WO2020261951A1 - 嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法 - Google Patents

嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法 Download PDF

Info

Publication number
WO2020261951A1
WO2020261951A1 PCT/JP2020/022460 JP2020022460W WO2020261951A1 WO 2020261951 A1 WO2020261951 A1 WO 2020261951A1 JP 2020022460 W JP2020022460 W JP 2020022460W WO 2020261951 A1 WO2020261951 A1 WO 2020261951A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas concentration
adjusting agent
gas
concentration
dehydroascorbic acid
Prior art date
Application number
PCT/JP2020/022460
Other languages
English (en)
French (fr)
Inventor
達也 鎮西
染谷 昌男
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US17/619,799 priority Critical patent/US20220325224A1/en
Priority to CN202080043478.6A priority patent/CN114127257A/zh
Priority to EP20833575.2A priority patent/EP3988638A4/en
Priority to KR1020217040872A priority patent/KR20220024030A/ko
Publication of WO2020261951A1 publication Critical patent/WO2020261951A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/08Chemical, biochemical or biological means, e.g. plasma jet, co-culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to a gas concentration modifier for culturing anaerobic bacteria and a method for culturing anaerobic bacteria using the same.
  • the culture of biological samples such as tissues and cells carried out in the fields of biological, reproductive or biotechnology research or industry requires a gas environment different from the air atmosphere.
  • a gas environment different from the air atmosphere.
  • the atmospheric carbon dioxide concentration it is necessary to set the atmospheric carbon dioxide concentration to about 5%.
  • cell culture is carried out in the same low-concentration oxygen atmosphere as in vivo.
  • Carbon dioxide incubators and the like are known as means for creating a gas environment with a high-concentration carbon dioxide atmosphere and a low-concentration oxygen atmosphere, but the burden of equipment costs and high-pressure gas management is large. Therefore, in recent years, a method using a gas concentration adjusting agent utilizing the oxidation reaction of ascorbic acids has been widely used (see Patent Documents 1 and 2).
  • An object to be solved by the present invention is to provide a gas concentration adjusting agent for culturing anaerobic bacteria having a large amount of carbon dioxide generated.
  • the present invention relates to the following.
  • a gas concentration modifier for culturing anaerobic bacteria which comprises one type and (f) water.
  • ⁇ 3> The gas concentration for culturing anaerobic bacteria according to ⁇ 2> above, wherein the molar ratio [(b) / (a)] of (b) ascorbic acid to (a) dehydroascorbic acid is 1.5 or less.
  • Conditioner. ⁇ 4> A method for culturing anaerobic bacteria, which comprises culturing anaerobic bacteria in the presence of the gas concentration adjusting agent according to any one of ⁇ 1> to ⁇ 3> above.
  • ⁇ 5> A gas concentration adjusting agent package in which the gas concentration adjusting agent according to any one of ⁇ 1> to ⁇ 3> above is packaged in a pouch shape with a breathable packaging material.
  • the gas concentration adjuster for anaerobic bacterium culture of the present invention generates a large amount of carbon dioxide and can efficiently create a gas environment having a high concentration carbon dioxide atmosphere and a low concentration oxygen atmosphere.
  • the gas concentration modifier for anaerobic bacterium culture of the present invention is (a) dehydroascorbic acid, (c) transition metal catalyst, (d) activated charcoal, (e) alkali metal carbonate, alkali metal hydroxide and alkaline earth. Includes at least one selected from the group consisting of metal hydroxides, as well as (f) water.
  • the gas concentration adjusting agent may further contain (b) ascorbic acids.
  • the gas concentration adjusting agent of the present invention includes (a) dehydroascorbic acid, (c) transition metal catalyst, (d) activated carbon, (e) alkali metal carbonate, alkali metal hydroxide and alkaline earth metal hydroxide.
  • the gas concentration adjusting agent of the present invention contains the components (a) to (f) in total, preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more.
  • the gas concentration adjusting agent of the present invention contains dehydroascorbic acid having both oxygen absorbing ability and carbon dioxide gas generating ability as a main component of oxygen absorption reaction.
  • Dehydroascorbic acid is a compound in which ascorbic acid is oxidized and hydrolyzes to produce diketoglonic acid. Then, by adjusting an appropriate catalyst and reaction environment, the decarboxylation reaction and the oxidation reaction are repeated to generate carbon dioxide and absorb oxygen.
  • Dehydroascorbic acid can also be produced by oxidizing ascorbic acids.
  • dehydroascorbic acid is preferably impregnated with activated carbon together with water from the viewpoint of oxygen absorption performance.
  • the activated carbon which is a porous carrier, with an aqueous solution of dehydroascorbic acid in which dehydroascorbic acid is dissolved in water.
  • the oxidation reaction of dehydroascorbic acid is used to absorb oxygen in the atmosphere to adjust the concentration, and the generated carbon dioxide is used to adjust the carbon dioxide concentration in the atmosphere.
  • the oxidation reaction theoretically, carbon dioxide equal to or more than the mole of the consumed oxygen molecule is generated. Due to the above principle, when the oxygen concentration is reduced, the carbon dioxide concentration is increased accordingly.
  • the gas concentration adjusting agent of the present invention may contain ascorbic acids.
  • Ascorbic acid is cheaper and more easily available than dehydroascorbic acid, and has both oxygen absorbing ability and carbon dioxide gas generating ability as a main component of oxygen absorption reaction.
  • Ascorbic acids mean L-ascorbic acid, its stereoisomers, and salts and hydrates thereof.
  • L-ascorbate include sodium L-ascorbate, potassium L-ascorbate, calcium L-ascorbate and the like.
  • Examples of the stereoisomer of L-ascorbic acid include erythorbic acid (D-isoascorbic acid) and the like.
  • Examples of the erythorbic acid salt include sodium erythorbate, potassium erythorbate, calcium erythorbate and the like.
  • Ascorbic acids may be used alone or in combination of two or more.
  • ascorbic acids are preferably impregnated with activated carbon together with water from the viewpoint of oxygen absorption performance.
  • the activated carbon which is a porous carrier
  • an aqueous solution of ascorbic acids in which ascorbic acids are dissolved in water since the amount of the porous carrier used can be reduced when the concentration of the aqueous solution of ascorbic acids is high, it is preferable that the concentration of ascorbic acids is as close to the saturated solubility as possible. Therefore, it is preferable to select a compound having high solubility in water as the ascorbic acid.
  • Ascorbic acid or sodium ascorbate is preferable as the ascorbic acid from the viewpoint of solubility in water and availability.
  • concentration of the aqueous solution is 40 to 55% by mass.
  • the gas concentration adjusting agent of the present invention contains (b) ascorbic acids
  • the molar ratio of (b) ascorbic acids to (a) dehydroascorbic acid [(b) / (a)] is preferably 1.5 or less. , More preferably 1.2 or less, still more preferably 1.0 or less, still more preferably 0.7 or less, still more preferably 0.5 or less, still more preferably 0.1 or less.
  • Transition metal catalyst The gas concentration modifier of the present invention contains a transition metal catalyst that promotes the progress of the oxidation reaction of dehydroascorbic acid and ascorbic acids.
  • a transition metal catalyst is a catalyst having a metal compound such as a salt or oxide of a transition metal.
  • the transition metal iron, manganese, zinc, copper and cobalt are suitable.
  • Salts of transition metals include halides and mineral acids of transition metals, such as chlorides and sulfates of transition metals.
  • Typical examples include ferric chloride, ferric chloride, ferrous sulfate, ferric sulfate, manganese chloride, zinc sulfate, copper sulfate, copper chloride, cobalt sulfate anhydrous salt or hydrous salt, and the like.
  • Ferric sulfate heptahydrate having good solubility in water and good compoundability is preferable.
  • the content of the transition metal catalyst in the gas concentration modifier is 1 to 30 parts by mass with respect to 100 parts by mass of the total of dehydroascorbic acid and ascorbic acids from the viewpoint of promoting the progress of the oxidation reaction of dehydroascorbic acid and ascorbic acids. Is preferable, 5 to 25 parts by mass is more preferable, and 10 to 20 parts by mass is further preferable.
  • the gas concentration adjusting agent of the present invention contains activated carbon.
  • Activated carbon has a function as a carrier for impregnating an aqueous solution of dehydroascorbic acid and an aqueous solution of ascorbic acids, and also has a large contact area with air due to its large specific surface area and a function of promoting the progress of an oxidation reaction.
  • the activated carbon for example, those produced by various manufacturing methods such as steam activation using steam powder, coal, coconut shell, etc., and chemical activation using zinc chloride, etc. can be used.
  • the activated carbon is preferably granular activated carbon because it is used by supporting an aqueous solution of dehydroascorbic acid, an aqueous solution of ascorbic acids, etc. on the activated carbon and filling it in a small bag in the form of granules.
  • the particle size of the granular activated carbon is preferably 0.1 to 2 mm, more preferably 0.5 to 1 mm, from the viewpoint of oxygen absorption performance and the filling property (fluidity) into the package.
  • the content of activated carbon in the gas concentration adjusting agent is preferably 50 to 400 parts by mass with respect to 100 parts by mass in total of dehydroascorbic acid and ascorbic acids from the viewpoint of oxygen absorption performance and filling property into the package. More preferably, 75 to 300 parts by mass.
  • the gas concentration adjuster of the present invention comprises alkali metal carbonate, alkali metal hydroxide and alkaline earth metal hydroxide. Includes at least one selected from the group. At least one selected from the group consisting of alkali metal carbonates, alkali metal hydroxides and alkaline earth metal hydroxides rapidly promotes the oxidation reaction of dehydroascorbic acid and ascorbic acids, and the reaction field is set to the alkaline region. Used for control purposes.
  • alkali metal carbonate water-soluble alkali metal carbonates such as sodium carbonate, sodium hydrogencarbonate, and sodium carbonate hydrate are preferably used, and sodium carbonate is particularly preferable.
  • alkali metal hydroxide examples include potassium hydroxide and sodium hydroxide, and sodium hydroxide is particularly preferable.
  • alkaline earth metal hydroxide examples include calcium hydroxide and magnesium hydroxide.
  • the gas concentration modifier of the present invention is an alkali metal from the viewpoint of solubility in water when it becomes a salt with ascorbic acid. It preferably contains carbonates and / or alkali metal hydroxides.
  • the content of the alkali metal hydroxide in the gas concentration regulator is preferably an equimolar amount with respect to the total molar amount of dehydroascorbic acid and ascorbic acids from the viewpoint of neutralizing the hydrolysis product.
  • the content of the alkali metal carbonate in the gas concentration regulator is preferably 10 to 200 parts by mass, preferably 50 to 200 parts by mass, based on 100 parts by mass of the total of dehydroascorbic acid and ascorbic acids, from the viewpoint of adjusting the carbon dioxide concentration. Parts are more preferable, and 100 to 150 parts by mass are further preferable.
  • the gas concentration adjusting agent of the present invention contains water necessary for the progress of the oxidation reaction of dehydroascorbic acid and ascorbic acids. It is preferable to impregnate the activated carbon with water from the viewpoint that the gas concentration adjusting agent can be obtained as a fluid solid substance.
  • water is preferably impregnated with activated carbon together with dehydroascorbic acid and ascorbic acids from the viewpoint of oxygen absorption performance.
  • the activated carbon as a porous carrier with a dehydroascorbic acid aqueous solution or an ascorbic acid aqueous solution in which dehydroascorbic acid or ascorbic acids are dissolved in water.
  • soluble components other than dehydroascorbic acid and ascorbic acids may be dissolved in water, or insoluble components may be dispersed.
  • the content of water in the gas concentration adjusting agent is preferably 30 to 500 parts by mass with respect to 100 parts by mass in total of dehydroascorbic acid and ascorbic acids from the viewpoint of advancing the oxidation reaction of dehydroascorbic acid and ascorbic acids. 50 to 300 parts by mass is more preferable, and 80 to 200 parts by mass is further preferable.
  • the gas concentration adjusting agent of the present invention may contain components other than the above-mentioned components (a) to (f), if necessary, as long as the effects of the present invention are not impaired.
  • the gas concentration adjusting agent of the present invention may contain a thermoplastic resin in order to suppress excessive heat generation accompanying the progress of the oxygen absorption reaction (oxidation reaction of dehydroascorbic acid and ascorbic acids).
  • the type of the thermoplastic resin is not particularly limited, and for example, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, elastomer or a mixture thereof can be used, and in particular, low molecular weight polyethylene having a molecular weight of 10,000 or less, polypropylene or a mixture thereof can be used. It is preferably used from the viewpoint that the softening point can be easily adjusted and the influence of odor is small.
  • the thermoplastic resin is preferably a granular material having a particle size of 1 to 500 ⁇ m, and more preferably a granular material having a particle size of 10 to 300 ⁇ m.
  • the softening point of the thermoplastic resin is preferably 90 to 125 ° C. from the viewpoint of more effectively suppressing heat generation.
  • the content of the thermoplastic resin in the gas concentration adjusting agent is 100 to 1000 parts by mass with respect to 100 parts by mass in total of dehydroascorbic acid and ascorbic acids from the viewpoint of advancing the oxidation reaction of dehydroascorbic acid and ascorbic acids.
  • 300 to 500 parts by mass is more preferable.
  • the gas concentration adjusting agent of the present invention may contain an aldehyde remover mainly for removing aldehyde produced as a by-product with the progress of the oxidation reaction of dehydroascorbic acid and ascorbic acids.
  • aldehyde remover mainly for removing aldehyde produced as a by-product with the progress of the oxidation reaction of dehydroascorbic acid and ascorbic acids.
  • Various compounds such as amines are known as compounds having an aldehyde removing ability, but ethylene urea, urea, which have a sufficient aldehyde removing ability, do not generate a pungent odor, and exhibit a high effect even in a small amount.
  • the aldehyde referred to in the present specification means a compound having one or more formyl groups in the molecule, that is, aldehydes.
  • it typically means an aldehyde generated as a by-product in the process of oxygen absorption or bacterial culture, and the aldehyde is classified as an aldehyde in the chemical field as long as it adversely affects the bacterial culture. Anything is included if it is. Specifically, for example, formaldehyde, acetaldehyde and the like are included.
  • the content of the aldehyde removing agent in the gas concentration adjusting agent is 0.5 to 25 parts by mass with respect to 100 parts by mass in total of dehydroascorbic acid and ascorbic acids from the viewpoint of efficiently and economically removing aldehydes.
  • 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is further preferable.
  • the gas concentration adjusting agent of the present invention may have a coating material on the outside of the granulated product of the composition containing the above-mentioned components (a) to (f).
  • the coating material include porous particles such as activated carbon, zeolite, and silicate from the viewpoint of adsorbing a trace amount of odorous components generated by the oxygen absorption reaction.
  • talc, magnesium stearate, calcium stearate and the like can be mentioned.
  • One of these auxiliaries may be used alone, or two or more thereof may be used in combination if necessary. In addition, commercially available products of these auxiliaries can be easily obtained.
  • the method for producing the gas concentration adjusting agent of the present invention is not particularly limited, but for example, a dehydroascorbic acid aqueous solution in which dehydroascorbic acid, a transition metal catalyst, an alkali metal hydroxide and the like are dissolved is prepared, and this solution is used as activated carbon and Examples thereof include a method of mixing with an alkali metal carbonate and impregnating with activated carbon. Further, an aqueous solution of ascorbic acids in which ascorbic acids, transition metal catalysts, alkali metal hydroxides, etc.
  • the gas concentration regulator can also be a gas concentration regulator package by packaging the composition containing each of the above-mentioned components with a packaging material using all or part of the breathable packaging material.
  • Packaging material As the packaging material, two sheets of breathable packaging material are bonded to form a bag, or one breathable packaging material and one non-breathable packaging material are bonded to form a bag.
  • An example is one in which one piece of breathable packaging material is bent and the edges excluding the bent portion are sealed to form a bag.
  • the packaging material may be a bag-shaped packaging material obtained by superimposing two breathable packaging materials and heat-sealing the four sides. 1. One piece of breathable wrapping material and one piece of non-breathable wrapping material are overlapped and four sides are heat-sealed to form a bag. One piece of breathable wrapping material is bent and the bent part is excluded. Examples include those in which the sides are heat-sealed to form a bag. Further, the packaging material may be a bag-shaped packaging material in which the breathable packaging material is formed into a tubular shape and both ends and the body of the tubular body are heat-sealed.
  • the breathable packaging material As the breathable packaging material, a packaging material that allows oxygen and carbon dioxide to permeate is selected. Among them, those having an air permeation resistance of 600 seconds or less, more preferably 90 seconds or less by the Gale type testing machine method are preferably used.
  • the air permeation resistance refers to a value measured by the method of JIS P8117 (1998). More specifically, it refers to the time required for 100 mL of air to permeate the breathable packaging material using a Gale-type denso meter manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • a plastic film having breathability in addition to paper and non-woven fabric, a plastic film having breathability is used.
  • the plastic film include a film such as polyethylene terephthalate, polyamide, polypropylene, and polycarbonate, and a film such as polyethylene, ionomer, polybutadiene, ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer, or ethylene / vinyl acetate copolymer as a sealing layer.
  • a laminated film or the like can be used. In addition, these laminates can also be used as a breathable packaging material.
  • breathability As a method of imparting breathability, various methods can be adopted in addition to drilling with cold needles and hot needles. When breathability is imparted by drilling, the breathability can be freely adjusted depending on the diameter, number, material, etc. of the holes to be drilled.
  • the thickness of the laminated film is preferably 50 to 300 ⁇ m, and particularly preferably 60 to 250 ⁇ m.
  • the packaging material can maintain strength and have excellent heat-sealing properties and packaging suitability as compared with the case where the thickness is out of the above range.
  • gas concentration adjusting agent package In order to maintain the function of the above gas concentration adjusting agent package for a long period of time, it is preferable to store it in a gas barrier container or bag before use and take it out from the gas barrier container or bag before use.
  • a gas concentration adjusting agent package When a gas concentration adjusting agent package is used for culturing bacteria, it is preferable to sterilize the package in advance using ⁇ -rays or the like.
  • the method for culturing anaerobic bacteria of the present invention is a method for culturing anaerobic bacteria in the presence of a gas concentration adjusting agent.
  • a gas concentration adjusting agent preferably a gas concentration adjusting agent package
  • a culture container containing an anaerobic bacterium and a medium and then sealed, and the airtight container is cultured for bacteria. It can be carried out by allowing it to stand at a temperature suitable for the above.
  • the medium used in the culturing method of the present invention is not particularly limited, and a commonly used medium can be applied as it is, so that a medium suitable for the bacterium to be cultured can be freely selected.
  • the concentration of the aldehyde dissolved in the medium is preferably 2 mg / L or less, more preferably 1.5 mg / L or less, still more preferably 1.0 mg / L or less, which is suitable as a bacterial culture condition.
  • the culture temperature is preferably 20 to 45 ° C, particularly preferably 25 to 40 ° C.
  • the culture container is not particularly limited as long as the air permeability to the outside of the container is ensured, and any culture container suitable for culture can be adopted in terms of volume, shape, material, and the like.
  • a culture container having a lid is preferably used, but also in this case, it is necessary to ensure air permeability to the outside of the container.
  • the method for culturing bacteria of the present invention is applied to culturing anaerobic bacteria.
  • the atmosphere in the gas barrier airtight container before culturing is not particularly limited and may be air, but from the viewpoint of culturing anaerobic bacteria, a nitrogen atmosphere is preferable.
  • the gas barrier airtight container used in the bacterial culture method obstructs the flow of gas inside and outside the container, and maintains the oxygen and carbon dioxide concentrations formed by the added gas concentration adjusting agent for a long period of time.
  • a container made of glass, metal, plastic such as polycarbonate, etc. is often used, but a gas barrier film and a laminate thereof can also be used.
  • an open type container containing distilled water is installed in the airtight container. May be good.
  • the open type container include a beaker, a flask, and the like in addition to the culture container, and it is preferable that the container is the same type as the culture container containing the bacteria and the medium.
  • the oxygen concentration in the closed container is preferably 0.1% by volume or less within 24 hours.
  • the carbon dioxide concentration in the closed container is preferably 11.5% by volume or more, more preferably 12% by volume or more, further preferably 13% by volume or more, still more preferably 15% by volume or more.
  • the oxygen concentration at the initial stage of the oxidation reaction of dehydroascorbic acid and ascorbic acids (3 hours after the start of the reaction) is preferably 0.50% by volume or less, preferably 0.30% by volume or less. More preferably, 0.15% by volume or less is further preferable.
  • the carbon dioxide concentration at the initial stage of the oxidation reaction of dehydroascorbic acid and ascorbic acids (3 hours after the start of the reaction) is preferably 11.5% by volume or more, more preferably 12% by volume or more, still more preferably 13% by volume or more. , 15% by volume or more is more preferable.
  • the culture method of the present invention it is possible to observe and transport bacteria under a microscope in a suitable gas atmosphere without using a gas cylinder and a gas controller.
  • Example 1 Under a nitrogen atmosphere, 10 g of activated carbon, 15 g of polyethylene powder, and 4.7 g of sodium carbonate were measured and mixed. To this powder, 10.1 g of an aqueous ascorbic acid solution and 10.1 g of an aqueous dehydroascorbic acid solution were added and mixed to produce an oxygen scavenger composition. An aluminum bag was filled with 6.9 g of this oxygen scavenger composition and sealed. The aluminum bag containing the above oxygen scavenger was sealed in a nylon bag together with 750 mL of air, the aluminum bag was opened in the nylon bag, and the oxygen scavenging experiment was started.
  • the oxygen concentration and the carbon dioxide concentration after 3 hours were measured by a gas chromatograph, the oxygen concentration was 0.20% by volume and the carbon dioxide concentration was 13.6% by volume. Moreover, when the oxygen concentration and the carbon dioxide concentration after 24 hours were measured by the gas chromatograph, the oxygen concentration was 0.00% by volume and the carbon dioxide concentration was 13.7% by volume.
  • Example 2 Under a nitrogen atmosphere, 10 g of activated carbon, 15 g of polyethylene powder, and 4.7 g of sodium carbonate were measured and mixed. To this powder, 20.3 g of an aqueous dehydroascorbic acid solution was added and mixed to prepare an oxygen scavenger composition. An aluminum bag was filled with 6.9 g of this oxygen scavenger composition and sealed. The aluminum bag containing the above oxygen scavenger was sealed in a nylon bag together with 750 mL of air, the aluminum bag was opened in the nylon bag, and the oxygen scavenging experiment was started. When the oxygen concentration and the carbon dioxide concentration after 3 hours were measured by a gas chromatograph, the oxygen concentration was 0.10% by volume and the carbon dioxide concentration was 18.5% by volume. Moreover, when the oxygen concentration and the carbon dioxide concentration after 24 hours were measured by the gas chromatograph, the oxygen concentration was 0.00% by volume and the carbon dioxide concentration was 18.6% by volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Cell Biology (AREA)
  • Gas Separation By Absorption (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Packages (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(a)デヒドロアスコルビン酸、(c)遷移金属触媒、(d)活性炭、(e)アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種、並びに(f)水を含む、嫌気性細菌培養用ガス濃度調整剤。

Description

嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法
 本発明は、嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法に関する。
 生物、生殖又はバイオテクノロジーの研究分野又は産業分野において実施される組織・細胞のような生物試料の培養では大気雰囲気と異なるガス環境が必要とされる。例えば、重炭酸塩緩衝系培養液のpHを血液の通常状態と同じpH7.4に保持するための条件として、雰囲気二酸化炭素濃度を5%程度にすることが必要である。また、多くの研究分野で、生体内と同様の低濃度酸素雰囲気下での細胞培養が行われている。
 高濃度二酸化炭素雰囲気及び低濃度酸素雰囲気のガス環境を作り出す手段としては、炭酸ガスインキュベーター等が知られているが、設備コストや高圧ガス管理等の負担が大きい。そのため、近年は、アスコルビン酸類の酸化反応を利用したガス濃度調整剤を用いる方法が広く利用されている(特許文献1及び2を参照)。
特許第3818324号公報 特許第5682831号公報
 嫌気性細菌の培養においては、高濃度二酸化炭素雰囲気のガス環境を作り出すことが要求されている。そのため、アスコルビン酸類の酸化反応において、より効率的に二酸化炭素発生量を増加することが望まれる。
 本発明が解決しようとする課題は、二酸化炭素発生量が多い嫌気性細菌培養用ガス濃度調整剤を提供することである。
 本発明者は、鋭意検討を重ねた結果、アスコルビン酸類を配合した場合に比べてデヒドロアスコルビン酸を配合した方が、二酸化炭素発生量が増加することを見出した。本発明はこのような知見に基づき完成に至ったものである。
 すなわち本発明は、以下に関する。
<1> (a)デヒドロアスコルビン酸、(c)遷移金属触媒、(d)活性炭、(e)アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種、並びに(f)水を含む、嫌気性細菌培養用ガス濃度調整剤。
<2> (b)アスコルビン酸類を更に含む、上記<1>に記載の嫌気性細菌培養用ガス濃度調整剤。
<3> (b)アスコルビン酸類と(a)デヒドロアスコルビン酸とのモル比[(b)/(a)]が1.5以下である、上記<2>に記載の嫌気性細菌培養用ガス濃度調整剤。
<4> 上記<1>~<3>のいずれか1つに記載のガス濃度調整剤の存在下で嫌気性細菌を培養する、嫌気性細菌の培養方法。
<5> 上記<1>~<3>のいずれか1つに記載のガス濃度調整剤を通気性包装材で小袋状に包装したガス濃度調整剤包装体。
 本発明の嫌気性細菌培養用ガス濃度調整剤は、二酸化炭素発生量が多く、効率的に高濃度二酸化炭素雰囲気及び低濃度酸素雰囲気のガス環境を作り出すことができる。
 以下、本発明の一実施形態について説明する。本発明の内容は以下に説明する実施形態に限定されるものではない。
 なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
[ガス濃度調整剤]
 本発明の嫌気性細菌培養用ガス濃度調整剤は、(a)デヒドロアスコルビン酸、(c)遷移金属触媒、(d)活性炭、(e)アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種、並びに(f)水を含む。ガス濃度調整剤は(b)アスコルビン酸類を更に含んでもよい。
 また、本発明のガス濃度調整剤は、(a)デヒドロアスコルビン酸、(c)遷移金属触媒、(d)活性炭、(e)アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種、並びに(f)水を含む組成物を通気性包装材で包装した包装体として用いられることが好ましい。該組成物は(b)アスコルビン酸類を更に含んでもよい。
 本発明のガス濃度調整剤は、(a)~(f)成分を合計で、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上含む。
(a)デヒドロアスコルビン酸
 本発明のガス濃度調整剤は、酸素吸収反応の主剤として酸素吸収能及び炭酸ガス発生能を併せ持つデヒドロアスコルビン酸を含む。
 デヒドロアスコルビン酸は、アスコルビン酸が酸化された化合物であり、加水分解によりジケトグロン酸を生成する。そして、適切な触媒及び反応環境を調整することにより、脱炭酸反応と酸化反応を繰り返して、二酸化炭素を発生するとともに酸素を吸収する。デヒドロアスコルビン酸は、アスコルビン酸類を酸化して生成させることもできる。
 本発明のガス濃度調整剤において、デヒドロアスコルビン酸は、酸素吸収性能の観点から、水と共に活性炭に含浸していることが好ましい。具体的には、デヒドロアスコルビン酸を水に溶解させたデヒドロアスコルビン酸の水溶液を、多孔性担体である活性炭に含浸させることが好ましい。
 ガス濃度調整剤においては、デヒドロアスコルビン酸の酸化反応を利用して雰囲気中の酸素を吸収してその濃度を調整すると共に、発生する二酸化炭素を利用して雰囲気中の二酸化炭素濃度を調整する。なお、当該酸化反応においては、理論上、消費された酸素分子と等モル以上の二酸化炭素が生成する。上記の原理のため、酸素濃度を低減させるとそれに伴って二酸化炭素濃度も増加することとなる。
(b)アスコルビン酸類
 本発明のガス濃度調整剤は、アスコルビン酸類を含んでもよい。アスコルビン酸は、デヒドロアスコルビン酸に比べて低価格で入手しやすく、酸素吸収反応の主剤として酸素吸収能及び炭酸ガス発生能を併せ持つ。
 アスコルビン酸類とは、L-アスコルビン酸とその立体異性体並びにその塩及び水和物を意味する。L-アスコルビン酸塩としては、L-アスコルビン酸ナトリウム、L-アスコルビン酸カリウム、L-アスコルビン酸カルシウム等が挙げられる。L-アスコルビン酸の立体異性体としては、エリソルビン酸(D-イソアスコルビン酸)等が挙げられる。エリソルビン酸塩としては、エリソルビン酸ナトリウム、エリソルビン酸カリウム、エリソルビン酸カルシウム等が挙げられる。アスコルビン酸類は、1種単独であってもよく、2種以上を併用してもよい。
 本発明のガス濃度調整剤において、アスコルビン酸類は、酸素吸収性能の観点から、水と共に活性炭に含浸していることが好ましい。具体的には、アスコルビン酸類を水に溶解させたアスコルビン酸類の水溶液を、多孔性担体である活性炭に含浸させることが好ましい。その際、アスコルビン酸類の水溶液の濃度が高い方が、多孔性担体の使用量を少なくすることができるため、アスコルビン酸類の濃度は、できるだけ飽和溶解度に近い濃度にすることが好ましい。このためアスコルビン酸類としては水に対する溶解度が高い化合物を選択することが好ましい。水に対する溶解度及び入手容易性の観点から、アスコルビン酸類としてはアスコルビン酸又はアスコルビン酸ナトリウムが好ましい。アスコルビン酸又はアスコルビン酸ナトリウムを使用した場合、該水溶液の濃度を40~55質量%とすることが好適である。
 本発明のガス濃度調整剤が(b)アスコルビン酸類を含む場合、(b)アスコルビン酸類と(a)デヒドロアスコルビン酸とのモル比[(b)/(a)]は、好ましくは1.5以下、より好ましくは1.2以下、更に好ましくは1.0以下、更に好ましくは0.7以下、更に好ましくは0.5以下、更に好ましくは0.1以下である。嫌気性細菌の培養の際に、ガスバリア性密閉容器に投入して使用するが、その投入時に上記組成であればよい。
(c)遷移金属触媒
 本発明のガス濃度調整剤は、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応の進行を促進する遷移金属触媒を含む。
 遷移金属触媒は、遷移金属の塩や酸化物等の金属化合物を有する触媒である。遷移金属としては、鉄、マンガン、亜鉛、銅、コバルトが好適である。遷移金属の塩としては、遷移金属のハロゲン化物及び鉱酸塩が含まれ、例えば、遷移金属の塩化物や硫酸塩である。代表例として塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、塩化マンガン、硫酸亜鉛、硫酸銅、塩化銅、硫酸コバルトの無水塩又は含水塩等が挙げられ、中でも水への溶解性がよく、配合性が良好な硫酸第一鉄七水和物が好ましい。
 ガス濃度調整剤中における遷移金属触媒の含有量は、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応の進行を促進する観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計100質量部に対して1~30質量部が好ましく、5~25質量部がより好ましく、10~20質量部が更に好ましい。
(d)活性炭
 本発明のガス濃度調整剤は活性炭を含む。活性炭は、デヒドロアスコルビン酸水溶液及びアスコルビン酸類水溶液を含浸させる担体としての機能を有するとともに、その比表面積の大きさから空気との接触面積が大きく、酸化反応の進行を促進する機能を有する。
 活性炭としては、例えば、おが粉、石炭、椰子殻等を原料として水蒸気賦活、塩化亜鉛等を用いた薬剤賦活等の各種製法で製造されたものを用いることができる。また、活性炭は、デヒドロアスコルビン酸水溶液及びアスコルビン酸類水溶液等を活性炭に担持させ顆粒状で小袋に充填して用いられるために、粒状活性炭が好ましい。粒状活性炭の粒子径は、酸素吸収性能の観点及び包装体への充填性(流動性)の観点から、好ましくは0.1~2mm、より好ましくは0.5~1mmである。
 ガス濃度調整剤中における活性炭の含有量は、酸素吸収性能の観点及び包装体への充填性の観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計100質量部に対して50~400質量部が好ましく、75~300質量部がより好ましい。
(e)アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物
 本発明のガス濃度調整剤は、アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種を含む。アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種は、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応を迅速に進行させ、反応場をアルカリ領域に制御する目的で使用される。
 アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム水和物等の、水溶性のアルカリ金属炭酸塩が好適に用いられ、中でも炭酸ナトリウムが特に好ましい。
 アルカリ金属水酸化物としては、水酸化カリウム、水酸化ナトリウムが挙げられ、中でも水酸化ナトリウムが好ましい。
 アルカリ土類金属水酸化物としては、水酸化カルシウム、水酸化マグネシウムが挙げられる。
 アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物の中でも、アスコルビン酸との塩になったときの水への溶解度の観点から、本発明のガス濃度調整剤は、アルカリ金属炭酸塩及び/又はアルカリ金属水酸化物を含むことが好ましい。
 ガス濃度調整剤中におけるアルカリ金属水酸化物の含有量は、加水分解生成物を中和する観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計モル量に対して等モル量が好ましい。
 ガス濃度調整剤中におけるアルカリ金属炭酸塩の含有量は、二酸化炭素濃度を調整する観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計100質量部に対して10~200質量部が好ましく、50~200質量部がより好ましく、100~150質量部が更に好ましい。
(f)水
 本発明のガス濃度調整剤は、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応の進行に必要な水を含む。
 水は、活性炭に含浸させる態様を採ることが、ガス濃度調整剤を流動性のある固形物として得られるという観点から好ましい。本発明のガス濃度調整剤において、水は、酸素吸収性能の観点から、デヒドロアスコルビン酸及びアスコルビン酸類と共に活性炭に含浸していることが好ましい。具体的には、デヒドロアスコルビン酸又はアスコルビン酸類を水に溶解させたデヒドロアスコルビン酸水溶液及びアスコルビン酸類水溶液を、多孔性担体である活性炭に含浸させることが好ましい。また、水には、デヒドロアスコルビン酸及びアスコルビン酸類以外の可溶性成分を溶解させてもよく、不溶性成分を分散させてもよい。
 ガス濃度調整剤中における水の含有量は、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応を進行させる観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計100質量部に対して、30~500質量部が好ましく、50~300質量部がより好ましく、80~200質量部が更に好ましい。
(g)その他の成分
 本発明のガス濃度調整剤は、本発明の効果を阻害しない範囲内で、上述した(a)~(f)成分以外の成分を必要に応じて含んでもよい。
(g1)熱可塑性樹脂
 本発明のガス濃度調整剤は、酸素吸収反応(デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応)の進行に伴う過度の発熱を抑制するために、熱可塑性樹脂を含んでもよい。熱可塑性樹脂の種類に特に制限はないが、例えば、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エラストマー又はこれらの混合物が使用でき、特に分子量10000以下の低分子量ポリエチレン、ポリプロピレン又はこれらの混合物が軟化点の調整が容易であり、臭気の影響が少ないという観点から好適に用いられる。
 熱可塑性樹脂は、他の成分との混合性の観点から、粒子径が1~500μmの粒状体が好ましく、10~300μmの粒状体がより好ましい。また、熱可塑性樹脂の軟化点は、より効果的に発熱を抑制する観点から、90~125℃が好ましい。
 ガス濃度調整剤中における熱可塑性樹脂の含有量は、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応を進行させる観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計100質量部に対して、100~1000質量部が好ましく、300~500質量部がより好ましい。
(g2)アルデヒド除去剤
 本発明のガス濃度調整剤は、主にデヒドロアスコルビン酸及びアスコルビン酸類の酸化反応の進行に伴って副生するアルデヒドを除去するために、アルデヒド除去剤を含んでもよい。アルデヒド除去能を有する化合物としてはアミン類等、種々のものが公知であるが、アルデヒド除去能が充分であり、刺激臭の発生も見られず、少量で高い効果を発揮するエチレン尿素、尿素、アルギニン、リジン塩酸塩またはポリアリルアミンを配合することが好ましく、より少量で効果の高いエチレン尿素がより好ましい。
 本明細書で言うアルデヒドとは、その分子内に1つ以上のホルミル基を有する化合物、すなわち、アルデヒド類を意味する。本発明においては、典型的には、酸素吸収又は細菌培養の過程で副生成分として発生するアルデヒドを意味し、該アルデヒドとしては、細菌培養に悪影響を及ぼす限り化学分野においてアルデヒド類に分類されるものであればいずれのものを包含される。具体的には、例えば、ホルムアルデヒド、アセトアルデヒド等が包含される。
 ガス濃度調整剤中におけるアルデヒド除去剤の含有量は、アルデヒドを効率的かつ経済的に除去する観点から、デヒドロアスコルビン酸及びアスコルビン酸類の合計100質量部に対して、0.5~25質量部が好ましく、1~10質量部がより好ましく、1~5質量部が更に好ましい。
(g3)被覆材
 本発明のガス濃度調整剤は、上述した(a)~(f)成分を含む組成物の造粒物の外側に被覆材を有していてもよい。被覆材としては、酸素吸収反応に伴い発生する微量の臭気成分を吸着する観点からは、活性炭、ゼオライト、ケイ酸塩等の多孔質粒子が挙げられる。また、ガス濃度調整剤の流動性を向上し、ガス濃度調整剤を包装材料に充填包装しやすくする観点からは、タルク、ステアリン酸マグネシウム、ステアリン酸カルシウム等が挙げられる。これらの助剤は、1種を単独で用いることができ、又は必要に応じて2種以上を併用して用いることもできる。また、これらの助剤は、市販品を容易に入手することもできる。
(ガス濃度調整剤の製造方法)
 本発明のガス濃度調整剤の製造方法は、特に制限はないが、例えば、デヒドロアスコルビン酸、遷移金属触媒、アルカリ金属水酸化物等を溶解したデヒドロアスコルビン酸水溶液を調製し、この溶液を活性炭及びアルカリ金属炭酸塩に混合して活性炭に含浸させる方法が挙げられる。また、アスコルビン酸類、遷移金属触媒、アルカリ金属水酸化物等を溶解したアスコルビン酸類水溶液を調製し、一方、デヒドロアスコルビン酸、遷移金属触媒、アルカリ金属水酸化物等を溶解したデヒドロアスコルビン酸水溶液を調製し、これらの溶液を活性炭及びアルカリ金属炭酸塩に混合して活性炭に含浸させる方法も挙げられる。
[ガス濃度調整剤包装体]
 ガス濃度調整剤は、上述した各成分を含む組成物を、通気性包装材を全部又は一部に用いた包装材で包装することによって、ガス濃度調整剤包装体とすることもできる。
(包装材)
 包装材としては、2枚の通気性包装材を貼り合わせて袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを貼り合わせて袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く縁部同士をシールして袋状としたものが挙げられる。
 ここで、通気性包装材及び非通気性包装材が四角形状である場合には、包装材は、2枚の通気性包装材を重ね合わせ、4辺をヒートシールして袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを重ね合わせ、4辺をヒートシールして袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く3辺をヒートシールして袋状としたものが挙げられる。また包装材は、通気性包装材を筒状にしてその筒状体の両端部および胴部をヒートシールして袋状としたものであってもよい。
(通気性包装材)
 通気性包装材としては、酸素と二酸化炭素を透過する包装材が選択される。なかでも、ガーレ式試験機法による透気抵抗度が600秒以下、より好ましくは90秒以下のものが好適に用いられる。ここで、透気抵抗度とは、JIS P8117(1998)の方法により測定された値を言うものとする。より具体的には、株式会社東洋精機製作所製のガーレ式デンソメーターを使用して100mLの空気が通気性包装材を透過するのに要した時間を言う。
 上記通気性包装材としては、紙や不織布の他、プラスチックフィルムに通気性を付与したものが用いられる。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリアミド、ポリプロピレン、ポリカーボネート等のフィルムと、シール層としてポリエチレン、アイオノマー、ポリブタジエン、エチレン/アクリル酸コポリマー、エチレン/メタクリル酸コポリマー又はエチレン/酢酸ビニルコポリマー等のフィルムとを積層接着した積層フィルム等が使用できる。また、これらの積層物も通気性包装材として使用することができる。
 通気性を付与する方法としては、冷針、熱針による穿孔加工の他、種々の方法が採用可能である。穿孔加工により通気性を付与する場合、通気性は、穿孔する孔の径、数、材質等により自由に調整することができる。
 また、積層フィルムの厚さは、50~300μmであることが好ましく、60~250μmであることが特に好ましい。この場合、厚さが上記範囲を外れる場合に比べて、強度を保持しヒートシール性や包装適性に優れた包装材とすることができる。
 上記のガス濃度調整剤包装体はその機能を長期間維持するため、使用前はガスバリア性の容器や袋に収納し、使用するにあたりガスバリア性の容器や袋から取り出して用いることが好ましい。また、菌培養の用途にガス濃度調整剤包装体を使用する際は、該包装体に対して予めγ線等を用いた殺菌を施すことが好ましい。
[嫌気性細菌の培養方法]
 本発明の嫌気性細菌の培養方法は、ガス濃度調整剤の存在下で嫌気性細菌を培養する方法である。具体的には、嫌気性細菌及び培地を収容した培養容器と共にガス濃度調整剤(好ましくはガス濃度調整剤包装体)を、ガスバリア性密閉容器内に設置後、密封し、該密閉容器を細菌培養に好適な温度下に静置することで実施できる。
 本発明の培養方法に用いられる培地については特に制限はなく、一般的に使用されているものがそのまま適用できるため、培養する菌に適した培地を自由に選択できる。培地中に溶け込むアルデヒド濃度は、好ましくは2mg/L以下、より好ましくは1.5mg/L以下、更に好ましくは1.0mg/L以下とするのが、菌培養条件として好適である。
 また、培養温度は20~45℃であることが好ましく、25~40℃であることが特に好ましい。
 培養容器は、容器外との通気性が確保されていれば特に制限はなく、容積、形状、材質等いずれも培養に適した任意のものを採用することができる。蓋部を有する培養容器が好ましく用いられるが、この際も、容器外との通気性を確保する必要がある。
 本発明の細菌の培養方法は、嫌気性細菌の培養に適用される。本発明の培養方法においては、培養実施前のガスバリア性密閉容器内の雰囲気は特に限定されず空気であってもよいが、嫌気性細菌を培養する観点から、窒素雰囲気であることが好ましい。
 細菌培養方法で用いられるガスバリア性密閉容器は、その内外の気体の流通を妨げ、投入したガス濃度調整剤により形成された酸素、二酸化炭素濃度を長期間維持するものである。ガラス、金属、ポリカーボネート等のプラスチック等で構成された容器がよく用いられるが、ガスバリア性フィルム及びその積層物を使用することも可能である。
 この際、ガスバリア性密閉容器内で発生したアルデヒドの発生量を測定することや該容器内の湿度の調整等を目的として、該密閉容器内に蒸留水を収容した開放型の容器を設置してもよい。開放型の容器としては培養容器の他、ビーカー、フラスコ等が例示でき、細菌及び培地を収容した培養容器と同種の容器であることが好ましい。
 嫌気性細菌を培養する観点から、密閉容器内の酸素濃度は、24時間以内で0.1容量%以下になることが好ましい。また、密閉容器内の二酸化炭素濃度は、11.5容量%以上が好ましく、12容量%以上がより好ましく、13容量%以上が更に好ましく、15容量%以上が更に好ましい。
 細菌培養においては、短時間で所望の酸素濃度及び二酸化炭素濃度にすることが重要となる。嫌気性細菌を培養する観点から、デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応の反応初期(反応開始から3時間後)の酸素濃度は、0.50容量%以下が好ましく、0.30容量%以下がより好ましく、0.15容量%以下が更に好ましい。デヒドロアスコルビン酸及びアスコルビン酸類の酸化反応の反応初期(反応開始から3時間後)の二酸化炭素濃度は、11.5容量%以上が好ましく、12容量%以上がより好ましく、13容量%以上が更に好ましく、15容量%以上が更に好ましい。
 本発明の培養方法によれば、ガスボンベ及びガスコントローラーを使用することなく、好適なガス雰囲気下での細菌の顕微鏡観察や輸送を可能にする。
 以下、実施例及び比較例を用いて本実施形態を詳しく説明するが、本実施形態は本発明の作用効果を奏する限りにおいて適宜変更することができる。なお、実施例及び比較例中の「部」は、特に明記しない場合は質量部を意味する。
製造例1
(アスコルビン酸水溶液の調製)
 窒素雰囲気下、L-アスコルビン酸30.6g、15質量%水酸化ナトリウム水溶液46.2g、硫酸第一鉄・七水和物4.8gを混合し、2.13mmol/gのアスコルビン酸水溶液を調製した。
製造例2
(デヒドロアスコルビン酸水溶液の調製)
 窒素雰囲気下、デヒドロアスコルビン酸4.5g、15質量%水酸化ナトリウム水溶液6.9g、硫酸第一鉄・七水和物0.7gを混合し、2.13mmol/gのデヒドロアスコルビン酸水溶液を調製した。
実施例1
 窒素雰囲気下、活性炭10g、ポリエチレン粉末15g、炭酸ナトリウム4.7gを測り取り混合した。この粉体に、アスコルビン酸水溶液10.1g、デヒドロアスコルビン酸水溶液10.1gを添加して混合し、脱酸素剤組成物を製造した。この脱酸素剤組成物6.9gをアルミニウム袋に充填し封止をした。
 上記の脱酸素剤を入れたアルミニウム袋をナイロン袋に空気750mLとともに封入し、ナイロン袋内でアルミニウム袋を開封して、脱酸素実験を開始した。3時間後の酸素濃度及び二酸化炭素濃度をガスクロマトグラフで測定したところ、酸素濃度が0.20容量%、二酸化炭素濃度が13.6容量%であった。また、24時間後の酸素濃度及び二酸化炭素濃度をガスクロマトグラフで測定したところ、酸素濃度が0.00容量%、二酸化炭素濃度が13.7容量%であった。
実施例2
 窒素雰囲気下、活性炭10g、ポリエチレン粉末15g、炭酸ナトリウム4.7gを測り取り混合した。この粉体に、デヒドロアスコルビン酸水溶液20.3gを添加して混合し、脱酸素剤組成物を製造した。この脱酸素剤組成物6.9gをアルミニウム袋に充填し封止をした。
 上記の脱酸素剤を入れたアルミニウム袋をナイロン袋に空気750mLとともに封入し、ナイロン袋内でアルミニウム袋を開封して、脱酸素実験を開始した。3時間後の酸素濃度及び二酸化炭素濃度をガスクロマトグラフで測定したところ、酸素濃度が0.10容量%、二酸化炭素濃度が18.5容量%であった。また、24時間後の酸素濃度及び二酸化炭素濃度をガスクロマトグラフで測定したところ、酸素濃度が0.00容量%、二酸化炭素濃度が18.6容量%であった。
比較例1
 窒素雰囲気下、活性炭10g、ポリエチレン粉末15g、炭酸ナトリウム4.7gを測り取り混合した。この粉体に、アスコルビン酸水溶液20.3gを添加して混合し、脱酸素剤組成物を製造した。この脱酸素剤組成物6.9gをアルミニウム袋に充填し封止をした。
 上記の脱酸素剤を入れたアルミニウム袋をナイロン袋に空気750mLとともに封入し、ナイロン袋内でアルミニウム袋を開封して、脱酸素実験を開始した。3時間後の酸素濃度及び二酸化炭素濃度をガスクロマトグラフで測定したところ、酸素濃度が0.55容量%、二酸化炭素濃度が10.7容量%であった。また、24時間後の酸素濃度及び二酸化炭素濃度をガスクロマトグラフで測定したところ、酸素濃度が0.00容量%、二酸化炭素濃度が11.0容量%であった。

Claims (5)

  1.  (a)デヒドロアスコルビン酸、(c)遷移金属触媒、(d)活性炭、(e)アルカリ金属炭酸塩、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群より選ばれる少なくとも1種、並びに(f)水を含む、嫌気性細菌培養用ガス濃度調整剤。
  2.  (b)アスコルビン酸類を更に含む、請求項1に記載の嫌気性細菌培養用ガス濃度調整剤。
  3.  (b)アスコルビン酸類と(a)デヒドロアスコルビン酸とのモル比[(b)/(a)]が1.5以下である、請求項2に記載の嫌気性細菌培養用ガス濃度調整剤。
  4.  請求項1~3のいずれか1つに記載のガス濃度調整剤の存在下で嫌気性細菌を培養する、嫌気性細菌の培養方法。
  5.  請求項1~3のいずれか1つに記載のガス濃度調整剤を通気性包装材で小袋状に包装したガス濃度調整剤包装体。
PCT/JP2020/022460 2019-06-24 2020-06-08 嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法 WO2020261951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/619,799 US20220325224A1 (en) 2019-06-24 2020-06-08 Agent for regulating concentration of gas for anaerobic bacterium culture and method for culturing anaerobic bacterium using same
CN202080043478.6A CN114127257A (zh) 2019-06-24 2020-06-08 厌氧细菌培养用气体浓度调节剂和使用了其的厌氧细菌的培养方法
EP20833575.2A EP3988638A4 (en) 2019-06-24 2020-06-08 MEANS OF CONTROLLING GAS CONCENTRATION FOR ANAEROBIC BACTERIA CULTURE AND METHOD OF CULTIVATION OF ANAEROBIC BACTERIUM USING THE SAME
KR1020217040872A KR20220024030A (ko) 2019-06-24 2020-06-08 혐기성 세균 배양용 가스 농도 조정제 및 이것을 이용한 혐기성 세균의 배양 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-116715 2019-06-24
JP2019116715A JP7322545B2 (ja) 2019-06-24 2019-06-24 嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法

Publications (1)

Publication Number Publication Date
WO2020261951A1 true WO2020261951A1 (ja) 2020-12-30

Family

ID=73993559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022460 WO2020261951A1 (ja) 2019-06-24 2020-06-08 嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法

Country Status (6)

Country Link
US (1) US20220325224A1 (ja)
EP (1) EP3988638A4 (ja)
JP (1) JP7322545B2 (ja)
KR (1) KR20220024030A (ja)
CN (1) CN114127257A (ja)
WO (1) WO2020261951A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111583A1 (en) * 1982-12-21 1984-06-27 Toppan Printing Co., Ltd. Culture of anaerobic bacteria
JPH01202281A (ja) * 1988-02-08 1989-08-15 Toppan Printing Co Ltd 嫌気性細菌培養用脱酸素剤
JPH10327845A (ja) * 1997-04-01 1998-12-15 Mitsubishi Gas Chem Co Inc 雰囲気調整剤及び嫌気性細菌の培養法
JP3818324B2 (ja) 1996-03-26 2006-09-06 三菱瓦斯化学株式会社 ガス濃度調節剤及び低酸素濃度環境の調節方法
KR20060118908A (ko) * 2005-05-17 2006-11-24 주식회사종근당 탄산가스를 함유하는 비타민 씨의 액상 조성물
JP5682831B2 (ja) 2009-11-24 2015-03-11 三菱瓦斯化学株式会社 雰囲気調整剤組成物
WO2018101944A1 (en) * 2016-12-01 2018-06-07 Multisorb Technologies, Inc. Oxygen absorbing and carbon dioxide emitting composition
JP2018514213A (ja) * 2015-04-29 2018-06-07 スリーエム イノベイティブ プロパティズ カンパニー 二酸化炭素発生剤を有する薄膜培養デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69818893T2 (de) * 1997-04-01 2004-05-19 Mitsubishi Gas Chemical Co., Inc. Kulturatmosphäreregulator und Verfahren zum Züchten von anaeroben Bakterien
JP2012076046A (ja) * 2010-10-04 2012-04-19 Kyodo Printing Co Ltd システイン系酸素吸収剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111583A1 (en) * 1982-12-21 1984-06-27 Toppan Printing Co., Ltd. Culture of anaerobic bacteria
JPH01202281A (ja) * 1988-02-08 1989-08-15 Toppan Printing Co Ltd 嫌気性細菌培養用脱酸素剤
JP3818324B2 (ja) 1996-03-26 2006-09-06 三菱瓦斯化学株式会社 ガス濃度調節剤及び低酸素濃度環境の調節方法
JPH10327845A (ja) * 1997-04-01 1998-12-15 Mitsubishi Gas Chem Co Inc 雰囲気調整剤及び嫌気性細菌の培養法
KR20060118908A (ko) * 2005-05-17 2006-11-24 주식회사종근당 탄산가스를 함유하는 비타민 씨의 액상 조성물
JP5682831B2 (ja) 2009-11-24 2015-03-11 三菱瓦斯化学株式会社 雰囲気調整剤組成物
JP2018514213A (ja) * 2015-04-29 2018-06-07 スリーエム イノベイティブ プロパティズ カンパニー 二酸化炭素発生剤を有する薄膜培養デバイス
WO2018101944A1 (en) * 2016-12-01 2018-06-07 Multisorb Technologies, Inc. Oxygen absorbing and carbon dioxide emitting composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988638A4

Also Published As

Publication number Publication date
CN114127257A (zh) 2022-03-01
EP3988638A4 (en) 2022-09-28
JP7322545B2 (ja) 2023-08-08
JP2021000057A (ja) 2021-01-07
KR20220024030A (ko) 2022-03-03
EP3988638A1 (en) 2022-04-27
US20220325224A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
US20070241309A1 (en) Composition for controlling exposure to oxygen
EP0965381B1 (en) Oxygen absorbent
JP6185911B2 (ja) 酸素発生・炭酸ガス吸収剤包装体、及び活魚介類の輸送方法
JPH11228954A (ja) 脱酸素剤組成物
JP2018171565A (ja) 有機系脱酸素剤及び有機系脱酸素剤の製造方法
WO2020261951A1 (ja) 嫌気性細菌培養用ガス濃度調整剤及びこれを用いた嫌気性細菌の培養方法
JP2009536973A (ja) 酸素への暴露を抑制するための組成物
JP3541859B2 (ja) 脱酸素剤及びその包装体
JP6593564B1 (ja) 細菌培養用ガス濃度調整剤及びこれを用いた細菌の培養方法
JP2003190784A (ja) 脱酸素剤およびその包装体
JP2007289813A (ja) 酸素吸収性組成物
JP3741181B2 (ja) 酸素吸収剤及びこれを用いた嫌気性菌の培養方法
JP5714790B2 (ja) 雰囲気調整剤及びそれを用いた細胞培養方法
JP2003144112A (ja) 脱酸素組成物
JPH10327845A (ja) 雰囲気調整剤及び嫌気性細菌の培養法
JP6884444B1 (ja) 雰囲気調整剤及び雰囲気調整剤の製造方法
JP2993085B2 (ja) 脱酸素剤
CN118119439A (zh) 脱氧剂
JPS62265979A (ja) 嫌気性菌の培養方法および培養器具
JPH0427903B2 (ja)
WO2023182130A1 (ja) 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法
WO2022181429A1 (ja) 脱酸素剤粉体
JPH02284645A (ja) 脱酸素剤
JPS63245628A (ja) 活魚類の輸送方法
JPWO2007026540A1 (ja) 酸素吸収剤の保存方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833575

Country of ref document: EP

Effective date: 20220124