WO2023182130A1 - 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 - Google Patents

脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 Download PDF

Info

Publication number
WO2023182130A1
WO2023182130A1 PCT/JP2023/010254 JP2023010254W WO2023182130A1 WO 2023182130 A1 WO2023182130 A1 WO 2023182130A1 JP 2023010254 W JP2023010254 W JP 2023010254W WO 2023182130 A1 WO2023182130 A1 WO 2023182130A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
oxygen
oxygen scavenger
water
mass
Prior art date
Application number
PCT/JP2023/010254
Other languages
English (en)
French (fr)
Inventor
昌男 染谷
慧介 渡邉
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023182130A1 publication Critical patent/WO2023182130A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/10Bromides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron

Definitions

  • Typical oxygen scavengers include iron-based oxygen scavengers whose main ingredient is iron (iron powder), and non-ferrous oxygen scavengers whose main ingredient is ascorbic acid, glycerin, or the like.
  • the oxygen scavenger is appropriately selected depending on the application, but iron-based oxygen scavengers are widely used from the viewpoint of oxygen absorption performance. Under these circumstances, attempts have been made to improve the oxygen absorption rate of iron-based oxygen scavengers.
  • Patent Document 1 discloses an iron-based oxygen scavenger composition that includes a water retention agent, a swelling agent, an ammonium salt, and water to improve the oxygen absorption rate.
  • the gist of the present invention is as follows.
  • [1] Contains iron, metal salts and water, Content of water present on the surface of iron per unit surface area of iron [content of water present on the surface of iron (g)/ ⁇ content of iron (g) x specific surface area of iron (m 2 /g) ) ⁇ is more than 2.00 g/m 2 and less than 3.50 g/m 2 .
  • [2] The oxygen scavenger composition according to [1] above, wherein at least a portion of the metal salt is present on the surface of the iron.
  • [3] The oxygen scavenger composition according to [2] above, wherein the metal salt present on the surface of the iron coats the surface of the iron.
  • Step (IV-1) Step [12] of further accommodating the air-permeable packaging container (b1) containing the oxygen scavenger composition (A) in a gas barrier container (b2) [12] Following the step (I) , the method for producing an oxygen absorber package according to [9] above, which comprises the following steps (III-2), (IV-2), and (II-2) in this order.
  • Step (III-2) A step of storing the oxygen scavenger composition (a) and the moisture donor in the air permeable packaging container (b1)
  • Step (IV-2) The oxygen scavenger composition (a) and Step (II-2) of further accommodating the breathable packaging container (b1) containing the moisture donor in a gas barrier container (b2): From the moisture donor to the oxygen scavenger composition (a). Supplying water to obtain the oxygen scavenger composition (A)
  • the oxygen scavenger composition of the present invention having the above structure, can exhibit sufficient oxygen absorption performance even after being handled in the atmosphere for a certain period of time.
  • the reason why the oxygen scavenger composition of the present invention achieves the above effects is not clear, it is speculated as follows. First, in iron-based oxygen scavengers, iron reacts with water and oxygen, resulting in a rapid oxygen scavenging reaction. Further, it is known that such an iron-based oxygen scavenger usually has a faster reaction rate in the initial stage of the oxygen scavenging reaction.
  • the iron content in the oxygen scavenger composition is preferably 40% by mass or more and 75% by mass or less, more preferably 45% by mass or more and 65% by mass.
  • the content may be more preferably 50% by mass or more and 60% by mass or less.
  • the content of the metal salt is preferably 0.1 parts by mass or more and 25 parts by mass or less, more preferably 0.1 parts by mass or more and 20 parts by mass or less, based on 100 parts by mass of iron.
  • the content of the metal salt is more preferably 0.1 parts by mass or more and 10 parts by mass or less, even more preferably 0.1 parts by mass or more and 10 parts by mass or less, based on 100 parts by mass of iron.
  • the amount is 0.1 parts by mass or more and 5 parts by mass or less, more preferably 0.2 parts by mass or more and 5 parts by mass or less, even more preferably 0.2 parts by mass or more and 3 parts by mass or less.
  • Various methods can be used to impart breathability, including perforation using cold needles and hot needles.
  • the permeability can be freely adjusted by adjusting the diameter, number, material, etc. of the holes to be perforated.
  • Step (III-2) corresponds to the above step (III), and is a step of housing the oxygen scavenger composition (a) in a breathable packaging container (b1). This is a step of housing the drug composition (a) together with the air-permeable packaging container (b1). Through this step, a self-reactive oxygen scavenger is obtained.
  • the above-mentioned ones can be used as the moisture donor.
  • the weight of the tare bag after moisture absorption was measured using a precision balance. Ta.
  • the weight increased by 17.60 g from the initial weight, and this increased amount was taken as the saturated water content of calcium chloride dihydrate.
  • the oxygen absorber package (x2) was removed from the three-sided aluminum bag, it was confirmed that there was no condensed water on the outside or inside of the packaging material, so the saturation of the calcium chloride dihydrate mentioned above was confirmed.
  • Example 7 An oxygen absorber composition (A) and an oxygen absorber package (x2) were prepared in the same manner as in Example 4, except that the amount of calcium chloride dihydrate was changed to 1.99 g. Similar measurements and the following evaluations were performed. The results are shown in Table 1. Note that a test similar to Example 4 (6) was conducted under the following conditions. 1.99 g of calcium chloride dihydrate was placed in a beaker (tare), and the initial weight was immediately measured with a precision balance including the tare.

Abstract

鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が2.00g/m2超3.50g/m2以下である、脱酸素剤組成物。

Description

脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法
 本発明は、脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法に関する。
 食品や医薬品等の保存技術として、脱酸素剤を用いる方法が知られている。この方法では、ガスバリア性の密封容器内に被保存物品と脱酸素剤とを封入して密封することで、密封容器内の酸素を脱酸素剤に吸収させ、密封容器内の雰囲気を実質的に無酸素状態に保つことができる。脱酸素剤の機能として、小型であり、かつ、多くの酸素を吸収することが必要とされる。言い換えれば、単位体積当たりの酸素吸収量が高い脱酸素剤組成物が必要とされる。
 代表的な脱酸素剤としては、鉄(鉄粉)を主剤とする鉄系脱酸素剤、アスコルビン酸やグリセリン等を主剤とする非鉄系脱酸素剤が挙げられる。脱酸素剤は用途に応じて適宜選択されるが、酸素吸収性能の観点からは鉄系脱酸素剤が広く使用されている。
 このような状況において、鉄系脱酸素剤の酸素吸収速度を向上する試みがなされている。
 例えば特許文献1には、鉄系の脱酸素剤組成物において保水剤、膨潤剤、アンモニウム塩、水を含むことで、酸素吸収速度の向上を図った脱酸素剤組成物が開示されている。
特開2021-146292号公報
 一方で、鉄系脱酸素剤の酸素吸収速度を向上する程、大気中での取り扱いは困難になる傾向がある。通常、脱酸素剤は、使用前はガスバリア性の包装材に脱気包装して保管され、使用前に包装材を開封して大気中で脱酸素剤を取り出し、被保存物品と共に密封容器内に封入して使用するのが一般的である。このような使用の場合、特に酸素吸収速度が速い鉄系脱酸素剤は、大気中で取り扱っている間にも、脱酸素反応が急速に進み、密封容器内に封入後には酸素吸収性能が劣化しているという問題がある。
 そのため、これまでは、酸素吸収速度の向上と、大気中での劣化(失活)の抑制という二律背反する課題に対し、(1)両者を適度にバランスするように脱酸素剤組成物の組成設計を行ったり、(2)予め大気中で劣化する程度を考慮して、脱酸素剤組成物を多めに使用したりする等の対応がなされてきたが、更なる改善が求められていた。
 そこで本発明は、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法を提供することを目的とする。
 すなわち、本発明の要旨構成は、以下のとおりである。
[1] 鉄、金属塩及び水を含み、
 鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である、脱酸素剤組成物。
[2] 前記金属塩の少なくとも一部が、前記鉄の表面に存在する、上記[1]に記載の脱酸素剤組成物。
[3] 前記鉄の表面に存在する金属塩が、前記鉄の表面を被覆してなる、上記[2]に記載の脱酸素剤組成物。
[4] 前記鉄の表面に存在する金属塩が、塩化カルシウム、臭化カルシウム及び臭化ナトリウムからなる群から選択される1種以上である、上記[2]又は[3]に記載の脱酸素剤組成物。
[5] 前記鉄の表面に存在する金属塩の含有量が、鉄100質量部に対して0.1質量部以上10質量部以下である、上記[2]~[4]のいずれか一項に記載の脱酸素剤組成物。
[6] 前記鉄の比表面積が、0.03m/g以上0.20m/g以下である、上記[1]~[5]のいずれか一項に記載の脱酸素剤組成物。
[7] 前記鉄の平均粒子径(D50)が、1μm以上1000μm以下である、上記[1]~[6]のいずれか一項に記載の脱酸素剤組成物。
[8] 上記[1]~[7]のいずれか一項に記載の脱酸素剤組成物と、該脱酸素剤組成物を収容した通気性包装容器とを備える、脱酸素剤包装体。
[9] 下記工程(I)~(III)を含む、脱酸素剤包装体の製造方法。
工程(I):金属塩及び鉄を含む脱酸素剤組成物(a)を得る工程
工程(II):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である脱酸素剤組成物(A)を得る工程
工程(III):前記脱酸素剤組成物(a)及び前記脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程
[10] 前記工程(I)に次いで、下記工程(III-1)及び工程(II-1)を順に有する、上記[9]に記載の脱酸素剤包装体の製造方法。
工程(III-1):前記脱酸素剤組成物(a)を前記通気性包装容器(b1)に収容する工程
工程(II-1):前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
[11] 更に、下記工程(IV-1)を有する、上記[10]に記載の脱酸素剤包装体の製造方法。
工程(IV-1):前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
[12] 前記工程(I)に次いで、下記工程(III-2)、工程(IV-2)及び工程(II-2)を順に有する、上記[9]に記載の脱酸素剤包装体の製造方法。
工程(III-2):前記脱酸素剤組成物(a)及び水分供与剤を前記通気性包装容器(b1)に収容する工程
工程(IV-2):前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
工程(II-2):前記水分供与剤から、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
 本発明によれば、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法を提供することができる。
 本発明に従う脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法の実施形態について、以下で詳細に説明する。
 なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
[脱酸素剤組成物]
 本発明の脱酸素剤組成物は、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である。
 なお、本明細書において、「鉄の表面に存在する水の、鉄の単位表面積当たりの含有量」は、「鉄の表面に形成される水膜の厚さ」の指標であり、「鉄の表面に存在する水の、鉄の単位表面積当たりの含有量」が上記所定の範囲内であれば、鉄の表面に所定の厚さを有する水膜が形成されていることを意味する。
 本発明の脱酸素剤組成物は、上記構成であることにより、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る。
 本発明の脱酸素剤組成物が上記効果を奏する理由については定かではないが、以下のように推察する。
 まず、鉄系脱酸素剤では、鉄が、水及び酸素と反応することで、速い脱酸素反応が起こる。また、このような鉄系脱酸素剤は、通常、脱酸素反応の初期の方が、反応速度が速いことが知られている。
 また、上記脱酸素反応における水は、脱酸素環境中の水蒸気(被保存物等から蒸散した水分等)を用いる場合(水分依存型)と、予め脱酸素剤包装体内に含水担体(水分供与剤等)を同包する場合(自力反応型)とがある。いずれの場合も、鉄が酸素を吸収するためには、鉄の表面に水分を呼び込む必要があるが、それには金属塩の潮解現象が利用される。
 また、本発明者等が、鉄の酸素吸収について更に反応解析を行ったところ、上記反応は、鉄と、気体状態の水(水蒸気)や酸素が直接反応するのではなく、まず、金属塩の潮解現象により、鉄の表面に水膜が形成され、該水膜中の水及び溶存酸素が、鉄と反応する機構であることが推察された。
 上記機構から、脱酸素反応の初期段階として、鉄の表面に水膜が形成されると、鉄の表面に適度な水分と酸素(溶存酸素)が供給され、脱酸素反応の反応速度は速くなると考えられる。更に吸水が進み、水膜の厚さが増していくと、水膜中の溶存酸素濃度が低くなる拡散律速のために、脱酸素反応の反応速度は遅くなると考えられる。
 本発明の脱酸素剤組成物においては、予め鉄の表面に所定の厚さの水膜を形成しておくことで、脱酸素反応の初期において、厚い水膜により反応速度を遅くすることができ、大気中での劣化を抑制できると考えられる。また、水膜の厚さを所定の厚さとすることで、大気中での蒸発や反応進行により、当初の水膜の厚さが減少し、一定時間後に最適な水膜の厚さとなり、高い酸素吸収性能を発揮し得ると考えられる。
 以下、各成分等について説明する。
(鉄)
 本発明の脱酸素剤組成物に含まれる鉄の形状は特に限定されないが、酸素吸収性能、入手容易性及び取扱い容易性の観点から、好ましくは鉄粉である。鉄粉は、鉄(0価の金属鉄)の表面が露出したものが好ましいが、本発明の効果を妨げない範囲で、通常の金属表面のように極薄い酸化被膜を有するものであってもよい。具体的には、還元鉄粉、電解鉄粉、噴霧鉄粉(アトマイズ鉄粉)等を好適に用いることができる。また、鋳鉄等の粉砕物、切削品を用いることもできる。
 鉄粉は、1種を単独で用いることができ、必要に応じて2種以上を併用して用いることもできる。また、これらの鉄粉は、市販品を容易に入手でき、用いることもできる。
 鉄粉の平均粒子径(D50)は、酸素との接触を良好にする観点から、好ましくは3000μm以下、より好ましくは1000μm以下、更に好ましくは300μm以下であり、そして、粉塵の発生を抑制する観点から、好ましくは1μm以上、より好ましくは10μm以上、更に好ましくは20μm以上である。そして、より具体的には、鉄粉の平均粒子径(D50)は、好ましくは1μm以上3000μm以下、より好ましくは1μm以上1000μm以下、更により好ましくは10μm以上1000μm以下、より更に好ましくは20μm以上300μm以下である。
 なお、平均粒子径が上記範囲にある鉄粉は、市販の鉄粉を適宜選択し入手することができる。また、例えば所望の平均粒子径に応じた篩を用いて分級して得ることもできる。
 また、平均粒子径は、例えば市販のレーザ回折・散乱式粒子径分布測定装置(株式会社堀場製作所製LA-960)等により体積基準粒度分布における累積頻度50%の平均粒子径(D50)として測定することができる。
 また、鉄粉の比表面積は、酸素吸収性能の観点から、好ましくは0.03m/g以上、より好ましくは0.05m/g以上であり、そして、粉塵の発生を抑制する観点から、好ましくは0.20m/g以下、より好ましくは0.10m/g以下、更に好ましくは0.09m/g以下である。そして、より具体的には、鉄粉の比表面積は、好ましくは0.03m/g以上0.20m/g以下、より好ましくは0.03m/g以上0.10m/g以下、更に好ましくは0.05m/g以上0.09m/g以下である。
 なお、鉄粉の比表面積は、BET多点法にて測定することができる。具体的には、実施例に記載の方法により測定することができる。
 本発明の脱酸素剤組成物は、主剤として鉄を含む。鉄の含有量は特に限定されないが、脱酸素剤組成物中、好ましくは40質量%以上98質量%以下、より好ましくは45質量%以上95質量%以下、更に好ましくは50質量%以上90質量%以下である。
 なお、脱酸素剤組成物が水分供与剤を含まない場合は、脱酸素剤組成物中の鉄の含有量は、好ましくは70質量%以上98質量%以下、より好ましくは75質量%以上95質量%以下、更に好ましくは75質量%以上90質量%以下、より更に好ましくは75質量%以上85質量%以下であってもよい。
 また、脱酸素剤組成物が水分供与剤を含む場合は、脱酸素剤組成物中の鉄の含有量は、好ましくは40質量%以上75質量%以下、より好ましくは45質量%以上65質量%以下、更に好ましくは50質量%以上60質量%以下であってもよい。
(金属塩)
 本発明の脱酸素剤組成物に含まれる金属塩は、鉄の酸化反応に触媒的に作用し、鉄の活性を向上させる物質である。また、金属塩は、脱酸素剤組成物に含まれる水が蒸散して脱酸素剤組成物から失われるのを防止する役割を果たす。
 また、本発明の脱酸素剤組成物は、予め鉄の表面に所定の厚さの水膜を形成しておく必要があるが、鉄の表面に水分を呼び込むには、金属塩の潮解現象が利用される。そのため、金属塩は、好ましくは少なくとも一部が、より好ましくは主に、鉄の表面に存在することが好ましい。
 ここで、「金属塩の少なくとも一部が鉄の表面に存在する」とは、脱酸素剤組成物中に含まれる金属塩のうち、一部又は全部が、鉄の表面に存在することを意味する。本発明の脱酸素剤組成物は、後述するように、水分供与剤を含んでもよく、水分供与剤には金属塩が含まれる場合があるが、該金属塩は水分供与剤の担体に担持されているため、鉄の表面に存在する金属塩とは区別される。したがって、脱酸素剤組成物が水分供与剤を含む場合には、金属塩は、一部が鉄の表面に存在していればよく、その他は水分供与剤の担体に担持されていてもよい。
 また、「金属塩が主に鉄の表面に存在する」とは、例えば水分供与剤等の金属塩を含む成分を脱酸素剤組成物に配合しない場合等が挙げられ、実質的に、金属塩の全部が鉄の表面に存在する場合を意味する。
 また、鉄の表面に存在する金属塩は、鉄の表面を被覆してなることがより好ましい。なお、金属塩が、鉄の表面を被覆する方法は特に限定されないが、例えば、後述のように、鉄粉と金属塩を含む水溶液とを混合した後、乾燥して水分を除去し、鉄粉の表面に金属塩を付着させることによって行うことができる。
 金属塩は特に限定されないが、潮解性を有する金属塩であることが好ましい。中でも、ハロゲン化金属が好ましい。ハロゲン化金属としては、一般に知られているものなら特に制限なく使用することができる。
 ハロゲン化金属における金属としては特に限定されないが、例えば、アルカリ金属、アルカリ土類金属、銅、亜鉛、アルミニウム、スズ、鉄、コバルト及びニッケルからなる群から選択される1種以上が挙げられる。中でも、リチウム、カリウム、ナトリウム、マグネシウム、カルシウム、バリウム及び鉄からなる群から選択される1種以上がより好ましく、ナトリウム及びカルシウムからなる群から選択される1種以上が更に好ましい。
 また、ハロゲン化金属におけるハロゲン化物としては特に限定されないが、例えば、塩化物、臭化物、及びヨウ化物が挙げられ、好ましくは塩化物及び臭化物からなる群から選択される1種以上である。
 ハロゲン化金属は、取り扱い性、安全性等の点から、塩化カルシウム、塩化ナトリウム、臭化カルシウム、臭化ナトリウム、ヨウ化カルシウム及びヨウ化ナトリウムからなる群から選択される1種以上であることが好ましい。
 特に、鉄の表面に存在する金属塩としては、水膜の厚さ制御の観点から、塩化カルシウム、臭化カルシウム及び臭化ナトリウムからなる群から選択される1種以上であることがより好ましい。
 金属塩は、1種を単独で用いることができ、必要に応じて2種以上を併用して用いることもできる。また、これらの金属塩は、市販品を容易に入手でき、用いることもできる。
 金属塩の含有量は特に限定されないが、脱酸素剤組成物中、好ましくは0.09質量%以上20質量%以下、より好ましくは0.10質量%以上15質量%以下、更に好ましくは0.50質量%以上10質量%以下である。また、水分供与剤を除く脱酸素剤組成物中の金属塩の含有量は、好ましくは0.09質量%以上9.0質量%以下、より好ましくは0.10質量%以上7.0質量%以下、更に好ましくは0.50質量%以上5.0質量%以下である。
 また、金属塩の含有量は、鉄100質量部に対して、好ましくは0.1質量部以上25質量部以下、より好ましくは0.1質量部以上20質量部以下である。なお、脱酸素剤組成物が水分供与剤を含まない場合は、金属塩の含有量は、鉄100質量部に対して、更に好ましくは0.1質量部以上10質量部以下、より更に好ましくは0.1質量部以上5質量部以下、より更に好ましくは0.2質量部以上5質量部以下、より更に好ましくは0.2質量部以上3質量部以下である。また、脱酸素剤組成物が水分供与剤を含む場合は、金属塩の含有量は、鉄100質量部に対して、更に好ましくは1.0質量部以上20質量部以下、より更に好ましくは5.0質量部以上15質量部以下、より更に好ましくは10質量部以上15質量部以下である。
 鉄の表面に存在する金属塩の含有量は特に限定されないが、脱酸素剤組成物中、好ましくは0.09質量%以上9.0質量%以下、より好ましくは0.10質量%以上5.0質量%以下、更に好ましくは0.10質量%以上2.9質量%以下である。また、鉄の表面に存在する金属塩の含有量は、水分供与剤を除く脱酸素剤組成物中、好ましくは0.09質量%以上9.0質量%以下、より好ましくは0.10質量%以上7.0質量%以下、更に好ましくは0.50質量%以上5.0質量%以下である。
 また、鉄の表面に存在する金属塩の含有量は、鉄100質量部に対して、好ましくは0.1質量部以上20質量部以下、より好ましくは0.1質量部以上15質量部以下、更に好ましくは0.1質量部以上10質量部以下、より更に好ましくは0.3質量部以上10質量部以下、より更に好ましくは0.8質量部超10質量部以下である。なお、脱酸素剤組成物が水分供与剤を含まない場合は、鉄の表面に存在する金属塩の含有量は、鉄100質量部に対して、より更に好ましくは0.7質量部以上5質量部以下、より更に好ましくは0.7質量部以上3質量部以下である。また、脱酸素剤組成物が水分供与剤を含む場合は、鉄の表面に存在する金属塩の含有量は、100質量部に対して、より更に好ましくは1.0質量部以上7.0質量部以下、より更に好ましくは2.0質量部以上7.0質量部以下である。
(水)
 本発明の脱酸素剤組成物に含まれる水は、脱酸素反応を進行させるために必要な成分である。
 また、本発明の脱酸素剤組成物は、予め鉄の表面に所定の厚さの水膜を形成しておく必要があるが、このとき水は、金属塩の潮解現象により、鉄の表面に存在する金属塩にとりこまれると考えられる。そのため、水は、好ましくは少なくとも一部が、より好ましくは主に、金属塩と共に、鉄の表面に存在することが好ましい。
 ここで、「水の少なくとも一部が鉄の表面に存在する」とは、脱酸素剤組成物中に含まれる水のうち、一部又は全部が、鉄の表面に存在することを意味する。本発明の脱酸素剤組成物は、後述するように、水分供与剤を含んでもよく、水分供与剤には水が含まれるが、該水は水分供与剤の担体に担持されているため、鉄の表面に存在する水とは区別される。したがって、脱酸素剤組成物が水分供与剤を含む場合には、水は、一部が鉄の表面に存在していればよく、その他は水分供与剤の担体に担持されていてもよい。
 また、「水が主に鉄の表面に存在する」とは、例えば水分供与剤等の水を含む成分を脱酸素剤組成物に配合しない場合等が挙げられ、実質的に、水の全部が鉄の表面に存在する場合を意味する。
 また、鉄の表面に存在する水は、金属塩と共に、鉄の表面を被覆してなることがより好ましい。
 本発明の脱酸素剤組成物では、鉄の表面に形成される水膜の厚さを所定の厚さに制御することにより、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る。なお、水膜の厚さは、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量を指標とすることができる。
 鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]は、2.00g/m超3.50g/m以下である。鉄の表面に存在する水の、鉄の単位表面積当たりの含有量が2.00g/m以下であると、水膜が薄く、酸素吸収速度が速いため、大気中で一定時間放置すると劣化し、十分な酸素吸収性能が発揮されない。また、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量が3.50g/m超であると、水膜が厚すぎるため、大気中で一定時間放置しても、水膜の厚さが最適化されず、酸素吸収速度が遅くなると考えられる。また、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量は、好ましくは2.01g/m以上3.10g/m以下、より好ましくは2.10g/m以上3.10g/m以下である。
 上記鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}を所定の範囲に制御する方法は、特に限定されないが、例えば、(1)鉄の表面への水の供給方法やその条件を適宜選択したり、(2)鉄の表面に存在する金属塩の含有量を調整したりすることによって、所望の厚さに制御することができる。特に、鉄の表面に水分を呼び込む際には、金属塩の潮解現象が利用されるため、上記(2)の方法で制御することがより好ましい。この場合、鉄の表面に存在する金属塩の含有量を増やすほど、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}を高めることができると考えられる。
 なお、脱酸素剤組成物中の水の含有量は、特に限定されないが、好ましくは5質量%以上40質量%以下、より好ましくは10質量%以上30質量%以下、更に好ましくは10質量%以上25質量%以下である。また、水の含有量は、水分供与剤を除く脱酸素剤組成物中、好ましくは5質量%以上34質量%以下、より好ましくは10質量%以上30質量%以下、更に好ましくは14質量%以上28質量%以下、より更に好ましくは14質量%以上25質量%以下である。
 また、水の含有量は、酸素吸収性能の観点から、鉄100質量部に対して、好ましくは6質量部以上35質量部以下、より好ましくは10質量部以上35質量部以下、より好ましくは15質量部以上30質量部以下である。
(水分供与剤)
 本発明の脱酸素剤組成物は、更に水分供与剤を含むことができる。水分供与剤は、水分を、担体に含浸させたもの(含水担体)であり、鉄に水を供給するものである。
 水分供与剤は、担体と、金属塩と、水とを含むことが好ましい。
 担体としては、担持した水分を鉄に供給できるものであればよく、一般的にはゼオライト、焼成珪藻土、シリカゲル、パーライト、バーミキュライト、活性アルミナ、活性白土、活性炭、ベントナイト等の粒状物が好適に使用され、中でもゼオライト、焼成珪藻土、活性炭が好ましい。
 金属塩としては、前述の成分を用いることができるが、好ましくは塩化ナトリウムである。
 本発明の脱酸素剤組成物が水分供与剤を含む場合、水分供与剤の含有量は特に限定されず、必要水分量を供与できる量であればよく、例えば脱酸素剤組成物中、好ましくは12質量%以上85質量%以下、より好ましくは25質量%以上70質量%以下、更に好ましくは35質量%以上70質量%以下、より更に好ましくは35質量%以上60質量%以下である。また、水分供与剤の含有量は、鉄100質量部に対して、好ましくは15質量部以上500質量部以下、より好ましくは30質量部以上200質量部以下、更に好ましくは30質量部以上150質量部以下、より更に好ましくは50質量部以上130質量部以下、より更に好ましくは50質量部以上100質量部以下である。
 また、本発明の脱酸素剤組成物が水分供与剤を含む場合、担体の含有量は、脱酸素剤組成物中、好ましくは15質量%以上100質量%以下、より好ましくは15質量%以上60質量%以下、更に好ましくは20質量%以上40質量%以下、より更に好ましくは20質量%以上30質量%以下である。また、担体の含有量は、鉄100質量部に対して、好ましくは20質量部以上150質量部以下、より好ましくは30質量部以上100質量部以下、更に好ましくは30質量部以上80質量部以下、より更に好ましくは30質量部以上50質量部以下である。
(他の成分)
 本発明の脱酸素剤組成物は、上記成分の他に、必要に応じてその他の成分を含んでいてもよい。その他の成分としては、アルカリ性物質、膨潤剤、流動性改善剤、触媒、臭気吸着剤、熱分散剤等が挙げられる。
<脱酸素剤組成物の形状>
 本発明の脱酸素剤組成物の形状は、特に限定されないが、例えば、球形、略球形、楕円形、及び円柱が挙げられ、充填性により優れ、嵩密度がより高くなる傾向にあることから、球形及び略球形が好ましく、球形がより好ましい。
[脱酸素剤組成物の製造方法]
 本発明の脱酸素剤組成物を製造する方法は特に限定されないが、例えば下記工程(i)及び(ii)を順に有することが好ましい。
工程(i):鉄及び金属塩を含む脱酸素剤組成物(a)を得る工程
工程(ii):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である脱酸素剤組成物(A)を得る工程
<工程(i)>
 工程(i)は、鉄及び金属塩を含む脱酸素剤組成物(a)を得る工程である。
 鉄及び金属塩については、上記のとおりである。
 得られる脱酸素剤組成物(a)において、金属塩は、鉄の表面に存在していることが好ましく、鉄の表面を被覆してなることがより好ましい。このような脱酸素剤組成物(a)を得る方法は特に限定されないが、例えば鉄粉に、金属塩の水溶液を混合し、乾燥させることによって、金属塩が付着した鉄粉を得てもよい。
 金属塩を水溶液として原料とする場合におけるその塩の濃度は、好ましくは1質量%以上40質量%以下、より好ましくは2質量%以上30質量%以下、更に好ましくは10質量%以上30質量%以下である。上記範囲内であることにより、鉄粉と金属塩水溶液を均一に混合することが可能になり、鉄粉表面に均一に金属塩を被覆することができる。
<工程(ii)>
 工程(ii)は、上記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である脱酸素剤組成物(A)を得る工程である。
 本工程により、所望の厚さを有する水膜を鉄の表面に形成することができ、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る脱酸素剤組成物が得られる。
 脱酸素剤組成物(a)に水を供給する方法は、特に限定されないが、例えば以下のような方法が挙げられる。
 まず、(1)水を外部からの吸湿で供給する場合は、脱酸素剤組成物(a)を所定の湿度に調整した雰囲気に一定時間放置し、水分を吸収させる方法や、脱酸素剤組成物(a)に含水体(例えば、濡らせた脱脂綿等)を接触させ、含水体から脱酸素剤組成物(a)に水を供給する方法等が挙げられる。これらの方法によれば、湿度及び放置時間、並びに含水体の水分量及び接触時間等を適宜調整することにより、所望の厚さを有する水膜を鉄の表面に形成することができる。
 また、(2)脱酸素剤組成物(a)に、更に含水担体(水分供与剤等)を配合し、該含水担体から脱酸素剤組成物(a)に水分を供給する方法も挙げられる。本方法によれば、含水担体の量や、含水担体の含水量等を調整することにより、所望の厚さを有する水膜を鉄の表面に形成することができる。なお、本方法により得られる脱酸素剤組成物(A)は、鉄、金属塩及び水の他に、実質的に担体を更に含む。
 なお、上記いずれの方法の場合も、脱酸素剤組成物(a)に水分が供給され始めると、鉄の脱酸素反応が進行してしまうので、工程(ii)は不活性雰囲気中で行うことが好ましく、更に得られた脱酸素剤組成物(A)は、脱酸素剤として使用されるまでは、不活性雰囲気中に保存されることが好ましい。
 上記各成分を混合する混合装置は、特に限定されないが、具体例として、リボンミキサー(大野化学機械株式会社製)、ナウターミキサー(ホソカワミクロン株式会社製)、コニカルミキサー(大野化学機械株式会社製)、バーチカルグラニュレータ(株式会社パウレック製)、SPグラニュレーター(株式会社ダルトン製)、ハイスピードミキサ(株式会社アーステクニカ製)及び造粒機(アキラ機工株式会社製)を使用することができる。
[脱酸素剤包装体]
 本発明の脱酸素剤包装体は、上述した脱酸素剤組成物と、該脱酸素剤組成物を収容した通気性包装容器とを備える。
(通気性包装容器)
 通気性包装容器は、脱酸素剤用途に用いられる包装材料からなる容器であれば特に制限されないが、脱酸素剤包装体が十分な酸素吸収性能を発揮する観点から、少なくとも通気性包装材を含み、例えば2枚の通気性包装材を貼り合わせて袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを貼り合わせて袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く縁部同士をシールして袋状としたものが挙げられる。他にも、非通気性の剛性容器の開口面に通気性包装材を貼り付けた容器等も挙げられる。
 ここで、通気性包装材及び非通気性包装材が四角形状である場合には、通気性包装容器は、2枚の通気性包装材を重ね合わせ、4辺をヒートシールして袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを重ね合わせ、4辺をヒートシールして袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く3辺をヒートシールして袋状としたものが挙げられる。また包装材は、通気性包装材を筒状にしてその筒状体の両端部および胴部をヒートシールして袋状としたものであってもよい。
(通気性包装材)
 通気性包装材としては、酸素と水蒸気を透過する包装材が選択される。なかでも、ガーレ式試験機法による透気抵抗度が600秒以下、より好ましくは90秒以下、更に好ましくは30秒以下のものが好適に用いられる。ここで、透気抵抗度とは、JIS P8117:2009の方法により測定された値を言うものとする。より具体的には、ガーレ式デンソメーター(株式会社東洋精機製作所製)を使用して100mLの空気が通気性包装材を透過するのに要した時間を言う。
 上記通気性包装材としては、紙や不織布の他、プラスチックフィルムに通気性を付与したものが用いられる。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリアミド、ポリプロピレン、ポリカーボネート等のフィルムと、シール層としてポリエチレン、アイオノマー、ポリブタジエン、エチレンアクリル酸コポリマー、エチレンメタクリル酸コポリマーまたはエチレン酢酸ビニルコポリマー等のフィルムとを積層接着した積層フィルム等が使用できる。また、これらの積層物も通気性包装材として使用することができる。
 通気性を付与する方法としては、冷針、熱針による穿孔加工の他、種々の方法が採用可能である。穿孔加工により通気性を付与する場合、通気性は、穿孔する孔の径、数、材質等により自由に調整することができる。
 また、積層フィルムの厚さは、50~300μmであることが好ましく、60~250μmであることが特に好ましい。この場合、厚さが上記範囲を外れる場合に比べて、強度を保持しヒートシール性や包装適性に優れた包装材とすることができる。
(非通気性包装材)
 非通気性包装材としては、脱酸素剤用途に用いられる包装材料を用いることができ、被保存物品の水分やアルコール、油分や固体成分を遮断でき、またシール性のある包装材が好適である。具体的には、ポリエチレンテレフタレートやナイロン系の共押出し多層シートやフィルムのような、酸素透過度0.05~20mL/m・24hr・atm(25℃、50%RH)の積層体等が挙げられる。
(ガスバリア性容器)
 本発明の脱酸素剤包装体は、上述した脱酸素剤組成物を収容した通気性包装容器を更に収容するガスバリア性容器を備えてもよい。上述した脱酸素剤組成物を収容した通気性包装容器を、ガスバリア性容器に収容することにより、外部との通気を遮断することができ、特に、ガスバリア性容器内への酸素の流入及び水蒸気の流出を防止でき、脱酸素剤としての使用時まで酸素吸収性能を良好に維持することができる。
 ガスバリア性容器は、密封可能で実質的にガスバリア性を有しているものであれば特に限定されないが、外部の通気を遮断する観点から、上記非通気性材料で構成されることが好ましい。
 具体的には、ポリエチレンテレフタレート/アルミニウム蒸着/ポリエチレン、延伸ポリプロピレン/ポリビニルアルコール/ポリエチレン、ポリ塩化ビニリデンコート延伸ナイロン/ポリエチレン等の積層構造を有する多層シートやフィルム、ナイロン系の共押出し多層シートやフィルムのような、酸素透過度0.05~20mL/m・24hr・atm(25℃、50%RH)の積層体から成る、袋や包装容器を簡便に使用することができる。
 また、上記の他にも、ガスバリア性容器としては、金属缶、ガラス瓶、プラスティック容器等を用いることもできる。
[脱酸素剤包装体の製造方法]
 脱酸素剤包装体の製造方法は、特に限定されないが、例えば下記工程(I)~(III)を含むことが好ましい。このような方法によれば、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る脱酸素剤包装体を得ることができる。なお、下記工程(II)及び(III)の順序は問わない。
工程(I):鉄及び金属塩を含む脱酸素剤組成物(a)を得る工程
工程(II):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である脱酸素剤組成物(A)を得る工程
工程(III):前記脱酸素剤組成物(a)及び前記脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程
<工程(I)及び(II)>
 工程(I)及び(II)は、上記脱酸素剤組成物を製造する方法における工程(i)及び(ii)と同じである。
<工程(III)>
 工程(III)は、脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程である。
 本工程を有することにより、脱酸素剤組成物(a)及び脱酸素剤組成物(A)を通気性包装容器内に収容することができ、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得る脱酸素剤包装体を得ることができる。
 なお、通気性包装容器(b1)については、上述のものを使用することができる。
 上記製造方法は、更に下記工程(IV)を有していることが好ましい。
工程(IV):脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
 上記工程(IV)を有することにより、脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容することができ、ガスバリア性容器の内部への酸素や水蒸気の流入を遮断できる。そのため、鉄の酸化を抑制できると共に、鉄の表面における水分量を適切に管理できる。
 特に、本工程は、通気性包装容器(b1)が脱酸素剤組成物(A)を収容している場合に、好適である。脱酸素剤組成物(A)は、既に水膜が形成されているため、酸素の存在下では徐々に脱酸素反応が進行する。そのため、脱酸素剤としての使用時まで酸素吸収性能を良好に維持する観点から、本工程は有効である。
 なお、脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する場合は、実質的にガスバリア性容器(b2)の内部は密閉系となることが好ましく、系内を酸素のない還元性雰囲気にすることがより好ましい。
 上記製造方法の具体例としては、例えば以下の方法1及び2が挙げられる。
<方法1>
 方法1としては、上記工程(I)に次いで、下記工程(III-1)及び工程(II-1)を順に有するものであることが好ましい。
工程(III-1):前記脱酸素剤組成物(a)を前記通気性包装容器(b1)に収容する工程
工程(II-1):前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
 工程(III-1)は、上記工程(III)に対応し、脱酸素剤組成物(a)を通気性包装容器(b1)に収容する工程である。
 工程(II-1)は、上記工程(II)に対応し、前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程である。
 ここで、通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給する方法は、特に限定されないが、例えば脱酸素剤組成物(a)を収容した通気性包装容器(b1)の外側から含水体(例えば、濡らせた脱脂綿等)を接触させることにより、含水体に含まれる水を、通気性包装容器(b1)を通して(通過させて)、脱酸素剤組成物(a)に供給する方法が挙げられる。本工程を有することにより、得られる脱酸素剤組成物(A)において、所望の厚さを有する水膜の形成が容易になる。
 このような方法1は、更に下記工程(IV-1)を有していることが好ましい。
工程(IV-1):前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
 工程(IV-1)は、前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程である。脱酸素剤組成物(A)は、酸素吸収性能に優れるため、脱酸素剤として使用するまではガスバリア性容器に収容されていることが好ましい。
<方法2>
 方法2としては、上記工程(I)に次いで、下記工程(III-2)、工程(IV-2)及び工程(II-2)を順に有するものであることが好ましい。
工程(III-2):前記脱酸素剤組成物(a)及び水分供与剤を前記通気性包装容器(b1)に収容する工程
工程(IV-2):前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
工程(II-2):前記水分供与剤から、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
 工程(III-2)は、上記工程(III)に対応し、脱酸素剤組成物(a)を通気性包装容器(b1)に収容する工程であるが、その際、水分供与剤を脱酸素剤組成物(a)と共に通気性包装容器(b1)に収容する工程である。本工程により、自力反応型の脱酸素剤が得られる。
 なお、水分供与剤は、上述のものを使用することができる。
 工程(IV-2)は、前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程である。前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容することにより、外部との通気を遮断することができる。その結果、水分供与剤から、脱酸素剤組成物(a)に効果的に水を供給することができ、所望の厚さを有する水膜が形成された脱酸素剤組成物(A)を得ることができる(工程(II-2)に対応)。また、上述のように、鉄に水分が供給されると、徐々に脱酸素反応が進行するが、ガスバリア性容器により外部との通気が遮断されていることにより、脱酸素剤としての使用時まで酸素吸収性能を良好に維持することができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 以下、実施例及び比較例を用いて本実施形態を詳しく説明するが、本実施形態は本発明の作用効果を奏する限りにおいて適宜変更することができる。また、実施例及び比較例における各種測定は以下のように行った。
(比表面積)
 比表面積の測定は、定容量法の比表面積測定装置(マイクロトラック・ベル社製、「BELSORP mini II」)を用い、以下の条件で窒素吸着量測定を行い、BET法により比表面積を算出した。
 測定温度:-196℃
 前処理:300℃、3時間、窒素流通
(透気抵抗度)
 透気抵抗度は、ガーレ式デンソメーター(株式会社東洋精機製作所製)を使用して100mLの空気が、通気性包装材を透過するのに要した時間を測定した。
(水分活性)
 水分活性の測定は、水分供与剤1.0gを専用シャーレに入れ、水分活性測定装置(METER社製「AquaLab TDL 2」)を用い、25℃で、装置所定の手順に従って行った。
(実施例1)
(1)塩化カルシウム無水物(CaCl):2gを水6gに溶解し、この水溶液(CaCl濃度:25質量%)を還元鉄粉(ヘガネス社製、平均粒子径80μm(レーザ回折・散乱式粒子径分布測定装置にて測定されたD50径)、比表面積0.085m/g)100gに混合し、乾燥させ、鉄粉の表面に塩化カルシウムを付着させることによって、塩化カルシウムで表面を被覆した鉄粉(脱酸素剤組成物(a))を得た。
(2)上記(1)で得られた脱酸素剤組成物(a)1.00gを、通気性積層フィルム(構成:ポリエチレン製不織布(ユニチカ株式会社製、「エルベス」)/耐油合成紙(阿波製紙株式会社製、「アルト」)、透気抵抗度:10秒、厚さ:200μm)を用いた40mm×40mmの袋(通気性包装容器(b1))に充填し、三方シールして、脱酸素剤包装体(x1)を得た。
(3)上記(2)で得られた脱酸素剤包装体(x1)と、吸水した脱脂綿(脱脂綿3.5g、水5.0g)とを、アルミ三方袋(株式会社サンエー化研製「700アルミ袋」を180mm×250mmに切断して作製、ガスバリア性容器(b2))の中に導入し、袋内の酸素濃度が0.1体積%以下となるように袋内を窒素ガスで置換し、袋の口をヒートシールして封止し、脱酸素剤包装体(y1)を得た。
(4)上記(3)で得られた脱酸素剤包装体(y1)を、25℃にて2日間保存し、上記吸水した脱脂綿(含水体)から脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含む脱酸素剤組成物(A)並びにこれを通気性包装容器(b1)に収容する脱酸素剤包装体(x2)を得た。そして、上記保存期間後に、大気中(24℃、40%RH)で、アルミ三方袋を開封し、脱酸素剤包装体(x2)を取り出して、下記脱酸素実験を行い、酸素吸収性能を評価した。
(5)なお、脱酸素剤組成物(A)における、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]は以下の方法で求めた。
 まず、作製直後(吸水前)の脱酸素剤包装体(x1)の重量Wを、予め測定しておいた。
 次に、脱酸素剤包装体(x1)に水を供給して得た脱酸素剤包装体(x2)の重量Wを測定した。該測定は大気中(24℃、40%RH)で、アルミ三方袋から脱酸素剤包装体(x2)を取り出した後速やかに行った。
 また、上記各重量の測定は、精密天秤を用いて行った。
 更に、アルミ三方袋から脱酸素剤包装体(x2)を取り出した際の、包装材の外部や内部に結露水はなかったことを確認していることから、下記式(1)で算出される水分量は全て、吸水した脱脂綿から、脱酸素剤組成物(a)の鉄の表面に供給された水の量、すなわち脱酸素剤組成物(A)における、鉄の表面に存在する水の含有量と推定できる。
 したがって、下記式(1)で算出される水分量と、脱酸素剤組成物(A)における、鉄の含有量及び比表面積とから、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]を算出した。結果を表1に示す。
 水分量(g)=W-W  ・・・(1)
(実施例2及び3、並びに比較例1~6)
 実施例2及び3、並びに比較例1~6は、金属塩の種類及び配合量、並びに保存日数を表1に示すように変更した以外は、実施例1と同様の方法で、脱酸素剤組成物(A)及び脱酸素剤包装体(x2)を作製した。
 得られた脱酸素剤包装体(x2)に対して、実施例1と同様の測定及び下記の評価を行った。結果を表1に示す。
(実施例4)
(1)塩化カルシウム二水和物5.88gを水7.43gに溶解し、この水溶液をアトマイズ鉄粉(株式会社神戸製鋼所製、平均粒子径100μm(レーザ回折・散乱式粒子径分布測定装置にて測定されたD50径)、比表面積0.073m/g)100gに混合し、乾燥させ、鉄粉の表面に塩化カルシウムを付着させることによって、塩化カルシウムで表面を被覆した鉄粉(脱酸素剤組成物(a))を得た。
(2)次に、塩化ナトリウム17.5gを水51.5gに溶解し、粒状珪藻土(昭和化学工業株式会社製、平均粒子径1000μm(レーザ回折・散乱式粒子径分布測定装置にて測定されたD50径))75gに含浸し、水分供与剤を準備した。得られた水分供与剤の水分活性は75%RHであった。
(3)上記(1)で得られた脱酸素剤組成物(a)1.06g及び上記(2)で得られた水分供与剤0.70gを、通気性積層フィルム(同上)を用いた40mm×40mmの袋(通気性包装容器(b1))に充填し、三方シールして、脱酸素剤包装体(x1)を得た。
(4)上記(3)で得た脱酸素剤包装体(x1)を、アルミ三方袋(同上、ガスバリア性容器(b2))の中に導入し、袋内の酸素濃度が0.1体積%以下となるように袋内を窒素ガスで置換し、袋の口をヒートシールして封止し、脱酸素剤包装体(y1)を得た。
(5)得られた脱酸素剤包装体(y1)を、25℃にて14日間保存し、上記水分供与剤から脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含む脱酸素剤組成物(A)及び水分供与剤、並びにこれを通気性包装容器(b1)に収容する脱酸素剤包装体(x2)を得た。そして、上記保存期間後に、大気中(24℃、40%RH)で、アルミ三方袋を開封し、脱酸素剤包装体(x2)を取り出して、下記脱酸素実験を行い、酸素吸収性能を評価した。
(6)なお、脱酸素剤組成物(A)における、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]は以下の方法で求めた。
 まず、塩化カルシウム二水和物5.88gをビーカー(風袋)に入れ、速やかに風袋ごと精密天秤で初期重量を測定した。その後、上記水分供与剤の水分活性に合わせた湿度75%RHの環境下、24℃で吸湿させ、吸湿開始から7日目及び14日目に、風袋ごと精密天秤で吸湿後の重量測定を行った。その結果、7日目及び14日目共に、初期重量から17.60g増量しており、該増量分を塩化カルシウム二水和物の飽和水分量とした。
 更に、アルミ三方袋から脱酸素剤包装体(x2)を取り出した際の、包装材の外部や内部に結露水はなかったことを確認していることから、上記塩化カルシウム二水和物の飽和水分量(17.60g)と、塩化カルシウム二水和物中の水分量(1.44g)との合計量(19.04g)を、水分供与剤から、脱酸素剤組成物(a)の鉄の表面に供給された水の量、すなわち脱酸素剤組成物(A)における、鉄の表面に存在する水の含有量と推定した。
 そして、上記鉄の表面に存在する水の含有量と、脱酸素剤組成物(A)における、鉄の含有量及び比表面積とから、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]を算出した。結果を表1に示す。
(比較例7)
 塩化カルシウム二水和物を1.99gに変更した以外は、実施例4と同様の方法で、脱酸素剤組成物(A)及び脱酸素剤包装体(x2)を作製し、実施例4と同様の測定及び下記の評価を行った。結果を表1に示す。
 なお、実施例4(6)と同様の試験は、以下の条件で行った。
 塩化カルシウム二水和物1.99gをビーカー(風袋)に入れ、速やかに風袋ごと精密天秤で初期重量を測定した。その後、上記水分供与剤の水分活性に合わせた湿度75%RH環境下、24℃で吸湿させ、吸湿開始から7日目及び14日目に、風袋ごと精密天秤で吸湿後の重量測定を行った。その結果、7日目及び14日目共に、初期重量から6.00g増量しており、該増量分を塩化カルシウム二水和物の飽和水分量とした。
 更に、アルミ三方袋から脱酸素剤包装体(x2)を取り出した際の、包装材の外部や内部に結露水はなかったことを確認していることから、上記塩化カルシウム二水和物の飽和水分量(6.00g)と、塩化カルシウム二水和物中の水分量(0.49g)との合計量(6.49g)を、水分供与剤から、脱酸素剤組成物(a)の鉄の表面に供給された水の量、すなわち脱酸素剤組成物(A)における、鉄の表面に存在する水の含有量と推定した。
 そして、上記鉄の表面に存在する水の含有量と、脱酸素剤組成物(A)における、鉄の含有量及び比表面積とから、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]を算出した。結果を表1に示す。
<評価>
 実施例1~4及び比較例1~7で作製した脱酸素剤包装体(x2)を用いて以下の評価を行った。結果を表1に示す。
(脱酸素実験)
 まず、アルミ袋(アルミニウム箔ラミネートプラスチックフィルム袋、大日本印刷株式会社製、「♯01アルミ袋無地85×75」、75mm×85mm、厚さ0.065mm)の一面に、サンプリング用ゴムシート(25mm×25mm、厚さ2mm)を接着し、測定用アルミ袋を得た。
 次に、脱酸素剤包装体(x2)を、大気中(24℃、40%RH)で2時間(アルミ三方袋を開封し、脱酸素剤包装体(x2)を取り出した後2時間)放置した。
 上記測定用アルミ袋に、2時間放置後の脱酸素剤包装体(x2)と空気400mLとを収容し、開口部をヒートシールして封止した。次いで、アルミ袋ごと速やかに25℃の恒温槽に入れた。
 その後、3時間ごとに24時間、アルミ袋内の酸素濃度を逐次測定して酸素濃度変化をプロットし、アルミ袋内の酸素濃度が0.1体積%以下になった推定時間を、脱酸素時間として、酸素吸収性能を評価した。
 測定は、酸素分析計(ISM-3、MOCON社)を用い、測定針をゴムシートからアルミ袋内部に挿入して24時間自動測定した。
 本実施例では、脱酸素時間が24時間を超えたもの(表中、「>24」と示す)は、脱酸素能力不足と判定した。
Figure JPOXMLDOC01-appb-T000001
 表1中の成分を以下に示す。
・CaCl:塩化カルシウム無水物
・CaBr:臭化カルシウム
・NaBr:臭化ナトリウム
 表1に示すように、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下の範囲内にある脱酸素剤組成物は、大気中で一定時間取り扱った後も十分な酸素吸収性能を発揮し得ることが確認された(実施例1~4)。
 一方、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量が2.00g/m以下である脱酸素剤組成物は、酸素吸収速度が速いため、大気中で2時間放置後には劣化し、十分な酸素吸収性能が発揮されないことが確認された(比較例1、3、5及び7)。また、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量が3.50g/m超である脱酸素剤組成物は、大気中で2時間放置後でも、水膜の厚さが最適化されず、酸素吸収速度が遅いことが確認された(比較例2、4及び6)。

Claims (12)

  1.  鉄、金属塩及び水を含み、
     鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である、脱酸素剤組成物。
  2.  前記金属塩の少なくとも一部が、前記鉄の表面に存在する、請求項1に記載の脱酸素剤組成物。
  3.  前記鉄の表面に存在する金属塩が、前記鉄の表面を被覆してなる、請求項2に記載の脱酸素剤組成物。
  4.  前記鉄の表面に存在する金属塩が、塩化カルシウム、臭化カルシウム及び臭化ナトリウムからなる群から選択される1種以上である、請求項2又は3に記載の脱酸素剤組成物。
  5.  前記鉄の表面に存在する金属塩の含有量が、鉄100質量部に対して0.1質量部以上10質量部以下である、請求項2~4のいずれか一項に記載の脱酸素剤組成物。
  6.  前記鉄の比表面積が、0.03m/g以上0.20m/g以下である、請求項1~5のいずれか一項に記載の脱酸素剤組成物。
  7.  前記鉄の平均粒子径(D50)が、1μm以上1000μm以下である、請求項1~6のいずれか一項に記載の脱酸素剤組成物。
  8.  請求項1~7のいずれか一項に記載の脱酸素剤組成物と、該脱酸素剤組成物を収容した通気性包装容器とを備える、脱酸素剤包装体。
  9.  下記工程(I)~(III)を含む、脱酸素剤包装体の製造方法。
    工程(I):金属塩及び鉄を含む脱酸素剤組成物(a)を得る工程
    工程(II):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m/g)}]が2.00g/m超3.50g/m以下である脱酸素剤組成物(A)を得る工程
    工程(III):前記脱酸素剤組成物(a)及び前記脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程
  10.  前記工程(I)に次いで、下記工程(III-1)及び工程(II-1)を順に有する、請求項9に記載の脱酸素剤包装体の製造方法。
    工程(III-1):前記脱酸素剤組成物(a)を前記通気性包装容器(b1)に収容する工程
    工程(II-1):前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
  11.  更に、下記工程(IV-1)を有する、請求項10に記載の脱酸素剤包装体の製造方法。
    工程(IV-1):前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
  12.  前記工程(I)に次いで、下記工程(III-2)、工程(IV-2)及び工程(II-2)を順に有する、請求項9に記載の脱酸素剤包装体の製造方法。
    工程(III-2):前記脱酸素剤組成物(a)及び水分供与剤を前記通気性包装容器(b1)に収容する工程
    工程(IV-2):前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
    工程(II-2):前記水分供与剤から、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
PCT/JP2023/010254 2022-03-22 2023-03-16 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 WO2023182130A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-045666 2022-03-22
JP2022045666 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182130A1 true WO2023182130A1 (ja) 2023-09-28

Family

ID=88101522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010254 WO2023182130A1 (ja) 2022-03-22 2023-03-16 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法

Country Status (2)

Country Link
TW (1) TW202348309A (ja)
WO (1) WO2023182130A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169015A1 (ja) * 2016-03-30 2017-10-05 三菱瓦斯化学株式会社 脱酸素剤組成物
JP2020192485A (ja) * 2019-05-24 2020-12-03 三菱瓦斯化学株式会社 脱酸素剤組成物及びその製造方法
WO2022004740A1 (ja) * 2020-06-30 2022-01-06 三菱瓦斯化学株式会社 脱酸素剤組成物及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169015A1 (ja) * 2016-03-30 2017-10-05 三菱瓦斯化学株式会社 脱酸素剤組成物
JP2020192485A (ja) * 2019-05-24 2020-12-03 三菱瓦斯化学株式会社 脱酸素剤組成物及びその製造方法
WO2022004740A1 (ja) * 2020-06-30 2022-01-06 三菱瓦斯化学株式会社 脱酸素剤組成物及びその製造方法

Also Published As

Publication number Publication date
TW202348309A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
JP3171259B2 (ja) 酸素吸収剤
KR19980032770A (ko) 산소흡수용 조성물
JPH09504988A (ja) 酸素吸収剤
IL174207A (en) Oxygen scavenger for low moisture environment
KR20080066780A (ko) 내습성 탈산소제
EP0965381B1 (en) Oxygen absorbent
WO2022004740A1 (ja) 脱酸素剤組成物及びその製造方法
JP2018171565A (ja) 有機系脱酸素剤及び有機系脱酸素剤の製造方法
CA2385738C (en) Rapid oxygen absorption by using activators
WO2023182130A1 (ja) 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法
EP2719453B1 (en) Deoxidant composition, and deoxidizing packaging material and method for deoxidizing using same
JP7401032B1 (ja) 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法
JPH0938486A (ja) 脱酸素剤及びその包装体
JP4131030B2 (ja) 脱酸素剤組成物、脱酸素剤包装体および物品の保存方法
US20050034599A1 (en) Oxygen absorber composition, oxygen absorber packaging and oxygen absorption method
WO2022181429A1 (ja) 脱酸素剤粉体
JP6420619B2 (ja) エタノール蒸気発生型脱酸素剤、及び食品の保存方法
JP2000005596A (ja) 脱酸素剤
JP4942289B2 (ja) 耐湿性脱酸素剤
WO2024070891A1 (ja) 脱酸素剤組成物及びその製造方法、並びに脱酸素剤包装体
JP6690201B2 (ja) 脱酸素剤組成物及び脱酸素剤
JP2001149053A (ja) 物品の保存方法
WO2001048064A1 (fr) Procede de sechage et de stockage de resine desoxygenante ou de matiere de conditionnement desoxygenante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774726

Country of ref document: EP

Kind code of ref document: A1