‑光催化复合材料
CN107715916A (zh) * 2017-10-09 2018-02-23 贵州师范大学 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用
CN109847740B (zh) * 2017-11-30 2021-06-11 中国科学院大连化学物理研究所 一种基于mil-53负载型的金属催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170203277A1 (en) * 2013-08-05 2017-07-20 Numat Technologies, Inc. Metal organic frameworks for eletronic gas storage
CN105854944A (zh) * 2016-03-31 2016-08-17 华南理工大学 一种铜掺杂铁金属有机骨架材料及其制备方法与应用于活化过硫酸盐处理有机废水的方法
CN109806844A (zh) * 2019-03-21 2019-05-28 西南大学 一种除磷的磁性金属有机框架材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, XIANGYUE ET AL.: "Preparation of highly crystalline MIL-100-(Fe) nanomaterials from ferrous salts and their properties for photodegradation of organic dyes", JOURNAL OF MATERIALS ENGINEERING, vol. 46, no. 10, 18 October 2018 (2018-10-18), ISSN: 1001-4381 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209968A (zh) * 2021-04-27 2021-08-06 北京工业大学 一种磁性铜铁双金属生物质炭微球的制备方法及应用
CN113209968B (zh) * 2021-04-27 2023-06-02 北京工业大学 一种磁性铜铁双金属生物质炭微球的制备方法及应用
CN113457659A (zh) * 2021-06-24 2021-10-01 四川大学 过渡金属单原子纳米酶及其制备方法和用途
WO2023274367A1 (zh) * 2021-07-02 2023-01-05 上海交通大学 纳米增强芯片的制备及其在小分子代谢物激光解离质谱检测中的应用
CN114405475A (zh) * 2021-12-30 2022-04-29 广东省科学院化工研究所 一种吸附材料及其制备方法和应用
CN114405475B (zh) * 2021-12-30 2024-01-05 广东省科学院化工研究所 一种吸附材料及其制备方法和应用
CN114656648A (zh) * 2022-04-29 2022-06-24 南开大学 一种金属有机框架材料和金属有机框架复合材料的快速制备方法
CN115745134A (zh) * 2022-11-23 2023-03-07 南京大学 一种利用铁配合物催化过一硫酸盐高效选择性氧化的方法
CN115745134B (zh) * 2022-11-23 2024-03-08 南京大学 一种利用铁配合物催化过一硫酸盐高效选择性氧化的方法
CN115888775A (zh) * 2022-11-25 2023-04-04 哈尔滨工业大学水资源国家工程研究中心有限公司 一种基于微波快速活化高碘酸盐氧化降解抗生素废水催化剂及其制备和应用方法
CN116282465A (zh) * 2022-11-25 2023-06-23 哈尔滨工业大学水资源国家工程研究中心有限公司 一种微波活化高碘酸盐快速氧化降解PPCPs废水的方法

Also Published As

Publication number Publication date
CN110548544B (zh) 2021-09-21
CN110548544A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021007988A1 (zh) 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用
CN105923738B (zh) 一种利用金属有机骨架高效催化活化过硫酸盐或过硫酸氢盐处理有机废水的方法
CN104549406B (zh) 一种g‑C3N4/铋系氧化物复合可见光催化剂及其制备方法与应用
CN107626335B (zh) 一种铋系/氮化碳复合催化剂及其制备方法和应用
CN105056981B (zh) 高效去除难降解有机污染物的复合光催化剂g‑C3N4‑铁酸铋的制备及其应用
CN106475144B (zh) 一种基于铁基金属-有机骨架材料的类Fenton催化剂制备方法
CN106430887B (zh) 一种高含固率污泥厌氧消化产甲烷的方法
CN105056973B (zh) 化学腐蚀法原位生长制备高效的硫化铋‑铁酸铋复合可见光催化剂及其应用
CN105195180B (zh) 一种硒酸铋光催化剂及其制备方法与应用
CN107262085A (zh) 一种铋/铌酸钙钾等离子体纳米复合材料的制备方法
CN103551201A (zh) 一种羟基磷酸铜催化剂的制备方法
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN107876039A (zh) 石墨烯‑氧化铈杂化材料的制备方法
CN108786891A (zh) 一种氮化碳基全光谱复合光催化剂的制备方法
CN105728012A (zh) 一种氮化碳蒙脱土复合光催化剂载体的制备方法
CN108579819A (zh) 一种Fe3O4-N掺杂Ni/Zn-MOFs/g-C3N4复合光催化材料的制备方法
CN103537284B (zh) 一种用于降解有机染料废水的纳米氧化铜催化剂的制备方法
CN107497450A (zh) 一种复合钽酸铋光催化剂及其制备方法和应用
CN104549385A (zh) 一种氧化石墨烯复合FePO4非均相可见光Fenton催化剂及其制备方法
CN110102327A (zh) 一种缺陷氮化碳耦合钒酸铋光催化材料及其制备方法与用途
CN106362728B (zh) 纳米片状Bi2Ga4O9的制备方法及应用
CN108355674A (zh) 一种用于污水处理的硫化锌复合光催化剂及制备方法
CN112495400A (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN108246306B (zh) 一锅法合成具有可见光响应的光催化剂CuBi2O4/Bi2WO6纳米球及其应用
CN105567325B (zh) 一种用于太阳能光热化学转化的尖晶石类化合物与碳酸盐的混合物体系及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937901

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19937901

Country of ref document: EP

Kind code of ref document: A1