WO2021005919A1 - 非水電解質二次電池の集電体用のクロム含有鋼板およびその製造方法 - Google Patents
非水電解質二次電池の集電体用のクロム含有鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2021005919A1 WO2021005919A1 PCT/JP2020/021681 JP2020021681W WO2021005919A1 WO 2021005919 A1 WO2021005919 A1 WO 2021005919A1 JP 2020021681 W JP2020021681 W JP 2020021681W WO 2021005919 A1 WO2021005919 A1 WO 2021005919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- chromium
- containing steel
- treatment
- electrolyte secondary
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/669—Steels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/26—Acidic compositions for etching refractory metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/081—Iron or steel solutions containing H2SO4
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
- C25F1/02—Pickling; Descaling
- C25F1/04—Pickling; Descaling in solution
- C25F1/06—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/02—Etching
- C25F3/06—Etching of iron or steel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
Definitions
- the present invention relates to a chromium-containing steel sheet for a current collector of a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more particularly to a chromium-containing steel sheet for a current collector of a non-aqueous electrolyte lithium ion secondary battery and a method for manufacturing the same. Is.
- the non-aqueous electrolyte secondary battery contains a current collector (positive electrode, negative electrode), an active material (positive electrode, negative electrode), a separator, and a non-aqueous electrolyte as main materials.
- the non-aqueous electrolyte contains an organic solvent and an electrolyte, and in LIB, a non-aqueous electrolyte in which a Li salt is dissolved in an organic solvent is used.
- Al foil is mainly used for the positive electrode and Cu foil is mainly used for the negative electrode in the LIB current collector, but the application of stainless steel foil having higher strength and higher corrosion resistance is also being considered for the purpose of improving durability. There is.
- Patent Document 1 stainless steel containing 16 to 26% by mass of Cr and 0.5 to 7% by mass of Mo is used as a current collector foil, so that it can be used for a long period of time at a high potential (about 4.2V). Even so, a bipolar battery is disclosed in which the current collecting foil does not corrode and elute, and the battery characteristics are less likely to deteriorate.
- Patent Document 2 contains Cr: 16.0 to 32.0%, C: 0.015% or less, Si: 0.5% or less, Mn: 2.0% or less, and has a composition ratio on the surface layer.
- Cr 16.0 to 32.0%
- C 0.015% or less
- Si 0.5% or less
- Mn 2.0% or less
- ferritic stainless steel for battery components that maintains high corrosion resistance even when the battery voltage is high and is less likely to spark. It is disclosed.
- cycle characteristics The cause of deterioration of battery capacity characteristics (hereinafter referred to as cycle characteristics) when repeatedly charging and discharging is not clear, but the present inventors consider it as follows.
- Cu foil which is mainly used for the negative electrode current collector of a non-aqueous electrolyte lithium ion secondary battery, has high surface conductivity.
- a passivation film is formed on the surface of the stainless steel sheet, the conductivity is lower than that of the Cu foil surface. Therefore, it is considered that the stainless steel sheet tends to have a higher electrical resistance (hereinafter referred to as interface resistance) at the interface between the current collector and the electrode layer formed on the current collector as compared with the Cu foil, and the cycle characteristics deteriorate. ..
- interface resistance electrical resistance
- the steel plate for the current collector of the non-aqueous electrolyte secondary battery is required to have corrosion resistance in the battery environment. That is, it is required that the battery characteristics are not deteriorated due to the corrosion of the steel sheet in the non-aqueous electrolyte secondary battery environment.
- Li salts such as LiPF 6 , LiBF 4 , and LiClO 4 are added to an organic solvent such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and ethyl methyl carbonate.
- organic solvent such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and ethyl methyl carbonate.
- the Cr content of the chromium-containing steel sheet to a certain value or more, the Cr oxide film formed on the surface of the steel sheet becomes stable, and the corrosion resistance in the battery environment can be ensured.
- the present inventors have come to think about it.
- the present invention has been made in view of the above circumstances, and has excellent corrosion resistance in a battery environment, and when used as a current collector for a non-aqueous electrolyte secondary battery, it has a cycle characteristic of a non-aqueous electrolyte secondary battery. It is an object of the present invention to provide a chromium-containing steel plate for an excellent current collector of a non-aqueous electrolyte secondary battery.
- Another object of the present invention is to provide an advantageous method for producing a chromium-containing steel sheet for a current collector of the above-mentioned non-aqueous electrolyte secondary battery.
- the present inventors have conducted diligent studies in order to solve the above problems.
- the present inventors have come to think that the deterioration of the cycle characteristics is caused by an increase in the interfacial resistance between the current collector and the electrode layer formed on the current collector.
- the present inventors thought that the cycle characteristics could be improved if fine irregularities could be imparted to the surface of the chromium-containing steel sheet in order to suppress an increase in interfacial resistance.
- the fine protrusions on the surface of the steel sheet pierce the electrode layer, and further, the steel sheet surface and the electrode layer It was concluded that the interfacial resistance could be reduced by increasing the contact area of the steel sheet.
- the present inventors further studied and found that by forming a predetermined uneven structure on the surface of the chromium-containing steel sheet, the chromium-containing steel sheet was used as the negative electrode current collector of the non-aqueous electrolyte lithium ion secondary battery. It was found that the cycle characteristics can be improved even when the above is used.
- the present invention has been completed after further studies based on the above findings. That is, the gist structure of the present invention is as follows.
- a chromium-containing steel sheet for a current collector of a non-aqueous electrolyte secondary battery has a component composition containing 10% by mass or more of Cr, and has a component composition.
- the surface of the chromium-containing steel sheet is provided with a concavo-convex structure having concave portions and convex portions, and the average height of the convex portions is 20 nm or more and 100 nm or less, and the average spacing between the convex portions is 20 nm or more and 300 nm or less. Chromium-containing steel sheet for collectors of non-aqueous electrolyte secondary batteries.
- a chromium-containing steel sheet having excellent corrosion resistance in a battery environment and having excellent cycle characteristics of a non-aqueous electrolyte secondary battery when used as a current collector for a non-aqueous electrolyte secondary battery. it can.
- the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved.
- a chromium-containing steel sheet for a current collector of a non-aqueous electrolyte secondary battery can be obtained at low cost and with good productivity.
- the chromium-containing steel sheet of the present invention is particularly suitable for a current collector of a non-aqueous electrolyte lithium ion secondary battery.
- Chromium-containing steel sheet for a current collector of a non-aqueous electrolyte secondary battery has a predetermined uneven structure on the surface of the steel sheet. It is important to provide. Due to the uneven structure, fine protrusions on the surface of the steel sheet pierce the electrode layer. Further, by increasing the contact area between the steel sheet surface and the electrode layer, the effect of reducing the interfacial resistance between the current collector and the electrode layer can be expected. Due to the effect of reducing the interfacial resistance, the effect of improving the cycle characteristics of the non-aqueous electrolyte secondary battery can be obtained.
- the chromium-containing steel sheet for the current collector of the non-aqueous electrolyte secondary battery of the present invention is also simply referred to as a chromium-containing steel sheet.
- the average height of the convex portions in the uneven structure on the surface of the chromium-containing steel sheet needs to be 20 nm or more and 100 nm or less from the viewpoint of obtaining excellent cycle characteristics.
- the average height of the convex portion is less than 20 nm, the height difference between the irregularities is too small, so that the fine convex portion on the surface of the chromium-containing steel sheet does not sufficiently pierce the electrode layer or is in contact with the electrode layer. The contact area cannot be sufficiently increased and the interfacial resistance is not reduced.
- the average height of the convex portion is set to 20 nm or more and 100 nm or less.
- the average height of the convex portion is preferably 25 nm or more.
- the average height of the convex portion is preferably 80 nm or less.
- the average height of the convex part is obtained as follows. That is, a thin film sample for cross-section observation is prepared from the chromium-containing steel sheet by a focused ion beam processing device (FIB, Versa 3D Dual Beam manufactured by FEI Co., Ltd.). Then, this sample is observed with a spherical aberration-corrected scanning transmission electron microscope (Cs-corrected STEM, JEM-ARM200F manufactured by JEOL Ltd.) at 50,000 times in any five fields of view to obtain a TEM image. In each of the obtained TEM images, the surface of the steel plate was confirmed, and as shown in FIG.
- the lowest point of the concave portion (on both sides) adjacent to one convex portion (the lowest point in the plate thickness (depth) direction of the steel plate). Points) are connected by a straight line, and the distance between the straight line and the apex of the convex portion (the apex in the plate thickness (depth) direction of the steel sheet) is obtained. Then, the obtained distance is defined as the height of the convex portion.
- the height of each convex portion on the surface of the steel sheet observed in each of the obtained TEM images was obtained, and the (arithmetic) average value of the obtained height of each convex portion was taken as the average height of the convex portion. To do. If the height is less than 10 nm, it is not regarded as a convex portion and is excluded from the above calculation of the average value.
- the average spacing between the protrusions on the surface of the chromium-containing steel sheet (hereinafter, also simply referred to as the surface of the steel sheet) needs to be 20 nm or more and 300 nm or less in order to obtain excellent cycle characteristics.
- the average spacing between the convex portions is less than 20 nm, the unevenness is too fine and the fine convex portions on the steel plate surface do not effectively pierce the electrode layer, or the contact area between the steel plate surface and the electrode layer. Cannot be sufficiently increased and the interfacial resistance is not reduced.
- the average spacing between the convex portions is set to 20 nm or more and 300 nm or less.
- the average spacing between the protrusions is preferably 100 nm or more.
- the average spacing between the protrusions is preferably 250 nm or less.
- the average spacing between the above-mentioned convex portions was obtained as follows. That is, in each TEM image obtained as described above, as shown in FIG. 1, a line segment (a direction perpendicular to the plate thickness (depth) direction of the steel plate) is arbitrarily obtained. Length: 1 ⁇ m) is drawn, and the number of convex portions in the projected region in the plate thickness (depth) direction of the steel plate of the line segment (the number of vertices of the convex portions described above) is measured. Then, the length of the line segment (1 ⁇ m) is divided by the number of measured convex portions, and the value is used as the interval between the convex portions.
- the intervals between the convex portions obtained in each TEM image are (arithmetically) averaged, and the value is used as the average interval between the convex portions.
- Those having a height of less than 10 nm are not regarded as convex portions and are excluded from the number of convex portions described above.
- the chromium-containing steel sheet of the present invention has a component composition containing 10% by mass or more of Cr. Cr is effective in improving corrosion resistance in a battery environment, and by setting the Cr content to 10% by mass or more, the current collector of the non-aqueous electrolyte secondary battery, especially the non-aqueous electrolyte lithium ion secondary battery. Even when used as a body, corrosion resistance in a battery environment can be ensured.
- the components other than Cr are not particularly limited, but suitable component compositions include the following component compositions.
- the chromium-containing steel plate of the present invention has C: 0.001 to 0.050%, Si: 0.01 to 2.00%, Mn: 0.01 to 1.00%, P: 0.050 in mass%. % Or less, S: 0.010% or less, Cr: 10.00 to 32.00%, Ni: 0.01 to 4.00%, Al: 0.001 to 0.150% and N: 0.050%. It preferably contains the following and has a component composition in which the balance is composed of Fe and unavoidable impurities.
- the composition of the components is, if necessary, further, in mass%, Mo: 0.01 to 2.50%, Cu: 0.01 to 0.80%, Ti: 0.01 to 0.45%, Nb. : One or more selected from 0.01 to 0.60% and V: 0.01 to 0.30% may be contained.
- C 0.001 to 0.050% C reacts with Cr in the steel and precipitates as Cr carbides at the grain boundaries to form a Cr-deficient layer, resulting in a decrease in corrosion resistance. Therefore, from the viewpoint of corrosion resistance, the smaller the amount of C, the more preferable, and the C content is preferably 0.050% or less.
- the C content is more preferably 0.030% or less, still more preferably 0.020% or less.
- the lower limit is not particularly limited, but the lower limit of the C content is preferably 0.001%.
- Si 0.01-2.00% Si is an effective element for deoxidation and is added during the melting stage of steel. The effect is obtained with a content of 0.01% or more. Therefore, the Si content is preferably 0.01% or more. However, if Si is excessively contained, the steel becomes hard and the manufacturability is lowered. Therefore, the Si content is preferably 2.00% or less. The Si content is more preferably 1.00% or less, still more preferably 0.60% or less.
- Mn 0.01 to 1.00%
- Mn is an effective element for deoxidation and is added during the melting stage of steel. The effect is obtained with a content of 0.01% or more. Therefore, the Mn content is preferably 0.01% or more. However, if the Mn content exceeds 1.00%, the corrosion resistance tends to decrease. Therefore, the Mn content is preferably 1.00% or less. The Mn content is more preferably 0.60% or less.
- the P content is preferably 0.050% or less.
- the P content is more preferably 0.040% or less.
- the lower limit is not particularly limited, it is preferable that the lower limit of the P content is about 0.010% because excessive removal of P causes an increase in manufacturing cost.
- the P content is preferably 0.005% or more.
- S 0.010% or less
- S is an element that reduces corrosion resistance by combining with Mn to form MnS, which serves as the starting point of corrosion.
- the S content is preferably 0.010% or less.
- the lower limit is not particularly limited, but since excessive de-S causes an increase in manufacturing cost, it is preferable that the lower limit of the S content is about 0.001%.
- the S content is preferably 0.0005% or more.
- the Cr content is set to 10% or more.
- the Cr content is preferably 10.00% or more, more preferably 16.00% or more.
- the Cr content is preferably 32.00% or less.
- the Cr content is more preferably 25.00% or less.
- Ni 0.01-4.00%
- Ni is an element that effectively contributes to the improvement of corrosion resistance. The effect is obtained when the Ni content is 0.01% or more. However, when the Ni content exceeds 4.00%, the steel becomes hard and the manufacturability deteriorates. Furthermore, since Ni is an expensive element, it causes an increase in cost. Therefore, the Ni content is preferably in the range of 0.01 to 4.00%. The Ni content is more preferably 0.10% or more. The Ni content is more preferably 2.00% or less, still more preferably 0.50% or less.
- Al 0.001 to 0.150%
- Al is an element used for deoxidation. The effect is obtained with a content of 0.001% or more. Therefore, the Al content is preferably 0.001% or more. However, if the Al content exceeds 0.150%, the ductility decreases. Therefore, the Al content is preferably 0.150% or less. The Al content is more preferably 0.100% or less.
- the N content is preferably 0.050% or less.
- the N content is more preferably 0.030% or less.
- the lower limit is not particularly limited, but since excessive de-N causes an increase in cost, it is preferable that the lower limit of the N content is about 0.002%.
- Mo 0.01-2.50%
- Mo is an element effective for improving corrosion resistance. The effect is preferably obtained with a content of 0.01% or more. However, if the Mo content exceeds 2.50%, the steel becomes embrittled. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 2.50%.
- Cu 0.01 to 0.80%
- Cu is an element effective for improving corrosion resistance. The effect is preferably obtained with a content of 0.01% or more. However, if the Cu content exceeds 0.80%, the hot workability is lowered and the productivity is lowered. Therefore, when Cu is contained, the Cu content is preferably 0.01 to 0.80%.
- Ti 0.01-0.45%
- Ti is an element that, by combining with C and N, prevents excessive precipitation of Cr carbonitride in steel and suppresses deterioration (sensitization) of corrosion resistance. These effects are obtained when the Ti content is 0.01% or more. On the other hand, if the Ti content exceeds 0.45%, the workability is lowered. Therefore, when Ti is contained, the Ti content is preferably in the range of 0.01 to 0.45%. The Ti content is more preferably 0.10% or more. The Ti content is more preferably 0.40% or less.
- Nb 0.01 to 0.60%
- Nb is an element that suppresses sensitization by binding to C and N in the same manner as Ti. These effects are obtained when the Nb content is 0.01% or more. On the other hand, if the Nb content exceeds 0.60%, the workability is lowered. Therefore, when Nb is contained, the Nb content is preferably in the range of 0.01 to 0.60%. The Nb content is more preferably 0.10% or more. The Nb content is more preferably 0.40% or less.
- V 0.01-0.30% Like Nb and Ti, V is an element that binds to C and N contained in steel and suppresses a decrease in corrosion resistance (sensitization). This effect is obtained when the V content is 0.01% or more. On the other hand, if the V content exceeds 0.30%, the workability is lowered. Therefore, when V is contained, the V content is preferably in the range of 0.01 to 0.30%. The V content is more preferably 0.20% or less, further preferably 0.15% or less, and even more preferably 0.10% or less.
- the components other than the above are Fe and unavoidable impurities.
- the thickness of the chromium-containing steel sheet is preferably 50 ⁇ m or less. When the plate thickness is 50 ⁇ m or less, it becomes easy to suppress an increase in the weight of the battery.
- the plate thickness is more preferably 30 ⁇ m or less.
- the thickness of the chromium-containing steel sheet is preferably 5 ⁇ m or more. When the plate thickness is 5 ⁇ m or more, a significant decrease in the production efficiency of the chromium-containing steel sheet can be suppressed, and an increase in the production cost can also be suppressed.
- a steel slab having the above-mentioned composition is hot-rolled to obtain a hot-rolled plate, and the hot-rolled plate is annealed and pickled as necessary, and then the hot-rolled plate is cold-rolled. It is rolled to obtain a cold-rolled plate having a desired plate thickness.
- cold-rolled sheet is annealed as necessary in the cold rolling step, and cold rolling is further carried out to the final sheet thickness.
- the conditions such as hot rolling, cold rolling, hot-rolled sheet annealing, and cold-rolled sheet annealing are not particularly limited, and a conventional method may be followed.
- pickling may be performed after annealing the cold rolled plate. Further, the cold-rolled sheet annealing can be referred to as bright annealing.
- the chromium-containing steel sheet produced as described above is prepared as a material chromium-containing steel sheet.
- oxide film removal process In the oxide film removing treatment step, the oxide film (hereinafter, simply referred to as an oxide film) formed in advance on the surface of the above-mentioned material chromium-containing steel sheet is removed.
- an oxide film formed in advance on the surface of the above-mentioned material chromium-containing steel sheet is removed.
- examples of the oxide film formed in advance include a passivation film formed in the atmosphere.
- the oxide film may be removed by a combination of anodic electrolysis treatment, cathode electrolysis treatment, anodic electrolysis treatment and cathode electrolysis treatment, and the cathode electrolysis treatment is particularly preferable.
- the cathode electrolysis treatment is particularly advantageous because the amount of the steel sheet base material dissolved is reduced as compared with the anode electrolysis treatment.
- the treatment conditions for the cathode electrolysis treatment may be carried out at a current density that can remove the oxide film on the surface of the steel sheet.
- the steel type of the steel sheet, the thickness of the oxide film formed in advance, and the like It is preferable to adjust the electrolytic conditions each time according to the configuration of the electrolytic device or the like.
- the cathode electrolysis treatment may be performed in a 30 g / L sulfuric acid aqueous solution under the conditions of a potential of ⁇ 0.7 V (vs. Ag / AgCl) and a treatment time of 1 minute or more.
- V (vs.Ag/AgCl) is a potential with respect to the silver-silver chloride electrode used as a reference electrode, and will be described below as (vs.Ag / AgCl).
- the current density in the range of ⁇ 0.1 to ⁇ 100 mA / cm 2 and the processing time in the range of 1 to 600 seconds.
- the processing time varies depending on the current density, but for example, in the case of a current density of -0.5 mA / cm 2 , if the processing time is 60 seconds or more, the oxide film on the surface of the chromium-containing steel sheet is usually used. Is removed. However, if the processing time is long, the economic efficiency is deteriorated, so that the processing time is preferably 600 seconds or less. The processing time is more preferably 300 seconds or less.
- the current density referred to here is a value obtained by dividing the current flowing between the chromium-containing steel sheet to be treated and the counter electrode by the surface area of the material to be treated, and in the case of current control, this current density is controlled. To do.
- the treatment liquid used in the cathode electrolysis treatment is not particularly limited, but among them, a sulfuric acid aqueous solution is preferable.
- the concentration of the treatment liquid may be adjusted so that the conductivity of the treatment liquid becomes sufficiently high.
- the concentration of sulfuric acid is preferably about 10 to 100 g / L.
- the concentration of the acid other than sulfuric acid is acceptable as long as it is 5 g / L or less. .. Needless to say, the concentration of an acid other than sulfuric acid may be 0 g / L.
- the treatment temperature is not particularly limited, but is preferably 30 to 85 ° C.
- the removal of the oxide film and the treatment liquid for the etching treatment described later are the same, it is advantageous in terms of cost. Further, depending on the structure of the electrolytic cell, the removal of the oxide film and the etching treatment can be continuously performed in the same electrolytic cell.
- the material chromium-containing steel sheet from which the oxide film on the surface has been removed is subjected to the etching treatment in the active region of the material chromium-containing steel sheet.
- the etching treatment in the active state region in the present invention is as follows. It is as follows. That is, when the etching treatment is performed in the passivation region, a passivation film is formed on the chromium-containing steel sheet, so that a sufficient etching effect cannot be obtained and a desired effect of reducing the interfacial resistance cannot be obtained. Further, when the etching treatment is performed in the hyperpassivation region, the amount of the chromium-containing steel sheet dissolved is large and the dissolution rate is high.
- an oxygen evolution reaction may occur at the same time, which makes it difficult to control the etching amount.
- the etching treatment is performed in the active region, a sufficient etching effect can be obtained as compared with the passive region. Further, as compared with the hyperpassivation region, the dissolved amount of the chromium-containing steel sheet is small, and the dissolved amount of the chromium-containing steel sheet can be easily controlled. In this way, in the etching process in the active region, it is possible to precisely control the amount of dissolved chromium-containing steel sheet, and by extension, to control the shape of the fine uneven structure formed on the surface of the steel sheet on the order of nm. Therefore, here, it was decided to perform the etching treatment in the active region.
- the amount of dissolution in the etching treatment can be controlled by appropriately adjusting the temperature and concentration of the treatment liquid used for the etching treatment (for example, the sulfuric acid concentration when a sulfuric acid aqueous solution is used as the treatment liquid) and the treatment time. it can.
- the three potential ranges of active region, passivation region and hyperpassivation region are defined as follows. That is, as shown in FIG. 3, for example, the steel No. 1 in Table 1 described later.
- the current and the current density increase from the point where the potential exceeds -0.51 V (vs. Ag / AgCl) to +22.0 mA. / cm 2 about reaches the maximum value.
- the current decreases as the potential rises, and when the potential reaches ⁇ 0.34 V (vs.Ag / AgCl), the current density drops to 1/100 or less of the above maximum value.
- FIG. 3 shows the steel No. of Table 1 described later.
- D it is an anodic polarization curve obtained under the conditions of 55 ° C. and a potential scanning speed of 1 mV / s in a 30 g / L sulfuric acid aqueous solution using a silver-silver chloride electrode as a reference electrode. This potential scanning rate shall be used to obtain the anodic polarization curve.
- the potential range in which the current density increases with this initial increase in potential is the active region, and even if the potential is increased, almost no current flows, and the potential range in which the current density is maintained at a low value is the immobile region and immobility.
- the potential range in which the current density rapidly increases beyond the potential range of the region is the hyperimmobility region.
- the active region first appears when the potential rises in the anode polarization curve obtained when the chromium-containing steel plate in the treatment liquid is polarized from the natural immersion potential toward the anode at a scanning speed of 1 mV / s. (Before reaching the dynamic region described later), the current density increases as the potential rises, and after reaching the maximum value (the maximum value of the current density in the active region), the current density decreases and the current density becomes the above-mentioned. It is defined as the potential range until it becomes 1/100 or less of the maximum value.
- the passivation region is a potential range in which almost no current flows even if the potential is raised beyond the active region (specifically, the current density is 1/100 of the maximum value).
- the potential range maintained below is defined.
- hyperpassivation region is defined as a potential range that exceeds the passivation region and the current rapidly increases as the potential rises.
- the active state region changes depending on the steel type of the chromium-containing steel sheet, the treatment liquid used, etc.
- the anodic polarization curve that matches these conditions is obtained in advance, and the potential range of the active state region is grasped. It is preferable to perform electrolytic etching treatment.
- the etching process is performed by potential control
- the anodic polarization curve of the chromium-containing steel sheet to be treated is acquired in advance, the potential range in the active state is grasped, and the etching process is performed in that potential range. Just do it.
- the steel No. of Table 1 described later.
- the potential range of -0.51 V to -0.34 V is the potential range corresponding to the active state.
- the processing time may be appropriately adjusted in the range of 1 to 600 seconds to perform the etching treatment.
- the relationship between the current density and the electrolytic potential can be investigated in advance, the range of the current density to be electrolyzed in the active state can be grasped, and the etching process can be performed within the range of the current density. Good.
- the current density is such that the electrolytic voltage applied between the chromium-containing steel plate to be treated and the counter electrode suddenly increases, the current density is in the active state, and the chromium-containing steel plate to be treated and the counter electrode are in the active state. If the current density is after the electrolytic voltage applied during the period suddenly increases, it can be determined that the current density is in the hyperpassivation region.
- the steel No. of Table 1 described later For example, the steel No. of Table 1 described later.
- the current density is controlled to about 0.01 to 10.00 mA / cm 2 , electrolysis can be performed in a potential range corresponding to the active state region. Therefore, the electrolytic etching treatment may be performed by appropriately adjusting the treatment time in the range of 1 to 600 seconds in the current density range that is the active state range.
- the current density referred to here is a value obtained by dividing the current flowing between the chromium-containing steel sheet to be treated and the counter electrode by the surface area of the material to be treated, and in the case of current control, this current density is controlled. To do.
- the treatment liquid used for the electrolytic etching treatment is preferably an aqueous sulfuric acid solution.
- the concentration of the treatment liquid may be adjusted so that the conductivity of the treatment liquid becomes sufficiently high.
- the concentration of sulfuric acid is preferably about 10 to 300 g / L.
- a small amount of nitric acid may be added to the treatment liquid for the purpose of removing the smut generated on the surface of the chromium-containing steel sheet, but nitric acid passivates the chromium-containing steel sheet and suppresses the etching effect. Therefore, the concentration of nitric acid is preferably 10 g / L or less. Further, the concentration of nitric acid is preferably not more than the concentration of sulfuric acid in the case of an aqueous sulfuric acid solution. Needless to say, the concentration of nitric acid may be 0 g / L.
- acids other than sulfuric acid and nitric acid described above it is preferable to reduce acids other than sulfuric acid and nitric acid described above as much as possible.
- other acids such as hydrofluoric acid and phosphoric acid may be contained as impurities, but if the concentration of the acid other than sulfuric acid and nitric acid is 5 g / L or less. acceptable. Needless to say, the concentration of an acid other than sulfuric acid may be 0 g / L.
- the treatment temperature is not particularly limited, but is preferably 30 to 85 ° C. If the oxide film removal treatment and the electrolytic etching treatment can be performed with the same treatment liquid and the same treatment temperature, the treatment can be continuously performed using the same electrolytic cell.
- the etching treatment can be performed simply by immersing the product in the above-mentioned treatment liquid without electrolysis. As described above, if the etching process is performed under potential control or current control, stable processing can be expected with less uneven processing, but after performing the oxide film removal process by the cathode electrolysis process, electrolysis is performed. Even if the material is immersed in the treatment liquid as it is, the potential of the material chromium-containing steel plate from which the oxide film has been removed rises to the active state region, so that the etching treatment can be performed in the active state region.
- the material chromium-containing steel sheet subjected to the above etching treatment is immersed in an oxidizing solution or the passivation of the material chromium-containing steel sheet. It is important to dissolve (remove) deposits such as smut formed during the etching process by performing electrolytic treatment in the region (hereinafter, also referred to as immersion treatment in an oxidizing solution or electrolytic treatment). Is.
- smut a mixture containing C, N, S, O, Fe, and Cr as the main constituent elements
- the smut is removed and the effect of reducing the interfacial resistance can be obtained. Improves the cycle characteristics of non-aqueous electrolyte secondary batteries.
- examples of the oxidizing solution include an aqueous nitric acid solution and an aqueous hydrogen peroxide solution.
- the treatment time in the dipping treatment is preferably 90 minutes or less. More preferably, it is 15 minutes or less.
- the lower limit is preferably 0.5 minutes or more. More preferably, it is 1 minute or more.
- the concentration of nitric acid is preferably 10 to 400 g / L.
- the concentration of hydrogen peroxide is preferably 10 to 300 g / L.
- the acid contained as an impurity in each treatment liquid is acceptable as long as it is 10 g / L or less.
- the lower limit of the acid contained as an impurity in each treatment liquid is not particularly limited and may be 0 g / L.
- the treatment temperature in the dipping treatment in the oxidizing solution is not particularly limited, but it is preferably 30 to 60 ° C.
- the potential may be adjusted to the potential range in which the chromium-containing steel sheet is passivated.
- the potential region (passivation region) in which the chromium-containing steel sheet is passivated differs depending on the treatment liquid (electrolytic solution) used and the steel type of the chromium-containing steel sheet, it is adjusted for each treatment liquid and the steel type of the chromium-containing steel sheet. Is preferable. For example, using a 50 g / L nitric acid aqueous solution, the steel No. 1 in Table 1 described later.
- electrolytic treatment in the range of potential: +0.40 to +0.60V (vs. Ag / AgCl).
- the electrolysis time is preferably 90 minutes or less.
- a more preferable electrolysis time is 15 minutes or less.
- the lower limit is preferably 0.5 minutes or more. More preferably, it is 1 minute or more.
- the treatment temperature in the electrolytic treatment is not particularly limited, but is preferably 30 to 70 ° C.
- the surface of the chromium-containing steel sheet to be treated is treated with a non-woven wiper or the like, if necessary, during the immersion treatment in an oxidizing solution or the electrolytic treatment in the passive region of the material chromium-containing steel sheet.
- the smut and the like are easily removed, so that the effect of further reducing the interfacial resistance can be obtained.
- a chromium-containing steel sheet (material chromium-containing steel sheet) having the component composition shown in Table 1 (the rest is Fe and unavoidable impurities) and having a thickness of 10 ⁇ m was prepared, and the oxide film was removed and etched under the conditions shown in Table 2.
- Treatment, immersion treatment in an oxidizing solution, or electrolytic treatment was performed (Sample Nos. 1, 4 to 7). In addition, the sample No. was obtained without any of the above treatments. 2. Sample No. was obtained by dipping only in an oxidizing solution. It was set to 3 (“ ⁇ ” in the manufacturing conditions in Table 2 indicates that the treatment was not performed).
- the current density in Table 2 is a value obtained by dividing the current flowing between the chromium-containing steel sheet to be treated and the counter electrode by the surface area of the material to be treated.
- the relationship between the current density and the electrolytic voltage applied between the chromium-containing steel sheet as the material to be treated and the counter electrode was investigated in advance for each condition and steel type, and under any condition, In the case of current control, it was confirmed that if the current density was adjusted to + 0.8 mA / cm 2 , it would be in the active state range.
- an electrolytic treatment was carried out under the following conditions as a treatment after the etching treatment. That is, an electrolytic treatment was carried out using a 50 g / L nitric acid aqueous solution under the conditions of a treatment temperature of 55 ° C., a potential of +0.50 V (vs. Ag / AgCl), and a treatment time of 60 seconds.
- the average height of the convex portions of the chromium-containing steel sheet manufactured as described above and the average spacing between the convex portions were measured by the above method. The results are shown in Table 2. Further, using the chromium-containing steel sheet, the corrosion resistance and the cycle characteristics were evaluated in the following manner.
- Potential scanning method Potential scanning range: Initial immersion potential (immersion potential at the start of the test) ⁇ 5.0V ⁇ 0.0V ⁇ Initial immersion potential The potential is the potential V (vs. Li / Li + ) for the opposite Li metal leaf. Scanning speed: 5 mV / s
- Coin-shaped cell Coin-shaped cell (positive electrode area: 15 mm ⁇ , negative electrode area: 16 mm ⁇ )
- the evaluation criteria for cycle characteristics are as follows. The evaluation results are shown in Table 2. ⁇ (Pass): Discharge capacity retention rate at the 300th cycle is 90% or more ⁇ (Failure): Discharge capacity retention rate at the 300th cycle is less than 90% The discharge capacity retention rate (%) at the 300th cycle is 100 ⁇ It was calculated by (discharge capacity in the 300th cycle / discharge capacity in the 1st cycle).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
前記クロム含有鋼板は、Crを10質量%以上含有する成分組成を有し、
前記クロム含有鋼板の表面に凹部と凸部とを有する凹凸構造を備え、該凸部の平均高さが20nm以上100nm以下であり、かつ該凸部間の平均間隔が20nm以上300nm以下である、非水電解質二次電池の集電体用のクロム含有鋼板。
[2]前記[1]に記載の非水電解質二次電池の集電体用のクロム含有鋼板の製造方法であって、
素材クロム含有鋼板を準備し、
ついで、前記素材クロム含有鋼板の表面の酸化皮膜を除去し、
ついで、前記酸化皮膜を除去した素材クロム含有鋼板に、前記素材クロム含有鋼板の活性態域でエッチング処理を施し、
ついで、前記エッチング処理を施した素材クロム含有鋼板に、酸化性を有する溶液中での浸漬処理、または、前記素材クロム含有鋼板の不動態域における電解処理を施す、
非水電解質二次電池の集電体用のクロム含有鋼板の製造方法。
本発明の一実施形態に係る非水電解質二次電池の集電体用のクロム含有鋼板では、鋼板表面に所定の凹凸構造を設けることが重要である。前記凹凸構造によって、鋼板表面の微細な凸部が電極層に突き刺さる。さらに、鋼板表面と電極層との接触面積が増加することで、集電体と電極層との界面抵抗の低減効果が期待できる。前記、界面抵抗の低減効果によって、非水電解質二次電池のサイクル特性の向上効果が得られる。なお、以下、本発明の非水電解質二次電池の集電体用のクロム含有鋼板を、単に、クロム含有鋼板ともいう。
上述したように、クロム含有鋼板の表面の凹凸構造における凸部の平均高さは、優れたサイクル特性を得る観点から、20nm以上100nm以下とすることが必要である。ここで、凸部の平均高さが20nm未満の場合、凹凸間の高低差が過少となるため、クロム含有鋼板表面の微細な凸部が電極層に十分突き刺さらず、あるいは、電極層との接触面積を十分に増加できず、界面抵抗が低減しない。その結果、サイクル特性が低下する。一方、凸部の平均高さが100nm超になると、エッチング処理の際に、溶解量、ひいては、エッチング時間が増加し、生産性の面で不利になる。従って、凸部の平均高さは、20nm以上100nm以下とする。凸部の平均高さは、好ましくは25nm以上である。また、凸部の平均高さは、好ましくは80nm以下である。
クロム含有鋼板の表面(以下、単に鋼板表面ともいう)における凸部間の平均間隔は、優れたサイクル特性を得るため、20nm以上300nm以下とすることが必要である。ここで、凸部間の平均間隔が20nm未満になると、凹凸が細か過ぎて、鋼板表面の微細な凸部が電極層に効果的に突き刺さらず、あるいは、鋼板表面と電極層との接触面積を十分に増加できず、界面抵抗が低減しない。その結果、サイクル特性が低下する。一方、凸部間の平均間隔が300nm超になると、凹凸が少な過ぎて、鋼板表面と電極層との接触面積を十分に増加できず、界面抵抗が低減しない。その結果、サイクル特性が低下する。従って、凸部間の平均間隔は、20nm以上300nm以下とする。凸部間の平均間隔は、好ましくは100nm以上である。また、凸部間の平均間隔は、好ましくは250nm以下である。
本発明のクロム含有鋼板は、Crを10質量%以上含有する成分組成を有する。Crは電池環境での耐食性の向上に効果があり、Cr含有量を10質量%以上とすることで、非水電解質二次電池の集電体、特に非水電解質リチウムイオン二次電池の集電体として用いた場合であっても、電池環境における耐食性を確保することができる。本発明のクロム含有鋼板において、Cr以外の成分は特に限定されるものではないが、好適な成分組成としては、以下の成分組成が挙げられる。
本発明のクロム含有鋼板は、質量%で、C:0.001~0.050%、Si:0.01~2.00%、Mn:0.01~1.00%、P:0.050%以下、S:0.010%以下、Cr:10.00~32.00%、Ni:0.01~4.00%、Al:0.001~0.150%およびN:0.050%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することが好ましい。前記成分組成は、必要に応じて、さらに、質量%で、Mo:0.01~2.50%、Cu:0.01~0.80%、Ti:0.01~0.45%、Nb:0.01~0.60%、V:0.01~0.30%のうちから選んだ1種または2種以上を含有してもよい。
Cは、鋼中のCrと反応し、粒界にCr炭化物として析出して、Cr欠乏層を形成するため、耐食性の低下をもたらす。従って、耐食性の観点からは、Cは少ないほど好ましく、C含有量は0.050%以下とすることが好ましい。C含有量は、より好ましくは0.030%以下であり、さらに好ましくは0.020%以下である。なお、下限については特に限定されるものではないが、C含有量の下限は0.001%とすることが好適である。
Siは、脱酸のために有効な元素であり、鋼の溶製段階で添加される。その効果は、0.01%以上の含有で得られる。そのため、Si含有量は0.01%以上とすることが好ましい。しかし、Siを過剰に含有させると、鋼が硬質化し、製造性が低下する。従って、Si含有量は2.00%以下とすることが好ましい。Si含有量は、より好ましくは1.00%以下であり、さらに好ましくは0.60%以下である。
Mnは、脱酸のために有効な元素であり、鋼の溶製段階で添加される。その効果は、0.01%以上の含有で得られる。そのため、Mn含有量は0.01%以上とすることが好ましい。しかし、Mn含有量が1.00%を超えると、耐食性が低下し易くなる。従って、Mn含有量は1.00%以下とすることが好ましい。Mn含有量は、より好ましくは0.60%以下である。
Pは、延性の低下をもたらすため、その含有量は少ないほうが望ましい。ただし、P含有量が0.050%以下であれば、延性の著しい低下は生じない。従って、P含有量は0.050%以下とすることが好ましい。P含有量は、より好ましくは0.040%以下である。下限については特に限定されるものではないが、過度の脱Pは製造コストの増加を招くので、P含有量の下限は0.010%程度とすることが好適である。一例として、P含有量は、0.005%以上とすることが好ましい。
Sは、Mnと結合してMnSを形成し、これが腐食の起点となることで、耐食性を低下させる元素である。ただし、S含有量が0.010%以下であれば、耐食性の著しい低下は生じない。従って、S含有量は0.010%以下とすることが好ましい。下限については特に限定されるものではないが、過度の脱Sは製造コストの増加を招くので、S含有量の下限は0.001%程度とすることが好適である。一例として、S含有量は、0.0005%以上とすることが好ましい。
上述したように、10%以上のCrを含有することで、非水電解質二次電池の集電体、特に非水電解質リチウムイオン二次電池の集電体として用いた場合であっても、電池環境における耐食性を確保することができる。従って、Cr含有量は10%以上とする。Cr含有量は、好ましくは10.00%以上であり、より好ましくは16.00%以上である。一方、Cr含有量が32.00%を超えると、σ相の析出によって靱性が低下する場合がある。従って、Cr含有量は32.00%以下とすることが好ましい。Cr含有量は、より好ましくは25.00%以下である。
Niは、耐食性の向上に有効に寄与する元素である。その効果は、Ni含有量が0.01%以上で得られる。しかし、Ni含有量が4.00%を超えると、鋼が硬質化し、製造性が低下する。さらに、Niは高価な元素であるので、コストの増大を招く。そのため、Ni含有量は0.01~4.00%の範囲とすることが好ましい。Ni含有量は、より好ましくは0.10%以上である。また、Ni含有量は、より好ましくは2.00%以下であり、さらに好ましくは0.50%以下である。
Alは、脱酸に用いられる元素である。その効果は、0.001%以上の含有で得られる。よって、Al含有量は0.001%以上とすることが好ましい。しかし、Al含有量が0.150%を超えると、延性が低下する。従って、Al含有量は0.150%以下とすることが好ましい。Al含有量は、より好ましくは0.100%以下である。
N含有量が0.050%を超えると、延性が低下する。従って、N含有量は0.050%以下とすることが好ましい。N含有量は、より好ましくは0.030%以下である。下限については特に限定されるものではないが、過度の脱Nはコストの増加を招くので、N含有量の下限は0.002%程度とすることが好適である。
Moは、耐食性を改善するのに有効な元素である。その効果は、好適には0.01%以上の含有で得られる。しかし、Mo含有量が2.50%を超えると、鋼の脆化を招く。従って、Moを含有させる場合、Mo含有量は0.01~2.50%とすることが好ましい。
Cuは、耐食性を改善するのに有効な元素である。その効果は、好適には0.01%以上の含有で得られる。しかし、Cu含有量が0.80%を超えると、熱間加工性が低下し、生産性の低下を招く。従って、Cuを含有させる場合、Cu含有量は0.01~0.80%とすることが好ましい。
Tiは、CおよびNと結合することにより、Cr炭窒化物の鋼中での過度の析出を防止して、耐食性の低下(鋭敏化)を抑制する元素である。これらの効果は、Ti含有量が0.01%以上で得られる。一方、Ti含有量が0.45%を超えると、加工性が低下する。そのため、Tiを含有する場合は、Ti含有量は0.01~0.45%の範囲とすることが好ましい。Ti含有量はより好ましくは0.10%以上である。また、Ti含有量はより好ましくは0.40%以下である。
Nbは、Tiと同様にCおよびNと結合することにより、鋭敏化を抑制する元素である。これらの効果は、Nb含有量が0.01%以上で得られる。一方、Nb含有量が0.60%を超えると、加工性が低下する。そのため、Nbを含有する場合は、Nb含有量は0.01~0.60%の範囲とすることが好ましい。Nb含有量はより好ましくは0.10%以上である。また、Nb含有量はより好ましくは0.40%以下である。
Vは、NbやTiと同様に、鋼中に含まれるCおよびNと結合し、耐食性の低下(鋭敏化)を抑制する元素である。この効果は、V含有量が0.01%以上で得られる。一方、V含有量が0.30%を超えると、加工性が低下する。そのため、Vを含有する場合は、V含有量は0.01~0.30%の範囲とすることが好ましい。V含有量は、より好ましくは0.20%以下であり、さらに好ましくは0.15%以下であり、さらにより好ましくは0.10%以下である。
次に、本発明の一実施形態に係る非水電解質二次電池の集電体用のクロム含有鋼板の製造方法を説明する。
上記のような成分組成を有する鋼スラブを、熱間圧延して熱延板とし、該熱延板に必要に応じて熱延板焼鈍、酸洗を施し、その後、該熱延板に冷間圧延を施して所望板厚の冷延板とする。例えば、最終板厚10μmのクロム含有鋼板を製造する場合は、上記冷間圧延工程において、必要に応じて冷延板焼鈍を施し、さらに最終板厚まで冷間圧延を実施する。
なお、熱間圧延や冷間圧延、熱延板焼鈍、冷延板焼鈍などの条件は特に限定されず、常法に従えばよい。また、冷延板焼鈍後に酸洗してもよい。また、冷延板焼鈍を、光輝焼鈍とすることもできる。以上のようにして製造したクロム含有鋼板を、素材クロム含有鋼板として準備する。
酸化皮膜の除去処理工程では、上述の素材クロム含有鋼板の表面にあらかじめ形成されている酸化皮膜(以下、単に酸化皮膜ともいう)を除去する。このような酸化皮膜の除去処理を、後述するエッチング処理を施す前に行うことで、活性態域におけるエッチング処理によるサイクル特性の向上効果が安定して得られるようになる。
エッチング処理工程では、上記の酸化皮膜の除去処理を施して、表面の酸化皮膜を除去した素材クロム含有鋼板に、当該素材クロム含有鋼板の活性態域においてエッチング処理を施す。
非水電解質二次電池のサイクル特性を向上するためには、上記のエッチング処理を施した素材クロム含有鋼板に、酸化性を有する溶液中での浸漬処理、または、上記素材クロム含有鋼板の不動態域における電解処理(以下、酸化性を有する溶液中での浸漬処理、または、電解処理ともいう)を施すことで、エッチング処理時に形成されたスマット等の付着物を溶解(除去)することが重要である。
作用極に上記で準備したクロム含有鋼板を用い、対極および参照極にLi金属箔を用いて、電解液(1M LiPF6、エチレンカーボネート:ジエチルカーボネート=1:1(体積比))中において、下記の電位範囲において、電位走査時におけるクロム含有鋼板の電流密度をみることで、電池環境における耐食性を評価した。
なお、前記評価は、初期浸漬電位(試験開始時の浸漬電位)から5.0Vまで電位を上昇させた後、次に0.0Vまで電位を下降させ、次に初期浸漬電位まで電位を上昇させ、電位が初期浸漬電位に達した時点までで行ったものである。
この評価で、電流密度が低ければ、クロム含有鋼板の表面に腐食生成物等が生じておらず、また食孔も生じていないため、電池環境における耐食性を確保できると判断することができる。
なお、測定は露点-70℃以下のアルゴン雰囲気中、25℃で実施した。
電位走査範囲:初期浸漬電位(試験開始時の浸漬電位)→5.0V→0.0V→初期浸漬電位
電位は対極のLi金属箔に対する電位V(vs.Li/Li+)。
走査速度:5mV/s
○(合格):最大電流密度の絶対値が100μA/cm2以下
×(不合格):最大電流密度の絶対値が100μA/cm2超
下記の電池構成を有する非水電解質リチウムイオン二次電池のコイン型セルを作製し、下記の条件においてサイクル特性を評価した。
コイン型セル(正極面積:15mmΦ、負極面積:16mmΦ)
正極活物質:LiNi0.6Mn0.2Co0.2O2(Ni:Mn:Co=6:2:2(原子比))
正極導電助剤:アセチレンブラック
正極バインダ:ポリフッ化ビニリデン
正極集電体:Al箔
負極:天然黒鉛
負極増粘剤:カルボキシメチルセルロース
負極バインダ:スチレンブタジエンゴム
負極集電体:上記製造した各クロム含有鋼板
電解液:1M LiPF6、エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=1:1:1(体積比)、ビニレンカーボネート(1wt%)
セパレータ:ポリプロピレン製セパレータ
充電:1C 定電流定電圧 4.2V到達後、電流値が0.1C到達で終了
休止:10分
放電:1C 定電流 2.5V到達時点で終了
温度:25℃
1サイクル:充電→休止→放電→休止
サイクル数:300サイクル
○(合格):300サイクル目の放電容量維持率が90%以上
×(不合格):300サイクル目の放電容量維持率が90%未満
300サイクル目の放電容量維持率(%)は、100×(300サイクル目の放電容量/1サイクル目の放電容量)で算出した。
(a)発明例ではいずれも、所望のサイクル特性が得られた。
(b)一方、比較例である試料No.2および3は、所望のサイクル特性が得られなかった。
Claims (2)
- 非水電解質二次電池の集電体用のクロム含有鋼板であって、
前記クロム含有鋼板は、Crを10質量%以上含有する成分組成を有し、
前記クロム含有鋼板の表面に凹部と凸部とを有する凹凸構造を備え、該凸部の平均高さが20nm以上100nm以下であり、かつ該凸部間の平均間隔が20nm以上300nm以下である、非水電解質二次電池の集電体用のクロム含有鋼板。 - 請求項1に記載の非水電解質二次電池の集電体用のクロム含有鋼板の製造方法であって、
素材クロム含有鋼板を準備し、
ついで、前記素材クロム含有鋼板の表面の酸化皮膜を除去し、
ついで、前記酸化皮膜を除去した素材クロム含有鋼板に、前記素材クロム含有鋼板の活性態域でエッチング処理を施し、
ついで、前記エッチング処理を施した素材クロム含有鋼板に、酸化性を有する溶液中での浸漬処理、または、前記素材クロム含有鋼板の不動態域における電解処理を施す、
非水電解質二次電池の集電体用のクロム含有鋼板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020548842A JP7006801B2 (ja) | 2019-07-09 | 2020-06-02 | 非水電解質二次電池の集電体用のクロム含有鋼板およびその製造方法 |
EP20836825.8A EP3974549A4 (en) | 2019-07-09 | 2020-06-02 | CHROMIUM-CONTAINING STEEL SHEET FOR COLLECTORS OF NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES AND PROCESS FOR ITS MANUFACTURE |
US17/623,680 US12119499B2 (en) | 2019-07-09 | 2020-06-02 | Chromium-containing steel sheet for current collector of nonaqueous electrolyte secondary battery and method for manufacturing the same |
KR1020227000339A KR20220017484A (ko) | 2019-07-09 | 2020-06-02 | 비수 전해질 2차 전지의 집전체용의 크롬 함유 강판 및 그의 제조 방법 |
CN202080049415.1A CN114127999A (zh) | 2019-07-09 | 2020-06-02 | 用于非水电解质二次电池的集流体的含铬钢板及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019127490 | 2019-07-09 | ||
JP2019-127490 | 2019-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021005919A1 true WO2021005919A1 (ja) | 2021-01-14 |
Family
ID=74114192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/021681 WO2021005919A1 (ja) | 2019-07-09 | 2020-06-02 | 非水電解質二次電池の集電体用のクロム含有鋼板およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12119499B2 (ja) |
EP (1) | EP3974549A4 (ja) |
JP (1) | JP7006801B2 (ja) |
KR (1) | KR20220017484A (ja) |
CN (1) | CN114127999A (ja) |
WO (1) | WO2021005919A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022131189A1 (ja) * | 2020-12-15 | 2022-06-23 | Jfeスチール株式会社 | 非水電解質二次電池の集電体用のクロム含有鋼板 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08321310A (ja) * | 1995-03-17 | 1996-12-03 | Canon Inc | 二次電池用電極、その製造方法及び該電極を有する二次電池 |
JP2007242424A (ja) | 2006-03-08 | 2007-09-20 | Nissan Motor Co Ltd | バイポーラ電池 |
JP2009167486A (ja) | 2008-01-18 | 2009-07-30 | Nisshin Steel Co Ltd | 電池構成部材用フェライト系ステンレス鋼 |
JP2010033782A (ja) * | 2008-07-25 | 2010-02-12 | Nisshin Steel Co Ltd | リチウムイオン二次電池用集電体および負極材料 |
JP2010262843A (ja) * | 2009-05-08 | 2010-11-18 | Furukawa Electric Co Ltd:The | リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の集電体、リチウムイオン二次電池用の負極の製造方法 |
JP2013206741A (ja) * | 2012-03-28 | 2013-10-07 | National Institute Of Advanced Industrial & Technology | リチウム二次電池用電極及びリチウム二次電池並びにこれを用いた電気機器 |
JP2014229556A (ja) * | 2013-05-24 | 2014-12-08 | 京セラ株式会社 | 二次電池 |
JP2015513182A (ja) * | 2012-04-16 | 2015-04-30 | エルジー・ケム・リミテッド | リチウム二次電池用電極の製造方法及びそれを用いて製造される電極 |
JP2015210917A (ja) * | 2014-04-25 | 2015-11-24 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3838329A1 (de) | 1987-11-11 | 1989-05-24 | Ricoh Kk | Negative elektrode fuer sekundaerbatterie |
JP4085473B2 (ja) | 1998-06-18 | 2008-05-14 | 宇部興産株式会社 | 非水二次電池の充電方法 |
JP2003297380A (ja) * | 2002-04-03 | 2003-10-17 | Nisshin Steel Co Ltd | 燃料電池用ステンレス鋼製セパレータ |
JP5546957B2 (ja) * | 2010-06-09 | 2014-07-09 | 古河電池株式会社 | リチウムイオン二次電池用負極およびリチウムイオン二次電池 |
JP2014212028A (ja) * | 2013-04-18 | 2014-11-13 | Jsr株式会社 | 蓄電デバイス用電極および蓄電デバイス |
CN111263996B (zh) * | 2017-10-25 | 2023-03-31 | 杰富意钢铁株式会社 | 燃料电池的隔板用不锈钢板的制造方法 |
KR102601896B1 (ko) * | 2019-01-21 | 2023-11-13 | 제이에프이 스틸 가부시키가이샤 | 연료 전지의 세퍼레이터용의 오스테나이트계 스테인리스 강판의 제조 방법 |
-
2020
- 2020-06-02 US US17/623,680 patent/US12119499B2/en active Active
- 2020-06-02 JP JP2020548842A patent/JP7006801B2/ja active Active
- 2020-06-02 WO PCT/JP2020/021681 patent/WO2021005919A1/ja unknown
- 2020-06-02 CN CN202080049415.1A patent/CN114127999A/zh active Pending
- 2020-06-02 KR KR1020227000339A patent/KR20220017484A/ko not_active Application Discontinuation
- 2020-06-02 EP EP20836825.8A patent/EP3974549A4/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08321310A (ja) * | 1995-03-17 | 1996-12-03 | Canon Inc | 二次電池用電極、その製造方法及び該電極を有する二次電池 |
JP2007242424A (ja) | 2006-03-08 | 2007-09-20 | Nissan Motor Co Ltd | バイポーラ電池 |
JP2009167486A (ja) | 2008-01-18 | 2009-07-30 | Nisshin Steel Co Ltd | 電池構成部材用フェライト系ステンレス鋼 |
JP2010033782A (ja) * | 2008-07-25 | 2010-02-12 | Nisshin Steel Co Ltd | リチウムイオン二次電池用集電体および負極材料 |
JP2010262843A (ja) * | 2009-05-08 | 2010-11-18 | Furukawa Electric Co Ltd:The | リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の集電体、リチウムイオン二次電池用の負極の製造方法 |
JP2013206741A (ja) * | 2012-03-28 | 2013-10-07 | National Institute Of Advanced Industrial & Technology | リチウム二次電池用電極及びリチウム二次電池並びにこれを用いた電気機器 |
JP2015513182A (ja) * | 2012-04-16 | 2015-04-30 | エルジー・ケム・リミテッド | リチウム二次電池用電極の製造方法及びそれを用いて製造される電極 |
JP2014229556A (ja) * | 2013-05-24 | 2014-12-08 | 京セラ株式会社 | 二次電池 |
JP2015210917A (ja) * | 2014-04-25 | 2015-11-24 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3974549A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022131189A1 (ja) * | 2020-12-15 | 2022-06-23 | Jfeスチール株式会社 | 非水電解質二次電池の集電体用のクロム含有鋼板 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021005919A1 (ja) | 2021-09-13 |
EP3974549A1 (en) | 2022-03-30 |
CN114127999A (zh) | 2022-03-01 |
JP7006801B2 (ja) | 2022-02-10 |
KR20220017484A (ko) | 2022-02-11 |
US20220246943A1 (en) | 2022-08-04 |
EP3974549A4 (en) | 2022-06-01 |
US12119499B2 (en) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103154292B (zh) | 耐腐蚀性和导电性优异的铁素体系不锈钢及其制造方法、固体高分子型燃料电池隔板以及固体高分子型燃料电池 | |
CN110521042B (zh) | 燃料电池的隔板用不锈钢板及其制造方法 | |
JP6763501B1 (ja) | 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法 | |
TW201933663A (zh) | 燃料電池之分隔件用之不鏽鋼鋼板之製造方法 | |
WO2021006099A1 (ja) | 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法 | |
WO2021005919A1 (ja) | 非水電解質二次電池の集電体用のクロム含有鋼板およびその製造方法 | |
JP7103551B1 (ja) | 非水電解質二次電池の集電体用のクロム含有鋼板 | |
CN102713004B (zh) | 接触电阻低的通电部件用不锈钢及其制造方法 | |
JP6243695B2 (ja) | リチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼および該ステンレス鋼を用いたリチウムイオン二次電池電解液保管容器 | |
JP6159208B2 (ja) | ステンレス鋼製リチウムイオン二次電池電解液保管容器 | |
CN110199047A (zh) | 具有优异的接触电阻的用于聚合物燃料电池隔板的不锈钢及其制造方法 | |
CN112262225B (zh) | 二次电池正极用不锈钢箔集电体 | |
JP7566289B2 (ja) | 燃料電池のバイポーラプレート用のフェライト系ステンレス鋼、表面粗さの調整制御方法、不動態化膜の形成方法および使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020548842 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20836825 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020836825 Country of ref document: EP Effective date: 20211223 |
|
ENP | Entry into the national phase |
Ref document number: 20227000339 Country of ref document: KR Kind code of ref document: A |