WO2021007727A1 - 一种智能汽车中车载计算装置及智能汽车 - Google Patents

一种智能汽车中车载计算装置及智能汽车 Download PDF

Info

Publication number
WO2021007727A1
WO2021007727A1 PCT/CN2019/095873 CN2019095873W WO2021007727A1 WO 2021007727 A1 WO2021007727 A1 WO 2021007727A1 CN 2019095873 W CN2019095873 W CN 2019095873W WO 2021007727 A1 WO2021007727 A1 WO 2021007727A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
computing device
fan module
vehicle
housing
Prior art date
Application number
PCT/CN2019/095873
Other languages
English (en)
French (fr)
Inventor
尹建强
胡真明
毛永海
李晓飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020545171A priority Critical patent/JP7164618B2/ja
Priority to PCT/CN2019/095873 priority patent/WO2021007727A1/zh
Priority to CN201980025464.9A priority patent/CN112602036A/zh
Priority to EP19914694.5A priority patent/EP3786758B1/en
Priority to US16/989,174 priority patent/US11073877B2/en
Publication of WO2021007727A1 publication Critical patent/WO2021007727A1/zh
Priority to US17/378,029 priority patent/US11726534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20863Forced ventilation, e.g. on heat dissipaters coupled to components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • G06F1/182Enclosures with special features, e.g. for use in industrial environments; grounding or shielding against radio frequency interference [RFI] or electromagnetical interference [EMI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • H05K7/20163Heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • This application relates to the technical field of smart cars, and in particular to a vehicle-mounted computing device in a smart car and a smart car.
  • Automated driving is a key technology to realize smart cars and smart transportation, and it is also an inevitable trend in the development of smart cars in the future.
  • the demand for the computing power of the on-board computing device continues to increase, and the challenge to the heat dissipation device of the on-board computing device is also increasing.
  • the heat dissipation requirement has risen from at least 20w to more than 200w.
  • the traditional vehicle-mounted computing device dissipates heat through natural wind, it cannot meet the heat dissipation requirements of the vehicle-mounted computing device in a smart car.
  • the on-board computing device needs to be physically designed with 1+1 redundancy, that is, two on-board computing devices need to be installed, and each on-board computing device needs to use an independent heat sink for its Perform heat dissipation.
  • two vehicle-mounted computing devices are respectively arranged at the front and rear of the smart car body, and each vehicle-mounted computing device is equipped with a heat sink, which is large in size and takes up more space in the vehicle. Therefore, how to provide an on-board computing device in a smart driving car with a small size and good heat dissipation has become a technical problem to be solved urgently.
  • the present application provides a vehicle-mounted computing device in a smart car and a smart car, aiming to reduce the volume of the computing device in the smart car and improve the heat dissipation capacity of the computing device in the smart car.
  • a vehicle-mounted computing device in a smart car includes: two motherboards arranged in a stack, each motherboard includes a plurality of devices, and the plurality of devices are used to control the driving state of the smart car And status monitoring; and the two motherboards are designed as 1+1 redundancy.
  • the in-vehicle computing device also includes a radiator arranged between the two motherboards and thermally connected to each motherboard, and the radiator serves as a common radiator for the two motherboards.
  • the in-vehicle computing device also includes a closing plate arranged on the side of each motherboard facing away from the radiator and connected to the radiator; wherein, each closing plate and the radiator seal the corresponding motherboard on the closing plate and the radiator. Between the radiators.
  • two motherboards are designed in the vehicle-mounted computing device, and the two motherboards are dissipated through a shared radiator.
  • the volume of a vehicle-mounted computing device in the prior art is similar to that in the prior art.
  • the effect of a vehicle-mounted computing device satisfies the redundant design of the car, reduces the space area occupied by the vehicle-mounted computing device, and seals the main board through the sealing plate and the radiator to improve the waterproof effect of the main board.
  • the heat sink includes a housing, a heat dissipation channel arranged in the housing, and an air supply module;
  • the air supply module includes: arranged along the length direction of the heat dissipation channel The first fan module and the second fan module of, wherein the air blowing direction of the first fan module and the second fan module are the same.
  • the air from outside the radiator is sent to the heat dissipation channel through the first fan module, and the air in the heat dissipation channel is discharged through the second fan module, which improves the fluidity in the heat dissipation channel, thereby improving the heat dissipation effect of the radiator .
  • the smart car includes a vehicle-mounted power supply system, and the vehicle-mounted power supply system communicates with the first fan module or the second fan module through at least one of the two motherboards.
  • Power supply the first fan module is electrically connected to one of the two motherboards, and the second fan module is electrically connected to the other of the two motherboards; or the first fan module The group is electrically connected to the two main boards, and the second fan module is electrically connected to the two main boards.
  • first fan module and the second fan module are respectively detachably and fixedly connected to the casing.
  • Each fan module is connected to the housing in a detachable manner. When the fan module fails, the fan module can be separately removed for repair or replacement.
  • the housing is provided with a first insertion hole and a second insertion hole; the first fan module is detachably fixed to the first insertion hole, and the second fan The module is detachably fixed to the second socket.
  • the combination of the jack and the fan module facilitates the installation of the fan module.
  • first fan module and the second fan module are directly buckled on the air inlet and outlet of the heat dissipation channel.
  • the fan module is directly buckled on the shell, which facilitates the installation and maintenance of the fan module.
  • a plurality of heat dissipation fins are provided in the housing, and the heat dissipation channel is formed between the plurality of heat dissipation fins.
  • the first fan module and the second fan module both include a bracket, at least one mounting hole provided on the bracket, and a connecting piece fixed to each The fan in the mounting hole.
  • the detachable connection between the fan and the bracket is adopted to facilitate the removal and maintenance of the fan when the fan fails.
  • the heat dissipation channel is a straight channel; and the length direction of the heat dissipation channel is perpendicular to the stacking direction of the two main boards.
  • the first fan module sends the air outside the radiator into the heat dissipation channel
  • the second fan module draws out the air in the heat dissipation channel to The radiator is outside.
  • the air is drawn into the heat dissipation channel through the first fan module, and the air in the heat dissipation channel is drawn out of the radiator through the second fan module, which improves the fluidity of the air in the heat dissipation channel and improves the air and heat dissipation fins
  • the heat dissipation effect of the radiator improves the heat dissipation efficiency of the radiator.
  • the radiator is a liquid-cooled radiator.
  • the liquid medium is used to dissipate heat to the main board to improve the heat dissipation effect of the main board.
  • the smart car includes a refrigeration system for controlling the liquid-cooled radiator;
  • the liquid-cooled radiator includes a housing, and A heat dissipation pipe, and the housing is provided with a water inlet pipe and a water outlet pipe communicating with the heat dissipation pipe; wherein, two opposite surfaces of the housing are respectively thermally connected to the two main boards in a one-to-one correspondence.
  • the heat dissipation pipe carries the liquid medium to dissipate the heat of the motherboard.
  • a plurality of first heat dissipation fins arranged at intervals are arranged in the housing, and a communicating S-shaped heat dissipation pipe is formed between the plurality of first heat dissipation fins.
  • the S-shaped heat dissipation pipe increases the fluidity of the liquid medium in the housing, and improves the heat dissipation effect of the radiator.
  • a plurality of second heat dissipation fins are arranged between any adjacent first heat dissipation fins, and the plurality of second heat dissipation fins are arranged at intervals.
  • the heat transferred to the shell is transferred to the second heat dissipation fins, and the contact area with the liquid medium is increased by the second heat dissipation fins provided, thereby increasing the heat dissipation effect of the liquid medium.
  • the refrigeration system is used to pump a liquid medium into the heat dissipation pipe, and the liquid medium dissipates the two chips in the heat dissipation pipe.
  • the refrigeration system provides power for the flow of liquid media.
  • the volume of the liquid medium pumped into the heat dissipation pipe at a time of the refrigeration system is greater than or equal to The volume of the liquid medium contained between two adjacent first fins.
  • each main board has a first surface facing the heat sink, the first surface is provided with at least one first functional device, and the at least one first functional device and the Heat sink connection.
  • the first functional device is the higher power device among the devices on the main board.
  • each main board has a second surface facing away from the heat sink, and the second surface is provided with at least one second functional device; the closing plate corresponding to each main board is a heat sink; and Each second functional device of each main board is thermally connected to the heat sink.
  • the second functional device is the device with lower power among the components of the main board.
  • the closed plate is used as the heat sink and the heat sink is thermally connected to the heat sink; the heat generated by the second functional device is transferred to the heat sink through the heat sink Dissipate, further improve the heat dissipation effect of the motherboard.
  • a smart car in a second aspect, includes a smart car body and the above-mentioned on-board computing device provided in the smart car body.
  • two motherboards are designed in the vehicle-mounted computing device, and the two motherboards are dissipated through a shared radiator, which achieves the size of one vehicle-mounted computing device in the prior art, which can reach the prior art.
  • the effect of the two on-board computing devices in the middle meets the redundant design of the car and reduces the space area occupied by the on-board computing device.
  • the on-board computing device is arranged at one end of the smart car body.
  • the on-board computing device can be set in different positions in the smart car body as needed.
  • the smart car further includes a refrigeration system arranged in the smart car body, the refrigeration system including: a condenser, and a cooling plate connected with the condenser through a pipe and the heat dissipation Where the radiator is a liquid-cooled radiator.
  • a refrigeration system arranged in the smart car body, the refrigeration system including: a condenser, and a cooling plate connected with the condenser through a pipe and the heat dissipation Where the radiator is a liquid-cooled radiator.
  • the refrigeration system further includes a liquid pump (such as a water pump) arranged on the pipeline.
  • a liquid pump such as a water pump
  • Fig. 1 is a schematic structural diagram of a vehicle-mounted computing device in a smart car provided by this application;
  • Fig. 2 is an exploded schematic diagram of an on-board computing device in a smart car provided by this application;
  • Figure 3a is a cross-sectional view at A-A in Figure 1;
  • Figure 3b is a cross-sectional view at B-B in Figure 1;
  • Figure 4a is a schematic diagram of a specific structure of another air-cooled radiator provided by this application.
  • Fig. 4b is a schematic structural diagram of a heat dissipation fin provided by this application.
  • FIG. 5 is a schematic structural diagram of another air-cooled radiator provided by this application.
  • Fig. 6a is an exploded schematic diagram of a fan module and air-cooled radiator provided by this application;
  • Figure 6b is a schematic diagram of an assembly of a fan module and an air-cooled radiator provided by this application;
  • FIG. 7 is a schematic structural diagram of a first fan module provided by this application.
  • FIG. 8 is an exploded schematic diagram of another way of cooperation between a fan module and an air-cooled radiator provided by this application;
  • FIG. 9 is an exploded schematic diagram of a second vehicle-mounted computing device provided by this application.
  • 10a is a vertical cross-sectional view of the second type of vehicle-mounted computing device
  • Figure 10b is a cross-sectional view of the second type of vehicle-mounted computing device along the horizontal wind direction;
  • FIG 11 is a schematic diagram of the smart car provided by this application.
  • FIG. 12 is a schematic diagram of another smart car provided by this application.
  • FIG 13 is a specific schematic diagram of the refrigeration system provided by this application.
  • the vehicle-mounted computing device provided by the embodiment of the application is applied to the autonomous driving of smart cars, including support for unmanned driving and assisted driving. (driver assistance/ADAS), intelligent driving, connected driving, intelligent network driving, and car sharing electric or gasoline-powered cars.
  • the on-board computing device is used to control and monitor the driving state of the smart car, including but not limited to the on-board mobile data center (MDC), and the hardware monitor (HMI) that realizes the function of the human-computer interaction controller.
  • MDC on-board mobile data center
  • HMI hardware monitor
  • IVI In-vehicle infotainment
  • BCM body control module
  • VCU vehicle control unit
  • the vehicle-mounted computing device may specifically have a chip with computing and processing capabilities, or it may be a collection of multiple devices such as processors and memories integrated in a printed circuit board (PCB).
  • the processor includes but is not limited to the central Processor (central processing unit, CPU), general-purpose processor, digital signal processing (DSP), application-specific integrated circuit (ASIC), field-programmable gate array , FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, graphics processing unit (GPU), system on chip (SoC), artificial intelligence (AI) chips.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the printed circuit board on which the above-mentioned processor is integrated is also called a motherboard.
  • FIG. 1 is a schematic structural diagram of an in-vehicle computing device in a smart car according to an embodiment of this application
  • FIG. 2 is an exploded schematic diagram of a computing module in a smart car according to an embodiment of this application.
  • the in-vehicle computing provided by the embodiments of the present application includes two motherboards, each motherboard includes multiple devices, and the multiple devices are used to control and monitor the driving state of the smart car.
  • the two motherboards are named as the first A main board 40 and a second main board 50, and the structure and function of the first main board 40 and the second main board 50 are the same.
  • FIG. 3a When specifically setting the first main board 40 and the second main board 50, refer to FIG. 3a together.
  • FIG. 3a shows a cross-sectional view at AA in FIG. 1, where the cross-sectional view at AA refers to the line parallel to the first main board 40 and the first main board 40
  • the vertical face of the stacking direction of the two main boards 50 is a schematic cross-sectional view of the vehicle-mounted computing device shown in FIG. 1.
  • the first main board 40 and the second main board 50 each include a first surface 42 and a second surface 43 opposite to each other, wherein the first surface 42 is provided with at least one first functional device 41, and the second surface 43 is provided with at least one The second functional device 44, wherein the power of the first functional device 41 is greater than the power of the second functional device 44, that is, the heat of the first functional device 41 is greater than the heat of the second functional device 44.
  • the first main board 40 is provided with a connection terminal for connecting with other devices, and the connection terminal is electrically connected to the first functional device 41 and the second functional device 44 described above.
  • the connection with the first functional device 41 and the second functional device 44 can be soldering, slotting or surface mounting.
  • Surface mounting refers to surface mounting technology, which specifically includes applying solder paste on the pads of the motherboard. Mount the device on the corresponding position on the motherboard surface where the solder paste or patch glue is printed, and then remelt the solder paste pre-allocated on the pad to realize the surface assembly device solder end or pin Electrical connection with the pad.
  • Both the first main board 40 and the second main board 50 are used for driving state control and state monitoring of the smart car.
  • only one main board of the first main board 40 and the second main board 50 is in working state, and the other main board is used as a backup Main board to realize 1+1 redundancy design to ensure the reliability of the entire autopilot system.
  • the two main boards can also use a load sharing method to jointly complete the data processing process in the smart car to speed up the data processing.
  • the vehicle-mounted computing device provided by the embodiment of the present application further includes a radiator and two closed plates, wherein the radiator is an air-cooled radiator 10.
  • the air-cooled radiator 10 is arranged between the first main board 40 and the second main board 50 to dissipate heat for the first main board 40 and the second main board 50.
  • the first main board 40 and the second main board 50 are respectively connected to The air-cooled radiator 10 is thermally connected.
  • Each closing plate is arranged on the side of the main board facing away from the air-cooled radiator 10.
  • the two closing plates are respectively named the first closing plate 20 and the second closing plate 30, wherein the first closing plate 20 and the first main plate 40 corresponds to, and the second closing plate 30 corresponds to the second main board 50.
  • the connection mode of each closing plate and the corresponding main board is the same. The following takes the cooperation of the first closing plate 20 and the first main board 40 as an example to illustrate the connection mode of the air-cooled heat sink 10, the closing board and the main board.
  • FIG. 3a two opposite surfaces of the air-cooled heat sink 10 are defined in FIG. 3a: the third surface c and the fourth surface d, wherein the third surface c faces the first main board 40, and the fourth surface d faces the Two motherboard 50.
  • the first main board 40 is fixed on the third surface c of the air-cooled radiator 10.
  • the first main board 40 can be fixed to the third surface c of the air-cooled radiator 10 by threaded connections (such as bolts or screws).
  • Surface c and the first surface of the first main board 40 faces the air-cooled heat sink 10.
  • the first functional device 41 of the first main board 40 faces the air-cooled heat sink 10 and is thermally connected to the third surface c of the air-cooled heat sink 10 through a thermally conductive glue or other heat conducting medium.
  • each first functional device 41 is thermally connected to the third surface c of the air-cooled heat sink 10 through a thermally conductive glue or other thermally conductive medium.
  • the third surface c of the air-cooled heat sink 10 is provided with corresponding protrusions or grooves (not shown in FIG. 3a) to ensure each first function
  • the device 41 can fully contact the third surface c of the air-cooled heat sink 10.
  • the heat generated by the first functional device 41 is transferred to the third surface c of the air-cooled heat sink 10 through the thermally conductive glue or other heat-conducting media, and the heat is dissipated through the air-cooled heat sink 10.
  • the first closing plate 20 is fixedly connected to the air-cooled radiator 10, for example, the first closing plate 20 is fixed on the third surface c of the air-cooled radiator 10 by bolts or screws.
  • the first surface of the air-cooled radiator 10 is provided with a ring of protrusions 111
  • the first closing plate 20 covers the protrusions 111 and surrounds the protrusions 111 to accommodate the first main board In the accommodating cavity of 40 (not marked in the figure), the first main board 40 is located in the accommodating cavity.
  • the air-cooled radiator 10, the first main board 40 and the first closing board 20 form a sandwich-like laminated structure.
  • the first main board 40 needs to have certain waterproof requirements when in use, so the first closing board 20 and the air-cooled radiator 10 are sealed and connected to seal the first main board 40 on the first closing board 20 and the air-cooled radiator 10 In the enclosed cavity.
  • the connecting terminal of the first main board 40 needs to be exposed outside the air-cooled radiator 10 to connect to other devices, so the connecting terminal adopts a connecting terminal that reaches the set waterproof level, and the connection terminal is between the air-cooled radiator 10 Sealing and waterproofing are also performed, such as sealing between the connecting terminals and the air-cooled radiator 10 by sealant or gasket.
  • the second surface 43 of the first main board 40 faces the first closing board 20.
  • the second functional device 44 is provided on the second surface 42, the heat generated by the second functional device 44 can be dissipated through the first sealing 20 plate.
  • the first closing plate adopts a heat dissipation plate, and the second functional device 44 on the second surface 43 is thermally connected to the first closing plate 20.
  • a thermal conductive glue or other common thermal conductive materials are used to fill the gap between the second functional device 44 and the first closing plate 20 to achieve heat conduction.
  • the number of second functional devices 44 is not limited to the number shown in FIG. 3a, and other numbers of second functional devices 44 may also be used. , Such as one, two, four and other different numbers.
  • the heights of the different second functional devices 44 may be the same or different; when the heights of the second functional devices 44 are different, the second closing plate 30 is also provided with corresponding protrusions or recesses (not shown in the figure) to It is ensured that the second functional device 44 can fully contact the second closing plate 30.
  • the first closing plate 20 and the air-cooled heat sink 10 are thermally connected, for example, by coating thermally conductive glue or other common thermally conductive materials between the first closing plate 20 and the protrusion 111 Achieve thermal connection.
  • the heat generated by the second functional device 44 is transferred to the second closing plate 30, and the heat on the second closing plate 30 is transferred to the air-cooled radiator 10 through the protrusion 111, and the heat is dissipated through the air-cooled radiator 10 Get out.
  • the first main board 40 and the first closing board 20 may also be fixedly connected, for example, the first main board 40 is fixedly connected to the first closing board 20 by using a buckle or a threaded connection member (such as a bolt or a screw), and then The first closing plate 20 is fixedly connected to the air-cooled radiator 10, and the first main board 40 can also be fixed in the receiving cavity.
  • a buckle or a threaded connection member such as a bolt or a screw
  • the setting method of the second main board 50 is the same as the setting method of the first main board 40 described above, so it will not be repeated here.
  • FIG. 3b is a cross-sectional view at BB in FIG. 1, where the cross-sectional view at BB refers to the direction in which the first main board 20 and the second main board 30 are stacked vertically in FIG.
  • the air-cooled radiator 10 includes a housing 11 having four side walls (not shown in the figure) and a top wall and a bottom wall connected to the four side walls.
  • the top wall has the aforementioned third surface c
  • the bottom wall has the aforementioned fourth surface d.
  • a heat dissipation channel 13 is provided in the housing 11, and two opposite side walls of the housing 11 are provided with an air inlet a and an air outlet b communicating with the heat dissipation channel 13.
  • a plurality of heat dissipation fins 12 are provided in the housing 11, and each heat dissipation fin 12 is a rectangular (or prismatic, elliptical, or other shape) heat dissipation fin, and its length is along the The air outlet a points in the direction of the air outlet b; each heat dissipation fin 12 is thermally connected to the top wall and the bottom wall respectively.
  • the heat transferred from the first main board 40 and the second main board 50 to the air-cooled radiator 10 is transmitted to the heat dissipation fins 12 through the housing 11 and radiated.
  • the plurality of heat dissipation fins 12 are arranged in a single row, and the arrangement direction of the plurality of heat dissipation fins 12 is perpendicular to the direction from the air inlet a to the air outlet b.
  • the arrangement direction of the plurality of heat dissipation fins 12 is perpendicular to the direction from the air inlet a to the air outlet b.
  • FIG. 3b when a plurality of heat dissipation fins 12 are arranged, there is a gap (not shown in the figure) between adjacent heat dissipation fins 12.
  • adjacent heat dissipation fins 12 are arranged at equal intervals, but in In the embodiment of the present application, the spacing between the heat dissipation fins 12 is not limited, and the spacing between the heat dissipation fins 12 can be set as required.
  • a heat dissipation channel 13 of the air-cooled radiator 10 is enclosed between a plurality of heat dissipation fins 12.
  • cold air flows from the air inlet a into the heat dissipation channel 13 and flows through the heat dissipation fins 12 In the gap between, the heat on the heat dissipation fin 12 is taken away by heat exchange, and finally flows out through the air outlet b.
  • the air inlet a and the air outlet b are arranged opposite to each other, and the heat dissipation channel is a straight channel, the air flow will not be lost, and the heat dissipation effect is improved.
  • FIG. 4a shows the specific structure of another air-cooled radiator.
  • the housing 11 of the air-cooled radiator 10 only includes a top wall 14 and a bottom wall 15, and the top wall 14 and the bottom wall 15 are fixedly connected by the heat dissipation fins 12.
  • FIG. 4b shows the specific structure of the heat dissipation fin 12, the side where the heat dissipation fin 12 is connected to the top wall 14 and the bottom wall 15 has a bending structure 121, and the heat dissipation fin 12 passes through the bending structure 121 It is welded and connected to the top wall 14 and the bottom wall 15, or fixedly connected to the top wall 14 and the bottom wall 15 through rivets or threaded connectors (such as bolts or screws).
  • a common thermal conductive medium such as thermal conductive glue may be coated between the bent structure 121 of the heat dissipation fin 12 and the top wall 14 or the bottom wall 15.
  • Fig. 5 shows the specific structure of another air-cooled radiator.
  • the heat dissipation fins 12 and the housing 11 are an integral structure. During preparation, they are prepared together with the housing 11 through an extrusion molding process.
  • each heat dissipation fin 12 is a rectangular heat dissipation fin (or other shapes such as a prismatic shape, an oval shape, etc.), and its length direction is directed toward the direction of the air outlet along the air inlet.
  • the integrated structure is adopted, there is a good heat conduction effect between the housing 11 and the heat dissipation fins 12.
  • the housing and heat dissipation fins of the air-cooled radiator can be made of materials with good thermal conductivity, such as common metal materials such as aluminum and iron.
  • the air-cooled radiator further includes an air supply module 60 to increase the air circulation speed in the heat dissipation channel.
  • the air blowing module 60 includes a first fan module 61 and a second fan module 62 arranged along the length direction of the heat dissipation channel.
  • the first fan module 61 and the second fan module 62 are arranged in the air inlet a and the air outlet b of the heat dissipation channel in one-to-one correspondence, and the air supply directions of the first fan module 61 and the second fan module 62 are the same, such as In the air flow direction indicated by the arrow in FIG.
  • the blowing direction of the first fan module 61 and the second fan module 62 is the same as the air flow direction.
  • the first fan module 61 is used to send cold air from the outside into the heat dissipation channel
  • the second fan module 62 is used to extract the air in the heat dissipation channel to the outside through the first fan
  • the cooperation of the module 61 and the second fan module 62 increases the air flow speed in the heat dissipation channel, thereby improving the heat dissipation efficiency of the air-cooled radiator.
  • the smart car applied by the in-vehicle computing device includes an in-vehicle power supply system that supplies power to the first fan module or the second fan module through at least one of the two motherboards.
  • the first fan module 61 is electrically connected to one of the two motherboards
  • the second fan module 62 is electrically connected to the other of the two motherboards.
  • the first fan module 61 is electrically connected to the first main board 20.
  • the vehicle power supply system supplies power to the first fan module 61 through the first main board 20, and the second fan module 62 In the standby state.
  • the vehicle power supply system supplies power to the second fan module 62 through the second main board 30, and the first fan module 61 is in a standby state.
  • the first fan module 61 may be electrically connected to the two main boards
  • the second fan module 62 may be electrically connected to the two main boards. That is, the vehicle-mounted power supply system supplies power to the first fan module 61 through the first motherboard 20 and the second motherboard 30, and simultaneously supplies power to the second fan module 62 through the first motherboard 20 and the second motherboard 30.
  • the vehicle power supply system supplies power to the first fan module 61 through the first main board 20, and the first fan module 61 is in a working state; when the first main board 20 fails and the second main board 30 starts to work, the vehicle power supply system supplies power to the first fan module 61 through the second main board 30 to work.
  • the working mode of the second fan module 62 is the same as the working mode of the first fan module 61, so it will not be repeated here.
  • the first fan module 61 and the second fan module 62 can still work normally, which ensures that the air-cooled radiator can dissipate heat normally. Therefore, the first motherboard 20 or the second motherboard 30 can have a reliable heat dissipation effect. And by using a common radiator to dissipate heat for the two motherboards at the same time, the space occupied by the on-board computing device is reduced, and the size of one on-board computing device in the prior art can be used to achieve the effect of two on-board computing devices in the prior art.
  • the first fan module 61 and the second fan module 62 are respectively connected to two motherboards, ensuring that at least one fan module is in working condition, which improves the reliability of the air-cooled radiator and also improves the on-board computing The reliability of the device.
  • Figure 6a shows an exploded schematic diagram of the fan module and the air-cooled radiator
  • Figure 6b shows a schematic diagram of the assembly of the fan module and the air-cooled radiator.
  • the same reference numerals in FIGS. 6a and 6b can refer to FIGS. 2 and 3b.
  • Both the first fan module 61 and the second fan module 62 are connected to the air-cooled radiator in a detachable connection mode. The connection between the fan module and the air-cooled radiator is described below by taking the first fan module 61 as an example the way.
  • the first fan module 61 is detachably fixedly connected to the housing 11 of the air-cooled radiator.
  • the housing 11 of the air-cooled radiator is provided with a first insertion hole 112 that cooperates with the first fan module 61.
  • the first insertion hole 112 is opened on a side wall (not marked in the figure) of the housing 11, and the first insertion hole 112
  • the length direction of the hole 112 is perpendicular to the length direction of the heat dissipation channel.
  • the first fan module 61 when the first fan module 61 is inserted into the first insertion hole 112, the length direction of the first fan module 61 is perpendicular to the length direction of the heat dissipation channel 13
  • the longitudinal direction, and the blowing direction of the first fan module 61 is the same as the longitudinal direction of the heat dissipation channel 13.
  • the first fan module 61 is fixed to the side wall of the casing 11 through a threaded connection (such as bolts or screws), for example, the first fan module 61 is connected to the casing by screws.
  • the side walls of 11 are fixedly connected. When maintenance is needed, the screws can be removed and the first fan module 61 can be pulled out directly.
  • the first fan module 61 includes a bracket 64 and at least one mounting hole 65 provided on the bracket 64, and each mounting hole 65 is fixed with a fan through a connector, such as a bolt, a screw or a buckle to fix the fan on the corresponding In the mounting hole 65.
  • the bracket 64 is provided with two mounting holes 65, and the two mounting holes 65 are arranged along the length direction of the bracket 64. Referring to FIG. 3b together, when the first fan module 61 is assembled into the air-cooled radiator, the arrangement direction of the fans is perpendicular to the length direction of the heat dissipation channel. Continuing to refer to refer to FIG.
  • the bracket 64 is also provided with a cable 63 for connecting each fan, and a connecting terminal 66 for connecting with the first motherboard or the second motherboard.
  • the connecting terminal 66 is electrically connected to each fan through the cable 63.
  • the housing 11 When assembling the second fan module 62, the housing 11 is provided with a corresponding second insertion hole 113, and the matching manner of the second fan module 62 and the second insertion hole 113 is the same as that of the first fan module 61 and the first fan module 61 mentioned above.
  • the mating manner of a jack 112 is the same, and will not be repeated here.
  • the structure of the second fan module 62 reference may be made to the description of the structure of the first fan module 61 described above.
  • FIG. 8 shows another way of matching the fan module and the air-cooled radiator.
  • the first fan module 61 and the second fan module 62 are respectively located at both ends of the housing 11 of the air-cooled radiator, and the housing 11 of the air-cooled radiator is open at both ends, and the two openings correspond to The air inlet and outlet of the heat dissipation channel, when the first fan module 61 and the second fan module 62 are assembled, the first fan module 61 covers the air inlet of the heat dissipation channel, and the first fan module 61 passes A threaded connector (such as a bolt or screw) is fixedly connected to the housing 11; the second fan module 62 is covered on the air outlet of the heat dissipation channel, and the second fan module 62 is connected to the housing by a threaded connector (bolt or screw) 11Fixed connection.
  • the connection method shown in FIG. 7 is adopted, the fan module is easy to assemble, and it is directly covered and fixed on the housing 11, which
  • FIG. 9 shows an exploded schematic diagram of a second vehicle-mounted computing device provided by an embodiment of the present application.
  • the radiator of the vehicle-mounted computing device provided in FIG. 9 is a liquid-cooled radiator 70.
  • FIGS. 10a and 10b together FIG. 10a shows a cross-sectional view of the second vehicle-mounted computing device along a vertical direction, and FIG. 10b shows a cross-sectional view of the second vehicle-mounted computing device along a horizontal wind direction.
  • the liquid-cooled radiator 70 includes a housing 71 and a heat dissipation pipe 74 disposed in the housing 71, wherein two opposite surfaces of the housing 71 are respectively thermally connected to the first main board 20 and the second main board 30 in a one-to-one correspondence.
  • the arrangement of the heat dissipation pipe 74 is shown in Fig. 10b, the heat dissipation pipe 74 is laid in the horizontal direction (taking the placement direction of the liquid cooling radiator in Fig.
  • a plurality of first heat dissipation fins 75 arranged at intervals are provided in the housing 71.
  • Each first heat dissipation fin 75 has a first length, and the first length is less than the width of the housing 71.
  • One end of the fin 75 is connected to a side wall of the housing, and two adjacent first fins are connected to different side walls of the housing, so that a communicating "S"-shaped heat dissipation pipe is formed between the plurality of first heat dissipation fins 75.
  • the number of first heat dissipation fins 75 is four, and the four first heat dissipation fins are first heat dissipation fin 751, first heat dissipation fin 752, first heat dissipation fin 753, and first heat dissipation fin 751, respectively.
  • the heat dissipation fins 754, and the four first heat dissipation fins are arranged along the arrangement direction of the water inlet 73 and the water outlet 72, and a plurality of first heat dissipation fins 75 divide the housing into a plurality of regions.
  • the second side wall 712 is another side wall opposite to the first side wall 711.
  • the two ends of the first heat dissipation fin 751 are respectively sealedly connected to the first side wall 711 and the second side wall 712; the first heat dissipation fin 752 is sealed to the first side wall 711; the first heat dissipation fin 753 and the second side
  • the wall 712 is hermetically connected; the first heat dissipation fin 754 is hermetically connected to the first side wall 711; and the first heat dissipation fin 754 and the side wall of the housing 71 (the side between the first side wall 711 and the second side wall 712 The wall) surrounds the part where the heat dissipation pipe 74 communicates with the water outlet 72.
  • a connected S-shaped heat dissipation duct 74 can be formed.
  • the number of the first heat dissipation fins 75 is m (m is a positive integer and greater than 2)
  • m-1 bent S-shaped heat dissipation pipes can be formed.
  • the fluidity of the liquid medium in the housing is increased through the S-shaped heat dissipation pipe, and the heat dissipation effect of the radiator is improved.
  • the flow direction of the liquid medium is shown by the arrow in FIG.
  • the liquid medium flows from the water inlet 73 to the heat dissipation pipe 74, and then flows out through the water outlet 72. During the circulation process, the liquid medium takes away the heat transferred from the first main board or the second main board to the housing 71.
  • the above-mentioned liquid medium can be common medium such as oil and water.
  • FIG. 10b only shows the location of the heat dissipation duct 74, and does not represent the actual shape of the heat dissipation duct 74.
  • a plurality of second heat dissipation fins are arranged between any adjacent first heat dissipation fins, and the plurality of second heat dissipation fins are arranged at intervals, the second heat dissipation fins have a second length, and the second length is less than the first length ,
  • Each second heat dissipation fin does not interfere with the side wall of the housing, so that multiple channels are formed between two adjacent first heat dissipation fins, and liquid can flow in the housing to connect the first main board and/or The heat of the device on the second main board is conducted to the outside of the heat sink to realize the heat dissipation of the computing device.
  • second heat dissipation fins 76 are arranged between the first heat dissipation fin 751 and the first heat dissipation fin 752, and the arrangement direction of the second heat dissipation fins 76 is the same as the arrangement direction of the first heat dissipation fins 75, and each Both ends of the second heat dissipation fin 76 are not sealed with the first side wall 711 and the second side wall 712, and a certain distance is left between them so that the liquid medium can flow through.
  • the heat transferred to the housing 71 is transferred to the first heat dissipation fin 75 and the second heat dissipation fin 76; when the liquid medium circulates in the liquid pipe 74, the liquid medium and the first heat dissipation fin 75 and The second heat dissipation fins 76 are in contact, thereby increasing the contact area between the liquid medium and the housing 71, thereby increasing the heat dissipation effect of the liquid medium.
  • the volume of the liquid medium pumped into the heat dissipation pipe at a time of the refrigeration system is greater than or equal to the volume of the liquid medium contained between two adjacent first fins. So that the liquid medium pumped each time can fill the gap between the two first heat dissipation fins, avoid high temperature liquid medium remaining between the two first heat dissipation fins, and ensure the flow of the liquid medium in the heat dissipation pipe Sex.
  • the volume of the liquid medium pumped into the heat dissipation pipe at a time of the refrigeration system can be greater than or equal to any area.
  • the volume of the liquid contained so that the liquid medium pumped in each time can fill the space of an area.
  • the liquid medium Under the action of power, the liquid medium can flow in the shell, and the heat conducted by the liquid medium of the chip is taken out of the shell by cooling. The system completes the cooling of the liquid medium to ensure the effective heat dissipation of the components on the motherboard by the liquid radiator.
  • the embodiments of the present application also provide a smart car.
  • the smart car can be a new energy car or a car using gasoline as an energy source.
  • it includes a smart car body and an autonomous driving set in the smart car body.
  • the automatic driving system includes the above-mentioned on-board computing device.
  • the vehicle-mounted computing device When the vehicle-mounted computing device is specifically set up, due to the requirements of dustproof/waterproof, the vehicle-mounted computing device is located at one end of the vehicle body, such as the front position or the rear position, or the passenger compartment.
  • FIG 11 shows a schematic diagram of a smart car.
  • the smart car includes a power supply system 300.
  • the power supply system 300 is electrically connected to the first motherboard and the second motherboard of the vehicle-mounted computing device 100, and is connected to the first fan module and the second fan module through the first motherboard or the second motherboard. Electric connection.
  • the first motherboard, the second motherboard, the first fan module, and the second fan module are powered by the power supply system 300, and the air flow in the radiator is improved by the first fan module and the second fan module It improves the heat dissipation effect of the first motherboard and the second motherboard.
  • the smart car also includes a refrigeration system 200.
  • the refrigeration system 200 is an air conditioning system in the smart car.
  • the air outlet of the air conditioning system is connected to the heat dissipation channel of the radiator, and the cold air blown by the air conditioning system can enter the heat dissipation channel to the first main board.
  • the second motherboard for heat dissipation.
  • FIG. 12 another schematic diagram of the internal structure of the smart car.
  • the smart car body is provided with a refrigeration system 400.
  • the refrigeration system 400 includes a condenser, a cooling plate connected to the condenser through a pipe, and the aforementioned radiator,
  • the radiator is a liquid-cooled radiator.
  • the smart car also includes a power supply system 300 that supplies power to the on-board computing device 100. For a specific power supply mode, reference may be made to the corresponding description in FIG. 12.
  • the refrigeration system 400 is also used to cool the power supply system 300.
  • Figure 13 shows a specific refrigeration system structure.
  • smart cars use coolant (a mixture of glycol and water) as a medium to form an independent refrigeration system to cool the battery pack.
  • the refrigeration system includes a liquid pump (such as a water pump), an electronic expansion valve (or solenoid valve and heat). Expansion valve), cooling plate (also called water cooling plate), condenser and other components.
  • the water pump can be an electric water pump, and the water pump is used as a driving component to provide a power source for the circulation of the coolant; an electronic expansion valve (not shown in the figure) as a control component can actively adjust the flow of the refrigeration system according to the pressure and temperature of the refrigeration system;
  • the cooling plate is used to dissipate heat from the battery, and the radiator in the on-board computing device dissipates heat to the first motherboard and the second motherboard.
  • the coolant through the electronic expansion valve is supplied to the cooling plate and the radiator, and the cooling plate and heat dissipation
  • the heat dissipation device respectively dissipates the battery and the first motherboard and the second motherboard.
  • the heat-exchanged coolant flows into the battery cooler.
  • the battery cooler is used as a heat exchange device.
  • the battery cooler exchanges heat with the air conditioning system through pipes.
  • the air conditioning system includes a condenser, an evaporator, an electric compressor, and an expansion valve.
  • the structure of the air-conditioning system is a vehicle air-conditioning system in the prior art, which is not described in detail here.
  • the battery cooler is connected in parallel with the evaporator in the air-conditioning system, and the cooling medium is provided through the condenser, and the battery cooler exchanges heat with the cooling liquid after heat exchange.
  • the original refrigeration system and air-conditioning system in the smart car are used to provide heat dissipation to the radiator. Compared with the air-cooled radiator, the cost is lower and the cooling effect is better than that of the air-cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种智能汽车中车载计算装置及智能汽车,该车载计算装置包括:层叠设置的两个主板(40、50),还包括设置在两个主板(40、50)之间并为两个主板(40、50)散热的散热器(10、70)。在每个主板(40、50)背离散热器的一面且与散热器(10、70)连接的封闭板(20、30);其中,每个封闭板(20、30)与散热器(10、70)将对应的主板(40、50)密封在封闭板(20、30)与散热器(10、70)之间。以此实现包含两个主板(40、50)的车载计算装置可以通过一个共用散热器(10、70)进行散热,降低了智能汽车中计算装置的体积,提升智能汽车中计算装置的散热能力。

Description

一种智能汽车中车载计算装置及智能汽车 技术领域
本申请涉及智能汽车技术领域,尤其涉及一种智能汽车中车载计算装置及智能汽车。
背景技术
自动驾驶(automated driving)是实现智能汽车和智能交通的关键技术,也是未来智能汽车发展的必然趋势。随着智能驾驶等级的不断提升,车载计算装置的计算能力的需求不断提升,对车载计算装置的散热装置的挑战也越来越大,如散热要求至少从20w上升到200w以上。而传统的车载计算装置通过自然风散热时,无法满足智能汽车中车载计算装置的散热需求。另一方面,随着自动驾驶的驾驶等级提升,需要车载计算装置物理上做到1+1冗余设计,即需要设置两个车载计算装置,每个车载计算装置需要采用独立的散热装置对其进行散热。传统设计中,将两个车载计算装置分别设置在智能车体的前段和后端,每个车载计算装置配置一个散热装置,体积大且占用了较多车内空间。因此,如何提供一种体积小、散热好的智能驾驶汽车中车载计算装置成为亟待解决的技术问题。
发明内容
本申请提供了一种智能汽车中车载计算装置及智能汽车,旨在降低智能汽车中计算装置的体积,提升智能汽车中计算装置的散热能力。
第一方面,提供了一种智能汽车中车载计算装置,该车载计算装置包括:层叠设置的两个主板,每个主板包括多个器件,所述多个器件用于对智能汽车进行行驶状态控制和状态监控;且两个主板作为1+1冗余设计。车载计算装置还包括设置在所述两个主板之间并与每个主板导热连接的散热器,且散热器作为两个主板的共用散热器。此外该车载计算装置还包括设置在每个主板背离所述散热器的一面且与散热器连接的封闭板;其中,每个封闭板与所述散热器将对应的主板密封在所述封闭板与所述散热器之间。在上述技术方案中,车载计算装置中设计了两个主板,并通过一个共用散热器对两个主板进行散热,在采用近似现有技术中的一个车载计算装置的体积,达到现有技术中两个车载计算装置的效果,满足了汽车的冗余设计,降低了车载计算装置占用的空间面积,并且通过封闭板与散热器对主板密封,提高了主板的防水效果。
在一个可能的可实施方案中,所述散热器包括壳体,设置在所述壳体的散热通道,以及送风模组;所述送风模组包括:沿所述散热通道的长度方向排列的第一风扇模组及第二风扇模组,其中,所述第一风扇模组及所述第二风扇模组的送风方向相同。通过第一风扇模组将散热器外界的空气送入到散热通道,并通过第二风扇模组将散热通道内的空气排出,提高了散热通道内的流动性,进而提高了散热器的散热效果。
在另一个可能的可实施方案中,所述智能汽车包括车载供电系统,所述车载供电系统通过所述两个主板中至少一个主板对所述第一风扇模组或所述第二风扇模组供电;所述第一风扇模组与所述两个主板中的一个主板电连接,所述第二风扇模组与所述两个主板中的另一个主板电连接;或所述第一风扇模组分别与所述两个主板电连接,所述第二风扇模组分别与所述两个主板电连接。通过第一风扇模组与第二风扇模组分别与两个主板连接,供 电系统可以通过至少一个主板给第一风扇模组及第二风扇模组供电,保证了至少有一个风扇模组处于工作状态,提高了风冷散热器的可靠性,也提高了车载计算装置的可靠性。
在另一个可能的可实施方案中,所述第一风扇模组及所述第二风扇模组分别与所述壳体可拆卸的固定连接。每个风扇模组采用可拆卸的方式与壳体连接,在风扇模组出现故障时,可以将风扇模组单独拆卸下来维修或者更换。
在另一个可能的可实施方案中,所述壳体设置有第一插孔及第二插孔;所述第一风扇模组可拆卸的固定在所述第一插孔,所述第二风扇模组可拆卸的固定在所述第二插孔。采用插孔与风扇模组的配合,方便了风扇模组的安装。
在另一个可能的可实施方案中,第一风扇模组及第二风扇模组直接扣合在散热通道的进风口及出风口。采用风扇模组直接扣合在壳体上的方式,方便了风扇模组的安装及维修。
在另一个可能的可实施方案中,所述壳体内设置有多个散热翅片,且所述多个散热翅片之间形成所述的散热通道。空气在散热通道内流动时,将散热翅片上的热量带走,增大了热交换效果。
在另一个可能的可实施方案中,所述第一风扇模组及所述第二风扇模组均包括:支架,设置在所述支架上的至少一个安装孔,以及通过连接件固定在每个安装孔内的风扇。采用风扇与支架可拆卸的连接方式,在风扇出现故障时,方便拆卸与维修风扇。
在另一个可能的可实施方案中,所述散热通道为直通道;且所述散热通道的长度方向垂直于所述两个主板的层叠方向。采用直通的散热通道,空气可以直接从入风口流动到出风口,空气在流动过程不会受到阻碍,提高了空气的流动性,进而提高了散热器的散热效果。
在另一个可能的可实施方案中,所述第一风扇模组将所述散热器外部的空气送入到所述散热通道,所述第二风扇模组将所述散热通道内的空气抽出到所述散热器外。通过第一风扇模组将空气抽入到散热通道,并通过第二风扇模组将散热通道内的空气抽出到散热器外,提高了散热通道内空气的流动性,提高了空气与散热翅片的散热效果,进而提高了散热器的散热效率。
在另一个可能的可实施方案中,所述散热器为液冷散热器。通过液态介质对主板散热,提高对主板的散热效果。
在另一个可能的可实施方案中,所述智能汽车包括制冷系统,所述制冷系统用于控制所述液冷散热器;所述液冷散热器包括壳体,以及设置在所述壳体内的散热管道,且所述壳体上设置有与所述散热管道连通的进水管及出水管;其中,所述壳体相对的两个表面分别与所述两个主板一一对应导热连接。通过散热管道承载液态介质对主板进行散热。
在另一个可能的可实施方案中,所述壳体内设置有多个间隔排列的第一散热翅片,且所述多个第一散热翅片之间形成连通的S形散热管道。通过S形散热管道增大了液态介质在壳体内的流动性,提高了散热器的散热效果。
在另一个可能的可实施方案中,任意相邻的第一散热翅片之间设置有多个第二散热翅片,且所述多个第二散热翅片间隔排列。传递到壳体上的热量传递到第二散热翅片,通过设置的第二散热翅片增大了与液态介质的接触面积,进而增大了液态介质的散热效果。
在另一个可能的可实施方案中,所述制冷系统用于将液态介质泵入到所述散热管道中,所述液态介质在所述散热管道中对所述两个芯片进行散热。通过制冷系统提供液态介质流动的动力。
在另一个可能的可实施方案中,在所述散热管道通过所述多个第一散热翅片形成时,所述制冷系统的单次泵入到所述散热管道中的液态介质的体积大于等于相邻的两个第一翅片之间容纳的液态介质的体积。通过泵入一定量的液态介质,保证散热管道中的液态介质的流动性。
在另一个可能的可实施方案中,每个主板具有朝向所述散热器的第一表面,所述第一表面设置有至少一个第一功能器件,且所述至少一个第一功能器件与所述散热器导热连接。其中第一功能器件为主板上的器件中功率较高的器件,通过将第一功能器件与散热器直接接触,第一功能器件发出的热量可以直接通过散热器带走,提高散热器对主板的散热效果。
在另一个可能的可实施方案中,每个主板具有背离所述散热器的第二表面,所述第二表面设置有至少一个第二功能器件;每个主板对应的封闭板为散热板;且每个主板的每个第二功能器件与所述散热板导热连接。其中的第二功能器件为主板的器件中功率较小的器件,通过采用封闭板作为散热板,并将散热板与散热器导热连接;第二功能器件产生的热量通过散热板传递到散热器上散发出去,进一步提高了主板的散热效果。
第二方面,提供了一种智能汽车,该智能汽车包括智能车体,以及设置在所述智能汽智能车体内上述的车载计算装置。在上述技术方案中,车载计算装置中设计了两个主板,并通过一个共用散热器对两个主板进行散热,实现了采用近似现有技术中的一个车载计算装置的体积,可以达到现有技术中两个车载计算装置的效果,满足了汽车的冗余设计,降低了车载计算装置占用的空间面积。
在另一个可能的可实施方案中,所述车载计算装置设置在所述智能车体的一端。可以根据需要将车载计算装置设置在智能车体内的不同位置。
在另一个可能的可实施方案中,智能汽车还包括设置在所述智能车体内的制冷系统,所述制冷系统包括:冷凝器,以及通过管道与所述冷凝器连通的冷却板及所述散热器,其中,所述散热器为液冷散热器。利用汽车内的制冷系统给车载计算装置散热。
在另一个可能的可实施方案中,所述制冷系统还包括设置在所述管道上的液体泵(例如水泵)。提高散热的效果。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
图1为本申请提供的一种智能汽车中车载计算装置的结构示意图;
图2为本申请提供的一种智能汽车中车载计算装置的分解示意图;
图3a为图1中A-A处的剖视图;
图3b为图1中B-B处的剖视图;
图4a为本申请提供的另一种风冷散热器的具体结构示意图;
图4b为本申请提供的一种散热翅片的结构示意图;
图5为本申请提供的另一种风冷散热器的结构示意图;
图6a为本申请提供的一种风扇模组与风冷散热器的分解示意图;
图6b为本申请提供的一种风扇模组与风冷散热器的装配示意图;
图7为本申请提供的一种第一风扇模组的结构示意图;
图8为本申请提供的另外一种风扇模组与风冷散热器的配合方式的分解示意图;
图9为本申请提供的一种第二种车载计算装置的分解示意图;
图10a为第二种车载计算装置沿竖直方向的剖视图;
图10b为第二种车载计算装置沿水平风向的剖视图;
图11为本申请提供的智能汽车的示意图;
图12为本申请提供的另一智能汽车的示意图;
图13为本申请提供的制冷系统的具体示意图。
附图标记
10-风冷散热器 11-壳体 111-凸起 12-散热翅片 121-折弯结构
13-散热通道 14-顶壁 15-底壁 20-第一封闭板 30-第二封闭板
40-第一主板 41-第一功能器件 42-第一表面 43-第二表面 44-第二功能器件
50-第二主板 60-送风模组 61-第一风扇模组 62-第二风扇模组 63-线缆
64-支架 65-安装孔 66-连接端子 70-液冷散热器 71-壳体 711-第一侧壁
712-第二侧壁 72-出水口 73-进水口 74-散热管道 75-第一散热翅片
751-第一散热翅片 752-第一散热翅片 753-第一散热翅片 754-第一散热翅片
76-第二散热翅片
具体实施方式
下面将结合附图对本申请实施例作进一步描述。
首先说明一下本申请实施例提供的车载计算装置的应用场景,本申请实施例提供的车载计算装置应用于智能汽车的自动驾驶(automated driving)中,包括支持无人驾驶(unmanned driving)、辅助驾驶(driver assistance/ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(intelligent network driving)和汽车共享(car sharing)的电动汽车或者汽油驱动的汽车。车载计算装置用于对智能汽车进行行驶状态控制和状态监控,包括但不限于车载移动数据中心(mobile data center,MDC)、实现人机交互控制器功能的硬件监视器(hardware monitor interface,HMI)、车载娱乐(in-vehicle infotainment,IVI)控制器,车身控制器(body control module,BCM)、整车控制器(vehicle control unit,VCU)。车载计算装置具体可以具有计算和处理能力的芯片,也可以是集成在印制电路板(printed circuit board,PCB)中处理器、存储器等多个器件的集合,其中,处理器包括但不限于中央处理器(central processing unit,CPU),通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、图形处理器单元(GPU)、片上系统(system on chip,SoC)、人工智能(artificial intelligence,AI)芯片。通用处理器可以是微处理器或者是任何常规的处理器等。其中集成有上述处理器的印刷电路板也称为主板。
下面结合附图说明一下本申请实施例提供的车载计算装置的具体结构。
如图1及图2所示,图1为本申请实施例提供的一种智能汽车中车载计算装置的结构示意图,图2为本申请实施例提供的一种智能汽车中计算模块的分解示意图。本申请实施例提供的车载计算包括两个主板,每个主板包括多个器件,所述多个器件用于对智能汽车进行行驶状态控制和状态监控,为方便描述将两个主板分别命名为第一主板40及第二主 板50,且第一主板40及第二主板50的结构及功能均相同。在具体设置第一主板40及第二主板50时,一并参考图3a,图3a示出了图1中A-A处的剖视图,其中A-A处的剖视图指的是沿平行于第一主板40及第二主板50层叠方向的竖直面对图1所示的车载计算装置剖视的示意图。该第一主板40及第二主板50时均包括相对的第一表面42及第二表面43,其中,第一表面42设置有至少一个第一功能器件41,第二表面43上设置有至少一个第二功能器件44,其中第一功能器件41的功率大于第二功能器件44的功率,即第一功能器件41的发热量大于第二功能器件44的发热量。当然也可仅在第一表面41设置第一功能器件,第二表面42不设置器件。在第一主板与其他设备连接时,第一主板40上设置了用于与其他器件连接的连接端子,该连接端子与上述的第一功能器件41及第二功能器件44电连接,上述连接端子与第一功能器件41及第二功能器件44的连接方式可以采用焊接、插槽或者表贴的连接方式,其中表贴指的是表面安装技术,具体包括在主板的焊盘上施加焊锡膏,将器件贴装在贴装到印好焊膏或贴片胶的主板表面相应的位置,再通过重新熔化预先分配到焊盘上的膏装软钎焊料,实现表面组装器件焊端或引脚与焊盘之间电气连接。
第一主板40及第二主板50均用于对智能汽车进行行驶状态控制和状态监控,在具体使用时,第一主板40及第二主板50中仅一个主板处于工作状态,另一个主板作为备用主板,以实现1+1冗余设计,保证整个自动驾驶系统的可靠性。可选地,两个主板也可以采用负荷分担的方式共同完成智能汽车中数据处理过程,加快数据处理的速度。
继续参考图1及图2,本申请实施例提供的车载计算装置还包括散热器以及两个封闭板,其中散热器为风冷散热器10。如图2中所示,风冷散热器10设置在第一主板40及第二主板50之间,为第一主板40和第二主板50进行散热,第一主板40及第二主板50分别与风冷散热器10导热连接。每个封闭板设置在主板背离风冷散热器10的一面,为了方便描述,将两个封闭板分别命名为第一封闭板20及第二封闭板30,其中第一封闭板20与第一主板40对应,第二封闭板30与第二主板50对应。每个封闭板与对应的主板的连接方式相同,下面以第一封闭板20与第一主板40的配合为例说明风冷散热器10、封闭板与主板的连接方式。
为方便描述,在图3a中定义了风冷散热器10的两个相对的表面:第三表面c及第四表面d,其中,第三表面c朝向第一主板40,第四表面d朝向第二主板50。
继续参考图3a,第一主板40固定在风冷散热器10的第三表面c,具体的可以通过螺纹连接件(如螺栓或螺钉)将第一主板40固定在风冷散热器10的第三表面c,并且第一主板40的第一表面朝向风冷散热器10。第一主板40的第一功能器件41朝向风冷散热器10并通过导热胶或者其他导热介质与风冷散热器10的第三表面c导热连接。在第一主板40上的第一功能器件41为多个时,每个第一功能器件41均通过导热胶或其他导热介质与风冷散热器10的第三表面c导热连接。在不同的第一功能器件41的高度不同时,风冷散热器10的第三表面c设置有对应的凸起或者凹槽(在图3a中并未示出),以保证每个第一功能器件41与风冷散热器10的第三表面c能充分的接触。在散热时,第一功能器件41产生的热量通过导热胶或其他导热介质传递到风冷散热器10的第三表面c,并通过风冷散热器10将热量散发出去。
继续参考图3a,第一封闭板20与风冷散热器10固定连接,如通过螺栓或者螺钉将第一封闭板20固定在风冷散热器10的第三表面c。一并参考图2及图3a,风冷散热器10的第一表面设置有一圈环形的凸起111,第一封闭板20盖合在凸起111上并与凸起111围 成容纳第一主板40的容纳腔(图中未标示),第一主板40位于该容纳腔内。风冷散热器10、第一主板40及第一封闭板20形成一个三明治式的层叠结构。
第一主板40在使用时需要具备一定的防水要求,因此第一封闭板20与风冷散热器10之间密封连接,以将第一主板40密封在第一封闭板20与风冷散热器10围成的容纳腔中。在密封时,第一主板40的连接端子需外露在风冷散热器10外与其他器件连接,因此该连接端子采用达到设定防水等级的连接端子,且连接端子与风冷散热器10之间也进行密封防水处理,如通过密封胶或密封垫将连接端子与风冷散热器10之间进行密封。
继续参考图3a,第一主板40放入到容纳腔内时,第一主板40的第二表面43朝向第一封闭板20。在第二表面42设置有第二功能器件44时,第二功能器件44产生的热量可通过第一封闭20板散发出去。此时第一封闭板采用散热板,且第二表面43的第二功能器件44与第一封闭板20导热连接。如采用通过导热胶或者其他常见的导热材料填充在第二功能器件44与第一封闭板20之间实现导热。在图3a所示的第二功能器件44的个数为三个,但是第二功能器件44的个数不限于图3a中所示的个数,也可以采用其他个数的第二功能器件44,如一个、二个、四个等不同的个数。另外不同第二功能器件44的高度可以相同也可以不同;在第二功能器件44的高度不同时,第二封闭板30上也设置有对应的凸起或者凹陷结构(图中未示出)以保证第二功能器件44与第二封闭板30能够充分接触。
在第一封闭板20作为散热板时,第一封闭板20与风冷散热器10之间导热连接,如通过第一封闭板20与凸起111之间涂覆导热胶或者其他常见的导热材料实现导热连接。在使用时,第二功能器件44产生的热量传递到第二封闭板30,第二封闭板30上的热量通过凸起111传递到风冷散热器10,并通过风冷散热器10将热量散发出去。
可选地,第一主板40与第一封闭板20也可以采用固定连接,如第一主板40采用卡扣或者螺纹连接件(如螺栓或螺钉)与第一封闭板20固定连接,之后再将第一封闭板20与风冷散热器10固定连接,也可以实现将第一主板40固定在容纳腔内。
第二主板50的设置方式与上述第一主板40的设置方式相同,因此在此不再赘述。
一并参考图2、图3a及图3b,图3b为图1中B-B处的剖视图,其中B-B处的剖视图,指的是沿图1中垂直与第一主板20及第二主板30层叠方向的水平平面对车载计算装置剖视的示意图。首先参考图2,风冷散热器10包括一个壳体11,壳体11具有四个侧壁(图中未标示)以及与四个侧壁连接的顶壁以及底壁。顶壁具有上述的第三表面c,底壁具有上述的第四表面d。一并参考图3a及图3b,壳体11内设置有散热通道13,且壳体11的两个相对的侧壁上设置有与散热通道13连通的进风口a及出风口b。继续参考图3a及图3b,壳体11内设置有多个散热翅片12,每个散热翅片12为长方形(或者棱形、椭圆形等其他形状)的散热翅片,其长度方向沿进风口a指向出风口b的方向;每个散热翅片12分别与顶壁及底壁导热连接。上述的第一主板40及第二主板50传递到风冷散热器10上的热量通过壳体11传递到散热翅片12上散发出去。
继续参考图3a及图3b,多个散热翅片12呈单排排列的方式设置,且多个散热翅片12的排列方向垂直于进风口a指向出风口b的方向。具体参考图3b,多个散热翅片12在排列时,相邻的散热翅片12之间具有间隙(图中未标示),在图3b中相邻的散热翅片12等间距排列,但是在本申请实施例中不限定散热翅片12之间的间距大小,可以根据需要设定散热翅片12之间的间距。继续参考图3b,多个散热翅片12之间围成了风冷散热器10的散热通道13,在散热时,冷的空气从进风口a流入到散热通道13内并流经散热翅片12 之间的间隙,通过热交换将散热翅片12上的热量带走,并最终通过出风口b流出。且进风口a与出风口b相对设置,且散热通道为直通道,气流不会出现损耗,提高了散热的效果。
如图4a及图4b所示,图4a示出了另一种风冷散热器的具体结构。风冷散热器10的壳体11仅包含顶壁14以及底壁15,且顶壁14与底壁15之间通过散热翅片12固定连接。一并参考图4b,图4b示出了散热翅片12的具体结构,散热翅片12与顶壁14及底壁15连接的一侧具有折弯结构121,散热翅片12通过折弯结构121与顶壁14及底壁15焊接连接,或者通过铆钉或螺纹连接件(如螺栓或螺钉)与顶壁14及底壁15固定连接。为改善导热效果,可在散热翅片12的折弯结构121与顶壁14或底壁15之间涂覆导热胶等常见的导热介质。
如图5所示,图5示出了另一种风冷散热器的具体结构,散热翅片12与壳体11为一体结构,在制备时,通过挤压成型工艺与壳体11一起制备,且每个散热翅片12为长方形(或者棱形、椭圆形等其他形状)的散热翅片,其长度方向沿进风口指向出风口的方向。且在采用一体结构时壳体11与散热翅片12之间具有良好的导热效果。
在采用上述的壳体及散热翅片时,风冷散热器的壳体及散热翅片可以采用导热系数良好的材质制备而成,如铝、铁等常见的金属材质。
继续参考图2及图3b,为改善风冷散热器的散热效果,风冷散热器还包括送风模组60,以提高散热通道内的空气流通速度。送风模组60包括:沿散热通道的长度方向排列的第一风扇模组61及第二风扇模组62。第一风扇模组61及第二风扇模组62一一对应设置在散热通道的进风口a及出风口b,且第一风扇模组61及第二风扇模组62的送风方向相同,如图3b中箭头所示的空气流动方向,第一风扇模组61及第二风扇模组62的送风方向与空气流动的方向相同。在图3b中所示,第一风扇模组61用于将外界的冷空气送入到散热通道内,而第二风扇模组62用于将散热通道中的空气抽出到外界,通过第一风扇模组61与第二风扇模组62的配合提高了散热通道内的空气流动速度,进而提高了风冷散热器的散热效率。
车载计算装置应用的智能汽车包括车载供电系统,该车载供电系统通过两个主板中至少一个主板对所述第一风扇模组或所述第二风扇模组供电。如第一风扇模组61与两个主板中的一个主板电连接,第二风扇模组62与两个主板中的另一个主板电连接。以第一风扇模组61与第一主板20连接,第二风扇模组62与第二主板30连接为例说明下风扇模组与主板之间的关系。第一风扇模组61与第一主板20电连接,在第一主板20作为工作状态的主板时,车载供电系统通过第一主板20给第一风扇模组61供电,而第二风扇模组62处于待机状态。当第一主板20出现故障时,第二主板30开始工作,车载供电系统通过第二主板30给第二风扇模组62供电,第一风扇模组61处于待机状态。由上述描述可以看出,无论哪个主板出现故障,仍可保证有一个风扇模组处于工作状态,保证了风冷散热器的散热效果,使得第一主板20或第二主板30能够具有可靠的散热效果。
在一种可实施方案中,可以采用第一风扇模组61分别与两个主板电连接,第二风扇模组62分别与两个主板电连接。即车载供电系统通过第一主板20及第二主板30给第一风扇模组61供电,同时通过第一主板20及第二主板30给第二风扇模组62供电。以第一风扇模组61为例,在第一主板20处于工作状态,第二主板30作为备用主板时,车载供电系统通过第一主板20给第一风扇模组61供电,第一风扇模组61处于工作状态;在第 一主板20出现故障,第二主板30开始工作时,车载供电系统通过第二主板30给第一风扇模组61供电工作。第二风扇模组62的工作模式与第一风扇模组61的工作模式相同,因此不再赘述。由上述描述可看出,在第一主板20或第二主板30出现故障时,第一风扇模组61及第二风扇模组62仍可正常工作,保证了风冷散热器可以正常散热,保证了第一主板20或第二主板30能够具有可靠的散热效果。且通过采用共用散热器同时给两个主板散热,降低了车载计算装置的占用空间,采用近似现有技术中的一个车载计算装置的体积,可以达到现有技术中两个车载计算装置的效果。同时,通过第一风扇模组61与第二风扇模组62分别与两个主板连接,保证了至少有一个风扇模组处于工作状态,提高了风冷散热器的可靠性,也提高了车载计算装置的可靠性。
如图6a及图6b所示,图6a示出了风扇模组与风冷散热器的分解示意图;图6b示出了风扇模组与风冷散热器的装配示意图。图6a及图6b中的相同标号可以参考图2及图3b。第一风扇模组61及第二风扇模组62均采用可拆卸的连接方式与风冷散热器连接,下面以第一风扇模组61为例说明风扇模组与风冷散热器之间的连接方式。
继续参考图6a及图6b,第一风扇模组61与风冷散热器的壳体11可拆卸的固定连接。风冷散热器的壳体11设置有与第一风扇模组61配合的第一插孔112,第一插孔112开设在壳体11的一个侧壁(图中未标示),且第一插孔112的长度方向垂直于散热通道的长度方向,一并参考图3b,第一风扇模组61插入到第一插孔112内时,第一风扇模组61的长度方向垂直于散热通道13的长度方向,且第一风扇模组61的送风方向与散热通道13的长度方向相同。继续参考图6b,第一风扇模组61通过螺纹连接件(如螺栓或螺钉)将第一风扇模组61固定在壳体11的侧壁,如通过螺钉将第一风扇模组61与壳体11的侧壁固定连接。在需要维修时,可以拆卸螺钉,直接将第一风扇模组61拔出。
一并参考图7,图7示出了第一风扇模组61的结构。第一风扇模组61包括支架64,以及设置在支架64上的至少一个安装孔65,且每个安装孔65内通过连接件固定有风扇,如通过螺栓、螺钉或者卡扣将风扇固定在对应的安装孔65内。在图7所示的结构中,支架64上设置有两个安装孔65,且两个安装孔65沿支架64的长度方向排列。一并参考图3b中所示,在第一风扇模组61装配到风冷散热器内时,风扇的排列方向垂直于散热通道的长度方向。继续参考图7,支架64上还设置有每个风扇连接的线缆63,以及用于与第一主板或第二主板连接的连接端子66,该连接端子66通过线缆63与每个风扇电连接,在第一风扇模组61插入到第一插孔内时,通过连接端子66与第一主板或第二主板电连接,或者同时与第一主板及第二主板电连接。其中第一风扇模组61与第一主板通过连接端子66连接的方式为现有技术中常见的连接方式,在此不详细描述。
在装配第二风扇模组62时,壳体11上设置有对应的第二插孔113,第二风扇模组62与第二插孔113的配合方式与上述的第一风扇模组61与第一插孔112的配合方式相同,在此不再赘述。对于第二风扇模组62的结构可以具体参考上述第一风扇模组61的结构的描述。
作为一种可能的实施方式,图8示出了另外一种风扇模组与风冷散热器的配合方式。如图所示,第一风扇模组61及第二风扇模组62分别位于风冷散热器的壳体11的两端,且风冷散热器的壳体11两端开口,两个开口分别对应散热通道的进风口及出风口,在装配以第一风扇模组61及第二风扇模组62时,第一风扇模组61盖合在散热通道的进风口,且第一风扇模组61通过螺纹连接件(如螺栓或螺钉)与壳体11固定连接;第二风扇模组62 盖合在散热通道的出风口,且第二风扇模组62通过螺纹连接件(螺栓或螺钉)与壳体11固定连接。在采用图7所示的连接方式时,风扇模组装配方便,直接盖合在壳体11上固定,降低了装配误差。
作为另一种可能的实施方式图9示出了本申请实施例提供的第二种车载计算装置的分解示意图,图9中的相同标号可以参考上述图2中的标号。与图1至图8的区别在于,图9提供的车载计算装置的散热器为液冷散热器70。一并参考图10a及图10b,图10a示出了第二种车载计算装置沿竖直方向的剖视图,图10b示出了第二种车载计算装置沿水平风向的剖视图。液冷散热器70包括壳体71,以及设置在壳体71内的散热管道74,其中壳体71的相对的两个表面分别与第一主板20及第二主板30一一对应导热连接。散热管道74的设置方式如图10b所示,散热管道74且沿水平方向铺设(以图10b中液冷散热器的放置方向为参考方向)在壳体71内,且平铺的散热管道74盘旋成S形的散热管道,且散热管道74的两端分别与壳体71上设置的进水口73及出水口72连通。
继续参考图10b,壳体71内设置有多个间隔排列的第一散热翅片75,每个第一散热翅片75为第一长度,第一长度小于壳体71的宽度,每个第一翅片75的一端与壳体的一个侧壁连接,相邻两个第一翅片连接壳体不同侧壁,使得多个第一散热翅片75之间形成连通的“S”型散热管道。在图10b中,第一散热翅片75的个数为四个,四个第一散热翅片分别为第一散热翅片751、第一散热翅片752、第一散热翅片753、第一散热翅片754,且四个第一散热翅片沿进水口73及出水口72的排列方向排列,多个第一散热翅片75将壳体内分隔为多个区域。为方便描述第一散热翅片75的设置方式,首先定义下壳体71的两个相对的第一侧壁711及第二侧壁712,其中第一侧壁711为设置进水口73的侧壁,第二侧壁712为与第一侧壁711相对的另一个侧壁。第一散热翅片751的两端分别与第一侧壁711及第二侧壁712密封连接;第一散热翅片752与第一侧壁711密封连接;第一散热翅片753与第二侧壁712密封连接;第一散热翅片754与第一侧壁711密封连接;且第一散热翅片754与壳体71的侧壁(第一侧壁711及第二侧壁712之间的侧壁)围成散热管道74与出水口72连通的部分。由上述描述可以看出,通过采用位于中间部分的第一散热翅片752、753、754交替与第一侧壁711及第二侧壁712密封连接可以形成连通的S形的散热管道74。在第一散热翅片75的个数为m个时(m为正整数,且大于2),可以形成m-1个折弯的S形散热管道。且通过S形散热管道增大了液态介质在壳体内的流动性,提高了散热器的散热效果。如图10b中箭头所示的液态介质流动方向:液态介质从进水口73流入到散热管道74,之后再通过出水口72流出。在流通过程中液态介质将第一主板或第二主板传递到壳体71上的热量带走。上述的液态介质可以采用油、水等常见的介质。
应当理解的是,图10b中仅仅示意出了散热管道74的设置位置,并不代表实际的散热管道74的形状。
继续参考图10b,为了增大液冷散热器的散热效果。在任意相邻的第一散热翅片之间设置有多个第二散热翅片,且多个第二散热翅片间隔排列,第二散热翅片为第二长度,第二长度小于第一长度,每个第二散热翅片不与壳体的侧壁抵触,使得相邻的两个第一散热翅片之间形成多个沟道,液体可以在壳体内流动,将第一主板和/或第二主板上的器件热量传导至散热器外部,实现对计算装置的散热。如第一散热翅片751与第一散热翅片752之间设置有四个第二散热翅片76,第二散热翅片76的排列方向与第一散热翅片75的排列方向相同,且每个第二散热翅片76的两端与第一侧壁711及第二侧壁712均不密封,两者之 间留有一定距离的间隙以便液态介质能够流通过去。在使用时,传递到壳体71上的热量传递到第一散热翅片75及第二散热翅片76上;液态介质在液态管道74中流通时,液态介质分别与第一散热翅片75及第二散热翅片76接触,从而增大了液态介质与壳体71之间的接触面积,进而增大了液态介质的散热效果。
在液冷散热器使用时,智能汽车上具有制冷系统,该制冷系统用于控制液冷散热器。具体的,制冷系统提供液冷散热器中的液态介质流动的动力,通过制冷系统中的泵将液态介质泵入到散热管道中并驱动液态介质在散热管道中流动,以使得液态介质在散热管道中对两个芯片进行散热。此外流经液态散热器后的液态介质通过制冷系统进行降温后再次进入到液态散热器中,从而形成一个循环回路,不断的对第一主板及第二主板散热。
在制冷系统将液态介质泵入到散热管道中时,制冷系统的单次泵入到散热管道中的液态介质的体积大于等于相邻的两个第一翅片之间容纳的液态介质的体积,以使得每次泵入的液态介质能够填充满两个第一散热翅片之间的空隙,避免高温的液态介质残留在两个第一散热翅片之间,保证散热管道中的液态介质的流动性。
可选地,当多个第一散热翅片75将壳体内分隔为多个相同大小的区域时,制冷系统的单次泵入到散热管道中的液态介质的体积大于或等于任意一个区域中能够容纳的液体的体积,以使得每次泵入的液态介质能够填充满一个区域的空间,在动力作用下,液态介质可以在壳体内流动,将芯片液态介质传导的热量带出壳体,由制冷系统完成液态介质的冷却,保证液态散热器对主板上器件的有效散热。
本申请实施例还提供了一种智能汽车,该智能汽车可以为新能源汽车或汽油作为能源的汽车,但是无论采用哪种汽车,其均包含智能车体,以及设置在智能车体内的自动驾驶系统,该自动驾驶系统包含上述的车载计算装置。
在具体设置车载计算装置时,由于防尘/防水的需求,车载计算装置车体内部的一端,如车头位置或者车尾位置,或者乘员仓内。
如图11所示,图11示出了智能汽车的示意图。该智能汽车包括供电系统300,该供电系统300与车载计算装置100的第一主板及第二主板分别电连接,并通过第一主板或第二主板与第一风扇模组及第二风扇模组电连接。在使用时,通过供电系统300给第一主板、第二主板、第一风扇模组及第二风扇模组供电,并且通过第一风扇模组及第二风扇模组提高散热器内空气的流动性,提高对第一主板及第二主板的散热效果。此外,该智能汽车还包括制冷系统200,该制冷系统200为智能汽车内的空调系统,空调系统的出风口与散热器的散热通道连通,空调系统吹出的冷风可进入到散热通道对第一主板及第二主板散热。
如图12所示,智能汽车的另一内部结构示意图,该智能车体内设置有制冷系统400,该制冷系统400包括:冷凝器,以及通过管道与冷凝器连通的冷却板及上述的散热器,该散热器为液冷散热器。此外,智能汽车还包括供电系统300,该供电系统300给车载计算装置100供电,具体供电方式可以具体参考图12中相应的描述。并且制冷系统400还用于给供电系统300制冷。
如图13所示,图13示出了具体的制冷系统结构。在具体散热时,智能汽车以冷却液(乙二醇与水等混合物)作为介质形成独立制冷系统对电池组进行冷却,制冷系统包括液体泵(例如水泵)、电子膨胀阀(或电磁阀与热力膨胀阀)、冷却板(也称水冷板)及冷凝器等部件。其中水泵可以采用电动水泵,且水泵作为驱动部件,为冷却液循环提供动力源;电子膨胀阀(图中未示出)作为控制部件,可以根据制冷系统的压强与温度主动调节制冷 系统的流量;冷却板用于给电池散热,车载计算装置中的散热器给第一主板及第二主板散热,在使用时,通过电子膨胀阀的冷却液分别给供给到冷却板及散热器,冷却板及散热器分别对电池以及第一主板、第二主板进行散热。换热后的冷却液流入到电池冷却器,电池冷却器作为换热器件,电池冷却器通过管道与空调系统进行换热,该空调系统包含冷凝器、蒸发器以及电动压缩机,以及膨胀阀等器件,该空调系统的结构为现有技术中车载空调的系统,在此不再详细描述。电池冷却器与空调系统中的蒸发器并联,通过冷凝器提供冷却的介质,在电池冷却器中与换热后的冷却液进行换热。在上述制冷系统中,采用智能汽车内原有的制冷系统以及空调系统来提供对散热器进行散热,相比风冷散热器成本更低,冷却效果也优于风冷。
在图13中示例除了车载计算装置与冷却板并联的设置方式,但是本申请实施例不限定车载计算装置与冷却板的具体连接方式,也可以采用串联的方式设置,均可以达到对第一主板及第二主板的散热效果。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种智能汽车中车载计算装置,其特征在于,包括:
    层叠设置的两个主板,每个主板包括多个器件,所述多个器件用于对智能汽车进行行驶状态控制;
    设置在所述两个主板之间并与每个主板导热连接的散热器;
    设置在每个主板背离所述散热器的一面且与所述散热器连接的封闭板。
  2. 如权利要求1所述的车载计算装置,其特征在于,所述散热器为风冷散热器。
  3. 如权利要求2所述的车载计算装置,其特征在于,所述风冷散热器包括壳体,设置在所述壳体的散热通道,以及送风模组;所述送风模组包括:
    沿所述散热通道的长度方向排列的第一风扇模组及第二风扇模组,其中,所述第一风扇模组及所述第二风扇模组的送风方向相同。
  4. 如权利要求3所述的车载计算装置,其特征在于,所述智能汽车包括车载供电系统,所述车载供电系统通过所述两个主板中至少一个主板对所述第一风扇模组或所述第二风扇模组供电;所述第一风扇模组与所述两个主板中的一个主板电连接,所述第二风扇模组与所述两个主板中的另一个主板电连接;或
    所述第一风扇模组分别与所述两个主板电连接,所述第二风扇模组分别与所述两个主板电连接。
  5. 如权利要求3或4所述的车载计算装置,其特征在于,所述第一风扇模组及所述第二风扇模组分别与所述壳体可拆卸的固定连接。
  6. 如权利要求5所述的车载计算装置,其特征在于,所述壳体设置有第一插孔及第二插孔;所述第一风扇模组可拆卸的固定在所述第一插孔,所述第二风扇模组可拆卸的固定在所述第二插孔。
  7. 如权利要求2~6任一项所述的车载计算装置,其特征在于,所述壳体内设置有多个散热翅片,且所述多个散热翅片之间形成所述的散热通道。
  8. 如权利要求2~7任一项所述的车载计算装置,其特征在于,所述散热通道为直通道;且所述散热通道的长度方向垂直于所述两个主板的层叠方向。
  9. 如权利要求8所述的车载计算装置,其特征在于,所述第一风扇模组将所述散热器外部的空气送入到所述散热通道,所述第二风扇模组将所述散热通道内的空气抽出到所述散热器外。
  10. 如权利要求1所述的车载计算装置,其特征在于,所述散热器为液冷散热器。
  11. 如权利要求10所述的车载计算装置,其特征在于,所述智能汽车包括制冷系统,所述制冷系统用于控制所述液冷散热器;所述液冷散热器包括壳体,以及设置在所述壳体内的散热管道,且所述壳体上设置有与所述散热管道连通的进水管及出水管;其中,所述壳体相对的两个表面分别与所述两个主板连接。
  12. 如权利要求11所述的车载计算装置,其特征在于,所述壳体内设置有多个间隔排列的第一散热翅片,且所述多个第一散热翅片之间形成连通的S形散热管道。
  13. 如权利要求12所述的车载计算装置,其特征在于,任意相邻的第一散热翅片之间设置有多个第二散热翅片,且所述多个第二散热翅片间隔排列。
  14. 如权利要求11~13任一项所述的车载计算装置,其特征在于,所述制冷系统用于 将液态介质泵入到所述散热管道中,所述液态介质在所述散热管道中对所述两个芯片进行散热。
  15. 如权利要求14所述的车载计算装置,其特征在于,所述壳体内设置多个第一翅片,所述多个第一翅片将所述壳体内分隔为多个区域,所述第一翅片为第一长度,所述第一翅片的一端与所述壳体的内壁抵触,且相邻两个第一翅片与壳体中不同内壁抵触,所述两个不同内壁平行设置,每个区域中间隔设置多个第二翅片,所述多个第二翅片中每个第二翅片为第二长度,所述第一长度大于第二长度,所述每个第二翅片不与所述壳体内壁抵触。
  16. 如权利要求14所述的车载计算装置,其特征在于,在所述散热管道通过所述多个第一散热翅片形成时,所述制冷系统的单次泵入到所述散热管道中的液态介质的体积大于等于相邻的两个第一翅片之间容纳的液态介质的体积。
  17. 如权利要求1~16任一项所述的车载计算装置,其特征在于,每个主板具有朝向所述散热器的第一表面,所述第一表面设置有至少一个第一功能器件,且所述至少一个第一功能器件与所述散热器导热连接。
  18. 如权利要求1~17任一项所述的车载计算装置,其特征在于,每个主板具有背离所述散热器的第二表面,所述第二表面设置有至少一个第二功能器件;
    每个主板对应的封闭板为散热板;且每个主板的每个第二功能器件与所述散热板导热连接。
  19. 一种智能汽车,其特征在于,包括智能车体,以及设置在所述智能车体内的如权利要求1~18任一项所述的车载计算装置。
  20. 如权利要求19所述的智能汽车,其特征在于,所述车载计算装置设置在所述智能车体的一端。
  21. 如权利要求19所述的智能汽车,其特征在于,还包括设置在所述智能车体内的制冷系统,所述制冷系统包括:冷凝器,以及通过管道与所述冷凝器连通的冷却板及所述散热器,其中,所述散热器为液冷散热器。
  22. 如权利要求19所述的智能汽车,其特征在于,所述制冷系统还包括设置在所述管道上的液体泵。
PCT/CN2019/095873 2019-07-12 2019-07-12 一种智能汽车中车载计算装置及智能汽车 WO2021007727A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020545171A JP7164618B2 (ja) 2019-07-12 2019-07-12 インテリジェント車両における車載コンピュータ装置及びインテリジェント車両
PCT/CN2019/095873 WO2021007727A1 (zh) 2019-07-12 2019-07-12 一种智能汽车中车载计算装置及智能汽车
CN201980025464.9A CN112602036A (zh) 2019-07-12 2019-07-12 一种智能汽车中车载计算装置及智能汽车
EP19914694.5A EP3786758B1 (en) 2019-07-12 Vehicle-mounted computing device in smart automobile, and smart automobile
US16/989,174 US11073877B2 (en) 2019-07-12 2020-08-10 In-vehicle computing apparatus in intelligent vehicle and intelligent vehicle
US17/378,029 US11726534B2 (en) 2019-07-12 2021-07-16 In-vehicle computing apparatus in intelligent vehicle and intelligent vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095873 WO2021007727A1 (zh) 2019-07-12 2019-07-12 一种智能汽车中车载计算装置及智能汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/989,174 Continuation US11073877B2 (en) 2019-07-12 2020-08-10 In-vehicle computing apparatus in intelligent vehicle and intelligent vehicle

Publications (1)

Publication Number Publication Date
WO2021007727A1 true WO2021007727A1 (zh) 2021-01-21

Family

ID=74101505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095873 WO2021007727A1 (zh) 2019-07-12 2019-07-12 一种智能汽车中车载计算装置及智能汽车

Country Status (4)

Country Link
US (2) US11073877B2 (zh)
JP (1) JP7164618B2 (zh)
CN (1) CN112602036A (zh)
WO (1) WO2021007727A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107885295A (zh) * 2017-11-08 2018-04-06 北京图森未来科技有限公司 一种散热系统
TWI722731B (zh) * 2019-12-23 2021-03-21 廣達電腦股份有限公司 電子裝置及其散熱組件
CN114911315B (zh) * 2021-02-07 2024-02-06 北京图森智途科技有限公司 计算设备及计算设备的安装方法
US20230007809A1 (en) * 2021-07-02 2023-01-05 Rohde & Schwarz Gmbh & Co. Kg Heat management arrangement, method of manufacturing and electronic device
DE102021117275A1 (de) * 2021-07-05 2023-01-05 Connaught Electronics Ltd. Elektronische Recheneinrichtung für ein Assistenzsystem eines Kraftfahrzeugs, Assistenzsystem sowie Verfahren zum Herstellen einer elektronischen Recheneinrichtung
CN113677149B (zh) * 2021-07-20 2023-05-09 合肥优恩物联网科技有限公司 基于rcc的低功耗蓝牙技术实现无感开门的门禁机设备
CN113692155A (zh) * 2021-08-03 2021-11-23 深圳麦格米特电气股份有限公司 一种电源及用电设备
DE102021209446A1 (de) * 2021-08-27 2023-03-02 Continental Automotive Technologies GmbH Kühlanordnung, Steuereinrichtung sowie Verfahren zur Herstellung einer Kühlanordnung
CN113747712A (zh) * 2021-09-01 2021-12-03 北京恒润安科技有限公司 一种集成式一体化数据采集装置
CN113916238B (zh) * 2021-10-09 2022-04-15 深圳科赛威科技有限公司 一种基于流体减振式车载导航系统的导航方法
CN114143995B (zh) * 2021-11-19 2024-01-19 北京历正飞控科技有限公司 一种反无人机防御系统的并联组网终端
JP7359473B2 (ja) * 2022-01-27 2023-10-11 均倚 魏 異形管冷却及び放熱システム
US20230371197A1 (en) * 2022-05-12 2023-11-16 Panasonic Avionics Corporation Electronics box for in-flight entertainment system
US20230371195A1 (en) * 2022-05-12 2023-11-16 Panasonic Avionics Corporation Electronics box for in-flight entertainment system
CN115023075B (zh) * 2022-06-02 2023-11-03 超聚变数字技术有限公司 一种计算设备及机柜
US11606583B1 (en) 2022-06-08 2023-03-14 Panasonic Avionics Corporation Distributed data storage for in-vehicle entertainment system
US20240010209A1 (en) * 2022-07-06 2024-01-11 Gm Cruise Holdings Llc Environmental and electromagnetic seal for autonomous vehicle control systems
CN115915723B (zh) * 2022-11-23 2024-02-02 江苏联成开拓集团有限公司 一种智能驾驶域控制器的散热结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436295A (zh) * 2010-09-29 2012-05-02 研祥智能科技股份有限公司 一种热管散热器
CN102956586A (zh) * 2011-08-22 2013-03-06 通用电气公司 用于igbt模块的高性能液体冷却散热器
JP2014175539A (ja) * 2013-03-11 2014-09-22 Fujikura Ltd 両面実装冷却板
CN104765432A (zh) * 2014-01-02 2015-07-08 鸿富锦精密电子(天津)有限公司 服务器组合
CN109552303A (zh) * 2018-12-21 2019-04-02 广州小鹏汽车科技有限公司 一种电子驻车系统、方法、装置、介质和设备
CN109733461A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 自动驾驶车辆的冗余电子转向系统及控制方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129423U (zh) * 1975-04-04 1976-10-19
US5689403A (en) 1994-12-27 1997-11-18 Motorola, Inc. Intercooled electronic device
JPH08340065A (ja) * 1995-06-12 1996-12-24 Mitsubishi Materials Corp 電子部品用冷却装置
JP3471673B2 (ja) 1999-08-31 2003-12-02 埼玉日本電気株式会社 通信機器の放熱構造
US6711013B2 (en) * 2002-04-23 2004-03-23 Dell Products L.P. Active heat sink utilizing hot plug fans
US7236361B2 (en) * 2003-12-22 2007-06-26 Emc Corporation Fan assembly for installing and removing fans individually and collectively
WO2007112109A2 (en) * 2006-03-24 2007-10-04 Slt Logic Llc Modular chassis providing scalable mechanical, electrical and environmental functionality for microtca and advanced tca boards
US7564685B2 (en) * 2006-12-29 2009-07-21 Google Inc. Motherboards with integrated cooling
US9072202B2 (en) * 2007-10-12 2015-06-30 Hewlett-Packard Development Company, L.P. Systems and methods for cleaning filters of an electrical device
TW200936025A (en) * 2008-02-05 2009-08-16 Inventec Corp Electronic device having cooling fan
US20100091458A1 (en) * 2008-10-15 2010-04-15 Mosier Jr David W Electronics chassis with angled card cage
US7675747B1 (en) * 2008-12-10 2010-03-09 Sun Microsystems, Inc. Reversible, counter-rotating fan modules for a computer chassis
JP5136461B2 (ja) 2009-02-26 2013-02-06 株式会社豊田自動織機 半導体装置
JP5165012B2 (ja) 2010-02-22 2013-03-21 三菱電機株式会社 樹脂封止形電子制御装置及びその製造方法
JP5387772B2 (ja) * 2010-06-28 2014-01-15 日本電気株式会社 ファンユニット、電子機器、及びファンユニットの製造方法
US8385064B1 (en) * 2010-12-07 2013-02-26 Adtran, Inc. Reversible fan module for electronic enclosures
US9017020B2 (en) * 2011-02-28 2015-04-28 Cisco Technology, Inc. Configurable fan unit
JP5527479B2 (ja) * 2011-03-30 2014-06-18 日本電気株式会社 ファンシャーシ、ファンユニット、及び通信装置
JP5902598B2 (ja) 2012-07-05 2016-04-13 株式会社フジクラ 電子装置の放熱構造
EP2947412A4 (en) 2013-01-18 2017-05-24 Taisei Plas Co., Ltd. Heat exchanger and method for manufacturing same
KR102063074B1 (ko) * 2013-04-23 2020-01-07 엘지전자 주식회사 디지털 사이니지
US9192078B2 (en) * 2013-06-11 2015-11-17 Seagate Technology Llc Maintaining thermal uniformity among devices in a multi-device enclosure
US10660236B2 (en) * 2014-04-08 2020-05-19 General Electric Company Systems and methods for using additive manufacturing for thermal management
US9578781B2 (en) * 2014-05-09 2017-02-21 Advanced Cooling Technologies, Inc. Heat management for electronic enclosures
JP2017045775A (ja) * 2015-08-24 2017-03-02 株式会社東芝 送信機および電子機器
CN106655710B (zh) * 2015-10-29 2019-02-22 台达电子企业管理(上海)有限公司 电源转换装置
CN205864936U (zh) * 2016-07-11 2017-01-04 番禺得意精密电子工业有限公司 电子设备散热结构
JP6324457B2 (ja) 2016-09-20 2018-05-16 三菱電機株式会社 電気機器
FR3060202B1 (fr) * 2016-12-12 2019-07-05 Aptiv Technologies Limited Dispositif de dissipation de chaleur d'une unite de controle multimedia
US10561044B2 (en) * 2017-02-02 2020-02-11 Ford Global Technologies, Llc Fluid management for autonomous vehicle sensors
KR101891600B1 (ko) * 2017-02-03 2018-08-24 엘지전자 주식회사 차량에 구비되는 이동 단말기용 무선 충전 장치 및 차량
DE102017002601A1 (de) * 2017-03-17 2018-09-20 Man Truck & Bus Ag Kühlvorrichtung für elektronisches Steuergerät
JP6613283B2 (ja) * 2017-10-31 2019-11-27 ファナック株式会社 冷却構造および筐体
CN107885295A (zh) * 2017-11-08 2018-04-06 北京图森未来科技有限公司 一种散热系统
US10575433B2 (en) * 2018-04-12 2020-02-25 Stored Energy Systems, a Limited Liability Company Enclosure and cooling system for electronic equipment
KR102168336B1 (ko) * 2018-07-23 2020-10-22 엘지전자 주식회사 안내 로봇
US10806022B2 (en) * 2018-08-09 2020-10-13 Hanon Systems Fluid heating heater
US10645848B1 (en) * 2018-10-24 2020-05-05 Baidu Usa Llc Container structure with builtin heatsink for housing a sensor unit of an autonomous driving vehicle
US11890564B2 (en) * 2018-11-28 2024-02-06 Baidu Usa Llc Tool-less air filter attaching mechanism for planning and control system of autonomous driving vehicles
US11032941B2 (en) * 2019-03-28 2021-06-08 Intel Corporation Modular thermal energy management designs for data center computing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436295A (zh) * 2010-09-29 2012-05-02 研祥智能科技股份有限公司 一种热管散热器
CN102956586A (zh) * 2011-08-22 2013-03-06 通用电气公司 用于igbt模块的高性能液体冷却散热器
JP2014175539A (ja) * 2013-03-11 2014-09-22 Fujikura Ltd 両面実装冷却板
CN104765432A (zh) * 2014-01-02 2015-07-08 鸿富锦精密电子(天津)有限公司 服务器组合
CN109733461A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 自动驾驶车辆的冗余电子转向系统及控制方法
CN109552303A (zh) * 2018-12-21 2019-04-02 广州小鹏汽车科技有限公司 一种电子驻车系统、方法、装置、介质和设备

Also Published As

Publication number Publication date
JP7164618B2 (ja) 2022-11-01
EP3786758A4 (en) 2021-04-07
US11073877B2 (en) 2021-07-27
US20210341977A1 (en) 2021-11-04
CN112602036A (zh) 2021-04-02
US11726534B2 (en) 2023-08-15
US20210011534A1 (en) 2021-01-14
JP2021534568A (ja) 2021-12-09
EP3786758A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2021007727A1 (zh) 一种智能汽车中车载计算装置及智能汽车
KR20160144646A (ko) 전기자동차의 배터리 팩 열관리 장치 및 열교환 모듈
US11248848B1 (en) Liquid-cooling heat dissipation apparatus
CN102573412B (zh) 带冷却功能的控制装置
CN104704934A (zh) 冷却装置以及具备该冷却装置的电力转换装置
EP2695757A1 (en) Heat medium heating device and vehicle air-conditioning device provided with same
CN219592959U (zh) 一种散热装置及车辆
CN116931698B (zh) 一体式液冷散热器
CN220156945U (zh) 散热组件、电控盒及空调器
WO2021036249A1 (zh) 一种散热器、电子设备及汽车
CN211630683U (zh) 散热装置及电动汽车控制器
CN218788785U (zh) 工业相机
CN215496843U (zh) 一种无人机电池散热结构及无人机
CN214206200U (zh) 一种新型散热装置
CN215412220U (zh) 电控盒、空调外机及空调器
EP3786758B1 (en) Vehicle-mounted computing device in smart automobile, and smart automobile
CN115377564A (zh) 电池模组冷却系统、电池箱及储能设备
CN217904968U (zh) 带有主动式散热结构的adas控制器
CN216960622U (zh) 发热元件的散热装置、车载计算设备及车辆
WO2023092326A1 (zh) 散热板、电子组件及终端
CN220776362U (zh) 一种散热器总成及工程机械
CN217283820U (zh) 具有风冷和液冷装置的电源
CN218630660U (zh) 服务器
CN216357931U (zh) 车载装置
JP2005257104A (ja) 一体型熱交換器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545171

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019914694

Country of ref document: EP

Effective date: 20200819

NENP Non-entry into the national phase

Ref country code: DE