WO2021002315A1 - 樹脂組成物および成形品 - Google Patents

樹脂組成物および成形品 Download PDF

Info

Publication number
WO2021002315A1
WO2021002315A1 PCT/JP2020/025470 JP2020025470W WO2021002315A1 WO 2021002315 A1 WO2021002315 A1 WO 2021002315A1 JP 2020025470 W JP2020025470 W JP 2020025470W WO 2021002315 A1 WO2021002315 A1 WO 2021002315A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
core
shell
elastomer
mass
Prior art date
Application number
PCT/JP2020/025470
Other languages
English (en)
French (fr)
Inventor
裕太 山元
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to JP2021530009A priority Critical patent/JPWO2021002315A1/ja
Publication of WO2021002315A1 publication Critical patent/WO2021002315A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals

Definitions

  • the present invention relates to a resin composition and a molded product.
  • the present invention relates to a resin composition containing a polyacetal resin as a main component.
  • Polyacetal resins are used in a wide range of applications as plastics having excellent mechanical properties, electrical properties, and chemical properties such as chemical resistance. Further, in order to impart various functions to the polyacetal resin, it is being studied to add various additives. For example, a composition composed of a polyacetal resin and a thermoplastic polyurethane has been proposed and put into practical use. However, since the composition composed of the polyacetal resin and the thermoplastic polyurethane has poor compatibility, it tends to cause delamination, and has a problem that the adhesion of the weld portion formed by injection molding is poor. It is known (Patent Document 1).
  • An object of the present invention is to provide a novel resin composition and a molded product having excellent adhesion of a weld portion under such a situation.
  • a resin composition containing a polyacetal resin and a core-shell type elastomer wherein the resin composition is molded into a 1.6 mm thick test piece having a weld portion in the center, and at 10 mm / min according to ASTM D638.
  • the weld elongation when pulled is 20% or more, and the glossiness at 20 ° according to the light intensity measurement of JIS Z 8741 when the resin composition is molded into a test piece having a thickness of 3.2 mm is 70.0% or more.
  • the resin composition contains 60 to 95% by mass of the polyacetal resin and 40 to 5% by mass of the core-shell elastomer (however, the total of the polyacetal resin and the core-shell elastomer does not exceed 100% by mass). ), The resin composition according to ⁇ 1> or ⁇ 2>.
  • the resin composition contains 70 to 95% by mass of the polyacetal resin and 30 to 5% by mass of the core-shell elastomer (however, the total of the polyacetal resin and the core-shell elastomer does not exceed 100% by mass). ), The resin composition according to ⁇ 1> or ⁇ 2>. ⁇ 5> Any of ⁇ 1> to ⁇ 4>, wherein the resin composition does not contain thermoplastic polyurethane, or the content of the thermoplastic polyurethane is 3% by mass or less of the content of the core-shell type elastomer. The resin composition according to one.
  • ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the resin composition is molded into a multipurpose test piece having a thickness of 4 mm, and the flexural modulus measured according to ISO178 is 1700 MPa or less. .. ⁇ 7>
  • the average secondary particle diameter of the core-shell type elastomer present in the weld portion is 200 nm or less.
  • ⁇ 8> The ratio of the longitudinal elastic modulus of the shell portion of the core-shell type elastomer to the longitudinal elastic modulus of the polyacetal resin measured using the SPM (scanning probe microscope, cantilever spring constant: 9 N / m) (vertical elastic modulus of the shell portion). / The resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein the polyacetal resin has a longitudinal elastic modulus of 0.08 or more.
  • ⁇ 9> A molded product formed from the resin composition according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> The molded product according to ⁇ 9>, which is an injection molded product.
  • ⁇ 11> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 8>.
  • a polyacetal resin and a core-shell type elastomer are mixed with a tumbler and then extruded with an extruder to obtain a strand shape.
  • L / D which is the ratio of the screw length L (mm) of the extruder to the screw diameter D (mm)
  • the resin composition of the present invention is a resin composition containing a polyacetal resin and a core-shell type elastomer, and the resin composition is molded into a 1.6 mm thick test piece having a weld portion in the center, and ASTM D638 is formed.
  • the weld elongation when pulled at 10 mm / min is 20% or more
  • polyacetal resins are expected to have various uses, and one of them is expected to have glossiness.
  • the adhesion of the weld portion is improved while using polyurethane by adjusting the method for producing the composition.
  • glossiness cannot be obtained.
  • a glossy resin composition was obtained by using a specific core-shell type elastomer.
  • a core-shell type elastomer is used instead of the thermoplastic polyurethane, and further, the core-shell type elastomer having small particles is adjusted so as to be dispersed and present in the vicinity of the weld portion, thereby increasing the weld elongation. This has succeeded in improving the adhesion of the weld portion.
  • the details of the present invention will be described below.
  • the resin composition of the present invention contains a polyacetal resin.
  • the polyacetal resin is not particularly limited, and even if it is a homopolymer containing only a divalent oxymethylene group as a constituent unit, it has a divalent oxymethylene group and a divalent oxyalkylene having 2 to 6 carbon atoms. It may be a copolymer containing a group as a constituent unit.
  • Examples of the oxyalkylene group having 2 to 6 carbon atoms include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the ratio of the oxyalkylene group having 2 to 6 carbon atoms to the total number of moles of the oxymethylene group and the oxyalkylene group having 2 to 6 carbon atoms is not particularly limited, and is 0.5 to 10 mol. It may be%.
  • trioxane is usually used as a main raw material.
  • cyclic formal or cyclic ether can be used.
  • Specific examples of cyclic formal include 1,3-dioxolane, 1,3-dioxane, 1,3-dioxepan, 1,3-dioxocan, 1,3,5-trioxepan, 1,3,6-trioxocan and the like.
  • Specific examples of the cyclic ether include ethylene oxide, propylene oxide and butylene oxide.
  • 1,3-dioxolane may be used as a main raw material
  • 1,3-dioxane may be used as a main raw material
  • 1,3-dioxepan may be used as the main raw material.
  • the amount of hemiformal terminal groups, the amount of formyl terminal groups, and the amount of terminal groups unstable to heat, acid, and base are small.
  • the hemiformal terminal group is represented by -OCH 2 OH
  • the formyl terminal group is represented by -CHO.
  • polyacetal resin in addition to the above, the polyacetal resins described in paragraphs 0018 to 0043 of JP2015-07724A can be used, and these contents are incorporated in the present specification.
  • the resin composition of the present invention preferably contains a polyacetal resin in an amount of 60% by mass or more, more preferably 65% by mass or more, further preferably 70% by mass or more, and further preferably 75% by mass or more. It is even more preferable to contain 78% by mass or more.
  • the upper limit is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. Within such a range, the effects of the present invention tend to be exhibited more effectively.
  • the resin composition of the present invention may contain only one type of polyacetal resin, or may contain two or more types of polyacetal resin. When two or more types are included, the total amount is preferably in the above range.
  • the resin composition of the present invention contains a core-shell type elastomer.
  • the core-shell type elastomer is a polymer having a multi-layer structure having a core portion and a shell layer covering a part or all of the core portion, and Kaneka Corporation's Kaneace series and Mitsubishi Chemical Corporation's Metabrene series are known.
  • Kaneka M910 series manufactured by Kaneka Corporation can be preferably used.
  • a glossy resin composition can be obtained by using a core-shell type elastomer.
  • the core-shell type elastomer by using the core-shell type elastomer, it is possible to prevent the particles from being crushed even in the vicinity of the weld portion. Further, by selecting the type of core-shell elastomer so that the average secondary particle diameter of the core-shell elastomer existing in the vicinity of the weld portion is within a predetermined range, small particles of the core-shell elastomer are dispersed in the vicinity of the weld portion. be able to. As will be described in more detail later, the secondary average particle size of the core-shell elastomer can be adjusted to be within a predetermined range by adjusting various conditions during melt-kneading.
  • the type of core-shell elastomer used in the present invention is not particularly limited, but a core-shell elastomer containing butadiene-containing rubber and an acrylic resin in the shell portion is preferable. When such a core-shell type elastomer is used, the effect of the present invention is exhibited more effectively.
  • the core-shell elastomer used in the present invention is the ratio of the longitudinal elastic modulus of the shell portion of the core-shell elastomer to the longitudinal elastic modulus of the polyacetal resin (shell) measured using an SPM (scanning probe microscope, cantilever spring constant: 9 N / m).
  • the longitudinal elastic modulus of the portion / the longitudinal elastic modulus of the polyacetal resin) is preferably 0.08 or more, more preferably 0.10 or more, further preferably 0.15 or more, and 0.2 or more. Is more preferable.
  • the upper limit value of the longitudinal elastic modulus of the shell portion / the longitudinal elastic modulus of the polyacetal resin is not particularly determined, but is practically 1.0 or less.
  • the longitudinal elastic modulus is measured according to the description of Examples described later.
  • the resin composition of the present invention preferably contains a core-shell type elastomer in an amount of 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, further preferably 30% by mass or less, further preferably 25% by mass or less, and 22% by mass or less. Is even more preferable. Within such a range, the effects of the present invention tend to be exhibited more effectively.
  • the resin composition of the present invention may contain only one type of core-shell type elastomer, or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
  • the resin composition of the present invention contains 60 to 95% by mass (preferably 70 to 95% by mass) of the polyacetal resin and 40 to 5% by mass (preferably 30 to 5% by mass) of the core-shell elastomer (however, polyacetal).
  • the total of the resin and the core-shell type elastomer does not exceed 100% by mass).
  • the total amount of the polyacetal resin and the core-shell type elastomer preferably occupies 95% by mass or more, and more preferably 98% by mass or more of the resin composition.
  • the resin composition of the present invention may contain any conventionally known additives and fillers as long as the object of the present invention is not impaired.
  • the additives and fillers used in the present invention include thermoplastic resins other than polyacetal resins, ultraviolet absorbers, antioxidants, stabilizers, formaldehyde traps, antistatic agents, carbon fibers, glass fibers, and glass flakes.
  • examples include potassium titanate whiskers.
  • the resin composition of the present invention also does not contain thermoplastic polyurethane, or the content of the thermoplastic polyurethane is 3% by mass or less (preferably 1% by mass or less, more preferably 0.% by mass) of the content of the core-shell type elastomer. 1% by mass or less) is preferable. With such a configuration, the weld adhesion can be further improved.
  • the resin composition of the present invention is molded into a multipurpose test piece having a thickness of 4 mm, and the flexural modulus measured according to ISO178 is preferably 1700 MPa or less, more preferably 1650 MPa or less, and more preferably 1600 MPa or less. More preferred.
  • the lower limit value is not particularly specified, but is practically, for example, 1000 MPa or more, further 1100 MPa or more, 1300 MPa or more, 1400 MPa or more, and 1500 MPa or more.
  • the resin composition of the present invention has a weld elongation of 20% or more and 25% or more when molded into a 1.6 mm thick test piece having a weld portion in the center and pulled at 10 mm / min according to ASTM D638. It is preferably, more preferably 30% or more, and even more preferably 35% or more.
  • the upper limit of the weld elongation is not particularly defined, but for example, 99% or less, further 90% or less, and 80% or less are practical.
  • the resin composition of the present invention has an average secondary particle diameter of 50 nm or more of the core-shell elastomer present in the weld portion when molded into a 3.2 mm thick test piece having a weld portion in the center.
  • the average secondary particle diameter is preferably 500 nm or less, more preferably 300 nm or less, further preferably 200 nm or less, further preferably 150 nm or less, and further preferably 120 nm or less. Even more preferably, it may be 110 nm or less, and even 100 nm or less.
  • the resin composition of the present invention has a glossiness of 70.0% or more at 20 ° according to the photometric measurement of JIS Z 8741 when the resin composition is molded into a test piece having a thickness of 3.2 mm.
  • the glossiness is preferably 73.0% or more, and more preferably 75.0% or more.
  • the upper limit of the glossiness is ideally 100%, but is practically 90% or less and 80% or less.
  • the polyacetal resin composition of the present invention contains the above-mentioned essential components and, if necessary, any of the above-mentioned optional components.
  • the production method thereof is arbitrary, and any conventionally known method for producing a resin composition may be used to mix and knead these raw materials.
  • Examples of the kneading machine include a kneader, a Banbury mixer, and an extruder.
  • the various conditions and devices for mixing and kneading are also not particularly limited, and may be appropriately selected and determined from any conventionally known conditions.
  • the kneading is preferably performed at a temperature equal to or higher than the melting temperature of the polyacetal resin, specifically, a temperature higher than the melting temperature of the polyacetal resin.
  • the following methods can be preferably used in order to suppress the secondary aggregation of the core-shell type elastomer and adjust the average secondary particle size to an appropriate value.
  • the polyacetal resin and the core-shell type elastomer are mixed with a tumbler, extruded by an extruder, formed into a strand, and then cut. There is a method of making pellets.
  • the extruder it is preferable to use a twin-screw extruder because secondary agglutination is likely to occur in a single-screw extruder.
  • L / D which is the ratio of the screw length L (mm) to the diameter D (mm) of the screw, satisfies the relationship of 20 ⁇ (L / D) ⁇ 100, and 25 ⁇ (L / L /). D) It is more preferable to satisfy ⁇ 70.
  • the shape of the die nozzle is not particularly limited, but in terms of pellet shape, a circular nozzle having a diameter of 1 to 10 mm is preferable, and a circular nozzle having a diameter of 2 to 7 mm is more preferable.
  • the term "circle” as used herein is not limited to a circle in a geometrical sense, but includes a circle that is interpreted as a substantially circle in the technical field of the present embodiment.
  • the melting temperature of the resin composition at the time of melt-kneading is appropriately determined in relation to the melting temperature of the resin, but is preferably 170 ° C. or higher, more preferably 180 ° C. or higher, and 190 ° C. or higher. It is more preferable to have. Further, the melting temperature is preferably 250 ° C. or lower, more preferably 230 ° C. or lower. By setting the melting temperature to 170 ° C. or higher, melting is sufficiently performed, and the production amount tends to be remarkably improved. Further, by setting the temperature to 250 ° C. or lower, discoloration of the resin composition due to thermal deterioration can be more effectively suppressed.
  • the screw rotation speed during melt-kneading is preferably 50 to 500 rpm, more preferably 70 to 350 rpm.
  • the screw rotation speed is preferably 50 to 500 rpm, more preferably 70 to 350 rpm.
  • the screw rotation speed is preferably 50 to 500 rpm or more, the core-shell type elastomer can be easily finely dispersed, and the occurrence of secondary aggregation can be suppressed more effectively.
  • the discharge amount is preferably 5 to 1,000 kg / hr, and more preferably 7 to 800 kg / hr.
  • the core-shell type elastomer can be easily finely dispersed, and the occurrence of secondary aggregation can be effectively suppressed. Further, by setting the weight to 1,000 kg / hr or less, heat generation during melt-kneading can be effectively suppressed, and discoloration of the resin composition due to thermal deterioration can be more effectively suppressed.
  • the molded article of the present invention is formed from the polyacetal resin composition of the present invention. Further, the pellet obtained by pelletizing the polyacetal resin composition of the present invention is usually injection-molded to obtain a molded product.
  • the pellet in the present invention is preferably cylindrical, preferably has a diameter of 1 to 10 mm, and more preferably 2 to 7 mm.
  • the term "cylindrical" as used herein means that, in addition to the cylindrical one in the geometrical sense, the one interpreted as a cylindrical one in the technical field of the present invention is included. For example, a shape obtained by cutting a strand discharged from a nozzle having a circular discharge port is included in a columnar shape.
  • a preferable example of the molded product of the present invention is an injection molded product.
  • the injection-molded product is a molded product molded by injection molding, and usually, a fragile portion (weld portion) is formed in a portion where the molten resin joins in the mold.
  • the thickness of the molded product of the present invention preferably has, for example, a portion of 0.005 to 20 mm, and an appropriate thickness can be selected according to the application.
  • the shape of the molded product is not particularly limited and may be appropriately selected depending on the intended use and purpose of the molded product. For example, plate-shaped, plate-shaped, rod-shaped, sheet-shaped, film-shaped, cylindrical, annular, etc.
  • the molded product of the present invention may be a part or a finished product.
  • the polyacetal resin composition of the present invention and a molded product formed from the polyacetal resin composition are widely used in applications requiring glossiness. Specifically, it is preferably used for parts where appearance is particularly important among automobile parts, building material parts, electrical / electronic parts, office equipment parts, and daily miscellaneous goods parts.
  • Elastomer manufactured by Mitsubishi Chemical
  • Elastomer 4 Core-shell type elastomer containing silicone rubber for the core and acrylonitrile styrene resin for the shell, Metabrene, manufactured by Mitsubishi Chemical Corporation, SRK-200
  • Elastomer 5 Thermoplastic polyurethane, manufactured by BASF, product number: Elastolan S80ASH10
  • Examples 1 to 8, Comparative Examples 1 to 5, Reference Example 1 Each component shown in Tables 1 to 3 was uniformly mixed using a super mixer manufactured by Kawada Seisakusho Co., Ltd. at the ratio (parts by mass) shown in Tables 1 to 3. The obtained mixture was subjected to cylinder temperature (“PCM-30” manufactured by Ikegai Corp.) with a vented twin-screw extruder (“PCM-30” manufactured by Ikegai Corp.) having a screw diameter (D) of 30 mm, a screw length (L) of 760 mm, and a die nozzle diameter of 3.5 mm. Pellets of a polyacetal resin composition were produced by melt-shear mixing at a melting temperature of 200 ° C., a screw rotation speed of 120 rpm, and a discharge rate of 10 kg / hour.
  • ⁇ Flexural modulus> The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80 ° C. Next, the dried pellets were injection-molded in accordance with the ISO9998-2 standard by setting the cylinder temperature to 195 ° C. and the mold temperature to 90 ° C. using an injection molding machine. In this way, a multipurpose test piece (ISO test piece) having a thickness of 4 mm was obtained. Next, the 4 mm-thick multipurpose test piece (ISO test piece) is subjected to a bending test at a bending test speed of 2 mm / min according to the method described in ISO178 using a fully automatic bending tester which is a bending tester. , The flexural modulus was measured. As an injection molding machine, EC-100S manufactured by Toshiba Machine Co., Ltd. was used. A fully automatic bending tester manufactured by Shimadzu Corporation was used. The results are shown in Tables 1 to 3 below. The unit is shown in MPa.
  • ⁇ Weld growth> The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80 ° C. Next, the dried pellets were set to a cylinder temperature of 195 ° C. and a mold temperature of 90 ° C. using an injection molding machine, and an ASTM tensile test piece (thickness 1.6 mm) having a weld portion in the center. ) was prepared, and a tensile test was performed according to ASTM D638 to measure the weld elongation. As an injection molding machine, EC-100S manufactured by Toshiba Machine Co., Ltd. was used. The results are shown in Tables 1 to 3 below. The unit is shown in%.
  • ⁇ Average secondary particle size of elastomer> The results are shown in Tables 1 to 3 below.
  • the unit is kJ / m 2 .
  • the pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80 ° C. Next, the dried pellets were set to a cylinder temperature of 195 ° C. and a mold temperature of 90 ° C. using an injection molding machine, and an ASTM tensile test piece (thickness 3.2 mm) having a weld portion in the center. ) Was prepared.
  • a test piece for scanning electron microscope (SEM) observation was cut out with a diamond knife so as to be parallel to the flow direction at the time of molding and include a weld portion.
  • SEM scanning electron microscope
  • an SEM image was acquired using a scanning electron microscope (SEM). From the obtained SEM image, the average value of the maximum lengths of the island-shaped portions derived from the elastomer was taken as the average secondary particle diameter of the elastomer.
  • SEM scanning electron microscope
  • the vapor deposition of osmium tetroxide was carried out using a "osmium coater" manufactured by Meiwaforsis Co., Ltd. under the conditions of 8 mA and 60 seconds.
  • a scanning electron microscope "scanning electron microscope (SEM) S-4800” manufactured by Hitachi High-Technologies is used, and SEM under the conditions of acceleration voltage: 1 kV, signal: LA100 (U), emission current: 6 ⁇ A, probe current: Normal. I got an image.
  • SEM scanning electron microscope
  • ⁇ Measurement of longitudinal elastic modulus> A test piece for observation with a scanning probe microscope (SPM) was cut out in the same procedure as the measurement of the average secondary particle size, and a longitudinal elastic modulus image was obtained by a force curve mapping method of the scanning probe microscope (SPM). From the obtained longitudinal elastic modulus image, the longitudinal elastic modulus at a total of 10 points was measured for the polyacetal resin portion. Next, from the longitudinal elastic modulus image, the longitudinal elastic modulus was measured at a total of 10 locations for the shell portion of the core-shell type elastomer. For the non-core shell type elastomer, the longitudinal elastic modulus near the interface with the polyacetal resin was measured.
  • the longitudinal elastic modulus ratio (the longitudinal elastic modulus of the shell portion / the longitudinal elastic modulus of the polyacetal resin) was calculated from the longitudinal elastic modulus of the shell portion of the core-shell type elastomer and the longitudinal elastic modulus of the polyacetal resin.
  • the scanning probe microscope uses "SPM-9700HT” manufactured by Shimadzu Corporation, scanner: 30 ⁇ m ⁇ 30 ⁇ m, cantilever: “AC200 (spring constant 9 N / m)” manufactured by Olympus, sweep speed: 1 Hz, sweep range: 1500 nm, I gain: An elastic modulus image was obtained under 100 conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

ウエルド部の密着性に優れた新規樹脂組成物および成形品の提供。ポリアセタール樹脂と、コアシェル型エラストマーを含む樹脂組成物であって、樹脂組成物を、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上であり、前記樹脂組成物を3.2mm厚の試験片に成形した際のJIS Z 8741の光度測定に準拠した20°における光沢度が70.0%以上である、樹脂組成物。

Description

樹脂組成物および成形品
 本発明は、樹脂組成物および成形品に関する。特に、ポリアセタール樹脂を主成分とする樹脂組成物に関する。
 ポリアセタール樹脂は、機械的性質、電気的性質、および、耐薬品性などの化学的性質に優れたプラスチックとして、広範囲の用途で使用されている。
 また、ポリアセタール樹脂に種々の機能を付与するため、各種添加剤を配合することが検討されている。例えば、ポリアセタール樹脂と熱可塑性ポリウレタンとからなる組成物が提案されており、実用化されている。ところが、ポリアセタール樹脂と熱可塑性ポリウレタンからなる組成物は、相溶性が悪いために、層間剥離を引き起こしやすく、射出成形で形成されるウエルド部の密着性が悪いという問題点を有していることが知られている(特許文献1)。
特開平07-138449号公報
 上述の通り、ポリアセタール樹脂は広範囲の用途で使用されている。また、射出成形用途での展開が期待される。そのため、ウエルド部の密着性が良好な新規な材料が求められている。
 本発明では、かかる状況のもと、ウエルド部の密着性に優れた新規樹脂組成物および成形品を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、下記手段により、上記課題は解決された。
<1>ポリアセタール樹脂と、コアシェル型エラストマーを含む樹脂組成物であって、前記樹脂組成物を、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上であり、前記樹脂組成物を3.2mm厚の試験片に成形した際のJIS Z 8741の光度測定に準拠した20°における光沢度が70.0%以上である、樹脂組成物。
<2>前記コアシェル型エラストマーが、ブタジエン含有ゴムを含み、シェル部にアクリル樹脂を含む、<1>に記載の樹脂組成物。
<3>前記樹脂組成物は、前記ポリアセタール樹脂60~95質量%と、前記コアシェル型エラストマー40~5質量%を含む(ただし、ポリアセタール樹脂とコアシェル型エラストマーの合計が100質量%を超えることはない)、<1>または<2>に記載の樹脂組成物。
<4>前記樹脂組成物は、前記ポリアセタール樹脂70~95質量%と、前記コアシェル型エラストマー30~5質量%を含む(ただし、ポリアセタール樹脂とコアシェル型エラストマーの合計が100質量%を超えることはない)、<1>または<2>に記載の樹脂組成物。
<5>前記樹脂組成物は、熱可塑性ポリウレタンを含まないか、熱可塑性ポリウレタンの含有量が、前記コアシェル型エラストマーの含有量の3質量%以下である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記樹脂組成物を4mm厚さの多目的試験片に成形し、ISO178に従って測定した曲げ弾性率が1700MPa以下である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記樹脂組成物を、ウエルド部を中央に有する3.2mm厚さの試験片に成形したときの、ウエルド部に存在する前記コアシェル型エラストマーの平均二次粒子径が200nm以下である、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記SPM(走査型プローブ顕微鏡、カンチレバーばね定数:9N/m)を用いて測定したコアシェル型エラストマーのシェル部の縦弾性率とポリアセタール樹脂の縦弾性率の比率(シェル部の縦弾性率/ポリアセタール樹脂の縦弾性率)が0.08以上である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9><1>~<8>のいずれか1つに記載の樹脂組成物から形成された成形品。
<10>射出成形品である、<9>に記載の成形品。
<11><1>~<8>のいずれか1つに記載の樹脂組成物の製造方法であって、ポリアセタール樹脂とコアシェル型エラストマーをタンブラーで混合した後、押出機にて押出し、ストランド状とした後に切断してペレットとすることを含み、前記押出機のスクリューの長さL(mm)とスクリューの直径D(mm)の比であるL/Dが、20<(L/D)<100の関係を満たし、前記ストランド状とするためのダイノズルが直径1~10mmである、樹脂組成物の製造方法。
 本発明により、ウエルド部の密着性に優れた新規樹脂組成物および成形品を提供可能になった。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の樹脂組成物は、ポリアセタール樹脂と、コアシェル型エラストマーを含む樹脂組成物であって、前記樹脂組成物を、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上であり、前記樹脂組成物を3.2mm厚の試験片に成形した際のJIS Z 8741の光度測定に準拠した20°における光沢度が70.0%以上であることを特徴とする。
 上述のとおり、ポリアセタール樹脂について、様々な用途が期待されるが、その1つとして、光沢性が求められる用途も想定された。エラストマーとして、ポリウレタンを用いた組成物として、例えば、上述の特許文献1では、組成物の製造方法を調整することにより、ポリウレタンを用いつつもウエルド部の密着性を改良している。しかしながら、ポリウレタンを用いた場合、光沢性が得られない。
 そして、本発明では、特定のコアシェル型エラストマーを用いることにより、光沢性のある樹脂組成物が得られた。
 また、本発明では、熱可塑性ポリウレタンに代えて、コアシェル型エラストマーを用い、さらに、ウエルド部付近において、粒子が小さいコアシェル型エラストマーを分散して存在するように調整することにより、ウエルド伸びを大きくすることができ、ウエルド部の密着性を向上させることに成功したものである。
 以下、本発明の詳細について説明する。
<ポリアセタール樹脂>
 本発明の樹脂組成物は、ポリアセタール樹脂を含む。
 ポリアセタール樹脂は特に限定されるものではなく、2価のオキシメチレン基のみを構成単位として含むホモポリマーであっても、2価のオキシメチレン基と、炭素数が2~6の2価のオキシアルキレン基とを構成単位として含むコポリマーであってもよい。
 炭素数が2~6のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、および、オキシブチレン基などが挙げられる。
 ポリアセタール樹脂においては、オキシメチレン基および炭素数2~6のオキシアルキレン基の総モル数に占める炭素数2~6のオキシアルキレン基の割合は特に限定されるものではなく、0.5~10モル%であればよい。
 上記ポリアセタール樹脂を製造するためには通常、主原料としてトリオキサンが用いられる。また、ポリアセタール樹脂中に炭素数2~6のオキシアルキレン基を導入するには、環状ホルマールや環状エーテルを用いることができる。環状ホルマールの具体例としては、1,3-ジオキソラン、1,3-ジオキサン、1,3-ジオキセパン、1,3-ジオキソカン、1,3,5-トリオキセパン、1,3,6-トリオキソカンなどが挙げられ、環状エーテルの具体例としては、エチレンオキシド、プロピレンオキシドおよびブチレンオキシドなどが挙げられる。ポリアセタール樹脂中にオキシエチレン基を導入するには、主原料として、1,3-ジオキソランを用いればよく、オキシプロピレン基を導入するには、主原料として、1,3-ジオキサンを用いればよく、オキシブチレン基を導入するには、主原料として、1,3-ジオキセパンを用いればよい。なお、ポリアセタール樹脂においては、ヘミホルマール末端基量、ホルミル末端基量、熱や酸、塩基に対して不安定な末端基量が少ない方がよい。ここで、ヘミホルマール末端基とは、-OCHOHで表されるものであり、ホルミル末端基とは-CHOで表されるものである。
 ポリアセタール樹脂としては、上記の他、特開2015-074724号公報の段落0018~0043に記載のポリアセタール樹脂を用いることができ、これらの内容は本明細書に組み込まれる。
 本発明の樹脂組成物は、ポリアセタール樹脂を60質量%以上含むことが好ましく、65質量%以上含むことがより好ましく、70質量%以上含むことがさらに好ましく、75質量%以上含むことが一層好ましく、78質量%以上含むことがより一層好ましい。上限は、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される傾向にある。
 本発明の樹脂組成物は、ポリアセタール樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<コアシェル型エラストマー>
 本発明の樹脂組成物は、コアシェル型エラストマーを含む。
 コアシェル型エラストマーとは、コア部とその一部または全部を被覆するシェル層を有する多層構造のポリマーであり、カネカ社のカネエースシリーズや三菱ケミカル社のメタブレンシリーズが知られている。本発明では、例えば、カネカ社製のカネエースM910シリーズを好ましく用いることができる。
 本発明では、コアシェル型エラストマーを用いることにより、光沢性のある樹脂組成物とすることができる。
 また、本発明では、コアシェル型エラストマーを用いることにより、ウエルド部付近でも粒子をつぶれにくくすることができる。さらに、ウエルド部付近に存在するコアシェル型エラストマーの平均二次粒子径が所定の範囲となるようにコアシェル型エラストマーの種類を選定することにより、ウエルド部付近において、コアシェル型エラストマーの小さい粒子を分散させることができる。さらに詳細を後述するとおり、溶融混練の際に諸条件を調整することによっても、コアシェル型エラストマーの二次平均粒子径が所定の範囲となるように調整できる。結果として、ウエルド伸びを高くすることができ、ウエルド密着性が向上する。
 本発明で用いるコアシェル型エラストマーの種類は特に問わないが、ブタジエン含有ゴムを含み、シェル部にアクリル樹脂を含むコアシェル型エラストマーが好ましい。このようなコアシェル型エラストマーを用いると、本発明の効果がより効果的に発揮される。
 本発明で用いるコアシェル型エラストマーは、SPM(走査型プローブ顕微鏡、カンチレバーばね定数:9N/m)を用いて測定したコアシェル型エラストマーのシェル部の縦弾性率とポリアセタール樹脂の縦弾性率の比率(シェル部の縦弾性率/ポリアセタール樹脂の縦弾性率)が0.08以上であることが好ましく、0.10以上であることがより好ましく、0.15以上であることがさらに好ましく、0.2以上であることが一層好ましい。前記下限値以上とすることにより、成形時にウエルド部に発生する圧力によるコアシェル型エラストマーの変形をより効果的に抑制できる。また、前記シェル部の縦弾性率/ポリアセタール樹脂の縦弾性率の上限値は、特に、定めるものではないが、1.0以下が実際的である。
 縦弾性率は、後述する実施例の記載に従って測定される。
 本発明の樹脂組成物は、コアシェル型エラストマーを5質量%以上含むことが好ましく、10質量%以上含むことがより好ましく、15質量%以上含むことがさらに好ましい。上限は、40質量%以下であることが好ましく、35質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、25質量%以下であることが一層好ましく、22質量%以下であることがより一層好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される傾向にある。
 本発明の樹脂組成物は、コアシェル型エラストマーを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本発明の樹脂組成物は、ポリアセタール樹脂60~95質量%(好ましくは70~95質量%)と、前記コアシェル型エラストマー40~5質量%(好ましくは30~5質量%)を含む(ただし、ポリアセタール樹脂とコアシェル型エラストマーの合計が100質量%を超えることはない)ことが好ましい。
 本発明の樹脂組成物は、ポリアセタール樹脂とコアシェル型エラストマーの合計量が樹脂組成物の95質量%以上を占めることが好ましく、98質量%以上を占めることがより好ましい。
<他の成分>
 本発明の樹脂組成物は、本発明の目的を損なわない範囲内で、従来公知の任意の添加剤や充填剤を含んでいてもよい。本発明に用いる添加剤や充填剤としては、例えば、ポリアセタール樹脂以外の熱可塑性樹脂、紫外線吸収剤、酸化防止剤、安定剤、ホルムアルデヒド捕捉剤、帯電防止剤、炭素繊維、ガラス繊維、ガラスフレーク、チタン酸カリウムウイスカー等が挙げられる。これらの詳細は、特開2017-025257号公報の段落0113~0124の記載を参酌することができ、これらの内容は本明細書に組み込まれる。
 本発明の樹脂組成物は、また、熱可塑性ポリウレタンを含まないか、熱可塑性ポリウレタンの含有量が、コアシェル型エラストマーの含有量の3質量%以下(好ましくは1質量%以下、さらに好ましくは0.1質量%以下)であることが好ましい。このような構成とすることにより、ウエルド密着性をより向上させることができる。
<樹脂組成物の物性>
 本発明の樹脂組成物は、4mm厚さの多目的試験片に成形し、ISO178に従って測定した曲げ弾性率が1700MPa以下であることが好ましく、1650MPa以下であることがより好ましく、1600MPa以下であることがさらに好ましい。下限値は、特に定めるものではないが、例えば、1000MPa以上、さらには、1100MPa以上、1300MPa以上、1400MPa以上、1500MPa以上が実際的である。
 本発明の樹脂組成物は、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上であり、25%以上であることが好ましく、30%以上であることがより好ましく、35%以上であることがさらに好ましい。前記ウエルド伸びの上限値は特に定めるものではないが、例えば、99%以下、さらには、90%以下、80%以下が実際的である。
 さらに、本発明の樹脂組成物は、ウエルド部を中央に有する3.2mm厚さの試験片に成形したときの、ウエルド部に存在する前記コアシェル型エラストマーの平均二次粒子径が50nm以上であることが実際的である。また、前記平均二次粒子径が500nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましく、150nm以下であることが一層好ましく、120nm以下であることがより一層好ましく、110nm以下、さらには、100nm以下であってもよい。
 さらに、本発明の樹脂組成物は、樹脂組成物を3.2mm厚の試験片に成形した際のJIS Z 8741の光度測定に準拠した20°における光沢度が70.0%以上である。前記光沢度は、73.0%以上であることが好ましく、75.0%以上であることがより好ましい。前記光沢度の上限値は、100%が理想であるが、90%以下、80%以下が実際的である。
<ポリアセタール樹脂組成物の製造方法>
 本発明のポリアセタール樹脂組成物は、上述した必須成分および必要に応じ上述した任意の成分を含有させてなる。そしてその製造方法は任意であり、従来公知の任意の、樹脂組成物の製造方法を使用し、これらの原料を混合・混練すればよい。
 混練機は、ニーダー、バンバリーミキサー、押出機等が例示される。混合・混練の各種条件や装置についても、特に制限はなく、従来公知の任意の条件から適宜選択して決定すればよい。混練はポリアセタール樹脂が溶融する温度以上、具体的にはポリアセタール樹脂の融解温度以上で行うことが好ましい。
 特に、本発明のポリアセタール樹脂組成物において、コアシェル型エラストマーの二次凝集を抑制し、平均二次粒子径を適切な値に調整するためには、以下の方法を好ましく用いることができる。
 ポリアセタール樹脂組成物中におけるコアシェル型エラストマーの二次凝集の抑制するための好ましい製造方法の一例としてポリアセタール樹脂とコアシェル型エラストマーをタンブラーで混合した後、押出機にて押出し、ストランド状とした後に切断してペレットとする方法が挙げられる。この際、押出機としては単軸押出機では二次凝集が発生しやすいことから、二軸押出機を用いることが好ましい。中でもスクリューの長さL(mm)と同スクリューの直径D(mm)の比であるL/Dが、20<(L/D)<100の関係を満足することが好ましく、25<(L/D)<70を満足することがより好ましい。かかる比を20超とすることにより、コアシェル型エラストマーが微分散しやすくなり、二次凝集の発生をより効果的に抑制できる。また、前記比を100未満とすることにより、熱劣化により樹脂組成物が変色しやすくなるのを効果的に抑制できる。
 ダイノズルの形状も特に限定されないが、ペレット形状の点で、直径1~10mmの円形ノズルが好ましく、直径2~7mmの円形ノズルがより好ましい。ここでの円形とは、幾何学的な意味での円形に限定解釈されるものではなく、本実施形態の技術分野においてほぼ円形と解釈されるものを含む趣旨である。
 また、溶融混練時の樹脂組成物の溶融温度は、樹脂の融解温度との関係で適宜定められるが、170℃以上であることが好ましく、180℃以上であることがより好ましく、190℃以上であることがさらに好ましい。また、前記溶融温度は、250℃以下であることが好ましく、230℃以下であることがより好ましい。溶融温度を170℃以上とすることにより、溶融が十分になされ、生産量が顕著に向上する傾向にある。また、250℃以下とすることにより、熱劣化による樹脂組成物の変色をより効果的に抑制できる。
 溶融混練時のスクリュー回転数は50~500rpmであることが好ましく、70~350rpmであることがより好ましい。スクリュー回転数を50rpm以上とすることにより、コアシェル型エラストマーが微分散しやすくなり、二次凝集の発生をより効果的に抑制できる。また、500rpm以下とすることにより、溶融混練時の発熱を顕著に抑制でき、熱劣化による樹脂組成物の変色を効果的に抑制できる。また吐出量は5~1,000kg/hrであることが好ましく、7~800kg/hrでああることがより好ましい。5kg/hr以上とすることにより、コアシェル型エラストマーが微分散しやすくなり、二次凝集の発生を効果的に抑制できる。また、1,000kg/hr以下とすることにより、溶融混練時の発熱を効果的に抑制でき、熱劣化による樹脂組成物の変色をより効果的に抑制できる。
<成形品>
 本発明の成形品は、本発明のポリアセタール樹脂組成物から形成される。また、本発明のポリアセタール樹脂組成物をペレタイズして得られたペレットは、通常、射出成形して成形品とされる。本発明におけるペレットは、円柱状であることが好ましく、その直径は1~10mmであることが好ましく、2~7mmであることがより好ましい。ここでの円柱状とは、幾何学的な意味での円柱状のものに加え、本発明の技術分野において、円柱状と解釈されるものを含む趣旨である。例えば、吐出口が円形であるノズルから吐出したストランドをカットして得られた形状は、円柱状のものに含まれる。
 すなわち、本発明の成形品の好ましい一例は、射出成形品である。射出成形品とは、射出成形により、成形された成形品であり、通常、金型内で溶融樹脂が合流する部分に脆弱部分(ウエルド部)が形成されてしまう。
 本発明の成形品の厚さは、例えば、0.005~20mmの部位を有することが好ましく、用途に応じて適当な厚みを選択できる。
 成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、歯車状、多角形形状、異形品、中空品、枠状、箱状、パネル状、キャップ状のもの等が挙げられる。本発明の成形品は、部品であっても、完成品であってもよい。
<用途>
 本発明のポリアセタール樹脂組成物およびポリアセタール樹脂組成物から形成される成形品は、光沢性が求められる用途に広く用いられる。具体的には、自動車部品、建材部品、電気・電子部品、事務機器部品、日用雑貨部品のうち、特に外観が重要視される部分に好ましく用いられる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[原料]
ポリアセタール樹脂(POM)
POM1:F20-03、三菱エンジニアリングプラスチックス社製
POM2:F10-01、三菱エンジニアリングプラスチックス社製
エラストマー1:コアがブタジエン由来の構成単位を含み、シェルがアクリル樹脂を含むコアシェル型エラストマー、カネカ社製、カネエースM910
エラストマー2:コアがブタジエン由来の構成単位を含み、シェルがアクリル樹脂を含むコアシェル型エラストマー、カネカ社製、カネエースM910改良品
エラストマー3:コアがシリコーンゴム、シェルがアクリロニトリルスチレン樹脂を含むコアシェル型エラストマー、メタブレン、三菱ケミカル社製、SX-006
エラストマー4:コアがシリコーンゴム、シェルがアクリロニトリルスチレン樹脂を含むコアシェル型エラストマー、メタブレン、三菱ケミカル社製、SRK-200
エラストマー5:熱可塑性ポリウレタン、BASF社製、品番:エラストランS80ASH10
[実施例1~8、比較例1~5、参考例1]
 表1~3に示す各成分を表1~3に示す割合(質量部)で、川田製作所社製スーパーミキサーを用いて均一に混合した。得られた混合物をスクリュー径(D)30mm、スクリュー長さ(L)760mm、ダイノズル径3.5mmのベント付き二軸押出機(株式会社池貝製「PCM-30」)を用いて、シリンダー温度(溶融温度)200℃、スクリュー回転数120rpm、吐出量10kg/時間で溶融せん断混合し、ポリアセタール樹脂組成物のペレットを製造した。
<曲げ弾性率>
 上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
 次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ISO9988-2規格に準拠して、射出成形した。こうして、4mm厚さの多目的試験片(ISO試験片)を得た。
 次に、この4mm厚さの多目的試験片(ISO試験片)について、曲げ試験機である全自動曲げ試験機を用いて、ISO178に記載の方法に従って、曲げ試験速度2mm/分で曲げ試験を行い、曲げ弾性率を測定した。
 射出成形機は、東芝機械社製、EC-100Sを用いた。全自動曲げ試験機は、島津製作所社製のものを用いた。
 結果を下記表1~3に示した。単位は、MPaで示した。
<ウエルド伸び>
 上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
 次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ウエルド部を中央に有するASTM引張試験片(厚み1.6mm)を作製し、ASTM D638に準じて、引張試験を行って、ウエルド伸びを測定した。
 射出成形機は、東芝機械社製、EC-100Sを用いた。
 結果を下記表1~3に示した。単位は、%で示した。
<エラストマーの平均二次粒子径>
 結果を下記表1~3に示した。単位は、kJ/mで示した。
 上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
 次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ウエルド部を中央に有するASTM引張試験片(厚み3.2mm)を作製した。
 このASTM引張試験片から、成形時の流動方向に平行で、かつ、ウエルド部を含むようにダイヤモンドナイフで走査型電子顕微鏡(SEM)観察用試験片を切り出した。
 得られたSEM観察用試験片の観察面に四酸化オスミウムを蒸着させた後、走査型電子顕微鏡(SEM)を用いてSEM画像を取得した。
 得られたSEM画像から、エラストマー由来の島状部の最大長さの平均値を、エラストマーの平均二次粒子径とした。
 射出成形機は、東芝機械社製、EC-100Sを用いた。
 四酸化オスミウムの蒸着は、メイワフォーシス社製「オスミウムコータ」を用いて8mA、60秒の条件で行った。走査型電子顕微鏡は、日立ハイテクノロジーズ製「走査型電子顕微鏡(SEM)S-4800」を用い、加速電圧:1kV、信号:LA100(U)、エミッション電流:6μA、プローブ電流:Normalの条件でSEM画像を取得した。
 結果を下記表1~3に示した。単位はμmで示した。
<光沢性>
 上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
 次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ASTM引張試験片(厚み3.2mm)を作製し、JIS Z 8741に従い20°で測定し、光沢性を評価した。
 射出成形機は、東芝機械社製、EC-100Sを用いた。
 結果を下記表1~3に示した。単位は、%で示した。
<縦弾性率の測定>
 平均二次粒子径の測定と同様手順で走査型プローブ顕微鏡(SPM)観察用試験片を切り出し走査型プローブ顕微鏡(SPM)のフォースカーブマッピング法にて縦弾性率像を得た。得られた縦弾性率像からポリアセタール樹脂部について合計10か所の縦弾性率を測定した。次いで、縦弾性率像からコアシェル型エラストマーのシェル部について合計10か所の縦弾性率を測定した。また、非コアシェル型エラストマーについてはポリアセタール樹脂との界面付近における縦弾性率を測定した。
 さらに、コアシェル型エラストマーのシェル部の縦弾性率と、ポリアセタール樹脂の縦弾性率から、縦弾性率比(シェル部の縦弾性率/ポリアセタール樹脂の縦弾性率)を算出した。
 走査型プローブ顕微鏡は島津製作所製「SPM-9700HT」を用い、スキャナ:30μm×30μm、カンチレバー:オリンパス製「AC200(バネ定数9N/m)」、スイープ速度:1Hz、スイープ範囲:1500nm、Iゲイン:100の条件で弾性率像を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (11)

  1. ポリアセタール樹脂と、コアシェル型エラストマーを含む樹脂組成物であって、前記樹脂組成物を、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上であり、
    前記樹脂組成物を3.2mm厚の試験片に成形した際のJIS Z 8741の光度測定に準拠した20°における光沢度が70.0%以上である、樹脂組成物。
  2. 前記コアシェル型エラストマーが、ブタジエン含有ゴムを含み、シェル部にアクリル樹脂を含む、請求項1に記載の樹脂組成物。
  3. 前記樹脂組成物は、前記ポリアセタール樹脂60~95質量%と、前記コアシェル型エラストマー40~5質量%を含む(ただし、ポリアセタール樹脂とコアシェル型エラストマーの合計が100質量%を超えることはない)、請求項1または2に記載の樹脂組成物。
  4. 前記樹脂組成物は、前記ポリアセタール樹脂70~95質量%と、前記コアシェル型エラストマー30~5質量%を含む(ただし、ポリアセタール樹脂とコアシェル型エラストマーの合計が100質量%を超えることはない)、請求項1または2に記載の樹脂組成物。
  5. 前記樹脂組成物は、熱可塑性ポリウレタンを含まないか、熱可塑性ポリウレタンの含有量が、前記コアシェル型エラストマーの含有量の3質量%以下である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6. 前記樹脂組成物を4mm厚さの多目的試験片に成形し、ISO178に従って測定した曲げ弾性率が1700MPa以下である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7. 前記樹脂組成物を、ウエルド部を中央に有する3.2mm厚さの試験片に成形したときの、ウエルド部に存在する前記コアシェル型エラストマーの平均二次粒子径が200nm以下である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8. 前記SPM(走査型プローブ顕微鏡、カンチレバーばね定数:9N/m)を用いて測定したコアシェル型エラストマーのシェル部の縦弾性率とポリアセタール樹脂の縦弾性率の比率(シェル部の縦弾性率/ポリアセタール樹脂の縦弾性率)が0.08以上である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9. 請求項1~8のいずれか1項に記載の樹脂組成物から形成された成形品。
  10. 射出成形品である、請求項9に記載の成形品。
  11. 請求項1~8のいずれか1項に記載の樹脂組成物の製造方法であって、
    ポリアセタール樹脂とコアシェル型エラストマーをタンブラーで混合した後、押出機にて押出し、ストランド状とした後に切断してペレットとすることを含み、
    前記押出機のスクリューの長さL(mm)とスクリューの直径D(mm)の比であるL/Dが、20<(L/D)<100の関係を満たし、
    前記ストランド状とするためのダイノズルが直径1~10mmである、樹脂組成物の製造方法。
PCT/JP2020/025470 2019-07-03 2020-06-29 樹脂組成物および成形品 WO2021002315A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021530009A JPWO2021002315A1 (ja) 2019-07-03 2020-06-29

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-124473 2019-07-03
JP2019124473 2019-07-03
JP2020030946 2020-02-26
JP2020-030946 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021002315A1 true WO2021002315A1 (ja) 2021-01-07

Family

ID=74100879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025470 WO2021002315A1 (ja) 2019-07-03 2020-06-29 樹脂組成物および成形品

Country Status (2)

Country Link
JP (1) JPWO2021002315A1 (ja)
WO (1) WO2021002315A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238788A1 (ja) * 2022-06-09 2023-12-14 グローバルポリアセタール株式会社 樹脂組成物、および、成形品
WO2023238790A1 (ja) * 2022-06-09 2023-12-14 グローバルポリアセタール株式会社 樹脂組成物、および、成形品

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219253A (ja) * 1984-03-28 1985-11-01 ヘキスト・アクチエンゲゼルシヤフト 耐衝撃変性されたポリオキシメチレン混合物
JPH0314856A (ja) * 1989-03-31 1991-01-23 Takeda Chem Ind Ltd コアシェルポリマー
JPH04233964A (ja) * 1990-08-09 1992-08-21 Hoechst Ag 高靱性の熱可塑性ポリオキシメチレン成形組成物及びその用途
JPH0517514A (ja) * 1990-09-21 1993-01-26 Takeda Chem Ind Ltd コアシエルポリマー
JPH05239312A (ja) * 1992-02-28 1993-09-17 Asahi Chem Ind Co Ltd 低光沢性ポリオキシメチレン樹脂組成物
JPH05239311A (ja) * 1992-02-27 1993-09-17 Asahi Chem Ind Co Ltd 低光沢性のポリオキシメチレン樹脂組成物
JPH07109402A (ja) * 1993-10-12 1995-04-25 Asahi Chem Ind Co Ltd 柔軟性ポリアセタール樹脂組成物
JPH07316393A (ja) * 1994-02-15 1995-12-05 Rohm & Haas Co 耐衝撃性改良ポリアセタール組成物
JPH09118805A (ja) * 1995-10-24 1997-05-06 Polyplastics Co ポリアセタール樹脂組成物
JP2000026705A (ja) * 1998-05-07 2000-01-25 Polyplastics Co ポリアセタ―ル樹脂組成物
DE19917260A1 (de) * 1999-04-16 2001-01-25 Basf Ag Verwendung von Polyoxymethylenformmassen
JP2002526287A (ja) * 1998-10-02 2002-08-20 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリアセタールとスチレン−オレフィンエラストマーとからなる複合物品
DE10238518A1 (de) * 2002-08-21 2004-03-04 Ticona Gmbh Verschleißfeste Polyoxymethylen Formmassen und deren Verwendung
JP2004510024A (ja) * 2000-09-26 2004-04-02 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 放出物の少ない、耐衝撃性改良化ポリオキシメチレン成形材料、それらの使用及びそれらから製造した成形品
JP2008031364A (ja) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd ポリアセタール樹脂用耐衝撃性改質剤、その製造方法、ポリアセタール樹脂組成物および成形品
JP2013543028A (ja) * 2010-10-14 2013-11-28 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 可塑化ポリオキシメチレン
US20170267858A1 (en) * 2014-09-05 2017-09-21 Sabic Global Technologies B.V. Polyoxymethylene compositions, method of manufacture, and articles made therefrom
JP2019026810A (ja) * 2017-08-03 2019-02-21 旭化成株式会社 ポリオキシメチレン樹脂組成物及び成形体
JP2019026812A (ja) * 2017-08-03 2019-02-21 旭化成株式会社 ポリオキシメチレン樹脂組成物
JP2019026811A (ja) * 2017-08-03 2019-02-21 旭化成株式会社 ポリオキシメチレン樹脂組成物

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219253A (ja) * 1984-03-28 1985-11-01 ヘキスト・アクチエンゲゼルシヤフト 耐衝撃変性されたポリオキシメチレン混合物
JPH0314856A (ja) * 1989-03-31 1991-01-23 Takeda Chem Ind Ltd コアシェルポリマー
JPH04233964A (ja) * 1990-08-09 1992-08-21 Hoechst Ag 高靱性の熱可塑性ポリオキシメチレン成形組成物及びその用途
JPH0517514A (ja) * 1990-09-21 1993-01-26 Takeda Chem Ind Ltd コアシエルポリマー
JPH05239311A (ja) * 1992-02-27 1993-09-17 Asahi Chem Ind Co Ltd 低光沢性のポリオキシメチレン樹脂組成物
JPH05239312A (ja) * 1992-02-28 1993-09-17 Asahi Chem Ind Co Ltd 低光沢性ポリオキシメチレン樹脂組成物
JPH07109402A (ja) * 1993-10-12 1995-04-25 Asahi Chem Ind Co Ltd 柔軟性ポリアセタール樹脂組成物
JPH07316393A (ja) * 1994-02-15 1995-12-05 Rohm & Haas Co 耐衝撃性改良ポリアセタール組成物
JPH09118805A (ja) * 1995-10-24 1997-05-06 Polyplastics Co ポリアセタール樹脂組成物
JP2000026705A (ja) * 1998-05-07 2000-01-25 Polyplastics Co ポリアセタ―ル樹脂組成物
JP2002526287A (ja) * 1998-10-02 2002-08-20 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリアセタールとスチレン−オレフィンエラストマーとからなる複合物品
DE19917260A1 (de) * 1999-04-16 2001-01-25 Basf Ag Verwendung von Polyoxymethylenformmassen
JP2004510024A (ja) * 2000-09-26 2004-04-02 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 放出物の少ない、耐衝撃性改良化ポリオキシメチレン成形材料、それらの使用及びそれらから製造した成形品
DE10238518A1 (de) * 2002-08-21 2004-03-04 Ticona Gmbh Verschleißfeste Polyoxymethylen Formmassen und deren Verwendung
JP2008031364A (ja) * 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd ポリアセタール樹脂用耐衝撃性改質剤、その製造方法、ポリアセタール樹脂組成物および成形品
JP2013543028A (ja) * 2010-10-14 2013-11-28 ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 可塑化ポリオキシメチレン
US20170267858A1 (en) * 2014-09-05 2017-09-21 Sabic Global Technologies B.V. Polyoxymethylene compositions, method of manufacture, and articles made therefrom
JP2019026810A (ja) * 2017-08-03 2019-02-21 旭化成株式会社 ポリオキシメチレン樹脂組成物及び成形体
JP2019026812A (ja) * 2017-08-03 2019-02-21 旭化成株式会社 ポリオキシメチレン樹脂組成物
JP2019026811A (ja) * 2017-08-03 2019-02-21 旭化成株式会社 ポリオキシメチレン樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238788A1 (ja) * 2022-06-09 2023-12-14 グローバルポリアセタール株式会社 樹脂組成物、および、成形品
WO2023238790A1 (ja) * 2022-06-09 2023-12-14 グローバルポリアセタール株式会社 樹脂組成物、および、成形品

Also Published As

Publication number Publication date
JPWO2021002315A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP2021011562A (ja) 樹脂組成物および成形品
KR101309738B1 (ko) 고분자/필러의 전기전도성 복합체 및 이의 제조방법
JP6386114B2 (ja) 伝導性樹脂組成物の製造方法
WO2021002315A1 (ja) 樹脂組成物および成形品
WO2021002316A1 (ja) 樹脂組成物および成形品
WO2021002314A1 (ja) 樹脂組成物および成形品
EP3124543B1 (en) Polyacetal resin composition and molded article thereof
JP2005029714A (ja) ポリアセタール樹脂組成物
CN109354857B (zh) 微发泡pok复合材料及其制备方法和用途
JP2021011563A (ja) 樹脂組成物および成形品
EP2459651A1 (en) Polymer processing aids
EP0397881A1 (en) Process for producing composite material composition
JPS59155459A (ja) ポリエステル樹脂組成物
JP7073115B2 (ja) ペレット
WO2023238788A1 (ja) 樹脂組成物、および、成形品
CN112920555A (zh) 一种适用于高速挤出的tpee复合材料及其制备方法
JP2005133002A (ja) フッ素樹脂組成物
WO2023238790A1 (ja) 樹脂組成物、および、成形品
JP7398029B1 (ja) 樹脂組成物、成形体、および、多色射出成形体
JP2023180589A (ja) 樹脂組成物および成形品
WO2023238789A1 (ja) 樹脂組成物、成形体、および、多色射出成形体
JP2021098767A (ja) ポリアセタール樹脂組成物および成形品
EP3626778B1 (en) Electrically conductive resin composition and preparation method thereof
JPH08253692A (ja) 合成樹脂組成物
EP3620489B1 (en) Electrically conductive resin composition and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834666

Country of ref document: EP

Kind code of ref document: A1