WO2020261758A1 - イオン伝導体材料および電池 - Google Patents

イオン伝導体材料および電池 Download PDF

Info

Publication number
WO2020261758A1
WO2020261758A1 PCT/JP2020/018123 JP2020018123W WO2020261758A1 WO 2020261758 A1 WO2020261758 A1 WO 2020261758A1 JP 2020018123 W JP2020018123 W JP 2020018123W WO 2020261758 A1 WO2020261758 A1 WO 2020261758A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
battery
electrolyte material
resin binder
conductor material
Prior art date
Application number
PCT/JP2020/018123
Other languages
English (en)
French (fr)
Inventor
龍也 大島
出 佐々木
裕太 杉本
西山 誠司
晃暢 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20830570.6A priority Critical patent/EP3993108A4/en
Priority to JP2021527429A priority patent/JP7493157B2/ja
Priority to CN202080021741.1A priority patent/CN113597694A/zh
Publication of WO2020261758A1 publication Critical patent/WO2020261758A1/ja
Priority to US17/518,588 priority patent/US20220077493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to ionic conductor materials and batteries.
  • Patent Document 1 discloses a battery containing a solid electrolyte and a thermoplastic elastomer. Functional groups that improve the adhesion strength between the solid electrolyte and the positive electrode active material, the adhesion strength between the solid electrolytes, and the adhesion strength between the solid electrolyte and the negative electrode active material are introduced into the thermoplastic elastomer. ..
  • the present disclosure provides an ionic conductor material that improves the charge / discharge efficiency of a battery.
  • the ionic conductor material in one aspect of the present disclosure includes a solid electrolyte material and a resin binder.
  • the solid electrolyte material comprises Li, M, and X.
  • the M is at least one selected from the group consisting of metal elements other than Li and metalloid elements.
  • the X is at least one selected from the group consisting of F, Cl, Br, and I.
  • the ratio of the amount of substance of the modifying group contained in the resin binder to the solid electrolyte material is 0.0002 or less.
  • FIG. 1 is a schematic view showing the configuration of the ionic conductor material 1000 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the battery 2000 according to the second embodiment.
  • the ionic conductor material according to the first aspect of the present disclosure includes a solid electrolyte material and a resin binder.
  • the solid electrolyte material comprises Li, M, and X.
  • the M is at least one selected from the group consisting of metal elements other than Li and metalloid elements.
  • the X is at least one selected from the group consisting of F, Cl, Br, and I.
  • the ratio of the amount of substance of the modifying group contained in the resin binder to the solid electrolyte material is 0.0002 or less.
  • the charge / discharge efficiency of the battery can be improved.
  • the solid electrolyte material may be represented by the following composition formula (1).
  • the ⁇ , the ⁇ , and the ⁇ are all values larger than 0.
  • the ionic conductivity of the solid electrolyte material is improved, so that the ionic conductivity can be improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the M may contain yttrium.
  • the charge / discharge efficiency of the battery can be further improved.
  • the resin binder may contain a thermoplastic elastomer.
  • high filling of the ionic conductor material can be realized when heat-compressed during battery production.
  • thermoplastic elastomer may contain styrene.
  • Styrene-based thermoplastic elastomer has high electrochemical resistance and high binding strength. Therefore, according to the ion conductor material according to the fifth aspect, the cycleability of the battery can be improved.
  • thermoplastic elastomer may be styrene-ethylene-butylene-styrene.
  • Styrene-ethylene-butylene-styrene has high electrochemical resistance and high binding strength. Therefore, according to the ion conductor material according to the sixth aspect, the cycleability of the battery can be improved.
  • the acid value of the resin binder may be 1 mg-CH 3 ONa / g or less. ..
  • the charge / discharge efficiency of the battery can be further improved.
  • the battery according to the eighth aspect of the present disclosure is With the positive electrode With the negative electrode An electrolyte layer arranged between the positive electrode and the negative electrode, With At least one selected from the group consisting of the positive electrode, the negative electrode, and the electrolyte layer contains the ionic conductor material according to any one of the first to seventh aspects.
  • FIG. 1 is a schematic view showing the configuration of the ionic conductor material 1000 according to the first embodiment.
  • the ionic conductor material 1000 in the first embodiment includes a solid electrolyte material 101 and a resin binder 102.
  • the solid electrolyte material 101 contains Li, M, and X.
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X is at least one selected from the group consisting of F, Cl, Br, and I. is there.
  • the ratio of the amount of substance of the modifying group contained in the resin binder 102 to the solid electrolyte material 101 is 0.0002 or less.
  • the ion conductor material 1000 according to the first embodiment can improve the charge / discharge efficiency of the battery when it is used in a battery (for example, an all-solid-state secondary battery).
  • the "metalloid element” is B, Si, Ge, As, Sb and Te.
  • metal element is used. (I) All elements contained in Groups 1 to 12 of the Periodic Table, except hydrogen, and (Ii) All elements contained in groups 13 to 16 of the periodic table, excluding B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se. Is.
  • metal element and “metal element” are a group of elements that can become cations when an inorganic compound is formed with a halogen element.
  • the solid electrolyte material 101 may be described as "halide solid electrolyte material".
  • the "halide solid electrolyte material” means a solid electrolyte material containing a halogen element and not containing sulfur.
  • the sulfur-free solid electrolyte material means a solid electrolyte material represented by a composition formula containing no sulfur element. Therefore, a very small amount of sulfur component, for example, a solid electrolyte material containing 0.1% by mass or less of sulfur is included in the sulfur-free solid electrolyte material.
  • the halide solid electrolyte material may further contain oxygen as an anion other than the halogen element.
  • the halide solid electrolyte material 101 is a material containing Li, M, and X. Element M and element X are as described above. According to the above configuration, the ionic conductivity of the halide solid electrolyte material 101 is further improved, so that the ionic conductivity of the ionic conductor material in the first embodiment can be further improved. Thereby, when the ionic conductor material in the first embodiment is used for a battery, the charge / discharge efficiency of the battery can be improved. In addition, the ionic conductor material according to the first embodiment can improve the thermal stability of the battery when used in the battery. Further, since the halide solid electrolyte material 101 does not contain sulfur, the ionic conductor material in the first embodiment can suppress the generation of hydrogen sulfide gas.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (1).
  • ⁇ , ⁇ , and ⁇ are all values larger than 0.
  • can be, for example, 4 or 6.
  • the ionic conductivity of the halide solid electrolyte material 101 is improved, so that the ionic conductivity of the ionic conductor material in the first embodiment can be improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the halide solid electrolyte material 101 containing Y may be represented by, for example, the following composition formula (2).
  • the element Me is at least one selected from the group consisting of metal elements and metalloid elements other than Li and Y.
  • m represents the valence of the element Me.
  • mb is the sum of the values obtained by multiplying the composition ratio of each element by the valence of the element.
  • Me is a case containing the element Me1 and the element Me2, valence of m 1 element Me1 in the composition ratio b 1 element Me1, the valence of the element Me2 the composition ratio b 2 elements Me2
  • mb m 1 b 1 + m 2 b 2
  • the element X is at least one selected from the group consisting of F, Cl, Br, and I.
  • the element Me is, for example, at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, Gd and Nb. May be good.
  • the halide solid electrolyte material 101 for example, the following materials can be used. According to the following materials, the ionic conductivity of the halide solid electrolyte material 101 is further improved, so that the ionic conductivity of the ionic conductor material in the first embodiment can be further improved. As a result, when the ionic conductor material according to the first embodiment is used for a battery, the charge / discharge efficiency of the battery can be further improved.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A1). Li 6-3d Y d X 6 ... Equation (A1)
  • the element X is at least one selected from the group consisting of Cl, Br, and I.
  • d satisfies 0 ⁇ d ⁇ 2.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A2). Li 3 YX 6 ... formula (A2)
  • the element X is at least one selected from the group consisting of Cl, Br and I.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A3). Li 3-3 ⁇ Y 1 + ⁇ Cl 6 ... Equation (A3)
  • satisfies 0 ⁇ ⁇ 0.15.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A4). Li 3-3 ⁇ Y 1 + ⁇ Br 6 ⁇ ⁇ ⁇ Equation (A4) Here, in the composition formula (A4), ⁇ satisfies 0 ⁇ ⁇ 0.25.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A5). Li 3-3 ⁇ + a Y 1 + ⁇ -a Me a Cl 6-xy Br x I y ⁇ ⁇ ⁇ Equation (A5)
  • the element Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • composition formula (A5) is -1 ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3-3 ⁇ + a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Meet.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A6). Li 3-3 ⁇ Y 1 + ⁇ -a Me a Cl 6-xy Br x I y ⁇ ⁇ ⁇ Equation (A6)
  • the element Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi.
  • composition formula (A6) is -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Meet.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A7). Li 3-3 ⁇ -a Y 1 + ⁇ -a Me a Cl 6-xy Br x I y ⁇ ⁇ ⁇ Equation (A7)
  • the element Me is at least one selected from the group consisting of Zr, Hf and Ti.
  • composition formula (A7) is -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Meet.
  • the halide solid electrolyte material 101 may be a material represented by the following composition formula (A8). Li 3-3 ⁇ -2a Y 1 + ⁇ -a Me a Cl 6-xy Br x I y ⁇ ⁇ ⁇ Equation (A8)
  • the element Me is at least one selected from the group consisting of Ta and Nb.
  • composition formula (A8) is -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Meet.
  • the halide solid electrolyte material 101 for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In). ) X 6 and the like can be used.
  • the element X is at least one selected from the group consisting of F, Cl, Br, and I.
  • this notation indicates at least one element selected from the element group in parentheses. That is, "(Al, Ga, In)" is synonymous with "at least one selected from the group consisting of Al, Ga, and In". The same applies to other elements.
  • Patent Document 1 discloses a battery containing a solid electrolyte and a thermoplastic elastomer into which a functional group has been introduced.
  • the solid electrolyte is, in particular, a sulfide solid electrolyte or an oxide solid electrolyte. That is, the battery disclosed in Patent Document 1 contains a mixture of a sulfide solid electrolyte or an oxide solid electrolyte and a resin binder having a modifying group. According to Patent Document 1, the battery disclosed in Patent Document 1 can achieve both adhesion strength and battery characteristics, which are in a trade-off relationship, by this configuration.
  • the present inventors examined a battery containing a solid electrolyte material and a resin binder. As a result, the present inventors have a problem that when the halide solid electrolyte material and the resin binder having a modifying group are mixed, the ionic conductivity of the solid electrolyte material is reduced and the charge / discharge efficiency of the battery is lowered. Found to occur. It is considered that this problem is caused by the reaction between the halide solid electrolyte material and the modifying group of the resin binder, or the interaction between the halide solid electrolyte material and the modifying group of the resin binder.
  • a highly ionic bond such as MX of a halide solid electrolyte material and a highly polar bond of O or N having a relatively high electronegativity of a modifying group of a resin binder It is believed that the reason is that the site reacts or interacts. It is considered that such a phenomenon does not occur at a bond site having a high covalent bond, such as a PS bond possessed by a sulfide solid electrolyte material and an MO bond possessed by an oxide solid electrolyte material. .. That is, the above-mentioned problems are considered to be problems peculiar to the halide solid electrolyte material.
  • the present inventors further studied based on the above findings.
  • the amount of the modifying group of the resin binder to the halide solid electrolyte material is suppressed, specifically, the ratio of the amount of the modifying group contained in the resin binder to the halide solid electrolyte material is 0.0002 or less. Therefore, it was found that even if the halide solid electrolyte material is combined with the resin binder, the decrease in ionic conductivity of the halide solid electrolyte material can be suppressed.
  • the substance amount ratio of the modifying group contained in the resin binder 102 to the halide solid electrolyte material 101 is 0.0002 or less. Thereby, the ion conductor material 1000 in the first embodiment can improve the charge / discharge efficiency of the battery while maintaining the binding strength of the halide solid electrolyte material 101.
  • ratio of the amount of substance of the modifying group contained in the resin binder 102 to the halide solid electrolyte material 101 may be abbreviated as "the ratio of the amount of substance of the modifying group”.
  • the substance amount ratio of the modifying group may be 0. That is, the resin binder 102 does not have to contain a modifying group. Since the resin binder 102 does not contain a modifying group, the decrease in ionic conductivity of the halide solid electrolyte material 101 can be further suppressed. Therefore, the ion conductor material 1000 in the first embodiment can further improve the charge / discharge efficiency of the battery while maintaining the binding strength of the halide solid electrolyte material 101. Further, in the ionic conductor material 1000 according to the first embodiment, the substance amount ratio of the modifying group may be 0 or more.
  • the resin binder 102 may contain a modifying group as long as the substance amount ratio of the modifying group is 0.0002 or less.
  • the substance amount ratio of the modifying group is 0.0002 or less, the ion conductor material 1000 in the first embodiment improves the charge / discharge efficiency of the battery while maintaining the binding strength of the halide solid electrolyte material 101. Can be done.
  • Examples of the resin binder 102 in the first embodiment include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, and polyacrylic acid methyl ester.
  • Polyacrylic acid ethyl ester polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polycarbonate, polyethersulfon , Polyetheretherketone, polyetheretherketone, polyphenylene sulfide, hexafluoropolypropylene, styrene butadiene rubber, carboxymethyl cellulose, ethyl cellulose and the like.
  • a copolymer containing two or more selected from the group consisting of hexadiene as a monomer can also be used. One of these may be used alone, or two or more thereof may be used in combination.
  • the resin binder 102 in the first embodiment is not particularly limited, but may be an elastomer for the reason of being excellent in binding property.
  • the elastomer is a polymer having elasticity.
  • the elastomer used as the resin binder 102 may be a thermoplastic elastomer or a thermosetting elastomer.
  • the resin binder 102 may contain a thermoplastic elastomer.
  • thermoplastic elastomer examples include styrene-ethylene-butylene-styrene (SEBS), styrene-ethylene-propylene-styrene (SEPS), styrene-ethylene-ethylene-propylene-styrene (SEEPS), butylene rubber (BR), and isoprene rubber ( IR), chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), styrene-butylene rubber (SBR), styrene-butadiene-styrene (SBS), styrene-isoprene-styrene (SIS), hydride isoprene rubber (HIR), Examples thereof include butyl hydride rubber (HIIR), nitrile hydride rubber (HNBR), styrene-butylene hydride rubber (HSBR), vinylidene fluoride (PVdF), and polytetrafluor
  • the thermoplastic elastomer contained in the resin binder 102 may be a styrene-based thermoplastic elastomer containing styrene. Since the styrene-based thermoplastic elastomer has high electrochemical resistance and high binding strength, the cycleability of the battery can be improved.
  • thermoplastic elastomer contained in the resin binder 102 may be SEBS. Since SEBS has high electrochemical resistance and high binding strength, the cycleability of the battery can be further improved.
  • Tough Tech manufactured by Asahi Kasei Corporation or the like can be used.
  • the modifying group contained in the resin binder 102 in the first embodiment is a functional group in which all or part of the repeating unit of the polymer chain or the end of the polymer chain is chemically modified by substitution or addition. is there.
  • the modifying group include a functional group containing an element such as O or N having a relatively high electronegativity, and having such a functional group can impart polarity to the resin binder.
  • Examples of the modifying group include a carboxylic acid group, a maleic anhydride group, an acyl group, a hydroxy group, a sulfo group, a sulfanyl group, a phosphoric acid group, a phosphonic acid group, an isocyanate group, an epoxy group, a silyl group, an amino group and a nitrile group. , And a nitro group and the like.
  • Examples of the method for adjusting the amount of the modifying group of the resin binder 102 in the first embodiment include controlling the amount of the modifying group introduced into the resin binder and diluting the resin binder containing the modifying group by adding the non-modifying resin binder. Can be used.
  • the substance amount ratio of the modifying group can be obtained by, for example, the following method.
  • the halide solid electrolyte material 101 is insoluble, and the resin binder 102 is extracted with a solvent in which the resin binder 102 is dissolved, for example, an aromatic solvent such as toluene.
  • the amount of substance of the modifying group is determined by infrared spectroscopy (IR method).
  • IR method infrared spectroscopy
  • the amount of substance of the halide solid electrolyte material 101 that remains without being extracted is determined.
  • the substance amount ratio of the modifying group can be obtained by dividing the measured value of the substance amount of the modifying group by the substance amount of the halide solid electrolyte material 101.
  • the amount of substance of the halide solid electrolyte material 101, the acid values of all the resin components constituting the resin binder 102, and the mass ratio of those resin components are clear, instead of the above method, the halide solid electrolyte material Using the amount of substance of 101 and the acid value and mass ratio of the resin component, it is possible to calculate the amount of substance ratio of the modifying group by the method described in Examples described later.
  • the acid value of the resin binder 102 may be 1 mg-CH 3 ONa / g or less.
  • “mg-CH 3 ONa / g” is “CH 3 ONa” necessary for neutralizing the modifying group contained in 1 g of the target compound (here, resin binder 102) with respect to the acid value.
  • the amount of is expressed as a unit in mg.
  • the acid value of the resin binder 102 can be determined by a titration method, for example, the titration method described in Japanese Patent No. 4946387.
  • the weight average molecular weight of the resin binder 102 in the first embodiment may be, for example, in the range of 1,000 to 1,000,000 or in the range of 10,000 to 500,000.
  • the weight average molecular weight of the resin binder 102 is 1,000 or more, sufficient adhesive strength between the particles of the halide solid electrolyte material 101 can be obtained.
  • the weight average molecular weight of the resin binder 102 is 1,000,000 or less, the ion conduction between the particles of the halide solid electrolyte material 101 is not hindered by the resin binder 102, so that the charge / discharge characteristics of the battery can be improved. it can.
  • the weight average molecular weight of the resin binder 102 for example, a polystyrene-equivalent weight average molecular weight obtained by gel permeation chromatography (GPC) using chloroform as an eluent can be used.
  • GPC gel permeation chromatography
  • the method of mixing the halide solid electrolyte material 101 and the resin binder 102 when producing the ionic conductor material 1000 according to the first embodiment is not particularly limited.
  • a dry method of mechanically pulverizing and mixing can be mentioned.
  • the ion conductor material 1000 according to the first embodiment can be easily produced.
  • a wet method may be used in which the halide solid electrolyte material is dispersed in the resin binder material solution or the resin binder dispersion liquid and dried.
  • the resin binder can be easily and uniformly mixed with the halide solid electrolyte material, so that the binding strength of the halide solid electrolyte material can be improved.
  • a solvent that does not react with the halide solid electrolyte for example, an aromatic solvent such as toluene can be used.
  • a binary halide is a compound composed of two kinds of elements including a halogen element.
  • the raw material powder LiCl and the raw material powder YCl 3 are prepared at a molar ratio of 3: 1.
  • the elemental species of "M” and "X" in the composition formula (1) can be determined by selecting the type of the raw material powder.
  • the values of " ⁇ ", " ⁇ ” and “ ⁇ ” in the composition formula (1) can be adjusted by adjusting the type of the raw material powder, the blending ratio of the raw material powder and the synthesis process.
  • the raw material powders are reacted with each other using the method of mechanochemical milling.
  • the raw material powder may be mixed and pulverized, and then sintered in vacuum or in an inert atmosphere.
  • the firing conditions may be, for example, firing in the range of 100 ° C. to 550 ° C. for 1 hour or more.
  • composition of the crystal phase (that is, the crystal structure) of the halide solid electrolyte material can be adjusted or determined according to the reaction method and reaction conditions between the raw material powders.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the battery 2000 according to the second embodiment.
  • the battery 2000 in the second embodiment includes a positive electrode 202, a negative electrode 203, and an electrolyte layer 201.
  • At least one selected from the group consisting of the positive electrode 202, the negative electrode 203, and the electrolyte layer 201 includes the ionic conductor material 1000 according to the first embodiment described above.
  • the electrolyte layer 201 is arranged between the positive electrode 202 and the negative electrode 203.
  • the battery of the second embodiment can improve the charge / discharge efficiency.
  • the positive electrode 202 may include the ionic conductor material 1000 in the first embodiment described above.
  • the charge / discharge efficiency of the battery can be further improved.
  • the electrolyte layer 201 may include the ionic conductor material 1000 according to the first embodiment described above.
  • the electrolyte layer 201 may consist of only the ionic conductor material 1000 according to the first embodiment described above.
  • the battery of the second embodiment can further improve the charge / discharge efficiency.
  • the electrolyte layer 201 is a layer containing an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material. That is, the electrolyte layer 201 may be a solid electrolyte layer.
  • As the solid electrolyte material contained in the electrolyte layer 201 for example, a sulfide solid electrolyte material, an oxide solid electrolyte material, a halide solid electrolyte material, a polymer solid electrolyte material, a complex hydride solid electrolyte material, and the like can be used. ..
  • the solid electrolyte material may be, for example, a halide solid electrolyte material.
  • the "oxide solid electrolyte material” means a solid electrolyte material containing oxygen.
  • the oxide solid electrolyte material may further contain anions other than sulfur and halogen elements as anions other than oxygen.
  • halide solid electrolyte material is as described in the first embodiment, and corresponds to the solid electrolyte material 101 contained in the ionic conductor material 1000 in the above-described first embodiment.
  • the sulfide-based solid electrolyte material for example, Li 2 S-P 2 S 5, Li 2 S-SiS 2, Li 2 S-B 2 S 3, Li 2 S-GeS 2, Li 3.25 Ge 0.25 P 0.75 S 4 , And Li 10 GeP 2 S 12 and the like can be used. Further, in these, LiX, Li 2 O, MO q, and / or the like Li p MO q may be added.
  • the element X in "LiX" is at least one selected from the group consisting of F, Cl, Br and I.
  • the element M in "MO q " and “Li p MO q " is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn. Further, p and q in “MO q “ and “Li p MO q " are both natural numbers.
  • oxide solid electrolyte material examples include a NASICON type solid electrolyte material typified by LiTi 2 (PO 4 ) 3 and its element substituent, a (LaLi) TiO 3 based perovskite type solid electrolyte material, and Li 14 ZnGe 4 O.
  • Li 4 SiO 4 , LiGeO 4 and LISION type solid electrolyte material typified by its element substitution material Li 7 La 3 Zr 2 O 12 and garnet type solid electrolyte material typified by its element substitution material, Li 3 PO Based on 4 and its N-substituted products, Li-BO compounds such as LiBO 2 and Li 3 BO 3 , glass to which Li 2 SO 4 , Li 2 CO 3 and the like are added, and glass ceramics are used. obtain.
  • a compound of a polymer compound and a lithium salt can be used as the polymer solid electrolyte.
  • the polymer compound may have an ethylene oxide structure.
  • the polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 F) 2, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3, and the like can be used.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • LiBH 4- LiI LiBH 4- P 2 S 5 and the like
  • LiBH 4- LiI LiBH 4- P 2 S 5 and the like
  • the electrolyte layer 201 may contain a solid electrolyte material as a main component. That is, the electrolyte layer 201 may contain, for example, 70% or more (70% by mass or more) of the solid electrolyte material as a mass ratio with respect to the whole of the electrolyte layer 201.
  • the charge / discharge characteristics of the battery can be further improved.
  • the electrolyte layer 201 contains the solid electrolyte material as a main component, and further contains unavoidable impurities, starting materials, by-products, decomposition products, and the like used when synthesizing the solid electrolyte material. You may be.
  • the electrolyte layer 201 may contain a solid electrolyte material in an amount of 100% (100% by mass) as a mass ratio to the whole of the electrolyte layer 201, excluding impurities that are unavoidably mixed, for example.
  • the charge / discharge characteristics of the battery can be further improved.
  • the electrolyte layer 201 may contain two or more of the materials listed as the solid electrolyte material.
  • the electrolyte layer 201 may contain a halide solid electrolyte material and a sulfide solid electrolyte material.
  • the thickness of the electrolyte layer 201 may be 1 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the electrolyte layer 201 is 1 ⁇ m or more, the possibility that the positive electrode 202 and the negative electrode 203 are short-circuited is low. Further, when the thickness of the electrolyte layer 201 is 300 ⁇ m or less, the operation at high output becomes easy. That is, if the thickness of the electrolyte layer 201 is appropriately adjusted, sufficient safety of the battery can be ensured and the battery can be operated at a high output.
  • the shape of the solid electrolyte material contained in the battery 2000 is not limited.
  • the shape of the solid electrolyte material may be, for example, needle-shaped, spherical, elliptical spherical, or the like.
  • the shape of the solid electrolyte material may be, for example, particulate.
  • At least one of the positive electrode 202 and the negative electrode 203 may contain an electrolyte material, for example, a solid electrolyte material may be contained.
  • an electrolyte material for example, a solid electrolyte material may be contained.
  • the solid electrolyte material the solid electrolyte material exemplified as the material constituting the electrolyte layer 201 can be used. According to the above configuration, the lithium ion conductivity inside the positive electrode 202 or the negative electrode 203 becomes high, and operation at high output becomes possible.
  • the positive electrode 202 includes, for example, a material having a property of occluding and releasing metal ions (for example, lithium ions) as a positive electrode active material.
  • a positive electrode active material for example, a lithium-containing transition metal oxide, a transition metal fluoride, a polyanion material, a fluorinated polyanion material, a transition metal sulfide, a transition metal oxysulfide, a transition metal oxynitride, or the like can be used.
  • Examples of lithium-containing transition metal oxide Li (Ni, Co, Al ) O 2, such as LiCoO 2 and the like.
  • the manufacturing cost can be reduced and the average discharge voltage can be increased.
  • lithium nickel cobalt manganate may be used as the positive electrode active material.
  • the positive electrode active material may be Li (Ni, Co, Mn) O 2 .
  • the median diameter of the solid electrolyte material may be 100 ⁇ m or less.
  • the positive electrode active material and the solid electrolyte material can be well dispersed in the positive electrode 202. As a result, the charge / discharge characteristics of the battery are improved.
  • the median diameter of the solid electrolyte material contained in the positive electrode 202 may be smaller than the median diameter of the positive electrode active material. As a result, the solid electrolyte material and the positive electrode active material can be well dispersed.
  • the median diameter of the positive electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material is 0.1 ⁇ m or more, the positive electrode active material and the solid electrolyte material can be well dispersed in the positive electrode 202. As a result, the charge / discharge characteristics of the battery are improved.
  • the median diameter of the positive electrode active material is 100 ⁇ m or less, the lithium diffusion rate in the positive electrode active material is improved. Therefore, the battery can operate at high output.
  • the median diameter means the particle size at which the cumulative volume in the volume-based particle size distribution is 50%.
  • the volume-based particle size distribution is determined by the laser diffraction / scattering method. The same applies to the following other materials.
  • v1 indicates the volume fraction of the positive electrode active material when the total volume of the positive electrode active material and the solid electrolyte material contained in the positive electrode 202 is 100.
  • 30 ⁇ v1 it is easy to secure a sufficient energy density of the battery.
  • v1 ⁇ 95 the operation of the battery at high output becomes easier.
  • the thickness of the positive electrode 202 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode is 10 ⁇ m or more, it becomes easy to secure a sufficient energy density of the battery. When the thickness of the positive electrode is 500 ⁇ m or less, the operation of the battery at high output becomes easier.
  • the negative electrode 203 includes, for example, a material having a property of occluding and releasing metal ions (for example, lithium ions) as a negative electrode active material.
  • a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound and the like can be used as the negative electrode active material.
  • the metal material may be a simple substance metal or an alloy. Examples of the metal material include lithium metal and lithium alloy.
  • Examples of the carbon material include natural graphite, coke, developing carbon, carbon fiber, spherical carbon, artificial graphite, amorphous carbon and the like.
  • the capacitance density can be improved by using silicon (Si), tin (Sn), a silicon compound, a tin compound, or the like.
  • the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte material can be well dispersed in the negative electrode 203. As a result, the charge / discharge characteristics of the battery are improved.
  • the median diameter of the negative electrode active material is 100 ⁇ m or less, the lithium diffusion rate in the negative electrode active material is improved. Therefore, the battery can operate at high output.
  • the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte material. As a result, the solid electrolyte material and the negative electrode active material can be well dispersed.
  • v2 indicates the volume fraction of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte material contained in the negative electrode 203 is 100.
  • 30 ⁇ v2 is satisfied, it is easy to secure a sufficient energy density of the battery.
  • v2 ⁇ 95 is satisfied, the operation of the battery at high output becomes easier.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode is 10 ⁇ m or more, it becomes easy to secure a sufficient energy density of the battery. When the thickness of the negative electrode is 500 ⁇ m or less, the operation of the battery at high output becomes easier.
  • the positive electrode active material and the negative electrode active material may be coated with a coating material in order to reduce the interfacial resistance between each active material and the solid electrolyte material.
  • a coating material a material having low electron conductivity can be used.
  • an oxide material, an oxide solid electrolyte material, or the like can be used.
  • oxide material used for the coating material for example, SiO 2 , Al 2 O 3 , TiO 2 , B 2 O 3 , Nb 2 O 5 , WO 3 , ZrO 2 and the like can be used.
  • oxide solid electrolyte material used for the coating material examples include Li-Nb-O compounds such as LiNbO 3 , Li-BO compounds such as LiBO 2 and Li 3 BO 3, and Li-Al- such as LiAlO 2 .
  • O compound, Li—Si—O compound such as Li 4 SiO 4 , Li—Ti—O compound such as Li 2 SO 4 , Li 4 Ti 5 O 12 , Li—Zr—O compound such as Li 2 ZrO 3 , Li 2 Li-Mo-O compounds such as MoO 3 , Li-VO compounds such as LiV 2 O 5 , Li-WO compounds such as Li 2 WO 4 and the like can be used.
  • the oxide solid electrolyte material has high ionic conductivity and high potential stability. Therefore, by using the oxide solid electrolyte material as the coating material, the charge / discharge efficiency of the battery can be further improved.
  • At least one selected from the group consisting of the positive electrode 202, the electrolyte layer 201, and the negative electrode 203 is a non-aqueous electrolyte solution, gel electrolyte, or for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery. Ionic liquids may be included.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and a lithium salt dissolved in a non-aqueous solvent.
  • a non-aqueous solvent a cyclic carbonate ester solvent, a chain carbonate ester solvent, a cyclic ether solvent, a chain ether solvent, a cyclic ester solvent, a chain ester solvent, a fluorine solvent and the like can be used.
  • the cyclic carbonate solvent include ethylene carbonate, propylene carbonate, butylene carbonate and the like.
  • Examples of the chain carbonate ester solvent include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
  • Examples of the cyclic ether solvent include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and the like.
  • Examples of the chain ether solvent include 1,2-dimethoxyethane and 1,2-diethoxyethane.
  • Examples of the cyclic ester solvent include ⁇ -butyrolactone and the like.
  • Examples of the chain ester solvent include methyl acetate.
  • the fluorine solvent include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, fluorodimethylene carbonate and the like.
  • the non-aqueous solvent one non-aqueous solvent selected from these may be used alone, or a mixture of two or more non-aqueous solvents selected from these may be used.
  • the non-aqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 F) 2, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, Examples thereof include LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and LiC (SO 2 CF 3 ) 3 .
  • the lithium salt one lithium salt selected from these may be used alone, or a mixture of two or more lithium salts selected from these may be used.
  • the concentration of the lithium salt may be, for example, 0.5 mol / liter or more and 2 mol / liter or less.
  • the gel electrolyte a material in which a non-aqueous electrolyte solution is contained in a polymer material can be used.
  • the polymer material include polyethylene oxide, polyacrylic nitrile, polyvinylidene fluoride, polymethyl methacrylate, and a polymer having an ethylene oxide bond.
  • the cations that make up the ionic liquid are aliphatic quaternary cations such as tetraalkylammonium and tetraalkylphosphonium, and fats such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, and piperidiniums. It may be a nitrogen-containing heterocyclic aromatic cation such as group cyclic ammonium, pyridiniums, imidazoliums and the like.
  • the ionic liquid may contain a lithium salt.
  • At least one of the positive electrode 202 and the negative electrode 203 may contain a conductive auxiliary agent for the purpose of increasing electronic conductivity.
  • the conductive auxiliary agent include graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fibers and metal fibers, and conductivity such as carbon fluoride and aluminum.
  • Conductive powders, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymers such as polyaniline, polypyrrole and polythiophene can be used. If a carbon material is used as the conductive auxiliary agent, the cost can be reduced.
  • Examples of the battery shape include coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may be manufactured by producing a laminated body.
  • Example The details of the present disclosure will be described below with reference to Examples and Comparative Examples.
  • the ionic conductor material and battery of the present disclosure are not limited to the following examples.
  • LYBC fine powder and unmodified SEBS manufactured by Asahi Kasei Corporation, Tough Tech N504, acid value 0 mg-CH 3 ONa / g
  • unmodified SEBS 1: 0.
  • Weighed LYBC fine powder and unmodified SEBS were dissolved or dispersed in the solvent tetralin to prepare an ionic conductor material slurry.
  • the halide solid electrolyte material was composed of LYBC, and the resin binder was composed of unmodified SEBS.
  • the weighed ion conductor material slurry and Li (Ni, Co, Mn) O 2 were kneaded at 1600 rpm for 6 minutes using a rotation / revolution mixer (manufactured by THINKY, ARE-310) to prepare a positive electrode slurry.
  • a copper foil (thickness 12 ⁇ m) was used as the current collector.
  • a positive electrode slurry was applied onto the copper foil and dried in vacuum at 100 ° C. for 1 hour to prepare a positive electrode.
  • a positive electrode punched to ⁇ 9.2 mm, 20 mg of LYBC, and 60 mg of LPS were laminated in this order in an outer cylinder having an insulating property.
  • a laminate of a positive electrode and a solid electrolyte layer was obtained.
  • the thickness of the positive electrode was 60 ⁇ m.
  • the metal In (thickness 200 ⁇ m), the metal Li (thickness 200 ⁇ m), and the metal In (thickness 200 ⁇ m) were laminated in this order on the side of the solid electrolyte layer opposite to the side in contact with the positive electrode.
  • a bipolar electrochemical cell composed of a positive electrode, a solid electrolyte layer, and a counter electrode was obtained.
  • the positive electrode was the working electrode and the counter electrode was the reference electrode.
  • the secondary battery of Example 1 was manufactured.
  • the positive electrode contained the ionic conductor material of the present disclosure.
  • the substance amount ratio of the modifying group contained in the resin binder to the halide solid electrolyte material was 0.
  • the acid value of the resin binder in the ionic conductor material was 0.
  • the halide solid electrolyte material was composed of LYBC, and the resin binder was composed of unmodified SEBS and maleic anhydride-modified SEBS. Items other than this were carried out in the same manner as in the method of Example 1 described above to obtain a secondary battery of Example 2.
  • the ratio of the amount of substance of the modifying group contained in the resin binder to the halide solid electrolyte material is the unmodified SEBS and the maleic anhydride-modified SEBS constituting the resin binder. It was calculated by the following formula (3) using the acid value of.
  • the ratio of the amount of substance of the modifying group contained in the resin binder to LYBC, which is a halide solid electrolyte material, calculated from the following formula (3) was 0.0002.
  • the acid value of the resin binder of the ionic conductor material contained in the secondary battery of Example 2 was determined by the following formula (4).
  • the acid value of the resin binder calculated from the following formula (4) was 1 mg-CH 3 ONa / g.
  • Acid value of resin binder ⁇ (acid value of unmodified SEBS) x (mass content of unmodified SEBS) + (acid value of maleic anhydride-modified SEBS) x (mass content of maleic anhydride-modified SEBS) ⁇ / ⁇ ( Content of unmodified SEBS) + (Mass of content of maleic anhydride-modified SEBS) ⁇ ... (4)
  • the halide solid electrolyte material was composed of LYBC, and the resin binder was composed of unmodified SEBS and maleic anhydride-modified SEBS. Items other than this were carried out in the same manner as in the method of Example 1 described above to obtain a secondary battery of Comparative Example 1.
  • the ratio of the amount of substance of the modifying group contained in the resin binder to the halide solid electrolyte material is the unmodified SEBS and the maleic anhydride-modified SEBS constituting the resin binder. It was determined by the above formula (3) used in Example 2 using the acid value of. The ratio of the amount of substance of the modifying group contained in the resin binder to LYBC, which is a halide solid electrolyte material, calculated from the above formula (3) was 0.0003.
  • the acid value of the resin binder was determined by the above formula (4) used in Example 2.
  • the acid value of the resin binder calculated from the above formula (4) was 2 mg-CH 3 ONa / g.
  • the halide solid electrolyte material was composed of LYBC, and the resin binder was composed of maleic anhydride-modified SEBS. Items other than this were carried out in the same manner as in the method of Example 1 described above to obtain a secondary battery of Comparative Example 2.
  • the substance amount ratio of the modifying group contained in the resin binder to the halide solid electrolyte material is the acid value of the maleic anhydride-modified SEBS constituting the resin binder. It was obtained by the following formula (5).
  • the ratio of the amount of substance of the modifying group contained in the resin binder to LYBC, which is a halide solid electrolyte material, calculated from the following formula (5) was 0.002.
  • Amount of substance ratio of modifying group [ ⁇ (acid value of maleic anhydride-modified SEBS) ⁇ (mass content of maleic anhydride-modified SEBS) ⁇ / ⁇ (molecular weight of CH 3 ONa ⁇ 1000 ⁇ ] / ⁇ (weight of LYBC) ) / (Molecular weight of LYBC) ⁇ ⁇ ⁇ ⁇ (5)
  • the acid value of the resin binder was 10 mg-CH 3 ONa / g, which is the acid value of maleic anhydride-modified SEBS.
  • the battery was placed in a constant temperature bath at 25 ° C.
  • the voltage is 3.7 V (vs) at the current density of the current value which is 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the positive electrode active material (Li (Ni, Co, Mn) O 2 ). LiIn) was charged. Next, the battery was discharged to a voltage of 1.9 V (vs LiIn) at a current density of a current value of 0.05 C rate.
  • the ionic conductor material of the present disclosure includes a solid electrolyte material containing Li, M, and X and a resin binder, and the M is selected from the group consisting of metal elements other than Li and metalloid elements. At least one kind, and said X is at least one kind selected from the group consisting of F, Cl, Br, and I, and the substance amount ratio of the modifying group contained in the resin binder to the solid electrolyte is 0. It is an ionic conductor material of 0002 or less.
  • the battery of the present disclosure can be used as, for example, an all-solid-state lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

本開示は、電池の充放電効率を向上させるイオン伝導体材料を提供する。本開示によるイオン伝導体材料(1000)は、固体電解質材料(101)と、樹脂バインダー(102)とを含む。固体電解質材料(101)は、Li、M、およびXを含む。前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種である。前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。固体電解質材料(101)に対する、樹脂バインダー(102)に含まれる変性基の物質量比が、0.0002以下である。

Description

イオン伝導体材料および電池
 本開示は、イオン伝導体材料および電池に関する。
 特許文献1には、固体電解質と、熱可塑性エラストマーと、を含む電池が開示されている。熱可塑性エラストマーには、固体電解質と正極活物質との密着強度、固体電解質同士の密着強度、および、固体電解質と負極活物質との密着強度などの密着強度を向上させる官能基が導入されている。
国際公開第2017/217079号
 本開示は、電池の充放電効率を向上させるイオン伝導体材料を提供する。
 本開示の一態様におけるイオン伝導体材料は、固体電解質材料と、樹脂バインダーとを含み、
 前記固体電解質材料は、Li、M、およびXを含み、
 前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
 前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種であり、
 前記固体電解質材料に対する、前記樹脂バインダーに含まれる変性基の物質量比が、0.0002以下である。
 本開示によれば、電池の充放電効率を向上させるイオン伝導体材料を提供できる。
図1は、実施の形態1に係るイオン伝導体材料1000の構成を示す模式図である。 図2は、実施の形態2に係る電池2000の概略構成を示す断面図である。
 本開示の第1態様に係るイオン伝導体材料は、固体電解質材料と、樹脂バインダーとを含み、
 前記固体電解質材料は、Li、M、およびXを含み、
 前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
 前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種であり、
 前記固体電解質材料に対する、前記樹脂バインダーに含まれる変性基の物質量比が、0.0002以下である。
 第1態様に係るイオン伝導体材料は、電池に用いられた際に、当該電池の充放電効率を向上させることができる。
 本開示の第2態様において、例えば、第1態様に係るイオン伝導体材料では、前記固体電解質材料は、下記の組成式(1)により表されてもよい。
Liαβγ ・・・式(1)
 ここで、前記α、前記β、および前記γは、いずれも0より大きい値である、
 第2態様に係るイオン伝導体材料によれば、固体電解質材料のイオン伝導率が向上するので、イオン導電率が向上し得る。これにより、第2態様に係るイオン伝導体材料は、電池に用いられた際に、当該電池の充放電効率をより向上させることができる。
 本開示の第3態様において、例えば、第1態様または第2態様に係るイオン伝導体材料では、前記Mは、イットリウムを含んでもよい。
 第3態様に係るイオン伝導体材料は、電池に用いられた際に、当該電池の充放電効率をより向上させることができる。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係るイオン伝導体材料では、前記樹脂バインダーは、熱可塑性エラストマーを含んでもよい。
 第4態様に係るイオン伝導体材料によれば、電池製造時において熱圧縮した際、イオン伝導体材料の高充填を実現できる。
 本開示の第5態様において、例えば、第4態様に係るイオン伝導体材料では、前記熱可塑性エラストマーは、スチレンを含んでもよい。
 スチレン系熱可塑性エラストマーは、高い電気化学的耐性および高い結着強度を有する。したがって、第5態様に係るイオン伝導体材料によれば、電池のサイクル性を向上させることができる。
 本開示の第6態様において、例えば、第5態様に係るイオン伝導体材料では、前記熱可塑性エラストマーは、スチレン-エチレン-ブチレン-スチレンであってもよい。
 スチレン-エチレン-ブチレン-スチレンは、高い電気化学的耐性および高い結着強度を有する。したがって、第6態様に係るイオン伝導体材料によれば、電池のサイクル性を向上させることができる。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係るイオン伝導体材料では、前記樹脂バインダーの酸価は、1mg-CH3ONa/g以下であってもよい。
 第7態様に係るイオン伝導体材料は、電池に用いられた際に、当該電池の充放電効率をより向上させることができる。
 本開示の第8の態様に係る電池は、
 正極と、
 負極と、
 前記正極と前記負極との間に配置された電解質層と、
を備え、
 前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、第1から第7態様のいずれか1つに係るイオン伝導体材料を含む。
 第8態様に係る電池によれば、優れた充放電効率を実現できる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1に係るイオン伝導体材料1000の構成を示す模式図である。実施の形態1におけるイオン伝導体材料1000は、固体電解質材料101と、樹脂バインダー102とを含む。固体電解質材料101は、Li、M、およびXを含む。ここで、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。固体電解質材料101に対する、樹脂バインダー102に含まれる変性基の物質量比が、0.0002以下である。
 以上の構成により、実施の形態1におけるイオン伝導体材料1000は、電池(例えば、全固体二次電池)に用いられた際に、当該電池の充放電効率を向上させることができる。
 本開示において、「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。
 また、本開示において、「金属元素」とは、
 (i)水素を除く、周期表1族から12族中に含まれるすべての元素、および、
 (ii)B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く、周期表13族から16族中に含まれるすべての元素、
である。
 すなわち、本開示において、「半金属元素」および「金属元素」は、ハロゲン元素と無機化合物を形成した際にカチオンとなり得る元素群である。
 以下に、実施の形態1に係るイオン伝導体材料1000が詳しく説明される。なお、以下、固体電解質材料101は、「ハロゲン化物固体電解質材料」と記載されることがある。なお、本開示において「ハロゲン化物固体電解質材料」とは、ハロゲン元素を含み、かつ、硫黄を含まない固体電解質材料を意味する。また、本開示において、硫黄を含まない固体電解質材料とは、硫黄元素が含まれない組成式で表される固体電解質材料を意味する。したがって、ごく微量の硫黄成分、例えば硫黄が0.1質量%以下である固体電解質材料は、硫黄を含まない固体電解質材料に含まれる。ハロゲン化物固体電解質材料は、ハロゲン元素以外のアニオンとして、さらに酸素を含んでもよい。
 <ハロゲン化物固体電解質材料>
 上述のとおり、ハロゲン化物固体電解質材料101は、Li、M、およびXを含む材料である。元素Mおよび元素Xは、上述のとおりである。以上の構成によれば、ハロゲン化物固体電解質材料101のイオン伝導率がより向上するので、実施の形態1におけるイオン伝導体材料のイオン導電率がより向上し得る。これにより、実施の形態1におけるイオン伝導体材料は、電池に用いられた場合に、当該電池の充放電効率を向上させることができる。また、実施の形態1におけるイオン伝導体材料は、電池に用いられた場合に、当該電池の熱的安定性を向上させることができる。また、ハロゲン化物固体電解質材料101は硫黄を含まないので、実施の形態1におけるイオン伝導体材料は、硫化水素ガスの発生を抑制することができる。
 例えば、ハロゲン化物固体電解質材料101は、下記の組成式(1)により表される材料であってもよい。
 Liαβγ ・・・式(1)
 ここで、上記の組成式(1)において、α、βおよびγは、いずれも0より大きい値である。γは、例えば4または6などであり得る。
 以上の構成によれば、ハロゲン化物固体電解質材料101のイオン伝導率が向上するので、実施の形態1におけるイオン伝導体材料のイオン導電率が向上し得る。これにより、実施の形態1におけるイオン伝導体材料は、電池に用いられた場合に、当該電池の充放電効率をより向上させることができる。
 上記組成式(1)において、元素Mは、Y(=イットリウム)を含んでもよい。すなわち、ハロゲン化物固体電解質材料101は、金属元素としてYを含んでもよい。
 Yを含むハロゲン化物固体電解質材料101は、例えば、下記の組成式(2)で表されてもよい。
 LiaMebc6 ・・・式(2)
 ここで、a、b、およびcは、a+mb+3c=6、および、c>0を満たしてもよい。元素Meは、LiおよびY以外の金属元素および半金属元素からなる群より選択される少なくとも1種である。mは、元素Meの価数を表す。なお、元素Meが複数種の元素を含む場合、mbは、各元素の組成比に当該元素の価数をかけた値の合計となる。例えば、Meが、元素Me1と元素Me2とを含む場合であって、元素Me1の組成比がb1で元素Me1の価数がm1、元素Me2の組成比がb2で元素Me2の価数がm2である場合、mb=m11+m22となる。上記組成式(2)において、元素Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。
 元素Meは、例えば、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、GdおよびNbからなる群より選択される少なくとも1種であってもよい。
 ハロゲン化物固体電解質材料101としては、例えば、以下の材料が用いられ得る。以下の材料によれば、ハロゲン化物固体電解質材料101のイオン導電率がより向上するので、実施の形態1におけるイオン伝導体材料のイオン伝導率がより向上し得る。これにより、実施の形態1におけるイオン伝導体材料は、電池に用いられた場合に、当該電池の充放電効率をより向上させることができる。
 ハロゲン化物固体電解質材料101は、以下の組成式(A1)により表される材料であってもよい。
 Li6-3dd6 ・・・式(A1)
 ここで、組成式(A1)において、元素Xは、Cl、Br、およびIからなる群より選択される少なくとも1種である。また、組成式(A1)において、dは、0<d<2を満たす。
 ハロゲン化物固体電解質材料101は、以下の組成式(A2)により表される材料であってもよい。
 Li3YX6 ・・・式(A2)
 ここで、組成式(A2)において、元素Xは、Cl、BrおよびIからなる群より選択される少なくとも1種である。
 ハロゲン化物固体電解質材料101は、以下の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl6 ・・・式(A3)
 ここで、組成式(A3)において、δは、0<δ≦0.15を満たす。
 ハロゲン化物固体電解質材料101は、以下の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr6 ・・・式(A4)
 ここで、組成式(A4)において、δは、0<δ≦0.25を満たす。
 ハロゲン化物固体電解質材料101は、以下の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeaCl6-x-yBrxy ・・・式(A5)
 ここで、組成式(A5)において、元素Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1種である。
 また、上記組成式(A5)は、
 -1<δ<2、
 0<a<3、
 0<(3-3δ+a)、
 0<(1+δ-a)、
 0≦x≦6、
 0≦y≦6、および
 (x+y)≦6、
を満たす。
 ハロゲン化物固体電解質材料101は、以下の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeaCl6-x-yBrxy ・・・式(A6)
 ここで、上記組成式(A6)において、元素Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1種である。
 また、上記組成式(A6)は、
 -1<δ<1、
 0<a<2、
 0<(1+δ-a)、
 0≦x≦6、
 0≦y≦6、および
 (x+y)≦6、
を満たす。
 ハロゲン化物固体電解質材料101は、以下の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeaCl6-x-yBrxy ・・・式(A7)
 ここで、上記組成式(A7)において、元素Meは、Zr、HfおよびTiからなる群より選択される少なくとも1種である。
 また、上記組成式(A7)は、
 -1<δ<1、
 0<a<1.5、
 0<(3-3δ-a)、
 0<(1+δ-a)、
 0≦x≦6、
 0≦y≦6、および
 (x+y)≦6、
を満たす。
 ハロゲン化物固体電解質材料101は、以下の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeaCl6-x-yBrxy ・・・式(A8)
 ここで、上記組成式(A8)において、元素Meは、TaおよびNbからなる群より選択される少なくとも1種である。
 また、上記組成式(A8)は、
 -1<δ<1、
 0<a<1.2、
 0<(3-3δ-2a)、
 0<(1+δ-a)、
 0≦x≦6、
 0≦y≦6、および
 (x+y)≦6、
を満たす。
 ハロゲン化物固体電解質材料101として、より具体的には、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al、Ga、In)X4、Li3(Al、Ga、In)X6などが用いられ得る。ここで、これらの材料において、元素Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。なお、本開示において、式中の元素を「(Al、Ga、In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al、Ga、In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 <樹脂バインダー>
 「背景技術」の欄に記載されているように、特許文献1は、固体電解質と、官能基が導入された熱可塑性エラストマーと、を含む電池を開示している。特許文献1に開示されている電池において、固体電解質は、特に、硫化物固体電解質または酸化物固体電解質である。すなわち、特許文献1に開示されている電池は、硫化物固体電解質または酸化物固体電解質と、変性基を有する樹脂バインダーとの混合物を含んでいる。特許文献1によれば、特許文献1に開示されている電池は、この構成によりトレードオフの関係にある密着強度と電池特性とを両立させることができる。
 本発明者らは、固体電解質材料と樹脂バインダーとを含む電池について検討した。その結果、本発明者らは、ハロゲン化物固体電解質材料と変性基を有する樹脂バインダーとが混合された場合、固体電解質材料のイオン伝導度が減少して電池の充放電効率が低下するという課題が生じることを見出した。この課題は、ハロゲン化物固体電解質材料と樹脂バインダーの変性基とが反応すること、または、ハロゲン化物固体電解質材料と樹脂バインダーの変性基とが相互作用することによって生じると考えられる。より詳しく説明すると、ハロゲン化物固体電解質材料が有するM-Xのようなイオン結合性が高い結合部位と、樹脂バインダーの変性基が有する電気陰性度が比較的高いOまたはNなどによる極性の高い結合部位とが、反応または相互作用することが理由であると考えられる。なお、このような現象は、硫化物固体電解質材料が有するP-S結合、および、酸化物固体電解質材料が有するM-O結合のような、共有結合性が高い結合部位では生じないと考えられる。すなわち、上記のような課題は、ハロゲン化物固体電解質材料特有の課題であると考えられる。
 本発明者らは、上記の知見に基づいて、さらに検討を進めた。その結果、ハロゲン化物固体電解質材料に対する樹脂バインダーの変性基量を抑制すること、具体的には、ハロゲン化物固体電解質材料に対する樹脂バインダーに含まれる変性基の物質量比を0.0002以下にすることにより、ハロゲン化物固体電解質材料が樹脂バインダーと組み合わされる構成であっても、ハロゲン化物固体電解質材料のイオン伝導度の減少を抑制できることが見出された。上述のとおり、実施の形態1におけるイオン伝導体材料1000において、ハロゲン化物固体電解質材料101に対する、樹脂バインダー102に含まれる変性基の物質量比は、0.0002以下である。これにより、実施の形態1におけるイオン伝導体材料1000は、ハロゲン化物固体電解質材料101の結着強度を保ちつつ、電池の充放電効率を向上させることができる。
 以下、「ハロゲン化物固体電解質材料101に対する、樹脂バインダー102に含まれる変性基の物質量比」は、「変性基の物質量比」と略されることがある。
 なお、実施の形態1におけるイオン伝導体材料1000において、変性基の物質量比は、0であってもよい。すなわち、樹脂バインダー102が変性基を含有しなくてもよい。樹脂バインダー102が変性基を含有しないことにより、ハロゲン化物固体電解質材料101のイオン伝導度減少がより抑制され得る。したがって、実施の形態1におけるイオン伝導体材料1000は、ハロゲン化物固体電解質材料101の結着強度を保ちつつ、電池の充放電効率をより向上させることができる。また、実施の形態1におけるイオン伝導体材料1000において、変性基の物質量比は、0以上であってもよい。
 実施の形態1におけるイオン伝導体材料1000において、変性基の物質量比が0.0002以下であれば、樹脂バインダー102は変性基を含有してもよい。変性基の物質量比が0.0002以下であれば、実施の形態1におけるイオン伝導体材料1000は、ハロゲン化物固体電解質材料101の結着強度を保ちつつ、電池の充放電効率を向上させることができる。
 実施の形態1における樹脂バインダー102としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリカーボネート、ポリエーテルサルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、およびエチルセルロースなどが挙げられる。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ブタジエン、スチレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸エステル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上をモノマーとして含む共重合体も、用いられ得る。これらは、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 実施の形態1における樹脂バインダー102は、特に限定されるものではないが、結着性に優れる理由から、エラストマーであってもよい。なお、エラストマーとは、弾性を有するポリマーのことである。また、樹脂バインダー102として用いられるエラストマーは、熱可塑性エラストマーであってもよいし、熱硬化性エラストマーであってもよい。樹脂バインダー102が、熱可塑性エラストマーを含んでいてもよい。熱可塑性エラストマーとして、例えば、スチレン-エチレン-ブチレン-スチレン(SEBS)、スチレン-エチレン-プロピレン-スチレン(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレン(SEEPS)、ブチレンゴム(BR)、イソプレンゴム(IR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-ブチレンゴム(SBR)、スチレン-ブタジエン-スチレン(SBS)、スチレン-イソプレン-スチレン(SIS)、水素化イソプレンゴム(HIR)、水素化ブチルゴム(HIIR)、水素化ニトリルゴム(HNBR)、水素化スチレン-ブチレンゴム(HSBR)、ポリフッ化ビニリデン(PVdF)、およびポリテトラフルオロエチレン(PTFE)等を挙げることができる。また、これらのうちから選択された2種類以上が、混合されて用いられもよい。樹脂バインダー102が熱可塑性エラストマーを含む場合、電池製造時において熱圧縮した際、イオン伝導体材料1000の高充填を実現できる。
 樹脂バインダー102に含まれる熱可塑性エラストマーは、スチレンを含むスチレン系熱可塑性エラストマーであってもよい。スチレン系熱可塑性エラストマーは、高い電気化学的耐性および高い結着強度を有するため、電池のサイクル性を向上させることができる。
 樹脂バインダー102に含まれる熱可塑性エラストマーは、SEBSであってもよい。SEBSは、高い電気化学的耐性および高い結着強度を有するため、さらに電池のサイクル性を向上させることができる。
 なお、実施の形態1における樹脂バインダー102としては、旭化成株式会社製のタフテックなどが用いられ得る。
 実施の形態1における樹脂バインダー102に含まれる変性基とは、ポリマー鎖の繰り返し単位に対して全てまたは一部、あるいは、ポリマー鎖末端が、置換または付加などにより化学的に修飾された官能基である。変性基としては、例えば、電気陰性度が比較的高いOまたはNなどの元素を含む官能基が挙げられ、このような官能基を持つことで樹脂バインダーに極性を付与することができる。変性基としては、例えば、カルボン酸基、無水マレイン酸基、アシル基、ヒドロキシ基、スルホ基、スルファニル基、リン酸基、ホスホン酸基、イソシアネート基、エポキシ基、シリル基、アミノ基、ニトリル基、およびニトロ基等を挙げることができる。
 実施の形態1における樹脂バインダー102の変性基量の調整方法としては、樹脂バインダーへの変性基導入量の制御、および、変性基を含む樹脂バインダーへの無変性樹脂バインダーの添加による希釈、などが用いられうる。
 変性基の物質量比は、例えば次の方法によって求められる。ハロゲン化物固体電解質材料101は不溶であって、かつ樹脂バインダー102が溶解する溶媒、例えばトルエンのような芳香族系溶媒で、樹脂バインダー102を抽出する。抽出された樹脂バインダー102について、赤外分光法(IR法)で変性基の物質量を求める。一方、抽出されずに残ったハロゲン化物固体電解質材料101の物質量を求める。変性基の物質量の測定値を、ハロゲン化物固体電解質材料101の物質量で割ることにより、変性基の物質量比を求めることができる。
 ハロゲン化物固体電解質材料101の物質量と、樹脂バインダー102を構成する全ての樹脂成分の酸価およびそれら樹脂成分の質量比とが明らかである場合は、上記方法の代わりに、ハロゲン化物固体電解質材料101の物質量、ならびに樹脂成分の酸価および質量比を用いて、後述の実施例に記載した方法で変性基の物質量比を算出することが可能である。
 実施の形態1におけるイオン伝導体材料1000において、樹脂バインダー102の酸価は、1mg-CH3ONa/g以下であってもよい。ここで、「mg-CH3ONa/g」は、酸価に関して、対象の化合物(ここでは、樹脂バインダー102)1g中に含まれる変性基の中和を行うために必要な「CH3ONa」の量を、単位をmgとして表す単位である。樹脂バインダー102の酸価が1mg-CH3ONa/g以下であることにより、実施の形態1におけるイオン伝導体材料1000は、ハロゲン化物固体電解質材料101の結着強度を保ちつつ、電池の充放電効率を向上させることができる。
 樹脂バインダー102の酸価は、滴定法、例えば、特許第4946387号に記載の滴定法で、求めることができる。
 実施の形態1における樹脂バインダー102の重量平均分子量は、例えば、1,000~1,000,000の範囲内であってもよく、10,000~500,000の範囲内であってもよい。樹脂バインダー102の重量平均分子量が1,000以上であることにより、ハロゲン化物固体電解質材料101の粒子間の十分な接着強度を得ることができる。樹脂バインダー102の重量平均分子量が1,000,000以下であることにより、ハロゲン化物固体電解質材料101の粒子間のイオン伝導が樹脂バインダー102によって阻害されないため、電池の充放電特性を向上させることができる。樹脂バインダー102の重量平均分子量としては、例えば、クロロホルムを溶離液として用いたゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算値の重量平均分子量が用いられ得る。
 実施の形態1におけるイオン伝導体材料1000を製造する際の、ハロゲン化物固体電解質材料101と樹脂バインダー102との混合方法は、特に限定されない。例えば、乾式で機械的に粉砕混合する方法が挙げられる。このような手法を用いれば、簡便に、実施の形態1におけるイオン伝導体材料1000を作製できる。また、樹脂バインダー材料溶液または樹脂バインダー分散液中に、ハロゲン化物固体電解質材料を分散させ、乾燥する湿式手法が用いられてもよい。このような手法を用いれば、簡便かつ均一に樹脂バインダーをハロゲン化物固体電解質材料と混合することができるので、ハロゲン化物固体電解質材料の結着強度を向上させることができる。上記手法で用いられる溶媒としては、ハロゲン化物固体電解質と反応しない溶媒、例えばトルエンのような芳香族系溶媒が用いられ得る。
 次に、ハロゲン化物固体電解質材料101の製造方法について説明する。ここでは、上記の組成式(1)で表されるハロゲン化物固体電解質材料の製造方法について例示する。
 まず、目的の組成に応じて、二元系ハロゲン化物の原料粉を複数種用意する。二元系ハロゲン化物とは、ハロゲン元素を含む2種の元素からなる化合物のことをいう。例えば、Li3YCl6を作製する場合には、原料粉LiClと原料粉YCl3とを3:1のモル比で用意する。このとき、原料粉の種類を選択することで、組成式(1)における「M」および「X」の元素種を決定することができる。また、原料粉の種類、原料粉の配合比および合成プロセスを調整することで、組成式(1)における「α」、「β」および「γ」の値を調整できる。
 原料粉を混合および粉砕した後、メカノケミカルミリングの方法を用いて原料粉同士を反応させる。もしくは、原料粉を混合および粉砕した後、真空中又は不活性雰囲気中で焼結してもよい。焼成条件は、例えば、100℃~550℃の範囲内で、1時間以上の焼成を行えばよい。これらの方法により、ハロゲン化物固体電解質材料が得られる。
 なお、ハロゲン化物固体電解質材料の結晶相の構成(すなわち、結晶構造)は、原料粉同士の反応方法および反応条件により調整もしくは決定することができる。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 図2は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、正極202と、負極203と、電解質層201と、を備える。
 正極202、負極203、および電解質層201からなる群より選択される少なくとも1つは、上述の実施の形態1におけるイオン伝導体材料1000を含む。
 電解質層201は、正極202と負極203との間に配置される。
 以上の構成により、実施の形態2の電池は、充放電効率を向上させることができる。
 なお、実施の形態2における電池2000においては、正極202が、上述の実施の形態1におけるイオン伝導体材料1000を含んでもよい。
 以上の構成によれば、電池の充放電効率をより向上させることができる。
 実施の形態2における電池2000においては、電解質層201が、上述の実施の形態1におけるイオン伝導体材料1000を含んでもよい。
 なお、電解質層201は、上述の実施の形態1におけるイオン伝導体材料1000のみからなっていてもよい。
 以上の構成によれば、実施の形態2の電池は、充放電効率をより向上させることができる。
 電解質層201は電解質材料を含む層である。当該電解質材料は、例えば、固体電解質材料である。すなわち、電解質層201は、固体電解質層であってもよい。電解質層201に含まれる固体電解質材料としては、例えば、硫化物固体電解質材料、酸化物固体電解質材料、ハロゲン化物固体電解質材料、高分子固体電解質材料、および錯体水素化物固体電解質材料などが用いられ得る。固体電解質材料は、例えば、ハロゲン化物固体電解質材料であってもよい。
 本開示において「酸化物固体電解質材料」とは、酸素を含む固体電解質材料をいう。ここで、酸化物固体電解質材料は、酸素以外のアニオンとして、硫黄およびハロゲン元素以外のアニオンを更に含んでもよい。
 「ハロゲン化物固体電解質材料」は、実施の形態1で説明したとおりであって、上述の実施の形態1におけるイオン伝導体材料1000に含まれる固体電解質材料101に相当する。
 硫化物固体電解質材料としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、およびLi10GeP212などが用いられ得る。また、これらに、LiX、Li2O、MOq、および/またはLipMOqなどが添加されてもよい。ここで、「LiX」における元素Xは、F、Cl、BrおよびIからなる群より選択される少なくとも1種である。また、「MOq」および「LipMOq」における元素Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1種である。また、「MOq」および「LipMOq」におけるpおよびqは、いずれも自然数である。
 酸化物固体電解質材料としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質材料、(LaLi)TiO3系のペロブスカイト型固体電解質材料、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質材料、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質材料、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラス、ならびに、ガラスセラミックスなどが用いられ得る。
 高分子固体電解質としては、例えば、高分子化合物とリチウム塩との化合物を用い得る。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などを用い得る。リチウム塩は1種を単独で用いてもよく、2種以上を併用してもよい。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25などが用いられ得る。
 なお、電解質層201は、固体電解質材料を、主成分として含んでもよい。すなわち、電解質層201は、固体電解質材料を、例えば、電解質層201の全体に対する質量割合で70%以上(70質量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性をより向上させることができる。
 なお、電解質層201は、固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 また、電解質層201は、固体電解質材料を、例えば、混入が不可避な不純物を除いて、電解質層201の全体に対する質量割合で100%(100質量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、電解質層201は、固体電解質材料として挙げられた材料のうちの2種類以上を含んでもよい。例えば、電解質層201は、ハロゲン化物固体電解質材料と硫化物固体電解質材料とを含んでもよい。
 電解質層201の厚みは、1μm以上かつ300μm以下であってもよい。電解質層201の厚みが1μm以上の場合には、正極202と負極203とが短絡する可能性が低くなる。また、電解質層201の厚みが300μm以下の場合には、高出力での動作が容易となる。すなわち、電解質層201の厚みが適切に調整されていると、電池の十分な安全性を確保できるとともに、電池を高出力で動作させることができる。
 電池2000に含まれる固体電解質材料の形状は、限定されない。固体電解質材料の形状は、例えば、針状、球状、楕円球状などであってもよい。固体電解質材料の形状は、例えば、粒子状であってもよい。
 正極202および負極203の少なくとも一方は、電解質材料を含んでもよく、例えば固体電解質材料を含んでもよい。固体電解質材料としては、電解質層201を構成する材料として例示された固体電解質材料が用いられ得る。以上の構成によれば、正極202または負極203内部のリチウムイオン伝導性が高くなり、高出力での動作が可能となる。
 正極202は、例えば、正極活物質として、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物などを用い得る。リチウム含有遷移金属酸化物の例としては、Li(Ni、Co、Al)O2、LiCoO2などが挙げられる。正極活物質として、例えば、リチウム含有遷移金属酸化物を用いた場合、製造コストを安くでき、平均放電電圧を高めることができる。また、電池のエネルギー密度高めるために、正極活物質として、ニッケルコバルトマンガン酸リチウムを用いてもよい。例えば、正極活物質は、Li(Ni、Co、Mn)O2であってもよい。
 正極202に含まれる固体電解質材料の形状が粒子状(例えば、球状)の場合、当該固体電解質材料のメジアン径は、100μm以下であってもよい。固体電解質材料のメジアン径が100μm以下である場合、正極活物質と固体電解質材料とが正極202において良好に分散し得る。これにより、電池の充放電特性が向上する。
 正極202に含まれる固体電解質材料のメジアン径は、正極活物質のメジアン径より小さくてもよい。これにより、固体電解質材料と正極活物質とが良好に分散し得る。
 正極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質のメジアン径が0.1μm以上である場合、正極202において、正極活物質と固体電解質材料とが良好に分散し得る。この結果、電池の充放電特性が向上する。正極活物質のメジアン径が100μm以下である場合、正極活物質内のリチウム拡散速度が向上する。このため、電池が高出力で動作し得る。
 メジアン径とは、体積基準の粒度分布における累積体積が50%となる粒径をいう。体積基準の粒度分布は、レーザ回折散乱法によって求められる。以下の他の材料についても同様である。
 正極202に含まれる正極活物質と固体電解質材料の体積分率を「v1:100-v1」とするとき、30≦v1≦95が満たされてもよい。ここで、v1は、正極202に含まれる正極活物質および固体電解質材料の合計体積を100としたときの正極活物質の体積分率を示す。30≦v1を満たす場合、十分な電池のエネルギー密度を確保しやすい。v1≦95を満たす場合、電池の高出力での動作がより容易となる。
 正極202の厚みは、10μm以上かつ500μm以下であってもよい。正極の厚みが10μm以上の場合、十分な電池のエネルギー密度の確保が容易となる。正極の厚みが500μm以下の場合、電池の高出力での動作がより容易となる。
 負極203は、例えば、負極活物質として、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。負極活物質としては、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物などを用い得る。金属材料は、単体の金属であってもよく、合金であってもよい。金属材料としては、リチウム金属、リチウム合金などが挙げられる。炭素材料としては、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素などが挙げられる。珪素(Si)、錫(Sn)、珪素化合物、錫化合物など用いることで容量密度を向上させることができる。
 負極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質のメジアン径が0.1μm以上である場合、負極203において、負極活物質と固体電解質材料とが良好に分散し得る。これにより、電池の充放電特性が向上する。負極活物質のメジアン径が100μm以下である場合、負極活物質内のリチウム拡散速度が向上する。このため、電池が高出力で動作し得る。
 負極活物質のメジアン径は、固体電解質材料のメジアン径よりも大きくてもよい。これにより、固体電解質材料と負極活物質とが良好に分散し得る。
 負極203に含まれる負極活物質と固体電解質材料の体積分率を「v2:100-v2」とするとき、30≦v2≦95が満たされてもよい。ここで、v2は、負極203に含まれる負極活物質および固体電解質材料の合計体積を100としたときの負極活物質の体積分率を示す。30≦v2を満たす場合、十分な電池のエネルギー密度を確保しやすい。v2≦95を満たす場合、電池の高出力での動作がより容易となる。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みが10μm以上である場合、十分な電池のエネルギー密度の確保が容易となる。負極の厚みが500μm以下である場合、電池の高出力での動作がより容易となる。
 正極活物質および負極活物質は、各活物質と固体電解質材料との界面抵抗を低減するために被覆材料により被覆されていてもよい。被覆材料としては、電子伝導性が低い材料が用いられ得る。被覆材料としては、酸化物材料および酸化物固体電解質材料などが用いられ得る。
 被覆材料に用いられる酸化物材料としては、例えば、SiO2、Al23、TiO2、B23、Nb25、WO3、およびZrO2などが用いられ得る。
 被覆材料に用いられる酸化物固体電解質材料としては、例えば、LiNbO3などのLi-Nb-O化合物、LiBO2、Li3BO3などのLi-B-O化合物、LiAlO2などのLi-Al-O化合物、Li4SiO4などのLi-Si-O化合物、Li2SO4、Li4Ti512などのLi-Ti-O化合物、Li2ZrO3などのLi-Zr-O化合物、Li2MoO3などのLi-Mo-O化合物、LiV25などのLi-V-O化合物、Li2WO4などのLi-W-O化合物などが用いられ得る。酸化物固体電解質材料は、イオン導電率が高く、高電位安定性が高い。このため、酸化物固体電解質材料が被覆材料として用いられることで、電池の充放電効率をより向上することができる。
 正極202、電解質層201、および負極203からなる群より選択される少なくとも1つには、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解質液、ゲル電解質、またはイオン液体が含まれてもよい。
 非水電解液は、非水溶媒および非水溶媒に溶解したリチウム塩を含む。非水溶媒としては、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、およびフッ素溶媒などが用いられ得る。環状炭酸エステル溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどが挙げられる。鎖状炭酸エステル溶媒としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどが挙げられる。環状エーテル溶媒としては、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソランなどが挙げられる。鎖状エーテル溶媒としては、1,2-ジメトキシエタン、1,2-ジエトキシエタンなどが挙げられる。環状エステル溶媒としては、γ-ブチロラクトンなどが挙げられる。鎖状エステル溶媒としては、酢酸メチルなどが挙げられる。フッ素溶媒としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネートなどが挙げられる。非水溶媒として、これらから選択される1種の非水溶媒が単独で使用されてもよいし、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
 非水電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、およびフルオロジメチレンカーボネートからなる群より選択される少なくとも1つのフッ素溶媒が含まれていてもよい。
 リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などが挙げられる。リチウム塩として、これらから選択される1種のリチウム塩が単独で使用されてもよいし、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。リチウム塩の濃度は、例えば、0.5mol/リットル以上かつ2mol/リットル以下であってもよい。
 ゲル電解質としては、ポリマー材料に非水電解液を含ませた材料が用いられ得る。ポリマー材料としては、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、エチレンオキシド結合を有するポリマーなどが挙げられる。
 イオン液体を構成するカチオンは、テトラアルキルアンモニウム、テトラアルキルホスホニウムなどの脂肪族鎖状4級カチオン、ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、ピペリジニウム類などの脂肪族環状アンモニウム、ピリジニウム類、イミダゾリウム類などの含窒ヘテロ環芳香族カチオンなどであってもよい。イオン液体を構成するアニオンは、PF6 -、BF4 -、SbF6- -、AsF6 -、SO3CF3 -、N(SO2F)2 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、C(SO2CF33 -などであってもよい。イオン液体はリチウム塩を含有してもよい。
 正極202および負極203の少なくとも一方は、電子導電性を高める目的で導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの導電性粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子などを用い得る。導電助剤として炭素材料を用いると、低コスト化を図ることができる。
 電池の形状は、例えば、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型などが挙げられる。
 実施の形態2における電池は、例えば、正極形成用の材料、電解質層形成用の材料、負極形成用の材料をそれぞれ準備し、公知の方法で、正極、電解質層、および負極がこの順に配置された積層体を作製することによって製造してもよい。
 (実施例)
 以下、実施例および比較例を用いて、本開示の詳細が説明される。なお、本開示のイオン伝導体材料および電池は、以下の実施例に限定されない。
 <実施例1>
 [ハロゲン化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてYCl3とLiClとLiBrとを、YCl3:LiCl:LiBr=1:1:2のモル比で秤量した。その後、これらの原料粉末を混合し、得られた混合物を、電気炉を用いて、2時間、520℃で焼成処理し、ハロゲン化物固体電解質材料であるLi3YBr2Cl4(以下、「LYBC」と記載する)を得た。得られたLYBCにp-クロロトルエンを加え、湿式微粉砕・分散機を用いて粉砕後、乾燥することで、LYBC微粉(メジアン径D50=0.4μm)を得た。
 [硫化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末としてLi2SとP25とを、Li2S:P25=75:25のモル比で秤量した。これらの原料粉末を乳鉢で粉砕して混合した。その後、得られた混合物を、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理した。得られたガラス状の固体電解質を、不活性雰囲気中、270℃で、2時間熱処理した。以上により、ガラスセラミックス状の固体電解質材料であるLi2S-P25(以下、「LPS」と記載する)を得た
 [イオン伝導体材料を含む正極の作製]
 露点-60℃以下のアルゴングローブボックス内で、LYBC微粉と無変性SEBS(旭化成株式会社製、タフテックN504、酸価0mg-CH3ONa/g)とを、LYBC微粉:無変性SEBS=1:0.022の質量比率で秤量した。秤量されたLYBC微粉および無変性SEBSを溶媒テトラリン中に溶解または分散させ、イオン伝導体材料スラリーを作製した。このイオン伝導体材料において、ハロゲン化物固体電解質材料はLYBCで構成され、樹脂バインダーは無変性SEBSで構成されていた。次に、LYBCとLi(Ni、Co、Mn)O2とがLYBC:Li(NiCoMn)O2=1:4.42の質量比率となるように、イオン伝導体材料スラリーおよびLi(Ni、Co、Mn)O2を秤量した。秤量されたイオン伝導体材料スラリーおよびLi(Ni、Co、Mn)O2を、自転・公転ミキサー(THINKY製、ARE-310)を用いて、1600rpmで6分間混練し、正極スラリーを作製した。集電体として、銅箔(厚さ12μm)が用いられた。この銅箔上に正極スラリーを塗布し、真空、100℃で1時間乾燥することで正極を作製した。
 [二次電池の作製]
 絶縁性を有する外筒の中で、φ9.2mmに打ち抜いた正極と、20mgのLYBCと、60mgのLPSとを、この順に積層した。得られた積層体を740MPaの圧力で加圧成形することで、正極および固体電解質層の積層体が得られた。得られた正極および固体電解質層の積層体において、正極の厚さは60μmであった。
 次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ200μm)、金属In(厚さ200μm)をこの順に積層した。得られた積層体を80MPaの圧力で加圧成形することで、正極、固体電解質層、および対極からなる2極式の電気化学セルが得られた。この電気化学セルにおいて、正極は作用極であり、対極は参照極であった。
 次に、電気化学セルの上下にステンレス鋼集電体が配置された。ステンレス鋼集電体に、集電リードが付設された。
 次に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断および密閉した。
 最後に、4本のボルトで電気化学セルを上下から拘束することで、電気化学セルに面圧150MPaを印加した。
 以上により、実施例1の二次電池が作製された。実施例1の二次電池においては、正極が、本開示のイオン伝導体材料を含んでいた。実施例1の二次電池に含まれるイオン伝導体材料において、ハロゲン化物固体電解質材料に対する、樹脂バインダーに含まれる変性基の物質量比は、0であった。イオン伝導体材料における樹脂バインダーの酸価は0であった。
 <実施例2>
 イオン伝導体材料スラリーの作製において、LYBC微粉と、無変性SEBS(旭化成株式会社製、タフテックN504、酸価0mg-CH3ONa/g)と、無水マレイン酸変性SEBS(旭化成株式会社製、タフテックM1913、酸価10mg-CH3ONa/g)とが、LYBC微粉:無変性SEBS:無水マレイン酸変性SEBS=1:0.020:0.0022の質量比率で秤量された。このイオン伝導体材料において、ハロゲン化物固体電解質材料はLYBCで構成され、樹脂バインダーは無変性SEBSおよび無水マレイン酸変性SEBSで構成されていた。このこと以外の項目は、上述の実施例1の方法と同様に実施し、実施例2の二次電池を得た。
 実施例2の二次電池に含まれるイオン伝導体材料について、ハロゲン化物固体電解質材料に対する、樹脂バインダーに含まれる変性基の物質量比は、樹脂バインダーを構成する無変性SEBSおよび無水マレイン酸変性SEBSの酸価を用いて、以下の式(3)によって求められた。以下の式(3)から算出された、ハロゲン化物固体電解質材料であるLYBCに対する、樹脂バインダーに含まれる変性基の物質量比は、0.0002であった。
 変性基の物質量比=[{(無変性SEBSの酸価)×(無変性SEBSの含有質量)}/{(CH3ONaの分子量=54.02g/mol)×1000}+{(無水マレイン酸変性SEBSの酸価)×(無水マレイン酸変性SEBSの含有質量)}/{(CH3ONaの分子量×1000}]/{(LYBCの含有質量)/(LYBCの分子量=411.35g/mol)} ・・・(3)
 また、実施例2の二次電池に含まれるイオン伝導体材料について、樹脂バインダーの酸価が、以下の式(4)によって求められた。以下の式(4)から算出された樹脂バインダーの酸価は、1mg-CH3ONa/gであった。
 樹脂バインダーの酸価={(無変性SEBSの酸価)×(無変性SEBSの含有質量)+(無水マレイン酸変性SEBSの酸価)×(無水マレイン酸変性SEBSの含有質量)}/{(無変性SEBSの含有質量)+(無水マレイン酸変性SEBSの含有質量)} ・・・(4)
 <比較例1>
 イオン伝導体材料スラリーの作製において、LYBC微粉と、無変性SEBS(旭化成株式会社製、タフテックN504、酸価0mg-CH3ONa/g)と、無水マレイン酸変性SEBS(旭化成株式会社製、タフテックM1913、酸価10mg-CH3ONa/g)とが、LYBC微粉:無変性SEBS:無水マレイン酸変性SEBS=1:0.017:0.0043の質量比率で秤量された。このイオン伝導体材料において、ハロゲン化物固体電解質材料はLYBCで構成され、樹脂バインダーは無変性SEBSおよび無水マレイン酸変性SEBSで構成されていた。このこと以外の項目は、上述の実施例1の方法と同様に実施し、比較例1の二次電池を得た。
 比較例1の二次電池に含まれるイオン伝導体材料について、ハロゲン化物固体電解質材料に対する、樹脂バインダーに含まれる変性基の物質量比は、樹脂バインダーを構成する無変性SEBSおよび無水マレイン酸変性SEBSの酸価を用いて、実施例2で用いられた上記式(3)によって求められた。上記式(3)から算出された、ハロゲン化物固体電解質材料であるLYBCに対する、樹脂バインダーに含まれる変性基の物質量比は、0.0003であった。
 また、比較例1の二次電池に含まれるイオン伝導体材料について、樹脂バインダーの酸価が、実施例2で用いられた上記式(4)によって求められた。上記式(4)から算出された樹脂バインダーの酸価は、2mg-CH3ONa/gであった。
 <比較例2>
 イオン伝導体材料スラリーの作製において、LYBC微粉と無水マレイン酸変性SEBS(旭化成株式会社製、タフテックM1913、酸価10mg-CH3ONa/g)とが、LYBC微粉:無水マレイン酸変性SEBS=1:0.022の質量比率で秤量された。このイオン伝導体材料において、ハロゲン化物固体電解質材料はLYBCで構成され、樹脂バインダーは無水マレイン酸変性SEBSで構成されていた。このこと以外の項目は、上述の実施例1の方法と同様に実施し、比較例2の二次電池を得た。
 比較例2の二次電池に含まれるイオン伝導体材料について、ハロゲン化物固体電解質材料に対する、樹脂バインダーに含まれる変性基の物質量比は、樹脂バインダーを構成する無水マレイン酸変性SEBSの酸価を用いて、以下の式(5)によって求められた。以下の式(5)から算出された、ハロゲン化物固体電解質材料であるLYBCに対する、樹脂バインダーに含まれる変性基の物質量比は、0.002であった。
 変性基の物質量比=[{(無水マレイン酸変性SEBSの酸価)×(無水マレイン酸変性SEBSの含有質量)}/{(CH3ONaの分子量×1000}]/{(LYBCの含有重量)/(LYBCの分子量)} ・・・(5)
 また、比較例2の二次電池に含まれるイオン伝導体材料について、樹脂バインダーの酸価は、無水マレイン酸変性SEBSの酸価である、10mg-CH3ONa/gであった。
 <電池の評価>
 [充放電試験]
 上述の実施例1、実施例2、比較例1、および比較例2の電池をそれぞれ用いて、以下の条件で、充放電試験を実施した。
 電池を25℃の恒温槽に配置した。
 電池に対して、正極活物質(Li(Ni、Co、Mn)O2)の理論容量に対して0.05Cレート(20時間率)となる電流値の電流密度で、電圧3.7V(vs LiIn)まで充電した。次に、同じく0.05Cレートとなる電流値の電流密度で、電圧1.9V(vs LiIn)まで放電した。
 以上により、上述の実施例1、実施例2、比較例1、および比較例2、の電池のそれぞれの充電容量、放電容量、および充放電効率(=(放電容量/充電容量)×100)を得た。これらの結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1に示す実施例1および実施例2の結果と、比較例1および比較例2の結果との比較により、LYBCに対する樹脂バインダーに含まれる変性基の物質量比が0.0002以下のイオン伝導体材料を用いた電池の場合、正極の理論容量である200mAh/gに近い充電容量を示し、電池の充放電効率が向上することが確認された。
 以上より、本開示のイオン伝導体材料が用いられることで、電池の充放電効率が向上することが確認された。なお、本開示のイオン伝導体材料とは、Li、M、およびXを含む固体電解質材料と樹脂バインダーとを含み、前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種であり、前記固体電解質に対する前記樹脂バインダーに含まれる変性基の物質量比が0.0002以下であるイオン伝導体材料である。
 本開示の電池は、例えば、全固体リチウムイオン二次電池などとして利用され得る。
 1000 イオン伝導体材料
 101 固体電解質材料
 102 樹脂バインダー
 2000 電池
 201 電解質層
 202 正極
 203 負極

Claims (8)

  1.  固体電解質材料と、樹脂バインダーとを含み、
     前記固体電解質材料は、Li、M、およびXを含み、
     前記Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
     前記Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種であり、
     前記固体電解質材料に対する、前記樹脂バインダーに含まれる変性基の物質量比が、0.0002以下である、
    イオン伝導体材料。
  2.  前記固体電解質材料は、下記の組成式(1)により表され、
    Liαβγ ・・・式(1)
     ここで、前記α、前記β、および前記γは、いずれも0より大きい値である、
    請求項1に記載のイオン伝導体材料。
  3.  前記Mは、イットリウムを含む、
    請求項1または2に記載のイオン伝導体材料。
  4.  前記樹脂バインダーは、熱可塑性エラストマーを含む、
    請求項1から3のいずれか1項に記載のイオン伝導体材料。
  5.  前記熱可塑性エラストマーは、スチレンを含む、
    請求項4に記載のイオン伝導体材料。
  6.  前記熱可塑性エラストマーは、スチレン-エチレン-ブチレン-スチレンである、
    請求項5に記載のイオン伝導体材料。
  7.  前記樹脂バインダーの酸価は、1mg-CH3ONa/g以下である、
    請求項1から6のいずれか1項に記載のイオン伝導体材料。
  8.  正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
    を備え、
     前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から7のいずれか1項に記載のイオン伝導体材料を含む、
    電池。
PCT/JP2020/018123 2019-06-26 2020-04-28 イオン伝導体材料および電池 WO2020261758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20830570.6A EP3993108A4 (en) 2019-06-26 2020-04-28 ION-CONDUCTING MATERIAL AND BATTERY
JP2021527429A JP7493157B2 (ja) 2019-06-26 2020-04-28 イオン伝導体材料および電池
CN202080021741.1A CN113597694A (zh) 2019-06-26 2020-04-28 离子导体材料及电池
US17/518,588 US20220077493A1 (en) 2019-06-26 2021-11-04 Ion conductor material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019118813 2019-06-26
JP2019-118813 2019-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/518,588 Continuation US20220077493A1 (en) 2019-06-26 2021-11-04 Ion conductor material and battery

Publications (1)

Publication Number Publication Date
WO2020261758A1 true WO2020261758A1 (ja) 2020-12-30

Family

ID=74060227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018123 WO2020261758A1 (ja) 2019-06-26 2020-04-28 イオン伝導体材料および電池

Country Status (5)

Country Link
US (1) US20220077493A1 (ja)
EP (1) EP3993108A4 (ja)
JP (1) JP7493157B2 (ja)
CN (1) CN113597694A (ja)
WO (1) WO2020261758A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022174086A1 (en) * 2021-02-11 2022-08-18 Solid Power Operating, Inc. Rheologically modified slurries for electrochemical cells and components made therefrom
WO2022249671A1 (ja) * 2021-05-25 2022-12-01 パナソニックIpマネジメント株式会社 外装体および電池モジュール
WO2022249776A1 (ja) * 2021-05-27 2022-12-01 パナソニックIpマネジメント株式会社 電極および電池
WO2024106765A1 (ko) * 2022-11-16 2024-05-23 주식회사 엘지에너지솔루션 고체 전해질막 및 이를 포함하는 전고체 전지

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
CN114746958A (zh) * 2019-12-12 2022-07-12 松下知识产权经营株式会社 固体电解质组合物及固体电解质部件的制造方法
US20220021023A1 (en) * 2019-12-20 2022-01-20 Blue Current, Inc. Composite electrolytes with binders
WO2021127542A1 (en) * 2019-12-20 2021-06-24 Blue Current, Inc. Composite electrolytes with binders
EP4084180A4 (en) * 2019-12-27 2024-06-26 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE COMPOSITION AND SOLID ELECTROLYTE PARTICLES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946387B1 (ja) 1970-08-19 1974-12-10
WO2016035713A1 (ja) * 2014-09-05 2016-03-10 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2017217079A1 (ja) 2016-06-14 2017-12-21 パナソニックIpマネジメント株式会社 全固体電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578684B2 (ja) * 1998-11-10 2010-11-10 パナソニック株式会社 リチウム二次電池
WO2017199821A1 (ja) * 2016-05-19 2017-11-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
CN106505199B (zh) * 2016-11-29 2019-04-02 中航锂电(洛阳)有限公司 一种锂离子电池复合负极材料及其制备方法、锂离子电池
US20220216507A1 (en) * 2019-04-29 2022-07-07 China Automotive Battery Research Institute Co., Ltd Solid electrolyte material for lithium secondary battery, electrode, and battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946387B1 (ja) 1970-08-19 1974-12-10
WO2016035713A1 (ja) * 2014-09-05 2016-03-10 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2017217079A1 (ja) 2016-06-14 2017-12-21 パナソニックIpマネジメント株式会社 全固体電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993108A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022174086A1 (en) * 2021-02-11 2022-08-18 Solid Power Operating, Inc. Rheologically modified slurries for electrochemical cells and components made therefrom
WO2022249671A1 (ja) * 2021-05-25 2022-12-01 パナソニックIpマネジメント株式会社 外装体および電池モジュール
WO2022249776A1 (ja) * 2021-05-27 2022-12-01 パナソニックIpマネジメント株式会社 電極および電池
WO2024106765A1 (ko) * 2022-11-16 2024-05-23 주식회사 엘지에너지솔루션 고체 전해질막 및 이를 포함하는 전고체 전지

Also Published As

Publication number Publication date
EP3993108A4 (en) 2022-09-28
JP7493157B2 (ja) 2024-05-31
US20220077493A1 (en) 2022-03-10
JPWO2020261758A1 (ja) 2020-12-30
EP3993108A1 (en) 2022-05-04
CN113597694A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2020261758A1 (ja) イオン伝導体材料および電池
JP7349645B2 (ja) 電極材料、および、電池
WO2019146294A1 (ja) 電池
WO2019135344A1 (ja) 固体電解質材料、および、電池
JP7145439B6 (ja) 電池
WO2019135320A1 (ja) 固体電解質材料、および、電池
WO2019135321A1 (ja) 固体電解質材料、および、電池
WO2019146217A1 (ja) 電池
WO2019135317A1 (ja) 固体電解質材料、および、電池
JPWO2019135328A1 (ja) 固体電解質材料、および、電池
WO2019135336A1 (ja) 固体電解質材料、および、電池
WO2021070595A1 (ja) 固体電解質材料およびそれを用いた電池
JPWO2019146292A1 (ja) 正極材料およびそれを用いた電池
JPWO2019146293A1 (ja) 電池
WO2021161752A1 (ja) 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法
WO2020137026A1 (ja) 固体電解質材料、およびそれを用いた電池
WO2020188914A1 (ja) 固体電解質材料およびこれを用いた電池
JP2020145053A (ja) 負極活物質材料及び蓄電デバイス
WO2020188915A1 (ja) 固体電解質材料およびこれを用いた電池
US20240097131A1 (en) Coated positive electrode active material, positive electrode material, and battery
CN117897830A (zh) 被覆活性物质、电极材料和电池
WO2021132405A1 (ja) 電極および電池
WO2021132406A1 (ja) 電極および電池
WO2023162758A1 (ja) 固体電解質材料
WO2023037757A1 (ja) 正極材料、正極および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020830570

Country of ref document: EP

Effective date: 20220126