CN107715916A - 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用 - Google Patents

一种MIL‑100(Fe)纳米催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN107715916A
CN107715916A CN201710927992.6A CN201710927992A CN107715916A CN 107715916 A CN107715916 A CN 107715916A CN 201710927992 A CN201710927992 A CN 201710927992A CN 107715916 A CN107715916 A CN 107715916A
Authority
CN
China
Prior art keywords
mil
nanocatalyst
solution
preparation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710927992.6A
Other languages
English (en)
Inventor
庄金亮
刘湘粤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Education University
Original Assignee
Guizhou Education University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Education University filed Critical Guizhou Education University
Priority to CN201710927992.6A priority Critical patent/CN107715916A/zh
Publication of CN107715916A publication Critical patent/CN107715916A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及一种MIL‑100(Fe)纳米催化剂的制备方法及其应用,它包括以下步骤:(a)将均苯三甲酸和无机碱溶于水中形成第一溶液;(b)将铁源溶于水中形成含有Fe2+或/和Fe3+的第二溶液;(c)将所述第一溶液滴加至所述第二溶液中,搅拌反应后过滤,用乙醇冲洗,烘干,收集滤饼即可;所述均苯三甲酸、所述无机碱和铁元素的摩尔比为1:2~3.5:1~1.5。在室温条件下即可快速合成具有高度结晶的MIL‑100(Fe);反应溶剂为水,避免了大量有机溶剂的使用,且无需HF等腐蚀性极强的添加剂,反应条件温和,无需高压反应釜,操作简单,易于工业化大量合成,极大降低了MIL‑100(Fe)合成条件。

Description

一种MIL-100(Fe)纳米催化剂的制备方法及其应用
技术领域
本发明属于纳米催化剂领域,涉及一种MIL-100(Fe)纳米催化剂,具体涉及一种MIL-100(Fe)纳米催化剂的制备方法及其在光降解有机染料中的应用。
背景技术
金属-有机框架材料(Metal-Organic Frameworks,MOFs)是一类由有机多配位配体连结金属离子节点或团簇形成的有机-无机杂化多孔性晶体材料,在气体存储、气体分离、催化、分子识别、化学传感器等领域取得了令人瞩目的成果。近年来,MOFs与纳米科学的交叉使得MOFs研究进入纳米领域,即金属-有机框架纳米材料(nano-scale metal-organicframeworks,NMOFs)成为新的研究热点。与传统大尺寸MOFs相比,NMOFs不仅具有传统MOFs的结构优势,如丰富的孔结构、功能化的骨架结构以及超高比表面积等特点,同时兼备形貌规则、尺寸可控、易于在溶剂中分散、结构多样、客体分子在孔隙传输迅速等独特优点。
环境污染是当今中国社会发展面临的最重大问题,其中尤以水污染最为严重,水污染治理已刻不容缓。由于工业污水、废水具有的污染物组成繁杂、污染物毒性强,以及难以生物降解等特点,导致污水治理难度大、成本高、低效高能,致使某些企业铤而走险,减排、偷排现象较为严重。因此如何高效、节能地处理水体污染是一个亟待解决的重要问题。太阳能取之不尽、用之不竭、安全可靠,是人类最理想的绿色清洁能源。开发可用于光催化降解废水中的有机染料催化剂是目前绿色化学研究领域的热点之一。得益于NMOFs优异的吸附分离、离子交换、分子识别等新颖特点,近年来,NMOFs成为废水净化技术新的研究热点,特别是具有光催化性能的NMOFs,在废水净化领域具有独特的优势。然而,目前合成MOFs的方法通常采用溶剂热或水热法,即有机配体与金属离子置于高压反应釜中或其它耐高温的密封容器中,反应温度100~200℃,反应持续数小时至数天,有机配体与金属离子通过配位自组装形成MOFs晶体。然而,有机溶剂包不仅价格昂贵,需要高压反应釜等设备,且在大量合成时容易排放大量有机污染物。因此,开发一种以水为溶剂、在室温条件下、快速合成NMOFs的方法对实现MOFs工业化应用具有极其重要的研究意义。
发明内容
本发明目的是为了克服现有技术的不足而提供一种MIL-100(Fe)纳米催化剂的制备方法。
为解决以上技术问题,本发明采取的一种技术方案是:一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将均苯三甲酸和无机碱溶于水中形成第一溶液;
(b)将铁源溶于水中形成含有Fe2+或/和Fe3+的第二溶液;
(c)将所述第一溶液滴加至所述第二溶液中,搅拌反应后过滤,用乙醇冲洗,烘干,收集滤饼即可;所述均苯三甲酸、所述无机碱和铁元素的摩尔比为1:2~3.5:1~1.5。
优化地,所述无机碱为选自NaOH和KOH中的一种或两种。
优化地,所述铁源为选自FeCl2·4H2O、FeSO4·7H2O、Fe(OAc)2、FeCl3·6H2O、Fe(NO3)3·9H2O和Fe2(SO4)3中的一种或多种组成的混合物。
进一步地,所述铁源为选自FeCl2·4H2O和FeSO4·7H2O中的一种或两种。
优化地,步骤(c)中,在10~40℃搅拌反应2~24h。
优化地,步骤(c)中,所述滴加速度为1~5滴/s。
优化地,步骤(c)中,所述均苯三甲酸和水的摩尔比为1:800~1500。
本发明的又一目的在于提供一种MIL-100(Fe)纳米催化剂的应用,MIL-100(Fe)纳米催化剂由上述制备方法制得,所述MIL-100(Fe)纳米催化剂用于光降解污水中的有机染料。
优化地,将所述MIL-100(Fe)纳米催化剂置于含有有机染料的污水中,在紫外光照射下进行搅拌即可。
进一步地,在紫外光照射前还向污水中加入H2O2
本发明带来的有益效果是:本发明MIL-100(Fe)纳米催化剂的制备方法,在室温条件下即可快速合成具有高度结晶的MIL-100(Fe);反应溶剂为水,避免了大量有机溶剂的使用,且无需HF等腐蚀性极强的添加剂,反应条件温和,无需高压反应釜,操作简单,易于工业化大量合成,极大降低了MIL-100(Fe)合成条件;所合成的MIL-100(Fe)具有高比表面积,比表面积(BET)高达1500m2/g,合成的颗粒尺寸为500~1000nm。采用该MIL-100(Fe)纳米粒子对有机染料具有超高的光降解性能,特别是对于高浓度有机染料,光降解效率高,且MIL-100(Fe)纳米粒子具有高的水稳定性,样品可重复利用。
附图说明
图1为实施例1中制得的MIL-100(Fe)SEM图;
图2为实施例1中制得的MIL-100(Fe)XRD图;
图3为实施例1中制得的MIL-100(Fe)FT-IR图;
图4为实施例1中制得的MIL-100(Fe)对罗丹明B光降解UV-Vis谱图及溶液颜色变化照片;
图5为实施例1中制得的MIL-100(Fe)对罗丹明B光降解效率图。
具体实施方式
本发明MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:(a)将均苯三甲酸和无机碱溶于水中形成第一溶液;(b)将铁源溶于水中形成含有Fe2+或/和Fe3+的第二溶液;(c)将所述第一溶液滴加至所述第二溶液中,搅拌反应后过滤,用乙醇冲洗,烘干,收集滤饼即可;所述均苯三甲酸、所述无机碱和铁元素的摩尔比为1:2~3.5:1~1.5。本发明MIL-100(Fe)纳米催化剂的制备方法,通过使均苯三甲酸和无机碱进行反应形成均苯三甲酸根离子而能与铁离子或亚铁离子进行配合形成具有高度结晶的MIL-100(Fe),该反应在室温条件下即可快速合成具有高度结晶的MIL-100(Fe),反应溶剂为水,避免了大量有机溶剂的使用,且无需HF等腐蚀性极强的添加剂,反应条件温和,无需高压反应釜,操作简单,易于工业化大量合成,极大降低了MIL-100(Fe)合成条件;所合成的MIL-100(Fe)具有高比表面积,比表面积(BET)高达1500m2/g,合成的颗粒尺寸为500~1000nm。
无机碱选用常规的即可,如可以选自NaOH和KOH中的一种或两种。铁源为选自FeCl2·4H2O、FeSO4·7H2O、Fe(OAc)2、FeCl3·6H2O、Fe(NO3)3·9H2O和Fe2(SO4)3中的一种或多种组成的混合物;优选使用FeCl2·4H2O和FeSO4·7H2O中的一种或两种。步骤(c)中,在10~40℃搅拌反应2~24h;滴加速度为常规的即可,使用滴管进行转移即可,通常为1~5滴/s。步骤(c)中,所述均苯三甲酸和水的摩尔比为1:800~1500。
上述制得的MIL-100(Fe)纳米催化剂的应用,它用于光降解污水中的有机染料。具体为:将所述MIL-100(Fe)纳米催化剂置于含有有机染料的污水中,在紫外光照射下进行搅拌即可。在紫外光照射前还优选向污水中加入H2O2。采用该MIL-100(Fe)纳米粒子对有机染料具有超高的光降解性能,特别是对于高浓度有机染料,光降解效率高,且MIL-100(Fe)纳米粒子具有高的水稳定性,样品可重复利用。
下面将结合附图对本发明优选实施方案进行详细说明:
实施例1
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将NaOH(10.0g)加入圆底烧瓶中,加250mL水溶解,将均苯三甲酸(H3btc,16.7g)分次加入,搅拌获得澄清溶液(即第一溶液);
(b)将FeSO4·7H2O(31.7g)溶于1000mL水,得第二溶液;
(c)将第一溶液在室温(25℃)搅拌下滴加到第二溶液(使用常规的滴管滴加,约1~5滴/秒,下同),并搅拌12小时;将上述滤液过滤,用水、乙醇冲洗滤饼,烘干,收集滤饼即可。对获得的产品进行SEM、XRD和红外测试,其结果分别如图1至图3所示;可见制得的MIL-100(Fe)颗粒粒径为500-1000nm,结晶度高。
实施例2
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将NaOH(10.0g)加入圆底烧瓶中,加250mL水溶解,将均苯三甲酸(H3btc,16.7g)分次加入,搅拌获得澄清溶液(即第一溶液);
(b)将FeCl2·4H2O(22.6g)溶于1000mL水,得第二溶液;
(c)将第一溶液在室温(25℃)搅拌下滴加到第二溶液(使用常规的滴管滴加,约1~5滴/秒,下同),并搅拌10小时;将上述滤液过滤,用水、乙醇冲洗滤饼,烘干,收集滤饼即可。
实施例3
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将NaOH(10.0g)加入圆底烧瓶中,加250mL水溶解,将均苯三甲酸(H3btc,16.7g)分次加入,搅拌获得澄清溶液(即第一溶液);
(b)将FeCl3·6H2O(30.7g)溶于1000mL水,得第二溶液;
(c)将第一溶液在室温(25℃)搅拌下滴加到第二溶液(使用常规的滴管滴加,约1~5滴/秒,下同),并搅拌10小时;将上述滤液过滤,用水、乙醇冲洗滤饼,烘干,收集滤饼即可。
实施例4
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将KOH(14.0g)加入圆底烧瓶中,加250mL水溶解,将均苯三甲酸(H3btc,16.7g)分次加入,搅拌获得澄清溶液(即第一溶液);
(b)将FeSO4·7H2O(31.7g)溶于1000mL水,得第二溶液;
(c)将第一溶液在室温(25℃)搅拌下滴加到第二溶液(使用常规的滴管滴加,约1~5滴/秒,下同),并搅拌10小时;将上述滤液过滤,用水、乙醇冲洗滤饼,烘干,收集滤饼即可。
实施例5
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将KOH(14.0g)加入圆底烧瓶中,加250mL水溶解,将均苯三甲酸(H3btc,16.7g)分次加入,搅拌获得澄清溶液(即第一溶液);
(b)将FeCl2·4H2O(30.7g)溶于1000mL水,得第二溶液;
(c)将第一溶液在室温(25℃)搅拌下滴加到第二溶液(使用常规的滴管滴加,约1~5滴/秒,下同),并搅拌10小时;将上述滤液过滤,用水、乙醇冲洗滤饼,烘干,收集滤饼即可。
实施例6
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它包括以下步骤:
(a)将KOH(7.0g)、NaOH(5.0g)加入圆底烧瓶中,加250mL水溶解,将均苯三甲酸(H3btc,16.7g)分次加入,搅拌获得澄清溶液(即第一溶液);
(b)将FeCl2·4H2O(15.3g)和FeSO4·7H2O(15.3g)溶于1000mL水,得第二溶液;
(c)将第一溶液在室温(25℃)搅拌下滴加到第二溶液(使用常规的滴管滴加,约1~5滴/秒,下同),并搅拌10小时;将上述滤液过滤,用水、乙醇冲洗滤饼,烘干,收集滤饼即可。
实施例7
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它与实施例1中的步骤基本一致,不同的是:均苯三甲酸的使用量为26.3g,FeSO4·7H2O的使用量为34.75g。
实施例8
本实施例提供一种MIL-100(Fe)纳米催化剂的制备方法,它与实施例1中的步骤基本一致,不同的是:均苯三甲酸的使用量为15g,FeSO4·7H2O的使用量为29.79g。
对比例1
本例提供一与实施例1类似的方法,不同的是:未加入均苯三甲酸,最终未能得到MIL-100(Fe)纳米催化剂。
实验例1
取20mg罗丹明B溶解于适量水中,转移至100ml容量瓶中,定容,配制成200mg/l的罗丹明B溶液;取配制好的200mg/l的罗丹明B溶液50ml(6份),分别加入10mg实施例1-实施例6中制得的MIL-100(Fe)样品,再分别加入100μl H2O2,在紫外灯照射下搅拌,取不同照射时间的溶液样品,离心,利用紫外-可见分光光度计测试清液的紫外吸收谱(其中实施例1中的测试效果如图4和图5所示)。
表1g实施例1-实施例6中制得的MIL-100(Fe)样品的性能表
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种MIL-100(Fe)纳米催化剂的制备方法,其特征在于,它包括以下步骤:
(a)将均苯三甲酸和无机碱溶于水中形成第一溶液;
(b)将铁源溶于水中形成含有Fe2+或/和Fe3+的第二溶液;
(c)将所述第一溶液滴加至所述第二溶液中,搅拌反应后过滤,用乙醇冲洗,烘干,收集滤饼即可;所述均苯三甲酸、所述无机碱和铁元素的摩尔比为1:2~3.5:1~1.5。
2.根据权利要求1所述MIL-100(Fe)纳米催化剂的制备方法,其特征在于:所述无机碱为选自NaOH和KOH中的一种或两种。
3.根据权利要求1所述MIL-100(Fe)纳米催化剂的制备方法,其特征在于:所述铁源为选自FeCl2·4H2O、FeSO4·7H2O、Fe(OAc)2、FeCl3·6H2O、Fe(NO3)3·9H2O和Fe2(SO4)3中的一种或多种组成的混合物。
4.根据权利要求3所述MIL-100(Fe)纳米催化剂的制备方法,其特征在于:所述铁源为选自FeCl2·4H2O和FeSO4·7H2O中的一种或两种。
5.根据权利要求1所述MIL-100(Fe)纳米催化剂的制备方法,其特征在于:步骤(c)中,在10~40℃搅拌反应2~24h。
6.根据权利要求1所述MIL-100(Fe)纳米催化剂的制备方法,其特征在于:步骤(c)中,所述滴加速度为1~5滴/s。
7.根据权利要求1所述MIL-100(Fe)纳米催化剂的制备方法,其特征在于:步骤(c)中,所述均苯三甲酸和水的摩尔比为1:800~1500。
8.一种MIL-100(Fe)纳米催化剂的应用,所述MIL-100(Fe)纳米催化剂由权利要求1至7中任一所述MIL-100(Fe)纳米催化剂的制备方法制得,其特征在于:所述MIL-100(Fe)纳米催化剂用于光降解污水中的有机染料。
9.根据权利要求8所述MIL-100(Fe)纳米催化剂的应用,其特征在于:将所述MIL-100(Fe)纳米催化剂置于含有有机染料的污水中,在紫外光照射下进行搅拌即可。
10.根据权利要求9所述MIL-100(Fe)纳米催化剂的应用,其特征在于:在紫外光照射前还向污水中加入H2O2
CN201710927992.6A 2017-10-09 2017-10-09 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用 Pending CN107715916A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710927992.6A CN107715916A (zh) 2017-10-09 2017-10-09 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710927992.6A CN107715916A (zh) 2017-10-09 2017-10-09 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN107715916A true CN107715916A (zh) 2018-02-23

Family

ID=61209883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710927992.6A Pending CN107715916A (zh) 2017-10-09 2017-10-09 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107715916A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548544A (zh) * 2019-07-12 2019-12-10 华南理工大学 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用
CN110639618A (zh) * 2019-10-14 2020-01-03 山东科技大学 用于苯羟基化反应的冷冻干燥型多孔mil-100催化剂及其制备方法与应用
CN111392813A (zh) * 2020-03-24 2020-07-10 西南石油大学 一种可循环、快速破乳的MIL-100(Fe)复合材料的制备方法
CN112536070A (zh) * 2020-12-02 2021-03-23 浙江大学 可见光响应型MIL-100(Fe)光催化复合材料的制备方法
CN112979982A (zh) * 2021-02-25 2021-06-18 西南交通大学 具有抗炎功能的有机框架材料及其制备方法
CN113289688A (zh) * 2021-06-02 2021-08-24 贵州师范大学 一种微波辅助法合成氨基功能化锆基MOFs纳米片及其制备方法
CN115028226A (zh) * 2022-04-24 2022-09-09 中南大学 基于碳酸氢根促进MIL-100(Fe)去除As(III)或As(V)的方法
WO2022236879A1 (zh) * 2021-05-11 2022-11-17 西北工业大学 Mn-MOF适冷纳米酶及其制备方法和用途
CN115739000A (zh) * 2022-11-21 2023-03-07 东北大学 一种Fe-MOF衍生的α-Fe2O3丙酮气体传感材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497055A (zh) * 2014-12-11 2015-04-08 上海烟草集团有限责任公司 一种金属有机骨架材料的制备及应用
CN105148853A (zh) * 2015-10-12 2015-12-16 武汉大学 一种磁性MOFs固相萃取吸附剂及其制备方法和应用
CN106902744A (zh) * 2017-02-22 2017-06-30 华南理工大学 一种室温下制备MIL‑100(Fe)的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497055A (zh) * 2014-12-11 2015-04-08 上海烟草集团有限责任公司 一种金属有机骨架材料的制备及应用
CN105148853A (zh) * 2015-10-12 2015-12-16 武汉大学 一种磁性MOFs固相萃取吸附剂及其制备方法和应用
CN106902744A (zh) * 2017-02-22 2017-06-30 华南理工大学 一种室温下制备MIL‑100(Fe)的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIROS GUESH ET AL.: "Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water", 《CRYSTAL GROWTH DESIGN》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548544A (zh) * 2019-07-12 2019-12-10 华南理工大学 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用
CN110548544B (zh) * 2019-07-12 2021-09-21 华南理工大学 铁氧化物掺杂铁金属有机骨架及绿色宏量制备方法与应用
CN110639618A (zh) * 2019-10-14 2020-01-03 山东科技大学 用于苯羟基化反应的冷冻干燥型多孔mil-100催化剂及其制备方法与应用
CN111392813A (zh) * 2020-03-24 2020-07-10 西南石油大学 一种可循环、快速破乳的MIL-100(Fe)复合材料的制备方法
CN112536070A (zh) * 2020-12-02 2021-03-23 浙江大学 可见光响应型MIL-100(Fe)光催化复合材料的制备方法
CN112979982A (zh) * 2021-02-25 2021-06-18 西南交通大学 具有抗炎功能的有机框架材料及其制备方法
WO2022236879A1 (zh) * 2021-05-11 2022-11-17 西北工业大学 Mn-MOF适冷纳米酶及其制备方法和用途
CN113289688A (zh) * 2021-06-02 2021-08-24 贵州师范大学 一种微波辅助法合成氨基功能化锆基MOFs纳米片及其制备方法
CN115028226A (zh) * 2022-04-24 2022-09-09 中南大学 基于碳酸氢根促进MIL-100(Fe)去除As(III)或As(V)的方法
CN115028226B (zh) * 2022-04-24 2023-10-03 中南大学 基于碳酸氢根促进MIL-100(Fe)去除As(III)或As(V)的方法
CN115739000A (zh) * 2022-11-21 2023-03-07 东北大学 一种Fe-MOF衍生的α-Fe2O3丙酮气体传感材料的制备方法

Similar Documents

Publication Publication Date Title
CN107715916A (zh) 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用
Li et al. TiO2 nanoparticles anchored onto the metal–organic framework NH2-MIL-88B (Fe) as an adsorptive photocatalyst with enhanced fenton-like degradation of organic pollutants under visible light irradiation
Chen et al. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation
Yuan et al. Self-assembled hierarchical and bifunctional MIL-88A (Fe)@ ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification
Lv et al. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants
Guo et al. Recent advances and perspectives of g–C3N4–based materials for photocatalytic dyes degradation
Zhang et al. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst
Tan et al. A new MOFs/polymer hybrid membrane: MIL-68 (Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue
Pan et al. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Hu et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue
Pi et al. Formation of willow leaf-like structures composed of NH 2-MIL68 (In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr (VI)
Harris et al. Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation
Abazari et al. Ultrasound-assisted preparation of a nanostructured zinc (II) amine pillar metal-organic framework as a potential sorbent for 2, 4-dichlorophenol adsorption from aqueous solution
Yuan et al. ZIF-67 with Argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range
Sheoran et al. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application
CN104959141B (zh) 一种负载Cu/Cu2O光催化剂的还原氧化石墨烯/无定形碳复合材料及其制备方法和应用
Azhar et al. Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept
Yang et al. Facile preparation of low-cost HKUST-1 with lattice vacancies and high-efficiency adsorption for uranium
Xie et al. Zr-Based MOFs as new photocatalysts for the rapid reduction of Cr (vi) in water
Karami et al. A novel TMD/MOF (Transition Metal Dichalcogenide/Metalorganic frameworks) composite for highly and selective adsorption of methylene blue dye from aqueous mixture of MB and MO
Tan et al. Design and fabrication of boric acid functionalized hierarchical porous metal-organic frameworks for specific removal of cis-diol-containing compounds from aqueous solution
CN109499573A (zh) 一种磁性木基材料的原位制备方法
Rabeie et al. Hierarchical ternary titanium dioxide decorated with graphene quantum dot/ZIF-8 nanocomposite for the photocatalytic degradation of doxycycline and dye using visible light
Zhang et al. Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223

RJ01 Rejection of invention patent application after publication