WO2020259103A1 - 电池组加热系统的控制系统和方法、电池组加热管理系统 - Google Patents

电池组加热系统的控制系统和方法、电池组加热管理系统 Download PDF

Info

Publication number
WO2020259103A1
WO2020259103A1 PCT/CN2020/089656 CN2020089656W WO2020259103A1 WO 2020259103 A1 WO2020259103 A1 WO 2020259103A1 CN 2020089656 W CN2020089656 W CN 2020089656W WO 2020259103 A1 WO2020259103 A1 WO 2020259103A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
heating
state
switch module
heating system
Prior art date
Application number
PCT/CN2020/089656
Other languages
English (en)
French (fr)
Inventor
王天聪
左希阳
但志敏
郑雄
李宝
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020259103A1 publication Critical patent/WO2020259103A1/zh
Priority to US17/390,873 priority Critical patent/US11338702B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to the field of battery power, in particular to a control system and method of a battery pack heating system, and a battery pack heating management system.
  • the existing control method is to control the periodic storage and discharge of the energy storage module of the motor in the battery heating system by controlling the periodic conduction of the switch module of the inverter in the battery heating system, so that AC is generated in the circuit where the battery is located.
  • the current is used to heat the battery pack, and the control accuracy is low.
  • control system and method of the battery pack heating system and the battery pack heating control management system provided by the embodiments of the present application can improve the control accuracy of the battery pack heating system.
  • an embodiment of the present application provides a control system for a battery pack heating system, including:
  • the battery management system is used to obtain the state parameters of the battery pack. If it is determined that the state parameters of the battery pack meet the preset heating conditions, it sends heating request information to the vehicle controller; the motor controller is used to determine the motor of the battery pack heating system In a non-working state, send feedback information that the motor is in a non-working state to the vehicle controller; and, in response to the first control signal, control the target upper bridge arm switch module and the target lower bridge arm switch module to periodically turn on and off to Heating battery pack; vehicle controller, used to respond to heating request information and feedback information, and send the first control signal to the motor controller, where the target upper bridge arm switch module is the three-phase bridge of the inverter of the battery pack heating system The upper switch module of any bridge arm of the arm, the target lower switch module is the lower switch module of any bridge arm of the three-phase bridge except the bridge where the target upper switch module is located.
  • an embodiment of the present application provides a control method of a battery pack heating system, which is applied to the control system of the battery pack heating system provided by the embodiment of the present application, and includes:
  • the battery management system obtains the status parameters of the battery pack. If it is determined that the status parameters of the battery pack meet the preset heating conditions, it sends heating request information to the vehicle controller; if the motor controller determines that the motor is in a non-working state, it sends it to the vehicle controller The feedback information that the motor is in a non-working state; the vehicle controller sends the first control signal to the motor controller in response to the heating request information and the feedback information; the motor controller responds to the first control signal to control the target upper arm switch module and the target lower The bridge arm switch module is switched on and off periodically to heat the battery pack.
  • an embodiment of the present application provides a battery pack heating management system, including: the battery pack heating system control system and the battery pack heating system provided in the embodiment of the present application;
  • the battery pack heating system includes an inverter connected to the battery pack and a motor connected to the inverter.
  • the vehicle controller can respond to heating request information and feedback information to control the motor control area to heat the battery pack. Since the heating request information is sent by the battery management system after judging that the collected battery pack status parameters meet the preset heating conditions, it can indicate that the battery pack needs to be heated; the feedback information is determined by the motor controller to determine that the motor in the battery pack heating system is in Sending after the non-working state can indicate that the battery pack heating system has the conditions to heat the battery pack. Therefore, the control scheme of the embodiments of the present application can use the interaction between the battery management system, the motor controller, and the vehicle controller to control the battery pack heating system. When it is determined that the battery pack needs to be heated and the battery pack heating system has heating conditions After that, the battery pack heating system is controlled to heat the battery pack to improve the control accuracy of the battery pack heating system.
  • FIG. 1 is a schematic structural diagram of a battery pack heating management system provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a battery pack heating management system provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a method for controlling a battery pack heating system according to another embodiment of the application.
  • the embodiments of the present application provide a control system and method of a battery pack heating system, and a battery pack heating management system. This can be applied in specific scenarios where the battery pack heating system needs to be used to heat the battery pack due to the low temperature of the battery pack.
  • the control method and system provided in the application embodiment control the battery pack heating system.
  • the battery pack may include at least one battery module or at least one battery unit, which is not limited herein.
  • the battery pack can be used in electric vehicles to supply power to the motors and serve as the power source for electric vehicles.
  • the battery pack can also provide power for other electrical devices in electric vehicles, such as in-vehicle air conditioners and vehicle players.
  • the battery management system, the motor controller, and the vehicle controller cooperate to control the battery pack heating system, thereby improving the safety of the battery pack heating.
  • FIG. 1 is a schematic structural diagram of a battery pack heating management system provided by an embodiment of the application.
  • the battery heating management system includes a battery heating system and a control system P4 of the battery heating system.
  • the battery pack heating system includes an inverter P2 connected to the battery pack P1 and a motor P3 connected to the inverter.
  • the inverter P2 includes a three-phase bridge arm, each phase bridge arm of the three-phase bridge arm has an upper bridge arm and a lower bridge arm, and the upper bridge arm is provided with a switch module, and the lower bridge arm The arm is provided with a switch module, and the switch module has a diode.
  • the anode of the diode is connected to the connection point of the upper bridge arm and the lower bridge arm, and the cathode of the diode is located between the upper bridge arm and the anode of the battery pack.
  • the anode of the diode is located between the lower bridge arm and the negative electrode of the battery pack, and the cathode of the diode is connected to the connection point of the upper bridge arm and the lower bridge arm.
  • the battery pack heating system can control the battery pack P1 to charge and discharge periodically to realize the battery pack P1 to be heated.
  • the battery pack heating management system includes a battery pack heating system and a control system of the battery pack heating system.
  • the battery pack heating system includes an inverter P2 connected to the battery pack P1, and a motor P3 connected to the inverter.
  • the inverter P2 includes three-phase bridge arms connected in parallel.
  • Each phase of the three-phase bridge arm has an upper bridge arm and a lower bridge arm, and each upper bridge arm is provided with a switch module, and each lower bridge arm is provided with a switch module.
  • the three-phase bridge arms may be U-phase bridge arms, V-phase bridge arms, and W-phase bridge arms, respectively.
  • the upper switch module of the U-phase bridge arm is the first switch module P21
  • the lower switch module of the U-phase bridge arm is the second switch module P22.
  • the upper switch module of the V-phase bridge arm is the third switch module P23
  • the lower switch module of the V-phase bridge arm is the fourth switch module P24.
  • the switch module of the upper bridge arm of the W-phase bridge arm is the fifth switch module P25
  • the lower bridge arm switch module of the W-phase bridge arm is the sixth switch module P26.
  • the motor P3 includes three-phase energy storage modules corresponding to the three-phase bridge arms, one end of the three-phase energy storage module is connected, and the other end of the three-phase energy storage module is respectively connected to the upper and lower bridge arms of the corresponding bridge arms.
  • the connection points are connected.
  • the three-phase energy storage module may be a stator inductor.
  • the U-phase stator inductance L1 corresponding to the U-phase bridge arm, the V-phase stator inductance L2 corresponding to the V-phase bridge arm, and the W-phase stator inductance L3 corresponding to the W-phase bridge arm are connected.
  • each phase energy storage module and each bridge arm take the U-phase stator inductance L1 as an example.
  • the other end of the U-phase stator inductance L1 is connected to the upper bridge arm switch module P21 of the U-phase bridge arm and the U-phase bridge arm.
  • the connection point of the lower arm switch module P22 is connected.
  • the battery pack heating system further includes a supporting capacitor Ca connected in parallel with each phase bridge arm of the inverter P2.
  • the support capacitor Ca is a DC support (Dc-link).
  • One end of the supporting capacitor Ca is connected to the positive electrode of the battery pack P1, and the other end is connected to the negative electrode of the battery pack P2.
  • the supporting capacitor Ca is used to absorb the high pulsating voltage and current that may be generated when the switch module of the inverter P2 is disconnected, so that the voltage fluctuation and current fluctuation in the battery heating system are kept within the allowable range, and the voltage and current overshoot are avoided.
  • the motor P3 also includes resistance modules connected to the three-phase energy storage modules respectively. Specifically, one end of the three-phase energy storage module is respectively connected with its corresponding resistance module.
  • one end of the U-phase stator inductance L1 is connected to one end of the resistance module R1
  • one end of the V-phase stator inductance L2 is connected to one end of the resistance module R2
  • one end of the W-phase stator inductance L3 is connected to one end of the resistance module R3. connection.
  • the other end of the resistance module R1, the other end of the resistance module R2, and the other end of the resistance module R3 are connected.
  • the battery pack heating system of the embodiment of the present application can heat the battery pack P1 by periodically charging and discharging the battery pack P1 under the control of the control system P4 of the battery pack heating system.
  • the motor controller P42 in the control system of the battery pack heating system controls the target upper arm switch module and the target lower arm switch module in the switch module of the inverter P2 to periodically conduct through periodic drive signals And disconnect, realize the periodic storage and discharge of the energy storage module, and then realize periodic charging and discharging of the battery pack P1.
  • the target high-side switch module and the target low-side switch module are turned on, and the energy storage module is charged; when the drive signal output by the motor controller is low Usually, the target upper bridge arm switch module is disconnected from the target lower bridge arm switch module, and the energy storage module discharges.
  • the target upper switch module is any one of the upper switch modules of the three-phase bridge arm
  • the target lower switch module is any one of the three-phase bridge arms except the first target bridge arm. Any one of the lower-arm switch modules of other bridge arms.
  • the target upper arm switch module and the target lower arm switch module in FIG. 2 may include the following six situations:
  • the target upper switch module is the upper switch module P21 of the U-phase bridge
  • the target lower switch module is the lower switch module P24 of the V-phase bridge.
  • the target upper switch module is the upper switch module P21 of the U-phase bridge
  • the target lower switch module is the lower switch module P26 of the W-phase bridge.
  • the target upper switch module is the upper switch module P23 of the V-phase bridge
  • the target lower switch module is the lower switch module P22 of the U-phase bridge.
  • the target upper switch module is the upper switch module P23 of the V-phase bridge
  • the target lower switch module is the lower switch module P26 of the W-phase bridge.
  • the target upper switch module is the upper switch module P25 of the W-phase bridge
  • the target lower switch module is the lower switch module P22 of the U-phase bridge.
  • the target upper switch module is the upper switch module P25 of the W-phase bridge
  • the target lower switch module is the lower switch module P24 of the V-phase bridge.
  • the target high-side switch module and the target low-side switch module in each cycle of periodic turn-on and turn-off may be the same or different, which is not limited here.
  • the driving signal in each cycle drives both the first switch module P21 and the fourth switch module P24 to turn on and off.
  • the drive signal drives the first switch module P21 and the fourth switch module P24 to turn on and off; in the second cycle, the drive signal drives the third switch module P23 and the fifth switch Module P25 is turned on and off; in the third cycle, the drive signal drives the first switch module P21 and the sixth switch module P26 to turn on and off; that is, in different cycles, the drive signal drives the target The bridge arm switch module and the target lower bridge arm switch module can be different.
  • the switch module of the upper bridge arm and the switch module of the lower bridge arm in the same bridge arm are both turned on, for example, the upper bridge arm switch module and the lower bridge arm switch module in the same bridge arm are turned on at the same time More than 10 milliseconds may cause the device in the battery pack heating system or the battery pack P1 to be burned.
  • the logic circuit can be used in the motor controller P42 to realize the switching module and the switch module of the upper bridge arm in the same bridge arm. Mutually exclusive control of the conduction of the switch module of the lower bridge arm.
  • each switch module in the inverter P2 may include an insulated gate bipolar transistor (IGBT) chip, an IGBT module, and a metal-oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field Effect Transistor). -Effect Transistor, MOSFET) and other power switching devices one or more.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal-oxide semiconductor field effect transistor
  • the combination and connection methods of each IGBT device and MOSFET device in the switch module are not limited here.
  • the material type of the above-mentioned power switching device is also not limited. For example, a power switching device made of silicon carbide (ie, SiC) or other materials can be used. It is worth mentioning that the above-mentioned power switching device has a diode.
  • the diode can be a parasitic diode or a specially set diode.
  • the material type of the diode is also not limited.
  • a diode made of silicon (ie Si), silicon carbide (ie SiC) or other materials can be used.
  • control system P4 of the battery heating system includes a battery management system P41, a motor controller P42, and a vehicle controller P43.
  • the battery management system P41 is used to obtain the state parameters of the battery pack P1. If it is determined that the state parameters of the battery pack P1 meet the preset heating conditions, it sends heating request information to the vehicle controller P43.
  • the state parameters of the battery pack P1 include: the temperature of the battery pack P1 and/or the state of charge (SOC) of the battery pack P1. It should be noted that the state parameters of the battery pack P1 may also be other parameters that characterize the state of the battery pack P1, such as the voltage and current of the battery pack P1, which are not limited.
  • the state parameters of the battery pack P1 can be calculated from the state parameters of the battery module collected by the cell management unit (Cell Management Circuit, CMC) .
  • the CMC collects the temperature of each battery module in the battery pack P1, and transmits the collected temperature to the battery management system P41 through the communication unit.
  • the battery management system P41 uses the temperature of each battery module in the battery pack P1 to calculate the temperature of the battery pack P1.
  • the battery management system P41 and the CMC can communicate through wireless communication or wired communication, which is not limited.
  • the calculation method of the temperature and state of charge of the battery pack P1 is also not limited.
  • the battery management system P41 may obtain sampling data of the battery module through multiple CMCs.
  • each CMC may be connected by wired communication or wireless communication, such as a daisy chain or a controller area network (Controller Area Network, CAN) bus communication connection, etc.
  • the specific communication method is not limited.
  • the preset heating condition includes that the temperature of the battery pack P1 is lower than the expected temperature threshold.
  • the expected temperature threshold may also be the minimum required temperature at which the battery pack P1 can work normally, that is, the temperature threshold at which the battery pack heating system needs to enter the heating mode.
  • the heating temperature threshold can be set according to the work scenario and work requirements, for example, it can be any value in the temperature range of -50°C to 5°C, which is not limited here. If the temperature of the battery pack P1 is lower than the heating temperature threshold, the battery pack P1 cannot work normally and needs to be heated.
  • the battery management system P41 determines that the temperature of the battery pack P1 is greater than or equal to the expected temperature threshold, it will report the information indicating that the battery pack temperature is normal and does not need to be heated to the vehicle controller P43 for vehicle control
  • the device P43 issues a power-on instruction for instructing the battery management system P41 to power on the high voltage to the battery management system P41 according to the information.
  • the preset heating condition includes that the state of charge of the battery pack P1 is higher than the state of charge threshold.
  • the state of charge threshold represents the state of charge expected to be consumed in this heating.
  • the state of charge threshold can be set according to the work scenario and work requirements, such as the expected heating temperature, the current temperature, the self-heating performance of the battery pack, etc., which are not limited here. If the state of charge of the battery pack P1 is higher than the state of charge threshold, it means that the current power of the battery pack P1 is sufficient to provide the power required to enter the heating mode. If it is less than the state of charge threshold, it means that the current heating cannot be provided Sufficient power.
  • the battery management system P41 determines that the state of charge of the battery pack P1 is less than or equal to the state of charge threshold, it will report the information indicating that the battery pack cannot heat the battery pack due to the low state of charge to the vehicle control system. ⁇ P43.
  • the battery management system P41 can also control the on-off state of the switching device on the connection between the battery pack P1 and the inverter P2, for example, the connection between the positive electrode of the battery pack P1 and the inverter P2
  • a main positive relay is provided on the upper side, and a main negative relay is provided on the connection line between the negative electrode of the battery pack P1 and the inverter P2.
  • the battery management system P41 controls the switching device on the connection line between the battery pack P1 and the inverter P2 to maintain the on state.
  • the motor controller P42 is used to send feedback information that the motor P3 is in a non-working state to the vehicle controller P43 if it is determined that the motor P3 of the battery pack heating system is in a non-working state. And, in response to the first control signal, the target upper-side switch module and the target lower-side switch module are periodically turned on and off to heat the battery pack P1.
  • the motor is in a non-working state, which means that the motor is not currently in the process of converting electrical energy into mechanical energy. In some embodiments, the motor is in a non-working state. It can also be said that the motor is in a stopped state.
  • the judging method for the motor controller P42 to determine whether the motor P3 is in a non-working state, the comparison is not limited.
  • the motor controller P42 determines that the motor P3 is in the working state, it reports the information that the battery P3 is in the working state to the vehicle controller P43, so that the vehicle controller P43 stops controlling the battery pack heating system to control the battery pack. P1 heating.
  • the vehicle controller P43 is used to send the first control signal to the motor controller P42 in response to the heating request information and feedback information.
  • the first control signal is used to instruct the motor controller P42 to heat the battery pack P1 by controlling the target upper-side switch module and the target lower-side switch module to periodically switch on.
  • the vehicle controller P43 can respond to heating request information and feedback information to control the motor control area to heat the battery pack. Since the heating request information is sent by the battery management system P41 after determining that the collected state parameters of the battery pack P1 meet the preset heating conditions, it can indicate that the battery pack needs to be heated; the feedback information is determined by the motor controller P42 in the battery pack heating system It is sent after the motor P3 is in a non-working state, which can indicate that the battery pack heating system has the conditions to heat the battery pack P1. Therefore, the control system of the embodiment of the present application can use the interaction between the battery management system P41, the motor controller P42, and the vehicle controller P43 to control the battery pack heating system. When it is determined that the battery pack P1 needs to be heated and the battery pack is heated After the system has the heating conditions, the battery pack heating system is controlled to heat the battery pack P1 to improve the control accuracy of the battery pack heating system.
  • the vehicle controller P43 is also used to determine whether the state of the vehicle controller P43, the state of the battery management system P41, and the state of the motor controller P42 are normal working conditions if the vehicle start signal is detected.
  • the vehicle controller P43 will receive the vehicle start signal, that is, the vehicle control The P43 will detect the vehicle start signal.
  • the vehicle controller P43 confirms whether it is in a normal working state through a self-check. In one embodiment, if the vehicle controller P43 confirms that its own state is abnormal through the self-check, it will send information indicating the abnormal state of the vehicle controller P43 to the outside, and stop executing any operation instructions.
  • the vehicle controller P43 is used to send status request information to the battery management system P41 and the motor controller P42, and confirm whether the two are working normally according to the feedback information of the battery management system P41 and the motor controller P42 status.
  • the vehicle controller P43 if the vehicle controller P43 receives the feedback information sent by the battery management system P41 indicating that the battery management system P41 is in a faulty state, it sends information indicating the abnormal state of the battery management system P41 to the outside.
  • the vehicle controller P43 receives the feedback information sent by the motor controller P42 indicating that the motor controller P42 is in a fault state, it sends information indicating the abnormal state of the motor controller P42 to the outside.
  • control system P4 of the battery pack heating system can also control the battery pack heating system according to the driver's operation.
  • vehicle controller P43 is specifically used for:
  • a prompt message for pre-heating the battery pack P1 is sent. And, in response to the input trigger operation, the first control signal is sent to the motor controller P42.
  • the vehicle controller P43 can send the prompt message to the dashboard, audio player, etc. of the vehicle, an interactive device that can transmit the prompt information to the driver through text, voice, images, etc., to communicate
  • the device prompts the vehicle driver to prepare to heat the battery pack P1.
  • the VCU control dashboard displays "The vehicle needs to be heated, the expected heating time is XXX" to remind the driver that the vehicle needs to be heated.
  • the prompt message can be used by the driver as a basis for determining whether to perform this heating procedure.
  • the prompt message may include expected heating time, expected heating temperature, expected remaining power, and other information that can assist the driver in determining whether to perform this heating operation.
  • the expected heating time may be determined according to the driving signal frequency, the driving signal duty cycle, the difference between the current temperature of the battery pack and the expected heating temperature, and the heating performance of the battery pack P1, which is not limited.
  • the expected remaining power may be obtained according to the difference between the current state of charge of the battery pack and the current expected consumption state of charge, and the manner of obtaining the expected remaining power is not limited.
  • the vehicle controller P43 may collect information such as the driver's actions, voices, images, etc. through the vehicle dashboard, audio collection device, etc., and determine the driver's operation intention based on the collected information. In other words, if the information includes the driver's input to trigger the heating of the battery pack P1, the vehicle controller P43 collects the driver's input to trigger the operation, indicating that the driver confirms that the battery pack needs to be heated. Exemplarily, under the control of the vehicle controller P43, an option for the driver to choose whether to heat the battery pack P1 may be displayed on the vehicle dashboard. And in response to the driver's triggering operation of the heating option, the first control signal is sent to the motor controller P42.
  • the vehicle controller P43 may collect information such as the driver's actions, voices, images, etc. through the vehicle dashboard, audio collection device, etc., and determine the driver's operation intention based on the collected information. In other words, if the information includes the driver's input to trigger the heating of the battery pack P1, the vehicle controller P43 collects the
  • the battery management system P41, the motor controller P42, the vehicle controller P43, and the driver's operations can be combined to control the battery pack heating system, which further improves the control accuracy.
  • control system of the battery pack heating system can also control the heating safety of the battery pack heating system during the heating process.
  • the motor controller P42 is also used to collect the temperature of the inverter P2 and the temperature of the motor P3; and, if it is determined that at least one of the temperature of the inverter and the temperature of the motor meets the preset overtemperature Condition, control all switch modules of inverter P2 to be in the off state, and report over-temperature information to the vehicle controller.
  • the preset over-temperature condition may be that the temperature exceeds a corresponding temperature threshold range.
  • the upper limit of the temperature threshold range corresponding to the temperature of the inverter may be the highest temperature at which each bridge arm switch module can work normally.
  • the upper limit of the temperature threshold range corresponding to the temperature of the motor may be the highest temperature at which each device in the motor can work normally.
  • the temperature sensor may be used to collect the real-time temperature of the switch module of each phase bridge arm, and the temperature of the inverter P2 can be determined according to the real-time temperature of the switch module of each phase bridge arm.
  • the temperature sensor may be used to collect the real-time temperature of each phase coil of the motor P3, and determine the temperature of the motor P3 according to the real-time temperature of each phase coil.
  • the battery pack heating system is heating the battery pack P1
  • only the target upper arm switch module and the target lower arm switch module are periodically turned on and off.
  • all the other switch modules except the target upper arm switch module and the target lower arm switch module remain in the disconnected state. Therefore, when the heating of the battery pack P1 needs to be stopped, all the switch modules of the inverter P2 can be controlled to be in the disconnected state by controlling the target upper switch module and the target lower switch module to disconnect.
  • the temperature of the inverter P2 and the motor P3 in the battery pack heating system is collected for monitoring.
  • the battery pack heating system is controlled to stop heating the battery pack P1 to reduce
  • the battery pack heating system has the possibility of over-temperature failure and loss of itself or the battery pack, improves the safety of the battery pack heating, and extends the service life and use safety of the device.
  • control system P4 of the battery pack heating system can also control the battery pack heating system through the battery management system P41, the motor controller P42, and the vehicle controller P43 during the heating process.
  • the battery management system P41 is also used to collect the target state parameters of the battery pack, and when the target state parameters exceed the corresponding parameter safety range, send a heating stop request to the vehicle controller P43.
  • the target state parameter includes at least one of the following parameters: temperature, state of charge, and insulation resistance.
  • the corresponding parameter safety range is used to characterize the temperature range in which the battery needs to be heated, the upper limit of the parameter safety range is the expected temperature threshold, and the parameter safety range has no lower limit value.
  • the heating stop request is used to notify the vehicle controller P43 that the battery pack P1 has reached the expected heating temperature and it is necessary to stop heating the battery pack.
  • the corresponding parameter safety range is used to indicate that the remaining charge of the battery is sufficient for the expected remaining consumption of this heating.
  • the safety range of this parameter can be set according to specific work scenarios and work requirements, which is not limited. If the real-time state of charge is lower than the lower limit of the corresponding parameter safety range, the vehicle controller P43 is notified that the battery pack needs to stop heating the battery pack because of the low power.
  • the corresponding parameter safe range is used to represent a reasonable value range of the insulation resistance value.
  • the safety range of this parameter can be set according to specific work scenarios and work requirements, which is not limited. If the real-time state of charge is lower than the lower limit of the corresponding parameter safety range, the vehicle controller P43 is notified to stop heating the battery pack because of the low insulation resistance.
  • the insulation resistance is the insulation resistance of the positive and negative electrodes of the battery to the low-voltage ground of the vehicle.
  • the battery management system after the battery management system is in working state, it can automatically collect the target state parameters of the battery pack to determine whether the target state parameters exceed the corresponding parameter safety range, and when the target state parameters exceed the corresponding When the parameter safety range is set, a request to stop heating is sent to the vehicle controller.
  • the vehicle controller P43 is also used to respond to the stop heating request and send a stop signal to the motor controller P42.
  • the stop signal indicates the need to control the battery pack heating system to stop heating the battery pack.
  • the motor controller P42 receives the stop signal and controls all the switch modules of the inverter to be in the off state, that is to say, controls the target upper arm switch module and the target lower arm switch module to disconnect.
  • control system P4 of the battery pack heating system can detect the state of the battery pack P1 during the entire heating process, which improves the control accuracy.
  • control system P4 of the battery pack heating system monitors whether the target state data of the battery pack is abnormal, and can control the battery pack heating system to stop heating the battery pack in time when the target state data is abnormal, thereby improving heating safety.
  • the insulation resistance value needs to be monitored after the precharge is completed and before the formal heating starts, and during the heating process . If the insulation resistance is abnormal after the pre-charge is completed and before the heating is officially started, the motor control P42 controls the target upper arm switch module and the target lower arm switch module to remain in the disconnected state.
  • the vehicle controller P43 is also used to send a second control signal for instructing the battery management system P41 to enter the heating working mode to the battery management system P41.
  • the battery management system P41 is also used to respond to the second control signal to control the pre-charging of the supporting capacitor Ca connected in parallel to the two ends of the inverter P2; and also to determine that after the pre-charging of the supporting capacitor Ca is completed, control to stop the Support capacitor pre-charge, and send pre-charge completion information to vehicle controller P43.
  • a main positive relay is set between the positive pole of the battery pack P1 and the connection line of the inverter P2
  • a main negative relay is set between the negative pole of the battery pack P1 and the connection line of the inverter P2, and it is connected in parallel to the main positive
  • the precharge relay at both ends of the relay or the main negative relay.
  • the battery management system P41 controls the pre-charging relay to close to control the battery pack P1 to start pre-charging the supporting capacitor. For example, if the pre-charge relay is connected in parallel with both ends of the main positive relay, the supporting capacitor can be pre-charged by closing the pre-charge relay and the main negative relay.
  • the battery management system P41 controls the pre-charging relay to be turned off to control the battery pack P1 to stop pre-charging the supporting capacitor. And after the pre-charging process is over, the main positive relay and the main negative relay are controlled to close so that the battery pack heating system can heat the battery pack P1.
  • the vehicle controller P43 sends the first control signal to the motor controller P42 in response to the heating request information, the feedback information, and the precharge completion information.
  • control devices of the control system P4 of the battery heating system may also participate in the pre-charging process.
  • the motor controller P42 can participate in the pre-charge process. Specifically, the motor controller P42 assists in judging whether the pre-charging process is completed by monitoring the bus voltage.
  • the battery management system P41 collects the state parameters of the battery pack P1 and determines whether the state parameters of the battery pack P1 meet the preset heating Conditional instructions.
  • the judgment of the battery management system P41 can prevent the battery pack from heating up or charging consumption during the precharging process. The influence of the heating process, thereby improving the precision of control.
  • the motor controller P42 is also used to receive a stop signal to return the voltage across the supporting capacitor to a safe voltage range.
  • the safety of the battery heating system can be improved by internally discharging the voltage at both ends of the supporting capacitor to a safe voltage range. It should be noted that the voltage at both ends of the supporting capacitor can be returned to the safe voltage range through various methods, such as turning on the switch module in the inverter, which is not limited.
  • the motor controller P42 can first return the voltage across the supporting capacitor to the safe voltage range, and then control all switch modules in the inverter to be in the off state.
  • the embodiment of the present application does not limit the execution order of the two actions.
  • control system P4 of the battery pack heating system can also control the heating current generated by the battery pack heating system through the motor controller P42 and the vehicle controller P43.
  • the motor controller P42 is also used to collect the current parameters of the battery pack heating system. If the current parameters exceed the preset expected current threshold interval, report the current abnormal information to the vehicle controller, and based on the preset expected current threshold interval Calculate the desired frequency and desired duty cycle of the drive signal, and adjust the frequency and duty cycle of the drive signal to the desired frequency and desired duty cycle.
  • the driving signal is used to drive the target upper-side switch module and the target lower-side switch module to periodically switch on and off.
  • the current parameters include one or more of the following current parameters: the bus current between the battery pack and the inverter, and the phase current between each energy storage module and each corresponding bridge arm.
  • the current sensor when the current parameter includes the bus current between the battery pack and the inverter, the current sensor can be arranged on the connection line between the battery pack P1 and the inverter.
  • the current sensor can be arranged at the other end of the energy storage module to connect the upper bridge arm and the lower bridge arm of the bridge arm corresponding to the energy storage module Between points.
  • the preset desired current threshold interval represents the allowable range of heating current during the heating process.
  • the preset desired current threshold interval may be a current range in which the desired heating current is an intermediate value.
  • the desired heating current may be the desired bus current.
  • the heating current and the heating rate are directly proportional, if the acquired current parameter is less than the lower limit of the preset expected current threshold interval, it means that the current for heating the battery pack P1 is too small, and the current abnormal information is used to remind the vehicle controller Increase the heating current. If the acquired current parameter is greater than the upper limit of the preset expected current threshold interval, it means that the current for heating the battery pack P1 is too large, and the current abnormal information is used to prompt the vehicle controller to reduce the heating current.
  • the expected frequency and the expected duty cycle of the driving signal may be adjusted according to the preset expected current threshold interval, so that the current parameter returns to the preset expected current threshold interval.
  • the expected frequency and the expected duty cycle of the driving signal can be calculated according to formula (1).
  • I represents the effective current
  • D represents the duty ratio of the drive signal
  • f represents the drive signal frequency
  • U1 represents the voltage across the battery pack P1
  • L represents the inductance value of the stator inductance.
  • the effective value of the desired heating current can be substituted into the formula (1) as the parameter I to calculate the desired duty ratio D and the desired frequency f.
  • the expected frequency and expected duty cycle of the driving signal may be adjusted according to the collected current parameters and the preset expected current threshold interval, so that the current parameters return to the preset expected current threshold interval. For example, according to the collected current parameters and the preset expected current threshold interval, and using the proportional-integral-differential (PID) method to adjust the expected duty cycle and the expected frequency, the current parameters return to the preset Expected current threshold interval.
  • PID proportional-integral-differential
  • the embodiment of the present application does not limit the specific calculation method for calculating the expected duty ratio D and the expected frequency f.
  • the motor controller P42 in order to prevent the battery pack or the circuits and devices of the battery pack heating system from being damaged due to the excessive current, if the current parameter exceeds the preset expected current threshold interval, the motor controller P42 can also control all the switches of the inverter The module is disconnected.
  • the motor controller P42 in order to take into account safety and heating efficiency, if the current parameter exceeds the preset expected current threshold interval and does not exceed the current safety range, the motor controller P42 continues to drive the target upper arm switch module and the target according to the driving signal The switch module of the lower bridge arm is switched on and off periodically. If the current parameter exceeds the current safety range, the motor controller P42 controls all switch modules of the inverter to be in the off state.
  • the current safety range includes a preset expected current threshold interval.
  • the vehicle controller P43 can control the dashboard of the vehicle to display the abnormal current information, so that the driver of the vehicle can control the vehicle based on the abnormal current information, such as turning off the heating system. Vehicle maintenance, etc.
  • control system P4 of the battery pack heating system can also control the heating rate of the battery pack P1 by the battery pack heating system through the battery management system P41, the motor controller P42, and the vehicle controller P43. .
  • the battery management system P41 is also used to obtain the real-time temperature rise rate of the battery pack P1. If it is determined that the real-time temperature rise rate of the battery pack P1 exceeds the preset expected temperature rise rate range, it reports abnormal temperature rise information to the vehicle controller.
  • the real-time temperature rise rate of the battery pack P1 may be calculated according to the real-time temperature of the battery pack P1.
  • the relevant content of the method for calculating the real-time temperature of the battery pack P1 please refer to the content of the foregoing embodiment, which is not repeated here.
  • the preset desired temperature rise rate interval represents the allowable range of the temperature rise rate during the heating process.
  • the preset desired temperature rise rate interval may be a temperature rise rate range with the desired temperature rise rate as an intermediate value.
  • the heating current and the heating rate are directly proportional, if the heating rate is less than the lower limit of the preset expected temperature rise rate interval, it means that the current for heating the battery pack P1 is too small, and the temperature rise abnormal information is used to remind the vehicle controller Increase the heating current. If the temperature rise rate is greater than the upper limit of the preset expected temperature rise rate interval, it indicates that the current for heating the battery pack P1 is too large, and the temperature rise abnormal information is used to prompt the vehicle controller to reduce the heating current.
  • the vehicle controller P42 is also used to forward abnormal temperature rise information to the motor controller P43.
  • the motor controller P43 is also used to respond to abnormal temperature rise information, calculate the expected frequency and expected duty cycle of the drive signal based on the preset expected temperature rise rate interval, and adjust the frequency and duty cycle of the drive signal to the expected frequency and Expected duty cycle.
  • the driving signal is used to drive the target upper-side switch module and the target lower-side switch module to periodically switch on and off.
  • the preset expected temperature rise rate interval may be sent to the motor controller P43 in advance, or may be parsed by the motor controller P43 from the temperature rise abnormality information.
  • the desired frequency and the desired duty cycle of the driving signal may be adjusted according to the preset desired temperature rise rate interval, so that the temperature rise rate returns to the preset desired temperature rise rate interval.
  • the expected heating current can be determined according to the expected temperature rise rate, and then the expected heating current can be substituted into formula (1) to calculate the expected frequency and the expected duty cycle.
  • the expected frequency and expected duty cycle of the driving signal may be adjusted according to the real-time temperature rise rate and the preset expected temperature rise rate interval, so that the temperature rise rate returns to the preset expected temperature rise rate interval.
  • the proportional-integral-differential (PID) method is used to adjust the expected duty cycle and the expected frequency to return the current parameters to the preset Expected current threshold interval.
  • the embodiment of the present application does not limit the specific calculation method for calculating the expected duty ratio D and the expected frequency f.
  • the vehicle controller P43 can also control the vehicle dashboard to display the abnormal temperature rise information, so that the vehicle driver can control the vehicle based on the abnormal temperature rise information, such as turning off the heating System, vehicle maintenance, etc.
  • control method of the battery pack heating system will be described in detail below in conjunction with FIG. 2.
  • control method of the battery pack heating system can be applied to the control system P4 of the battery pack heating system in the foregoing embodiment.
  • FIG. 3 is a schematic flowchart of a method 300 for controlling a heating system of a battery pack according to another embodiment of the application.
  • the method includes S310 to S340.
  • the battery management system P41 obtains the state parameters of the battery pack P1, and if it is determined that the state parameters of the battery pack P1 meet the preset heating conditions, send heating request information to the vehicle controller P43.
  • the state parameters of the battery pack P1 include: the temperature of the battery pack P1 and/or the state of charge of the battery pack P1.
  • the preset heating condition includes that the temperature of the battery pack P1 is lower than the expected temperature threshold.
  • the preset heating condition includes that the state of charge of the battery pack P1 is higher than the state of charge threshold, and the state of charge threshold represents the expected consumption state of the current heating.
  • the state of charge of the battery pack P1 For the related content of the temperature of the battery pack P1, the state of charge of the battery pack P1, the expected temperature threshold, and the state of charge threshold, please refer to the content of the above-mentioned embodiment, and will not be repeated here.
  • the vehicle controller P43 In response to the heating request information and the feedback information, the vehicle controller P43 sends a first control signal to the motor controller P42.
  • S330 may include S331 and S332:
  • the motor controller P42 controls the target upper-side switch module and the target lower-side switch module to periodically turn on and off to heat the battery pack P1.
  • the vehicle controller P43 can respond to heating request information and feedback information to control the motor control area to heat the battery pack. Since the heating request information is sent by the battery management system P41 after determining that the collected state parameters of the battery pack P1 meet the preset heating conditions, it can indicate that the battery pack needs to be heated; the feedback information is determined by the motor controller P42 in the battery pack heating system It is sent after the motor P3 is in a non-working state, which can indicate that the battery pack heating system has the conditions to heat the battery pack P1. Therefore, the control method of the embodiment of the present application can use the interaction between the battery management system P41, the motor controller P42, and the vehicle controller P43 to control the battery pack heating system. When it is determined that the battery pack P1 needs to be heated and the battery pack is heated After the system has the heating conditions, the battery pack heating system is controlled to heat the battery pack P1 to improve the control accuracy of the battery pack heating system.
  • the method 300 for controlling the heating system of the battery pack further includes S351.
  • the vehicle controller P43 If the vehicle controller P43 detects the vehicle start signal, it determines whether the state of the vehicle controller P43, the state of the battery management system P41, and the state of the motor controller P42 are in a normal working state.
  • the control method 300 of the battery pack heating system further includes:
  • the vehicle controller P43 reports status information that characterizes the abnormal device failure.
  • control method 300 of the battery pack heating system in order to achieve fine control of the battery pack heating system P2 during the heating process of the battery pack P1, and to further improve the heating safety of the battery pack heating system P2, the control method 300 of the battery pack heating system also Including S361 and S362.
  • the motor controller P42 collects the temperature of the inverter P2 and the temperature of the motor P3.
  • the preset over-temperature condition is used to indicate a determination condition for the presence of a device with over-temperature risk in the battery pack heating system P2.
  • the method 300 for controlling the heating system of a battery pack further includes S371 to S373:
  • the battery management system P41 responds to collecting the target state parameter of the battery pack P1, and when the target state parameter exceeds the corresponding parameter safety range, sends a heating stop request to the vehicle controller P43.
  • the target state parameter includes at least one of the following parameters: temperature, state of charge, and insulation resistance.
  • the vehicle controller P43 responds to the heating stop request and sends a stop signal to the motor controller P42.
  • the motor controller P42 receives the stop signal, and controls all switch modules of the inverter P2 to be in a disconnected state.
  • the control method 300 of the battery pack heating system further includes S381 to S383:
  • the vehicle controller P43 sends a second control signal for instructing the battery management system P41 to enter the heating working mode to the battery management system P41.
  • control system of the battery pack heating system can also control the heating precision of the battery pack P1 by the battery pack heating system P2.
  • the method 300 for controlling the heating system of the battery pack further includes S391.
  • the motor controller P42 collects the current parameters of the battery pack heating system P2. If the current parameters exceed the preset expected current threshold interval, report the current abnormal information to the vehicle controller P43, and calculate based on the preset expected current threshold interval The desired frequency and the desired duty ratio of the driving signal, and the frequency and the duty ratio of the driving signal are adjusted to the desired frequency and the desired duty ratio.
  • the current parameter includes one or more of the following parameters: the bus current between the battery pack P1 and the inverter P2, and the phase current between each energy storage module in the motor P3 and the corresponding bridge arm of each energy storage module.
  • the driving signal is used to drive the target upper-side switch module and the target lower-side switch module to periodically switch on and off.
  • the method 300 for controlling the heating system of the battery pack further includes:
  • the vehicle controller P4 controls the vehicle dashboard to display abnormal current information, so that the driver of the vehicle can control the vehicle based on the abnormal current information, such as turning off the heating system and performing vehicle inspections.
  • control system of the battery pack heating system can also control the heating precision of the battery pack P1 by the battery pack heating system P2.
  • the method 300 for controlling the heating system of the battery pack further includes S393 to S395.
  • the battery management system P41 obtains the real-time temperature rise rate of the battery pack, and if it is determined that the real-time temperature rise rate of the battery pack P1 exceeds the preset expected temperature rise rate range, it reports abnormal temperature rise information to the vehicle controller P43.
  • the motor controller P42 responds to the temperature rise abnormality information, calculates the expected frequency and the expected duty cycle of the drive signal based on the preset expected temperature rise rate range, and adjusts the frequency and the duty cycle of the drive signal to the expected frequency and expected Duty cycle
  • the driving signal is used to drive the target upper-side switch module and the target lower-side switch module to periodically switch on and off.
  • the method 300 for controlling the heating system of the battery pack further includes:
  • the vehicle controller P43 controls the dashboard of the vehicle to display the abnormal temperature rise information, so that the vehicle driver can control the vehicle based on the abnormal temperature rise information, such as turning off the heating system and performing vehicle inspections. .
  • the communication between the aforementioned modules and devices may be wired communication or wireless communication, which is not limited.
  • the functional modules in the foregoing embodiments can be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, and so on.
  • ASIC application specific integrated circuit
  • the elements of this application are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium that can store or transmit information.

Abstract

电池组加热系统的控制系统和方法、电池组加热管理系统,涉及电池电力领域。该电池组加热系统的控制系统(P4)包括:电池管理系统(P41),用于获取电池组(P1)的状态参数,若确定电池组(P1)的状态参数满足预设加热条件,向整车控制器(P43)发送加热请求信息;电机控制器(P42),用于若确定电池组加热系统的电机(P3)处于非工作状态,向整车控制器(P43)发送电机(P3)处于非工作状态的反馈信息;以及,用于响应第一控制信号,控制目标上桥臂开关模块(P21、P23、P25)和目标下桥臂开关模块((P22、P24、P26)周期性通断,以加热电池组(P1);整车控制器(P43),用于响应加热请求信息和反馈信息,向电机控制器(P42)发送第一控制信号。本方案能够提高对电池组加热系统的控制精度。

Description

电池组加热系统的控制系统和方法、电池组加热管理系统
相关申请的交叉引用
本申请要求享有于2019年06月24日提交的名称为“电池组加热系统的控制系统和方法、电池组加热管理系统”的中国专利申请201910547905.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池电力领域,特别是涉及一种电池组加热系统的控制系统和方法、电池组加热管理系统。
背景技术
随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
但是低温环境下电池的使用会受到一定限制。具体的,电池在低温环境下的放电容量会严重衰退,以及电池在低温环境下无法充电。因此,为了能够正常使用电池,需要在低温环境下为电池进行加热。
现阶段,可通过交流电激励电池内部电化学物质,使电池从内部加热。现有的控制方法是通过控制电池组加热系统中逆变器的开关模块周期性导通来控制电池组加热系统中电机的储能模块周期性储、放电,使得电池组所在的回路中产生交流电流,来对电池组进行加热,控制精度较低。
发明内容
本申请实施例提供的电池组加热系统的控制系统和方法,以及电池组加热控制管理系统,能够提高对电池组加热系统的控制精度。
一方面,本申请实施例提供了一种电池组加热系统的控制系统,包 括:
电池管理系统,用于获取电池组的状态参数,若确定电池组的状态参数满足预设加热条件,向整车控制器发送加热请求信息;电机控制器,用于若确定电池组加热系统的电机处于非工作状态,向整车控制器发送电机处于非工作状态的反馈信息;以及,用于响应第一控制信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性通断,以加热电池组;整车控制器,用于响应加热请求信息和反馈信息,向电机控制器发送第一控制信号,其中,目标上桥臂开关模块为电池组加热系统的逆变器的三相桥臂的任一桥臂的上桥臂开关模块,目标下桥臂开关模块为三相桥臂除目标上桥臂开关模块所在桥臂外的任一桥臂的下桥臂开关模块。
另一方面,本申请实施例提供一种电池组加热系统的控制方法,应用于本申请实施例提供的电池组加热系统的控制系统,包括:
电池管理系统获取电池组的状态参数,若确定电池组的状态参数满足预设加热条件,向整车控制器发送加热请求信息;电机控制器若确定电机处于非工作状态,向整车控制器发送电机处于非工作状态的反馈信息;整车控制器响应加热请求信息和反馈信息,向电机控制器发送第一控制信号;电机控制器响应第一控制信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性通断,以加热电池组。
另一方面,本申请实施例提供了一种电池组加热管理系统,包括:本申请实施例提供的电池组加热系统的控制系统和电池组加热系统;
其中,电池组加热系统包括与电池组连接的逆变器和与逆变器连接的电机。
根据本申请实施例中的电池组加热系统的控制方案,整车控制器可以响应加热请求信息和反馈信息,控制电机控制区对电池组加热。由于加热请求信息是电池管理系统在判断所采集电池组的状态参数满足预设加热条件之后发送的,能够表征电池组需要被加热;反馈信息是由电机控制器确定电池组加热系统内的电机处于非工作状态之后发送的,能够表征电池组加热系统具备对电池组加热的条件。因此,本申请实施例的控制方案,能够利用电池管理系统、电机控制器、整车控制器间的交互对电池组加热系 统进行控制,在确定电池组需要被加热且电池组加热系统具备加热条件之后,控制电池组加热系统对电池组进行加热,提高对电池组加热系统的控制精度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电池组加热管理系统的结构示意图;
图2为本申请实施例提供的一种电池组加热管理系统的结构示意图;
图3为本申请另一实施例提供的电池组加热系统的控制方法的流程示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
本申请实施例提供了一种电池组加热系统的控制系统和方法、电池组加热管理系统,在因电池组温度较低需要利用电池组加热系统对电池组进行加热的具体场景中,可应用本申请实施例提供的控制方法和系统对电池组加热系统进行控制。其中,电池组可包括至少一个电池模组或至少一个电池单元,在此并不限定。电池组可应用于电动汽车,为电机供电,作为电动汽车的动力源。电池组还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。在本申请实施例中,电池管理系统、电机控制器和整车控制器三者共同协作对电池组加热系统进行控制,从而提高了电池组加热的安全性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
图1为本申请实施例提供的一种电池组加热管理系统的结构示意图。如图1所示,电池组加热管理系统包括电池组加热系统以及电池组加热系统的控制系统P4。
电池组加热系统包括与电池组P1连接的逆变器P2和与逆变器连接的电机P3。
在本法的一些实施例中,逆变器P2包括三相桥臂,三相桥臂的每一相桥臂均具有上桥臂和下桥臂,且上桥臂设置有开关模块,下桥臂设置有开关模块,开关模块具有二极管。
针对上桥臂的开关模块,二极管的阳极与上桥臂和下桥臂的连接点连接,二极管的阴极位于上桥臂与电池组正极之间。
针对下桥臂的开关模块,二极管的阳极位于下桥臂与电池组负极之间,二极管的阴极与上桥臂和下桥臂的连接点连接。
本申请实施例中,在电池组加热系统的控制系统P4的控制下,电池组加热系统可以通过控制电池组P1周期性充、放电从而实现电池组P1进行加热。
图2为本申请实施例提供的一种电池组加热管理系统的结构示意图,其中,电池组加热管理系统包括电池组加热系统以及电池组加热系统的控制系统。如图2所示,电池组加热系统包括:与电池组P1相连的逆变器P2,与逆变器连接的电机P3。
其中,逆变器P2包括并联的三相桥臂。三相桥臂的每一相均具有上 桥臂和下桥臂,且每一上桥臂设置有开关模块,每一下桥臂设置有开关模块。
例如,参考图2,三相桥臂可以分别为U相桥臂、V相桥臂和W相桥臂。U相桥臂的上桥臂开关模块为第一开关模块P21,U相桥臂的下桥臂开关模块为第二开关模块P22。V相桥臂的上桥臂开关模块为第三开关模块P23,V相桥臂的下桥臂开关模块为第四开关模块P24。W相桥臂的上桥臂的开关模块第五开关模块P25,W相桥臂的下桥臂开关模块为第六开关模块P26。
电机P3包括分别与三相桥臂对应的三相储能模块,三相储能模块的一端相连,三相储能模块的另一端分别与各自对应的桥臂的上桥臂和下桥臂的连接点相连。在一些示例中,三相储能模块可以为定子电感。
例如,继续参考图2,与U相桥臂对应的U相定子电感L1,与V相桥臂对应的V相定子电感L2和与W相桥臂对应的W相定子电感L3。其中,U相定子电感L1,V相定子电感L2和W相定子电感L3的一端相连接。
其中,针对各相储能模块与各桥臂的连接关系,以U相定子电感L1为例,U相定子电感L1的另一端与U相桥臂的上桥臂开关模块P21和U相桥臂的下桥臂开关模块P22的连接点相连接。
作一个示例,继续参考图2,电池组加热系统还包括与逆变器P2的各相桥臂相并联的支撑电容Ca。例如,支撑电容Ca为直流支撑(Dc-link)。支撑电容Ca的一端连接电池组P1的正极,另一端连接电池组P2的负极。支撑电容Ca用于吸收逆变器P2的开关模块断开时可能产生的高脉动电压电流,使得电池组加热系统中电压波动和电流波动保持在允许范围内,避免电压、电流过冲。
作一个示例,电机P3还包括分别与三相储能模块相连接的电阻模块。具体地,三相储能模块的一端分别通过与其对应的电阻模块相连接。
例如,继续参考图2,U相定子电感L1的一端与电阻模块R1的一端连接,V相定子电感L2的一端与电阻模块R2的一端连接,W相定子电感L3的一端与电阻模块R3的一端连接。电阻模块R1的另一端、电阻模块 R2的另一端和电阻模块R3的另一端相连接。
本申请实施例的电池组加热系统,可以在电池组加热系统的控制系统P4的控制下,通过对电池组P1周期性充、放电来对电池组P1加热。具体地,电池组加热系统的控制系统中的电机控制器P42通过周期性的驱动信号,控制逆变器P2的开关模块中的目标上桥臂开关模块和目标下桥臂开关模块周期性导通和断开,实现储能模块周期性储、放电,进而实现对电池组P1周期性充、放电。示例性的,当电机控制器P42输出的驱动信号为高电平时,目标上桥臂开关模块和目标下桥臂开关模块导通,储能模块充电;当电机控制器输出的驱动信号为低电平时,目标上桥臂开关模块和目标下桥臂开关模块断开,储能模块放电。
在本申请的实施例中,目标上桥臂开关模块为三相桥臂的上桥臂开关模块中的任意一个,目标下桥臂开关模块为三相桥臂中除第一目标桥臂外的其他桥臂的下桥臂开关模块中的任意一个。
示例性的,图2中的目标上桥臂开关模块和目标下桥臂开关模块可以包括下述六种情况:
第一种情况:目标上桥臂开关模块为U相桥臂的上桥臂开关模块P21;目标下桥臂开关模块为V相桥臂的下桥臂开关模块P24。
第二种情况:目标上桥臂开关模块为U相桥臂的上桥臂开关模块P21;目标下桥臂开关模块为W相桥臂的下桥臂开关模块P26。
第三种情况:目标上桥臂开关模块为V相桥臂的上桥臂开关模块P23;目标下桥臂开关模块为U相桥臂的下桥臂开关模块P22。
第四种情况:目标上桥臂开关模块为V相桥臂的上桥臂开关模块P23;目标下桥臂开关模块为W相桥臂的下桥臂开关模块P26。
第五种情况:目标上桥臂开关模块为W相桥臂的上桥臂开关模块P25;目标下桥臂开关模块为U相桥臂的下桥臂开关模块P22。
第六种情况:目标上桥臂开关模块为W相桥臂的上桥臂开关模块P25;目标下桥臂开关模块为V相桥臂的下桥臂开关模块P24。
需要说明的是,周期性的导通和断开的每一周期中的目标上桥臂开关模块、目标下桥臂开关模块可以相同,也可以不同,在此并不限定。比 如,每个周期中驱动信号均驱动的均为第一开关模块P21和第四开关模块P24的导通和断开。又比如,在第一个周期中,驱动信号驱动第一开关模块P21和第四开关模块P24的导通和断开;在第二个周期中,驱动信号驱动第三开关模块P23和第五开关模块P25的导通和断开;在第三个周期中,驱动信号驱动第一开关模块P21和第六开关模块P26的导通和断开;即,不同的周期中,驱动信号驱动的目标上桥臂开关模块、目标下桥臂开关模块可以不同。
还需要说明的是,若同一个桥臂中上桥臂的开关模块和下桥臂的开关模块均导通,比如同一个桥臂中的上桥臂开关模块和下桥臂开关模块同时导通超过10毫秒,则可能导致电池组加热系统中的器件或电池组P1被烧毁。为了防止出现同一桥臂中上桥臂的开关模块和下桥臂的开关模块均导通的情况,可在电机控制器P42中利用逻辑电路实现对同一桥臂中的上桥臂的开关模块和下桥臂的开关模块导通的互斥控制。
在一些示例中,逆变器P2中的各开关模块可包括绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)芯片、IGBT模块、金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等功率开关器件中的一种或多种。在此对开关模块中各IGBT器件和MOSFET器件等的组合方式及连接方式并不限定。对上述功率开关器件的材料类型也不做限定,比如,可采用碳化硅(即SiC)或其他材料制得的功率开关器件。值得一提的是,上述功率开关器件具有二极管。具体可以为寄生二极管或特意设置的二极管。二极管的材料类型也不做限定,比如,可采用硅(即Si)、碳化硅(即SiC)或其他材料制得的二极管。
本申请一实施例提供了一种电池组加热系统的控制系统。如图2所示,电池组加热系统的控制系统P4包括电池管理系统P41、电机控制器P42和整车控制器P43。
其中,电池管理系统P41,用于获取电池组P1的状态参数,若确定电池组P1的状态参数满足预设加热条件,向整车控制器P43发送加热请求信息。
在本申请的一些实施例中,电池组P1的状态参数包括:电池组P1的温度和/或电池组P1的荷电状态(State of Charge,SOC)。需要说明的是,电池组P1的状态参数还可以是表征电池组P1状态的其他参数,例如电池组P1的电压、电流等,对此不做限定。
在一些实施例中,电池组P1的状态参数,例如,电池组P1的温度以及荷电状态等,可以由利用电芯管理单元(Cell Management Circuit,CMC)采集的电池模组的状态参数计算得到。示例性的,以电池组P1的温度为例,CMC采集电池组P1中各电池模组的温度,并将所采集的温度通过通信单元传输至电池管理系统P41。电池管理系统P41利用电池组P1中各电池模组的温度计算得到电池组P1的温度。其中,电池管理系统P41和CMC之间可以通过无线通信方式或有线通信方式进行通信,对此不做限定。电池组P1的温度以及荷电状态的计算方法也不做限定。
在一个实施例中,电池管理系统P41可通过多个CMC获取电池模组的采样数据。其中,各CMC之间可以进行有线通信连接或者无线通信连接,例如菊花链或者控制器局域网络(Controller Area Network,CAN)总线通信连接等,对具体通信方式不作限定。
在本申请的一些实施例中,若电池组P1的状态参数包括电池组P1的温度,预设加热条件包括电池组P1的温度低于预期温度阈值。也就是说,在确定电池组P1的温度被加热到预期温度阈值后,可以及时停止对电池组P1进行加热。例如,预期温度阈值可以还是电池组P1可正常工作的最低要求温度,即电池组加热系统需要进入加热模式的温度门限。加热温度阈值可根据工作场景和工作需求设定,例如可以取-50℃至5℃温度范围内的任意值,在此并不限定。若电池组P1的温度低于加热温度阈值,则电池组P1无法正常工作,需要进行加热。
在一些实施例中,若电池管理系统P41判定电池组P1的温度大于等于预期温度阈值,则将表征电池组温度正常、无需对其加热的信息上报至整车控制器P43,以供整车控制器P43根据该信息向电池管理系统P41下发用于指示电池管理系统P41高压上电的上电指令。
在本申请的一些实施例中,若电池组P1的状态参数包括电池组P1的 荷电状态,预设加热条件包括电池组P1的荷电状态高于荷电状态阈值。荷电状态阈值表征本次加热预计消耗的荷电状态。其中,荷电状态阈值可根据工作场景和工作需求设定,例如预期加热温度、当前温度、电池组自加热性能等,在此并不限定。若电池组P1的荷电状态高于荷电状态阈值,则表示电池组P1当前的电量足以提供进入加热模式所需的电量,若小于低于荷电状态阈值,表示无法为本次加热的提供足够电量。
在一些实施例中,若电池管理系统P41判定电池组P1的荷电状态小于等于荷电状态阈值,则将表征电池组因荷电状态较低无法对电池组进行加热的信息上报至整车控制器P43。
在本申请的一些实施例中,电池管理系统P41还可以控制电池组P1与逆变器P2连线上的开关器件的通断状态,例如,电池组P1的正极与逆变器P2的连线上设置有主正继电器,电池组P1负极与逆变器P2的连线上设置有主负继电器。
该条件下,在加热过程中,电池管理系统P41控制电池组P1与逆变器P2连线上的开关器件保持于导通状态。
电机控制器P42,用于若确定电池组加热系统的电机P3处于非工作状态,向整车控制器P43发送电机P3处于非工作状态的反馈信息。以及,用于响应第一控制信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性通断,以加热电池组P1。
在本申请的一些实施例中,电机处于非工作状态,表征电机当前未处于将电能转换为机械能的工作过程中。在一些实施例中,电机处于非工作状态,也可以说是电机处于停机状态。电机控制器P42判断电机P3是否处于非工作状态的判断方法,对比不做限定。
在一些实施例中,若电机控制器P42判定电机P3处于工作状态,则向整车控制器P43上报电池P3处于工作状态的信息,以供整车控制器P43停止控制电池组加热系统对电池组P1加热。
整车控制器P43,用于响应加热请求信息和反馈信息,向电机控制器P42发送第一控制信号。
其中,第一控制信号用于指示电机控制器P42通过控制目标上桥臂开 关模块和目标下桥臂开关模块周期性通来加热电池组P1。
根据本申请实施例中的电池组加热系统的控制系统,整车控制器P43可以响应加热请求信息和反馈信息,控制电机控制区对电池组加热。由于加热请求信息是电池管理系统P41在判断所采集电池组P1的状态参数满足预设加热条件之后发送的,能够表征电池组需要被加热;反馈信息是由电机控制器P42确定电池组加热系统内的电机P3处于非工作状态之后发送的,能够表征电池组加热系统具备对电池组P1加热的条件。因此,本申请实施例的控制系统,能够利用电池管理系统P41、电机控制器P42、整车控制器P43间的交互对电池组加热系统进行控制,在确定电池组P1需要被加热且电池组加热系统具备加热条件之后,控制电池组加热系统对电池组P1进行加热,提高对电池组加热系统的控制精度。
在本申请的一些实施例中,在对电池组加热系统进行控制之前,还需要确认电池组加热系统的控制系统P4的各控制器件是否处于正常工作状态。该过程中,整车控制器P43,还用于若检测到车辆启动信号,判断整车控制器P43的状态、电池管理系统P41的状态和电机控制器P42的状态是否为正常工作状态。
在一些实施例中,在驾驶员执行了使全车进入通电状态的触发操作,例如驾驶员利用钥匙打开key_on档之后,整车控制器P43会接收到车辆启动信号,也就是说,整车控制器P43会检测到车辆启动信号。
在一些实施例中,整车控制器P43通过自检确认自身是否处于正常工作状态。在一个实施例中,若整车控制器P43通过自检确认其自身状态异常,则向外部发送用于表示整车控制器P43状态异常的信息,且停止执行任何操作指令。
在一些实施例中,整车控制器P43用于向电池管理系统P41和电机控制器P42发送状态请求信息,并根据电池管理系统P41和电机控制器P42的反馈信息,确认两者是否处于正常工作状态。
在一个实施例中,若整车控制器P43接收到由电池管理系统P41发送的表征电池管理系统P41处于故障状态的反馈信息,则向外部发送用于表示电池管理系统P41状态异常的信息。
在另一个实施例中,若整车控制器P43接收到由电机控制器P42发送的表征电机控制器P42处于故障状态的反馈信息,则向外部发送用于表示电机控制器P42状态异常的信息。
在本申请的一些实施例中,电池组加热系统的控制系统P4还可以根据驾驶员的操作对电池组加热系统进行控制。具体地,整车控制器P43,具体用于:
响应加热请求信息和反馈信息,发送预备加热电池组P1的提示消息。以及,响应输入的触发操作,向电机控制器P42发送第一控制信号。
在一些实施例中,整车控制器P43可以将提示消息发送至车辆的仪表板、音频播放器等可以通过文字、语音、图像等方式向驾驶员传递该提示信息的交互装置,用以通过交互装置提示车辆驾驶员预备对电池组P1加热。示例性的,VCU控制仪表盘显示“车辆需要加热,预期加热时长XXX”来提示驾驶员车辆需要进行加热。在一些实施例中,该提示消息可供驾驶员作为确定是否需要执行本次加热程序的依据。其中,提示消息可以包括预期加热时长、预期加热温度、预期剩余电量等可以辅助驾驶员判断是否执行本次加热操作的信息。预期加热时长可以是根据驱动信号频率、驱动信号占空比、电池组当前温度与预期加热温度的差值、电池组P1的加热性能等参数确定的,对此不做限定。预期剩余电量可以是根据电池组的当前荷电状态与本次预计消耗荷电状态的差值得到的,对预期剩余电量的获取方式不做限定。
在一些实施例中,整车控制器P43可以通过车辆仪表盘、音频采集装置等采集驾驶员的动作、语音、图像等信息,并根据所采集的信息确定驾驶员的操作意图。也就是说,若该信息包括驾驶员输入的对电池组P1进行加热的触发操作,整车控制器P43采集到驾驶员输入的触发操作,表征驾驶员确认需要对电池组加热。示例性的,在整车控制器P43的控制下,车辆仪表盘上可以显示供驾驶员选择是否对电池组P1进行加热的选项。并响应驾驶员对加热选项的触发操作,向电机控制器P42发送第一控制信号。
本实施例中,可以结合电池管理系统P41、电机控制器P42、整车控 制器P43、驾驶员的操作对电池组加热系统进行控制,进一步提高了控制精度。
在本申请的一些实施例,电池组加热系统的控制系统还可以在加热过程中对电池组加热系统的加热安全性进行控制。
此时,电机控制器P42,还用于采集逆变器P2的温度和电机P3的温度;以及,还用于若确定逆变器的温度和电机的温度中的至少一者满足预设过温条件,控制逆变器P2的所有开关模块处于断开状态,并将过温信息上报至整车控制器。
在一些实施例中,预设过温条件可以是温度超出相应的温度阈值范围。
其中,逆变器的温度对应的温度阈值范围的上限值可以是各桥臂开关模块能够正常工作的最高温度。电机的温度对应的温度阈值范围的上限值可以是电机中各器件均能够正常工作的最高温度。
在一些实施例中,可以通过温度传感器,采集各相桥臂的开关模块的实时温度,并根据各相桥臂的开关模块的实时温度确定逆变器P2的温度。
在另一些实施例中,可以通过温度传感器,采集电机P3各相线圈的实时温度,并根据各相线圈的实时温度确定电机P3的温度。
需要说明的是,在本申请实施例中,由于在电池组加热系统对电池组P1进行加热的过程中,仅控制目标上桥臂开关模块和目标下桥臂开关模块周期性的导通、断开,逆变器P2中除目标上桥臂开关模块和目标下桥臂开关模块之外的其他开关模块均保持断开状态。因此,当因需要停止对电池组P1加热时,可以通过控制目标上桥臂开关模块和目标下桥臂开关模块断开来实现控制逆变器P2的所有开关模块处于断开状态。通过本申请实施例,通过采集电池组加热系统中逆变器P2和电机P3的温度进行监测,若电池组加热系统中存在过温器件,控制电池组加热系统停止对电池组P1进行加热,降低了电池组加热系统过温故障损耗自身或电池组的可能性,提高了电池组加热的安全,并延长了器件的使用寿命和使用安全性。
在本申请的一些实施例中,电池组加热系统的控制系统P4还可以在加热过程中,通过电池管理系统P41、电机控制器P42和整车控制器P43,对电池组加热系统进行控制。
电池管理系统P41,还用于,采集电池组的目标状态参数,当目标状态参数超出对应的参数安全范围时,向整车控制器P43发送停止加热请求。
其中,目标状态参数包括以下参数的至少一个:温度、荷电状态和绝缘阻值。
在一些实施例中,若目标状态参数包括温度,则对应的参数安全范围用于表征电池需要被加热的温度范围,该参数安全范围的上限值为预期温度阈值,该参数安全范围无下限值。也就是说,若加热过程中电池组P1的温度已达预期温度阈值,向整车控制器P43发送停止加热请求。在一个示例中,该停止加热请求用于告知整车控制器P43,电池组P1已达到预期加热温度,需要停止继续对电池组加热。
在一些实施例中,若目标状态参数包括荷电状态,则对应的参数安全范围用于表征电池的剩余荷电量足够本次加热的预期剩余消耗。该参数安全范围可以根据具体的工作场景和工作需求设置,对此不做限定。若实时荷电状态低于对应的参数安全范围的下限值,则告知整车控制器P43因电池组电量较低需要停止对电池组继续加热。
在一些实施例中,若目标状态参数包括绝缘阻值,则对应的参数安全范围用于表征绝缘阻值的合理取值范围。该参数安全范围可以根据具体的工作场景和工作需求设置,对此不做限定。若实时荷电状态低于对应的参数安全范围的下限值,则告知整车控制器P43因绝缘阻值较低需要停止对电池组继续加热。
其中,绝缘阻值为电池正极和负极对整车低压地的绝缘阻值。
需要说明的是,在本申请实施例中,电池管理系统进行工作状态后,可以自动采集电池组的目标状态参数,判断目标状态参数是否超出对应的参数安全范围,以及在目标状态参数超出对应的参数安全范围时,向整车控制器发送停止加热请求。
整车控制器P43,还用于响应停止加热请求,向电机控制器P42发送停止信号。
在一些实施例中,停止信号表征需要控制电池组加热系统停止对电池组加热。
电机控制器P42接收停止信号,控制逆变器的所有开关模块处于断开状态,也就是说,控制目标上桥臂开关模块和目标下桥臂开关模块断开。
在本申请实施例中,电池组加热系统的控制系统P4在整个加热过程中,均能够对电池组P1的状态进行检测,提高了控制精度。并且,电池组加热系统的控制系统P4通过监测电池组的目标状态数据是否异常,当目标状态数据异常时能够及时控制电池组加热系统停止对电池组的加热,提高了加热安全性。
需要说明的是,若目标状态数据包括绝缘阻值,且需要在正式加热前对支撑电容进行预充,则在预充完成后至正式开始加热之前,以及加热过程中需要对绝缘阻值进行监测。若在预充完成后至正式开始加热之前绝缘阻值异常,电机控制P42控制目标上桥臂开关模块和目标下桥臂开关模块持续处于断开状态。
在本申请的一些实施例中,为了避免加热过程中电压、电流过冲,在正式对电池组P1进行加热之前,还需要利用提前电池管理系统P41和整车控制器P43,对支撑电容Ca进行预充。具体地:
整车控制器P43,还用于向电池管理系统P41发送用于指示电池管理系统P41进入加热工作模式的第二控制信号。
电池管理系统P41,还用于响应第二控制信号,控制对并联于逆变器P2两端的支撑电容Ca进行预充;以及,还用于确定完成对支撑电容Ca的预充后,控制停止对支撑电容预充,并向整车控制器P43发送预充完成信息。
作一个示例,若电池组P1正极和逆变器P2的连接线之间设置有主正继电器,电池组P1负极和逆变器P2的连接线之间设置有主负继电器,以及并联于主正继电器或主负继电器两端的预充继电器。电池管理系统P41控制预充继电器闭合,来控制电池组P1开始对支撑电容预充。例如,若 预充继电器并联与主正继电器两端,则通过闭合预充继电器和主负继电器来对支撑电容进行预充。
作另一个示例,电池管理系统P41控制预充继电器断开,来控制电池组P1停止对支撑电容预充。并在预充过程结束后,控制主正继电器和主负继电器闭合以使电池组加热系统能够对电池组P1进行加热。
在一些实施例中,整车控制器P43,响应加热请求信息、反馈信息和预充完成信息,向电机控制器P42发送第一控制信号。
在一些实施例中,电池组加热系统的控制系统P4的其他控制器件也可参与预充过程。比如,电机控制器P42可参与预充过程。具体地,电机控制器P42通过监测母线电压来辅助判断预充过程是否完成。
在一些实施例中,在预充结束后,也就是控制电池组P1停止对支撑电容预充后,电池管理系统P41采集电池组P1的状态参数并判断电池组P1的状态参数是否满足预设加热条件的指令。
在本申请实施例中,由于预充过程中电池组可能会进行一定的升温,或者消耗一定的电量,通过电池管理系统P41的判断,能够避免因预充过程的升温或荷电消耗对电池组加热过程的影响,从而提高控制的精细程度。
在本申请的一些实施例中,电机控制器P42,还用于接收停止信号,使支撑电容两端的电压回归安全电压范围。
在本申请实施例中,通过内泄放掉支撑电容两端的电压到安全电压范围,能够提高电池加热系统的安全性。需要说明的是,可以通过多种方式,例如导通逆变器中开关模块等方式使支撑电容两端的电压回归安全电压范围,对此不做限定。
还需要说明的是,电机控制器P42在接收到停止信号后,可以先使支撑电容两端的电压回归安全电压范围,再控制逆变器中所有开关模块处于断开状态。本申请实施例对两个动作的执行次序不做限定。
在本申请的一些实施例中,电池组加热系统的控制系统P4还可以通过电机控制器P42和整车控制器P43,对电池组加热系统产生的加热电流进行控制。
具体地,电机控制器P42,还用于采集电池组加热系统的电流参数,若电流参数超出预设期望电流阈值区间,将电流异常信息上报至整车控制器,并基于预设期望电流阈值区间,计算得到驱动信号的期望频率和期望占空比,以及将驱动信号的频率和占空比调整为期望频率和期望占空比。
其中,驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。
在一些实施例中,电流参数包括以下电流参数的一个或多个:电池组与逆变器之间的母线电流,以及各个储能模块与各自对应的桥臂之间的相电流。
其中,当电流参数包括电池组与逆变器之间的母线电流时,电流传感器可以设置于电池组P1和逆变器之间的连线上。当电池组包括各个储能模块与各自对应的桥臂之间的相电流时,电流传感器可以设置在储能模块另一端与该储能模块对应的桥臂的上桥臂和下桥臂的连接点之间。
在一些实施例中,预设期望电流阈值区间表征在加热过程中加热电流的允许范围。在一个实施例中,预设期望电流阈值区间可以是以期望加热电流为中间值的一个电流范围。示例性的,期望加热电流可以是期望的母线电流。
由于加热电流和加热速率成正比例关系,若获取的电流参数小于预设期望电流阈值区间的下限值,则表示对电池组P1进行加热的电流过小,电流异常信息用于提示整车控制器增大加热电流。若获取的电流参数大于预设期望电流阈值区间的上限值,则表示对电池组P1进行加热的电流过大,电流异常信息用于提示整车控制器降低加热电流。
需要说明的是,若电流超出预设期望电流阈值区间的上限值,可能会导致过速加热。在本申请实施例中,通过调整电流使其回归预设期望电流阈值期间,能够提高加热安全性,以及,保护了电池组P1以及电池组加热系统的各器件。
在一些实施例中,可以根据预设期望电流阈值区间,调整驱动信号的期望频率和期望占空比,以使电流参数回归预设期望电流阈值区间。
在一个实施例中,驱动信号的期望频率和期望占空比可以根据公式 (1)计算得到。
I=U1×(2D-1)/4fL           (1)
其中,I表示有效电流,D表示驱动信号占空比,f表示驱动信号频率,U1表示电池组P1两端的电压,L表示定子电感的电感值。
作一个具体的示例,可以将期望加热电流的有效值作为参数I代入公式(1),来计算期望占空比D和期望频率f。
在另一些实施例中,可以根据所采集的电流参数和预设期望电流阈值区间,调整驱动信号的期望频率和期望占空比,以使电流参数回归预设期望电流阈值区间。例如,根据所采集的电流参数和预设期望电流阈值区间,并利用比例-积分-微分(proportion-integral-differential,PID)方法,通过调整期望占空比和期望频率,使电流参数回归预设期望电流阈值区间。
本申请实施例对计算期望占空比D和期望频率f的具体计算方法不做限定。在一些实施例中,为了防止因电流过高,损坏电池组或电池组加热系统的电路及器件,若电流参数超出预设期望电流阈值区间,电机控制器P42还可以控制逆变器的所有开关模块处于断开状态。
在另一些实施例中,为了兼顾安全性和加热效率,若电流参数超出预设期望电流阈值区间且不超出电流安全范围,电机控制器P42继续依据驱动信号,驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。若电流参数超出电流安全范围,电机控制器P42控制逆变器的所有开关模块处于断开状态。
其中,电流安全范围包含预设期望电流阈值区间。
在一些实施例中,整车控制器P43在接收到电流异常信息之后,可以控制车辆仪表盘显示电流异常信息,以供车辆驾驶员根据该电流异常信息对车辆进行控制,例如关闭加热系统,进行车辆检修等。
在本申请的一些实施例中,电池组加热系统的控制系统P4还可以通过电池管理系统P41、电机控制器P42和整车控制器P43,对电池组加热系统对电池组P1的加热速率进行控制。
电池管理系统P41,还用于获取电池组P1的实时温升速率,若确定电 池组P1的实时温升速率超出预设期望温升速率区间,将温升异常信息上报至整车控制器。
在一些实施例中,电池组P1的实时温升速率可以是根据电池组P1的实时温度计算得到的。其中,电池组P1的实时温度的计算方法的相关内容可参见上述实施例的内容,在此不再赘述。
在一些实施例中,预设期望温升速率区间表征在加热过程中升温速率的允许范围。在一个实施例中,预设期望温升速率区间可以是以期望升温速率为中间值的一个升温速率范围。
由于加热电流和升温速率成正比例关系,若升温速率小于预设期望温升速率区间的下限值,则表示对电池组P1进行加热的电流过小,温升异常信息用于提示整车控制器增大加热电流。若升温速率大于预设期望温升速率区间的上限值,则表示对电池组P1进行加热的电流过大,温升异常信息用于提示整车控制器降低加热电流。
整车控制器P42,还用于将温升异常信息转发至电机控制器P43。
电机控制器P43,还用于响应温升异常信息,基于预设期望温升速率区间计算得到驱动信号的期望频率和期望占空比,以及将驱动信号的频率和占空比调整为期望频率和期望占空比。
其中,驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。
在一些实施例中,预设期望温升速率区间可以预先发送至电机控制器P43,也可以是电机控制器P43从温升异常信息中解析出的。
在一些实施例中,可以根据预设期望温升速率区间,调整驱动信号的期望频率和期望占空比,以使温升速率回归预设期望温升速率区间。
在一个实施例中,可以根据预期温升速率确定预期加热电流,再将预期加热电流代入公式(1)来计算预期频率和期望占空比。
在另一些实施例中,可以根据实时温升速率和预设期望温升速率区间,调整驱动信号的期望频率和期望占空比,以使升温速率回归预设期望温升速率区间。例如,根据实时温升速率和预设期望温升速率区间,并利用比例-积分-微分(proportion-integral-differential,PID)方法,通过调整 期望占空比和期望频率,使电流参数回归预设期望电流阈值区间。
本申请实施例对计算期望占空比D和期望频率f的具体计算方法不做限定。
在一些实施例中,整车控制器P43接收到温升异常信息之后,还可以控制车辆仪表盘显示温升异常信息,以供车辆驾驶员根据该温升异常信息对车辆进行控制,例如关闭加热系统,进行车辆检修等。
基于相同的申请构思,下面结合图2对电池组加热系统的控制方法进行详细介绍。其中,电池组加热系统的控制方法可应用于上述实施例中的电池组加热系统的控制系统P4。
图3为本申请另一实施例提供的电池组加热系统的控制方法300的流程示意图,该方法包括S310至S340。
S310,电池管理系统P41获取电池组P1的状态参数,若确定电池组P1的状态参数满足预设加热条件,向整车控制器P43发送加热请求信息。
在本申请的一些实施例中,电池组P1的状态参数包括:电池组P1的温度和/或电池组P1的荷电状态。
其中,若电池组P1的状态参数包括电池组P1的温度,预设加热条件包括电池组P1的温度低于预期温度阈值。
若电池组P1的状态参数包括荷电状态,预设加热条件包括电池组P1的荷电状态高于荷电状态阈值,荷电状态阈值表征本次加热预计消耗的荷电状态。
电池组P1的温度、电池组P1的荷电状态、预期温度阈值、荷电状态阈值的相关内容可参见上述实施例的内容,在此不再赘述。
S320,电机控制器P42若确定电机P3处于非工作状态,向整车控制器P43发送电机P3处于非工作状态的反馈信息。
S320的相关内容可参见上述实施例的内容,在此不再赘述。
S330,整车控制器P43响应加热请求信息和反馈信息,向电机控制器P42发送第一控制信号。
在本申请的一些实施例中,S330的具体实施方式可包括S331和S332:
S331,整车控制器P43响应加热请求信息和反馈信息,发送预备加热电池组P1的提示消息。
提示消息的相关内容请参见上述实施例的内容,在此不再赘述。
S332,整车控制器P43响应输入的电池组P1的触发操作,向电机控制器P42发送第一控制信号。
触发操作、第一控制信号的相关内容参见上述实施例的内容,在此不再赘述。
S340,电机控制器P42响应第一控制信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性通断,以加热电池组P1。
根据本申请实施例中的电池组加热系统的控制方法,整车控制器P43可以响应加热请求信息和反馈信息,控制电机控制区对电池组加热。由于加热请求信息是电池管理系统P41在判断所采集电池组P1的状态参数满足预设加热条件之后发送的,能够表征电池组需要被加热;反馈信息是由电机控制器P42确定电池组加热系统内的电机P3处于非工作状态之后发送的,能够表征电池组加热系统具备对电池组P1加热的条件。因此,本申请实施例的控制方法,能够利用电池管理系统P41、电机控制器P42、整车控制器P43间的交互对电池组加热系统进行控制,在确定电池组P1需要被加热且电池组加热系统具备加热条件之后,控制电池组加热系统对电池组P1进行加热,提高对电池组加热系统的控制精度。
在本申请的一些实施例中,电池组加热系统的控制方法300还包括S351。
S351,整车控制器P43若检测到车辆启动信号,判断整车控制器P43的状态、电池管理系统P41的状态和电机控制器P42的状态是否为正常工作状态。
在一些实施例中,若整车控制器P43的状态、电池管理系统P41的状态和电机控制器P42三者中存在处于异常工作状态的器件,电池组加热系统的控制方法300还包括:
整车控制器P43上报表征该异常器件故障的状态信息。
在本申请的一些实施例中,为了实现在电池组P1加热过程中实现对 电池组加热系统P2的精细控制,并进一步提高电池组加热系统P2加热安全性,电池组加热系统的控制方法300还包括S361和S362。
S361,电机控制器P42采集逆变器P2的温度和电机P3的温度。
逆变器P2的温度和电机P3的温度的相关内容请参见上述实施例的内容,在此不再赘述。
S362,电机控制器P42若确定逆变器P2的温度和电机P3的温度中的至少一者满足预设过温条件,控制逆变器P2的所有开关模块处于断开状态,并将过温信息上报至整车控制器。
预设过温条件用于表示电池组加热系统P2中存在具有过温风险的器件的判定条件。预设过温条件的相关内容请参见上述实施例的内容,在此不再赘述。
在本申请的一些实施例中,电池组加热系统的控制方法300还包括S371至S373:
S371,电池管理系统P41响应采集电池组P1的目标状态参数,当目标状态参数超出对应的参数安全范围时,向整车控制器P43发送停止加热请求。其中,目标状态参数包括以下参数的至少一个:温度、荷电状态和绝缘阻值。
温度、荷电状态和绝缘阻值以及各自对应的参数安全范围的相关内容请参见上述实施例的内容,在此不再赘述。
S372,整车控制器P43响应停止加热请求,向电机控制器P42发送停止信号。
S373,电机控制器P42接收该停止信号,控制逆变器P2的所有开关模块处于断开状态。
在本申请的一些实施例中,若电池组加热系统包括与逆变器P2相并联的支撑电容,为了保证电池组加热系统的安全性,需要在开始对电池组P1加热之前,对支撑电容进行预充。此时,在S330之前,电池组加热系统的控制方法300还包括S381至S383:
S381,整车控制器P43向电池管理系统P41发送用于指示电池管理系统P41进入加热工作模式的第二控制信号。
S382,电池管理系统P41响应第二控制信号,控制对并联于逆变器P2两端的支撑电容进行预充。
S383,电池管理系统P42确定完成对支撑电容的预充后,控制电池组停止对支撑电容预充,并向整车控制器发送预充完成信息。
预充具体实施方式的相关内容请参见上述实施例的内容,在此不再赘述。
停止预充操作的具体实施方式的相关内容请参见上述实施例的内容,在此不再赘述。
其中,第二控制信号的相关内容请参见上述实施例的内容,在此不再赘述。
在本申请一些实施例中,电池组加热系统的控制系统还可以控制电池组加热系统P2对电池组P1的加热精细程度。相应地,电池组加热系统的控制方法300还包括S391。
S391,电机控制器P42采集电池组加热系统P2的电流参数,若电流参数超出预设期望电流阈值区间,将电流异常信息上报至整车控制器P43,并基于预设期望电流阈值区间,计算得到驱动信号的期望频率和期望占空比,以及将驱动信号的频率和占空比调整为期望频率和期望占空比。
其中,电流参数包括以下参数的一个或多个:电池组P1与逆变器P2之间的母线电流,以及电机P3中各个储能模块与各储能模块对应的桥臂之间的相电流。
电流参数、预设期望电流阈值的相关内容请参见上述实施例的内容,在此不再赘述。
其中,驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。
驱动信号的期望频率和期望占空比的相关内容请参见上述实施例的内容,在此不再赘述。
在一些实施例中,S391之后,电池组加热系统的控制方法300还包 括:
S392,整车控制器P4,控制车辆仪表盘显示电流异常信息,以供车辆驾驶员根据该电流异常信息对车辆进行控制,例如关闭加热系统,进行车辆检修等。
在本申请一些实施例中,电池组加热系统的控制系统还可以控制电池组加热系统P2对电池组P1的加热精细程度。相应地,电池组加热系统的控制方法300还包括S393至S395。
S393,电池管理系统P41获取电池组的实时温升速率,若确定电池组P1的实时温升速率超出预设期望温升速率区间,将温升异常信息上报至整车控制器P43。
S394,整车控制器P43将温升异常信息转发至电机控制器P42。
S395,电机控制器P42响应温升异常信息,基于预设期望温升速率区间,计算得到驱动信号的期望频率和期望占空比,以及将驱动信号的频率和占空比调整为期望频率和期望占空比;
其中,驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。
在一些实施例中,S393之后,电池组加热系统的控制方法300还包括:
S396,整车控制器P43接收到温升异常信息之后,控制车辆仪表盘显示温升异常信息,以供车辆驾驶员根据该温升异常信息对车辆进行控制,例如关闭加热系统,进行车辆检修等。
在本申请的一些实施例中,上述各模块、器件之间的通信可以是有线通信或无线通信,对此不做限定。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。其中方法实施例描述得比较简单,相关之处请参见系统实施例的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申请的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明 起见,这里省略对已知方法技术的详细描述。
上述实施例中的功能模块(如储能模块、开关模块、电池管理系统、CMC、电机管理系统和整车控制器)可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。

Claims (20)

  1. 一种电池组加热系统的控制系统,所述电池组加热系统的控制系统包括:
    电池管理系统,用于获取电池组的状态参数,若确定所述电池组的状态参数满足预设加热条件,向整车控制器发送加热请求信息;
    所述电机控制器,用于若确定电池组加热系统的电机处于非工作状态,向所述整车控制器发送所述电机处于非工作状态的反馈信息;以及,用于响应第一控制信号,控制目标上桥臂开关模块和目标下桥臂开关模块周期性通断,以加热所述电池组;
    所述整车控制器,用于响应所述加热请求信息和所述反馈信息,向所述电机控制器发送所述第一控制信号,
    其中,所述目标上桥臂开关模块为所述电池组加热系统的逆变器的三相桥臂的任一桥臂的上桥臂开关模块,所述目标下桥臂开关模块为所述三相桥臂除所述目标上桥臂开关模块所在桥臂外的任一桥臂的下桥臂开关模块。
  2. 根据权利要求1所述的电池组加热系统的控制系统,所述整车控制器,具体用于:
    响应所述加热请求信息和所述反馈信息,发送预备加热所述电池组的提示消息;
    响应输入的触发操作,向所述电机控制器发送所述第一控制信号。
  3. 根据权利要求1所述的电池组加热系统的控制系统,
    所述电机控制器,还用于采集逆变器的温度和电机的温度;以及,还用于若确定所述逆变器的温度和所述电机的温度中的至少一者满足预设过温条件,控制所述逆变器的所有开关模块处于断开状态,并将过温信息上报至所述整车控制器。
  4. 根据权利要求1所述的电池组加热系统的控制系统,
    所述电池管理系统,还用于采集所述电池组的目标状态参数,当所述目标状态参数超出对应的参数安全范围时,向所述整车控制器发送所述停 止加热请求,其中,所述目标状态参数包括以下参数的至少一个:温度、荷电状态和绝缘阻值;
    所述整车控制器,还用于响应停止加热请求,向所述电机控制器发送停止信号;
    所述电机控制器,还用于接收所述停止信号,控制所述逆变器的所有开关模块处于断开状态。
  5. 根据权利要求1或4所述的电池组加热系统的控制系统,
    所述整车控制器,还用于向所述电池管理系统发送用于指示电池管理系统进入加热工作模式的第二控制信号;
    所述电池管理系统,还用于响应所述第二控制信号,控制对并联于逆变器两端的支撑电容进行预充;以及,还用于确定完成对所述支撑电容的预充后,控制停止对所述支撑电容预充,并向所述整车控制器发送预充完成信息。
  6. 根据权利要求1所述的电池组加热系统的控制系统,
    所述电机控制器,还用于接收所述停止信号,使并联于逆变器两端的支撑电容两端的电压回归安全电压范围。
  7. 根据权利要求1所述的电池组加热系统的控制系统,
    所述电机控制器,还用于采集所述电池组加热系统的电流参数,若所述电流参数超出预设期望电流阈值区间,将电流异常信息上报至所述整车控制器,并基于所述预设期望电流阈值区间,计算得到驱动信号的期望频率和期望占空比,以及将所述驱动信号的频率和占空比调整为所述期望频率和所述期望占空比;
    其中,所述驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断,所述电流参数包括以下参数的一个或多个:所述电池组与所述逆变器之间的母线电流,以及电机中各个储能模块与各所述储能模块对应的桥臂之间的相电流。
  8. 根据权利要求1所述的电池组加热系统的控制系统,
    所述电池管理系统,还用于获取所述电池组的实时温升速率,若确定所述电池组的实时温升速率超出预设期望温升速率区间,将温升异常信息 上报至所述整车控制器;
    所述整车控制器,还用于将温升异常信息转发至所述电机控制器;
    所述电机控制器,还用于响应所述温升异常信息,基于所述预设期望温升速率区间计算得到驱动信号的期望频率和期望占空比,以及将所述驱动信号的频率和占空比调整为所述期望频率和所述期望占空比;
    其中,所述驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。
  9. 根据权利要求1所述的电池组加热系统的控制系统,
    所述状态参数包括:温度和/或荷电状态,
    若所述状态参数包括温度,所述预设加热条件包括所述温度低于预期温度阈值;
    若所述状态参数包括荷电状态,所述预设加热条件包括所述荷电状态高于荷电状态阈值,所述荷电状态阈值表征本次加热预计消耗的荷电状态。
  10. 一种电池组加热系统的控制方法,应用于如权利要求1-9任一权利要求所述的电池组加热系统的控制系统,所述方法包括:
    所述电池管理系统获取所述电池组的状态参数,若确定所述电池组的状态参数满足预设加热条件,向所述整车控制器发送加热请求信息;
    所述电机控制器若确定所述电机处于非工作状态,向所述整车控制器发送电机处于非工作状态的反馈信息;
    所述整车控制器响应所述加热请求信息和所述反馈信息,向所述电机控制器发送第一控制信号;
    所述电机控制器响应所述第一控制信号,控制所述目标上桥臂开关模块和所述目标下桥臂开关模块周期性通断,以加热所述电池组。
  11. 根据权利要求10所述的电池组加热系统的控制方法,所述整车控制器响应所述加热请求指令和所述反馈信息,向所述电机控制器发送第一控制信号,具体包括:
    所述整车控制器响应所述加热请求信息和所述反馈信息,发送预备加热所述电池组的提示消息;
    所述整车控制器响应输入的电池组的触发操作,向所述电机控制器发送所述第一控制信号。
  12. 根据权利要求10所述的电池组加热系统的控制方法,所述电池组加热系统的控制方法还包括:
    所述电机控制器采集所述逆变器的温度和所述电机的温度;
    所述电机控制器若确定所述逆变器的温度和所述电机的温度中的至少一者满足预设过温条件,控制所述逆变器的所有开关模块处于断开状态,并将过温信息上报至所述整车控制器。
  13. 根据权利要求10所述的电池组加热系统的控制方法,
    所述电池组加热系统的控制方法还包括:
    所述电池管理系统采集所述电池组的目标状态参数,当所述目标状态参数超出对应的参数安全范围时,向所述整车控制器发送停止加热请求,所述目标状态参数包括以下参数的至少一个:温度、荷电状态和绝缘阻值;
    所述整车控制器响应所述停止加热请求,向所述电机控制器发送停止信号;
    所述电机控制器接收所述停止信号,控制所述逆变器的所有开关模块处于断开状态。
  14. 根据权利要求10或13所述的电池组加热系统的控制方法,
    在所述整车控制器响应所述加热请求信息和所述反馈信息,向所述电机控制器发送第一控制信号之前,所述电池组加热系统的控制方法还包括:
    所述整车控制器向所述电池管理系统发送用于指示电池管理系统进入加热工作模式的第二控制信号;
    所述电池管理系统响应所述第二控制信号,控制对并联于逆变器两端的支撑电容进行预充;
    所述电池管理系统确定完成对所述支撑电容的预充后,控制停止对所述支撑电容预充,并向所述整车控制器发送预充完成信息。
  15. 根据权利要求10所述的电池组加热系统的控制方法,所述的电 池组加热系统的控制方法还包括:
    所述电机控制器接收所述停止信号,使并联于逆变器两端的支撑电容两端的电压回归安全电压范围。
  16. 根据权利要求10所述的电池组加热系统的控制方法,所述电池组加热系统的控制方法还包括:
    所述电机控制器采集所述电池组加热系统的电流参数,若所述电流参数超出预设期望电流阈值区间,将电流异常信息上报至所述整车控制器,并基于所述预设期望电流阈值区间,计算得到驱动信号的期望频率和期望占空比,以及将所述驱动信号的频率和占空比调整为所述期望频率和所述期望占空比;
    其中,所述驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断,所述电流参数包括以下参数的一个或多个:所述电池组与所述逆变器之间的母线电流,以及电机中各个储能模块与各所述储能模块对应的桥臂之间的相电流。
  17. 根据权利要求10所述的电池组加热系统的控制方法,所述电池组加热系统的控制方法还包括:
    所述电池管理系统获取所述电池组的实时温升速率,若确定所述电池组的实时温升速率超出预设期望温升速率区间,将温升异常信息上报至所述整车控制器;
    所述整车控制器将温升异常信息转发至所述电机控制器;
    所述电机控制器响应所述温升异常信息,基于所述预设期望温升速率区间,计算得到驱动信号的期望频率和期望占空比,以及将所述驱动信号的频率和占空比调整为所述期望频率和所述期望占空比;
    其中,所述驱动信号用于驱动目标上桥臂开关模块和目标下桥臂开关模块周期性通断。
  18. 根据权利要求10所述的电池组加热系统的控制方法,
    所述状态参数包括:温度和/或荷电状态,
    若所述状态参数包括温度,所述预设加热条件包括所述温度低于预期温度阈值;
    若所述状态参数包括荷电状态,所述预设加热条件包括所述荷电状态高于荷电状态阈值,所述荷电状态阈值表征本次加热预计消耗的荷电状态。
  19. 一种电池组加热管理系统,所述电池组加热管理系统包括:如权利要求1-9任一权利要求所述的电池组加热系统的控制系统和电池组加热系统;
    其中,所述电池组加热系统包括与电池组连接的逆变器和与所述逆变器连接的所述电机。
  20. 根据权利要求19所述的电池组加热管理系统,
    所述逆变器包括三相桥臂,所述三相桥臂的每一相桥臂均具有上桥臂和下桥臂,且所述上桥臂设置有开关模块,所述下桥臂设置有开关模块,所述开关模块具有二极管;
    针对所述上桥臂的所述开关模块,所述二极管的阳极与所述上桥臂和所述下桥臂的连接点连接,所述二极管的阴极位于所述上桥臂与所述电池组正极之间;
    针对所述下桥臂的所述开关模块,所述二极管的阳极位于所述下桥臂与所述电池组负极之间,所述二极管的阴极与所述上桥臂和所述下桥臂的连接点连接。
PCT/CN2020/089656 2019-06-24 2020-05-11 电池组加热系统的控制系统和方法、电池组加热管理系统 WO2020259103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/390,873 US11338702B2 (en) 2019-06-24 2021-07-31 Control system and method for battery pack heating system, and battery pack heating management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547905.3 2019-06-24
CN201910547905.3A CN110970672B (zh) 2019-06-24 2019-06-24 电池组加热系统的控制系统和方法、电池组加热管理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/390,873 Continuation US11338702B2 (en) 2019-06-24 2021-07-31 Control system and method for battery pack heating system, and battery pack heating management system

Publications (1)

Publication Number Publication Date
WO2020259103A1 true WO2020259103A1 (zh) 2020-12-30

Family

ID=70029498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089656 WO2020259103A1 (zh) 2019-06-24 2020-05-11 电池组加热系统的控制系统和方法、电池组加热管理系统

Country Status (5)

Country Link
US (1) US11338702B2 (zh)
EP (1) EP3758127B1 (zh)
JP (1) JP7199394B2 (zh)
CN (2) CN110970672B (zh)
WO (1) WO2020259103A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864434A (zh) * 2021-09-18 2021-12-31 华人运通(江苏)技术有限公司 一种提升低温续航里程的方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970672B (zh) * 2019-06-24 2020-12-11 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统
CN113752875B (zh) * 2020-06-04 2023-07-14 比亚迪股份有限公司 车辆电池加热装置和方法、车辆
CN113752908B (zh) * 2020-06-04 2023-12-12 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN113928183B (zh) * 2020-06-29 2023-06-13 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN114184897A (zh) * 2020-09-15 2022-03-15 广汽埃安新能源汽车有限公司 绝缘检测电路和方法、动力电池快充方法及相关装置
US11811349B2 (en) * 2020-12-22 2023-11-07 Ford Global Technologies, Llc Method and system for regulating electric drive system according to predicted temperature of inverter current sensor to prevent overheating
CN115053382A (zh) 2021-01-08 2022-09-13 宁德时代新能源科技股份有限公司 电池热管理系统、电池加热系统的控制方法、装置、设备及介质
EP4056415A1 (en) * 2021-03-08 2022-09-14 Volvo Car Corporation Method for heating a battery in a vehicle, control unit and vehicle
CN113183826B (zh) * 2021-05-14 2024-03-26 苏州汇川联合动力系统股份有限公司 基于母线谐振的电池加热方法、装置及车辆
CN113312856B (zh) * 2021-05-14 2022-04-26 湘潭大学 一种结合数值计算的电动汽车电池包热管理控制仿真方法
CN113394486A (zh) * 2021-05-28 2021-09-14 上海广为美线电源电器有限公司 一种应急启动电源预热控制系统和方法
CN113787914B (zh) * 2021-10-18 2023-06-30 广州小鹏汽车科技有限公司 动力电池的监控方法、装置、服务器及存储介质
CN116096602A (zh) * 2021-11-15 2023-05-09 宁德时代新能源科技股份有限公司 一种电池加热电路及其控制方法、电池与电动车辆
CN114256536A (zh) * 2021-11-16 2022-03-29 深圳拓邦股份有限公司 一种换电柜仓内电池安全加热方法及换电柜
CN114301118A (zh) * 2021-12-23 2022-04-08 江苏大艺科技股份有限公司 直流无刷电动工具
CN116080422A (zh) * 2022-02-17 2023-05-09 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114834319B (zh) * 2022-03-04 2023-06-06 华为电动技术有限公司 动力电池加热方法、装置、芯片系统及电动汽车
CN114725544A (zh) * 2022-03-28 2022-07-08 华为数字能源技术有限公司 电池管理系统及电池系统
CN115377554B (zh) * 2022-04-24 2023-12-22 宁德时代新能源科技股份有限公司 用电装置及其加热的控制方法、装置及介质
CN115377555A (zh) * 2022-04-26 2022-11-22 宁德时代新能源科技股份有限公司 电池加热控制方法、装置、设备及存储介质
CN115366740B (zh) * 2022-05-06 2023-11-03 宁德时代新能源科技股份有限公司 电池加热控制方法、装置、电动汽车及介质
CN114583807B (zh) * 2022-05-09 2022-10-14 宁德时代新能源科技股份有限公司 储能系统的控制方法、装置、设备、存储介质和程序产品
WO2023245421A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 域控制器、储能系统和储能系统的控制方法
CN115377557B (zh) * 2022-07-18 2024-01-12 宁德时代新能源科技股份有限公司 电池自加热控制方法、设备及存储介质
DE102022207314A1 (de) 2022-07-18 2024-01-18 Volkswagen Aktiengesellschaft Verfahren und Anordnung zum Heizen einer Fahrzeugbatterie eines Fahrzeugs
CN115693744B (zh) * 2022-12-29 2023-04-07 广东运峰电力安装有限公司 一种液流储能控制系统及方法
CN116380176B (zh) * 2023-05-29 2023-08-29 深圳市百事泰电气有限公司 一种基于数字信号处理的逆变器的负载预警系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014392A1 (ja) * 2010-07-29 2012-02-02 パナソニック株式会社 電池昇温回路および電池昇温装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN104538701A (zh) * 2014-11-28 2015-04-22 富奥汽车零部件股份有限公司 一种内置于电机驱动系统的电池加热方法及结构
DE102014011828A1 (de) * 2014-08-08 2016-02-11 Daimler Ag Verfahren und Vorrichtung zur Erwärmung einer Traktionsbatterie in einem Kraftfahrzeug
CN108847513A (zh) * 2018-05-08 2018-11-20 北京航空航天大学 一种锂离子电池低温加热控制方法
CN110970672A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994332B2 (en) * 2010-07-30 2015-03-31 Byd Company Limited Battery heating circuits and methods using voltage inversion based on predetermined conditions
CN201936966U (zh) * 2010-07-30 2011-08-17 比亚迪股份有限公司 一种电池的加热电路
CN102447148A (zh) * 2011-12-09 2012-05-09 中联重科股份有限公司 电池预热系统、方法及电动车
CN103419614B (zh) * 2012-05-22 2016-09-07 比亚迪股份有限公司 混合动力汽车、混合动力汽车的动力系统及电池加热方法
JP5849917B2 (ja) * 2012-09-28 2016-02-03 株式会社豊田自動織機 電気自動車におけるバッテリ昇温制御装置
JP6340875B2 (ja) * 2014-03-31 2018-06-13 沖電気工業株式会社 中継装置
JP6503636B2 (ja) * 2014-05-12 2019-04-24 株式会社ジェイテクト モータ制御装置
JP6305363B2 (ja) * 2015-03-06 2018-04-04 株式会社東芝 インバータ装置および車両
JP2016192261A (ja) 2015-03-30 2016-11-10 三菱重工業株式会社 蓄電システム、制御装置、二次電池の消火方法およびプログラム
JP2017128297A (ja) 2016-01-22 2017-07-27 トヨタ自動車株式会社 ハイブリッド車両
CN105762434B (zh) * 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源系统和车辆
JP6596383B2 (ja) * 2016-05-23 2019-10-23 本田技研工業株式会社 充放電装置、輸送機器及び制御方法
CN107662501B (zh) * 2016-07-28 2020-07-28 长城汽车股份有限公司 纯电动汽车下电控制方法及纯电动汽车
JP6575469B2 (ja) * 2016-09-02 2019-09-18 トヨタ自動車株式会社 ハイブリッド車両システム
CN106985657B (zh) * 2017-03-26 2023-04-07 安徽安凯汽车股份有限公司 新能源纯电动客车电池电机联合热管理系统及热管理方法
GB2561558B (en) * 2017-04-13 2019-10-16 De Innovation Lab Ltd Electrical vehicle information system and method of operation
CN107390571A (zh) * 2017-06-19 2017-11-24 江苏大学 一种电动汽车电池包系统及其电压电流检测方法
CN108394254A (zh) * 2018-04-27 2018-08-14 北京新能源汽车股份有限公司 一种电动汽车热管理系统及控制方法
CN109910684A (zh) * 2019-03-12 2019-06-21 中国第一汽车股份有限公司 一种电动汽车动力电池加热系统及控制方法
CN109823234B (zh) * 2019-04-23 2019-07-16 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014392A1 (ja) * 2010-07-29 2012-02-02 パナソニック株式会社 電池昇温回路および電池昇温装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
DE102014011828A1 (de) * 2014-08-08 2016-02-11 Daimler Ag Verfahren und Vorrichtung zur Erwärmung einer Traktionsbatterie in einem Kraftfahrzeug
CN104538701A (zh) * 2014-11-28 2015-04-22 富奥汽车零部件股份有限公司 一种内置于电机驱动系统的电池加热方法及结构
CN108847513A (zh) * 2018-05-08 2018-11-20 北京航空航天大学 一种锂离子电池低温加热控制方法
CN110970672A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864434A (zh) * 2021-09-18 2021-12-31 华人运通(江苏)技术有限公司 一种提升低温续航里程的方法
CN113864434B (zh) * 2021-09-18 2023-12-01 华人运通(江苏)技术有限公司 一种提升低温续航里程的方法

Also Published As

Publication number Publication date
CN112356738A (zh) 2021-02-12
EP3758127B1 (en) 2022-01-05
CN112356738B (zh) 2022-04-22
CN110970672B (zh) 2020-12-11
CN110970672A (zh) 2020-04-07
JP2021002992A (ja) 2021-01-07
EP3758127A1 (en) 2020-12-30
US11338702B2 (en) 2022-05-24
JP7199394B2 (ja) 2023-01-05
US20210354593A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020259103A1 (zh) 电池组加热系统的控制系统和方法、电池组加热管理系统
WO2020259071A1 (zh) 电池组加热系统及其控制方法
JP7165781B2 (ja) 電池加熱システムの制御方法、電池管理モジュール、モータコントローラ及び記録媒体
JP6026226B2 (ja) 蓄電システム及び電源システム
KR102463393B1 (ko) 배터리 가열 시스템
EP4199295A1 (en) Energy storage apparatus, control method for energy storage apparatus, and photovoltaic system
WO2013114697A1 (ja) 蓄電システム、二次電池パックの制御方法及び二次電池パック
CN103094825A (zh) 激光电源装置
WO2022166364A1 (zh) 配电系统、配电系统的控制方法及新能源汽车
CN113745703B (zh) 动力电池的加热方法和装置、车辆
WO2013046658A1 (ja) 切替装置および蓄電システム
CA2786457A1 (en) Power supply control system
EP3640175B1 (en) Decentralized power management in an elevator system
JP2017143691A (ja) バッテリの昇温システム
US20240136850A1 (en) Energy storage apparatus, energy storage apparatus control method, and photovoltaic system
JP2019097011A (ja) 信号伝播装置
JP2014239561A (ja) 切替装置および蓄電システム
CN117154768A (zh) 三相平衡控制装置、变频器及控制方法
JP2016046828A (ja) 電力供給システム
JP2014222961A (ja) インバータ装置
JP2013205070A (ja) 蓄電システムおよび異常判定方法
JP2020188580A (ja) 車載用バッテリ充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833475

Country of ref document: EP

Kind code of ref document: A1