WO2020259071A1 - 电池组加热系统及其控制方法 - Google Patents

电池组加热系统及其控制方法 Download PDF

Info

Publication number
WO2020259071A1
WO2020259071A1 PCT/CN2020/087767 CN2020087767W WO2020259071A1 WO 2020259071 A1 WO2020259071 A1 WO 2020259071A1 CN 2020087767 W CN2020087767 W CN 2020087767W WO 2020259071 A1 WO2020259071 A1 WO 2020259071A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
motor
heating
switch
heating system
Prior art date
Application number
PCT/CN2020/087767
Other languages
English (en)
French (fr)
Inventor
左希阳
但志敏
郑雄
李宝
王天聪
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020259071A1 publication Critical patent/WO2020259071A1/zh
Priority to US17/385,879 priority Critical patent/US11772515B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This application belongs to the field of battery technology, and in particular relates to a battery pack heating system and a control method thereof.
  • the battery can be heated by equipping the battery with a special thermal cycle container and indirectly heating the heat-conducting material in the thermal cycle container to conduct heat to the battery.
  • this heating method takes a long time and the heating efficiency is low.
  • the embodiments of the present application provide a battery pack heating system and a control method thereof, which can improve the heating efficiency of the battery pack.
  • an embodiment of the present application provides a battery pack heating system, including a main positive switch connected to the positive pole of the battery pack, a main negative switch connected to the negative pole of the battery pack, and a main positive switch connected to the main negative switch.
  • Inverter external port connected to the inverter, motor connected to the inverter, and auxiliary charging branch control module, vehicle controller, motor controller and battery management module; the inverter includes multiple switch modules ; The external port is connected to the auxiliary charging branch, which includes the power supply; the battery management module is used to obtain the state parameters of the battery pack.
  • the vehicle controller and auxiliary The charging branch control module respectively sends low-temperature and low-power heating request commands; the auxiliary charging branch control module is used to respond to the low-temperature and low-power heating request commands and send a first control signal to the auxiliary charging branch to control the battery pack heating system and auxiliary charging
  • the branch is turned on, so that the power supply can transmit energy to the battery pack and/or the motor through the external port; the vehicle controller is used to respond to the low-temperature and low-power heating request command, and send a second control signal to the motor controller to make the motor controller control the reverse
  • the on and off of the switch module in the converter sends a third control signal to the battery management module to make the battery management module control the on and off of the main positive switch, so that the battery pack and the motor transfer energy to each other to heat the battery pack.
  • inventions of the present application provide a method for controlling a battery pack heating system, which is applied to the battery pack heating system in the first aspect.
  • the control method of the battery pack heating system includes: a battery management module obtains state parameters of the battery pack If the state parameters of the battery pack meet the preset low-temperature and low-power conditions, send low-temperature and low-power heating request commands to the vehicle controller and the auxiliary charging branch control module respectively; the auxiliary charging branch control module responds to the low-temperature and low-power heating request commands, Send the first control signal to the auxiliary charging branch to control the connection between the battery pack heating system and the auxiliary charging branch, so that the power supply transmits energy to the battery pack and/or the motor through the external port; the vehicle controller responds to low temperature and low power heating Request instruction to send a second control signal to the motor controller to enable the motor controller to control the on and off of the switch module in the inverter, and send a third control signal to the battery management module to make the battery management module control the on and off of the main
  • the embodiment of the application provides a battery pack heating system and a control method thereof.
  • the battery management module determines that the state parameters of the battery pack meet the preset low-temperature and low-power conditions, and sends the low-temperature low-temperature to the vehicle controller and the auxiliary charging branch control module respectively. Power heating request command to request low temperature and low power heating mode.
  • the battery management module controls the auxiliary charging branch control module, and the vehicle controller controls the auxiliary charging branch, the main positive switch and the switch module in the inverter by controlling the battery management module and the motor controller, so that the auxiliary charging branch is
  • the power supply transmits energy to the battery pack and/or the motor, so that the battery pack and the motor have sufficient energy to support the heating of the battery pack.
  • the battery pack and the motor transfer energy to each other, forming a cycle of charging and discharging the battery pack, and generating current in the loop where the battery pack is located.
  • the alternating current can continuously pass through the battery pack, so that the internal resistance of the battery pack generates heat, so that even and high-efficiency self-heating of the battery pack can be achieved even in the case of low power.
  • FIG. 1 is a schematic structural diagram of a battery pack heating system in an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a battery pack heating system in another embodiment of the application.
  • FIG. 3 is a flowchart of a control method of a battery pack heating system in an embodiment of the application
  • FIG. 4 is a flowchart of a method for controlling a battery pack heating system in another embodiment of the application.
  • FIG. 5 is a flowchart of a method for controlling a battery pack heating system in another embodiment of the application.
  • the embodiment of the present application provides a battery pack heating system and a control method thereof, which can be applied to a scenario where the battery pack is heated under the condition of a low temperature and a low state of charge of the battery pack.
  • the temperature of the battery pack can be raised to a temperature at which the battery pack can be used normally.
  • the battery pack may include at least one battery module or at least one battery unit, which is not limited herein.
  • the battery pack can be used in electric vehicles to supply power to the motors and serve as the power source for electric vehicles.
  • the battery pack can also supply power for other electric devices in the electric vehicle, which is not limited here.
  • the power supply in the auxiliary charging branch can be the battery pack and/or the motor when the state parameters of the battery pack meet the preset low-temperature and low-power conditions. Provides at least part of the energy transferred between the battery pack and the motor required to heat the battery pack. That is, the sum of the energy provided by the power supply in the auxiliary charging branch and the original energy in the battery pack and the motor is sufficient to support the heating of the battery pack.
  • the battery pack can be charged under the condition of low temperature and low power, and the charging efficiency can be improved.
  • FIG. 1 is a schematic structural diagram of a battery pack heating system in an embodiment of the application.
  • the battery pack heating system includes a main positive switch K1 connected to the positive pole of the battery pack P1, a main negative switch K2 connected to the negative pole of the battery pack P1, and a main positive switch K1 and a main negative switch K2.
  • the battery management module P6 may specifically be a battery management system (Battery Management System, BMS).
  • the auxiliary charging branch control module P8 may specifically be a circuit control unit (Circuit Control Unit, CCU).
  • a fuse module may also be provided between the battery pack P1 and the main positive switch K1, or a fuse module may be provided between multiple connected single cells in the battery pack, which is not limited here.
  • the insurance module may be a manual maintenance switch (Manual Service Disconnect, MSD).
  • the inverter P2 includes multiple switch modules.
  • the inverter P2 includes a first phase bridge arm, a second phase bridge arm, and a third phase bridge arm connected in parallel.
  • the first phase bridge arm, the second phase bridge arm and the third phase bridge arm all have an upper bridge arm and a lower bridge arm.
  • the upper bridge arm is provided with a switch module
  • the lower bridge arm is provided with a switch module. That is, the first-phase bridge arm is the U-phase bridge arm, the switch module of the upper bridge arm of the U-phase bridge arm is the first switch module, and the switch module of the lower bridge arm of the U-phase bridge arm is the fourth switch module.
  • the second-phase bridge arm is a V-phase bridge arm
  • the switch module of the upper bridge arm of the V-phase bridge arm is the second switch module
  • the switch module of the lower bridge arm of the V-phase bridge arm is the fifth switch module.
  • the third-phase bridge arm is the W-phase bridge arm
  • the switch module of the upper bridge arm of the W-phase bridge arm is the third switch module
  • the switch module of the lower bridge arm of the W-phase bridge arm is the sixth switch module.
  • the switch module may include Insulated Gate Bipolar Transistor (IGBT) chips, IGBT modules, Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), etc.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • One or more of power switching devices are not limited here.
  • the material type of the above-mentioned power switching device is also not limited.
  • a power switching device made of silicon carbide (ie, SiC) or other materials can be used.
  • the switch module has a diode.
  • the anode of the diode is connected to the connection point of the upper bridge arm and the lower bridge arm, and the cathode of the diode is located between the upper bridge arm and the main positive switch K1.
  • the anode of the diode is located between the lower bridge arm and the main negative switch K2, and the cathode of the diode is connected to the connection point of the upper bridge arm and the lower bridge arm.
  • the switching module includes a power switching device.
  • the diode provided in the above-mentioned power switching device may specifically be a parasitic diode or a specially arranged diode.
  • the material type of the diode is also not limited. For example, a diode made of silicon (ie Si), silicon carbide (ie SiC) or other materials can be used.
  • the inverter P2 is connected to the motor P3.
  • the first phase input end, the second phase input end, and the third phase input end of the motor P3 are connected to the upper bridge arm and the lower bridge arm of the first phase bridge arm,
  • the connection point of the upper bridge arm and the lower bridge arm in the second phase bridge arm is connected to the connection point of the upper bridge arm and the lower bridge arm in the third phase bridge arm.
  • the stator of the motor P3 is equivalent to a three-phase stator inductance and resistance.
  • the stator inductance has energy storage function.
  • the stator inductance and resistance of each phase are connected to a phase bridge arm.
  • Let the three-phase stator inductance be the first stator inductance L1, the second stator inductance L2, and the third stator inductance L3, respectively.
  • the first resistor R1 is correspondingly connected to the first stator inductance L1
  • the second resistor R2 is correspondingly connected to the second stator inductance L2
  • the third resistor R3 is correspondingly connected to the third stator inductance L3.
  • the first phase input terminal is the input terminal corresponding to the first stator inductance L1.
  • the second phase input terminal is the input terminal corresponding to the second stator inductance L2.
  • the third phase input terminal is the input terminal corresponding to the third stator inductance L3. It is worth mentioning that the first phase input terminal, the second phase input terminal and the third phase input terminal of the motor P3 can be used as input terminals to input current, and can also be used as output terminals to output current.
  • one end of the first stator inductance L1 is the first phase input end, and the other end of the first stator inductance L1 is connected to the other end of the second stator inductance L2 and the other end of the third stator inductance L3.
  • One end of the second stator inductance L2 is the second phase input end.
  • One end of the third stator inductance L3 is the third phase input end.
  • the external ports G1 and G2 can be connected to the auxiliary charging branch P4.
  • the auxiliary charging branch P4 includes a power supply P41.
  • the external ports G1 and G2 can be high-voltage charging ports.
  • the power supply P41 may be a voltage source, and the voltage of the voltage source is adjustable.
  • the battery management module P6 is used to obtain the state parameters of the battery pack P1. If the state parameters of the battery pack P1 meet the preset low-temperature and low-power conditions, send low-temperature and low-power heating requests to the vehicle controller P5 and the auxiliary charging branch control module P8 respectively instruction. If the state parameter of the battery pack P1 meets the preset low temperature and low power condition, it means that the state parameter of the battery pack P1 is not sufficient to support the normal operation of the battery pack P1.
  • the low-temperature low-power heating request command is used to instruct the battery pack heating system to enter the low-temperature low-power heating mode.
  • the state parameters include temperature and state of charge.
  • the preset low temperature and low battery conditions include the temperature being lower than the heating temperature threshold, and the state of charge is lower than the heating state of charge requirement threshold. If the state parameter meets the preset low temperature and low battery condition, it means that the temperature of the battery pack P1 is not enough to support the normal operation of the battery pack P1, and the state of charge of the battery pack P1 is not enough to support the heating of the battery pack P1.
  • the temperature of the battery pack P1 here can be specifically the temperature of the casing of the battery pack P1, the temperature of the air in the internal space of the battery pack P1, or the temperature of any battery pack P1 or battery cell in the battery pack P1, or It may be the average value of the temperature of all battery cells in the battery pack P1, etc., which is not limited here.
  • the heating temperature threshold may be the minimum required temperature at which the battery pack P1 can work normally, that is, the threshold of the temperature at which the battery pack heating system needs to be heated.
  • the heating temperature threshold can be set according to work scenarios and work requirements, and is not limited here.
  • the heating temperature threshold can be any value in the threshold range [-50°C, 5°C]. If the temperature of the battery pack P1 is lower than the heating temperature threshold, the battery pack P1 cannot work normally and needs to be heated.
  • the heating state of charge requirement threshold may be the state of charge required to heat the battery pack P1 this time, that is, the threshold of the state of charge required by the battery pack heating system to heat the battery pack P1.
  • the required threshold of the heating state of charge can be preset according to the work scenario and work requirements, or can be estimated by the battery management module P6 according to the current temperature of the battery pack P1, which is not limited here.
  • the heating state of charge requirement threshold can be any value in the threshold range [5%, 100%). If the temperature of the battery pack P1 is lower than the heating temperature threshold, and the state of charge of the battery pack P1 is lower than the heating state of charge requirement threshold, the power supply P41 of the auxiliary charging branch P4 is required to provide at least part of the energy for heating the battery pack P1 .
  • the auxiliary charging branch control module P8 is used to respond to the low-temperature low-power heating request command and send a first control signal to the auxiliary charging branch P4 to control the battery pack heating system to conduct with the auxiliary charging branch P4, so that the power supply P41 is connected to the external
  • the ports G1 and G2 transmit energy to the battery pack P1 and/or the motor P3.
  • the vehicle controller P5 is used to send a second control signal to the motor controller P7, so that the motor controller P7 controls the on and off of the switch module in the inverter P2.
  • the vehicle controller P5 is also used to send a third control signal to the battery management module P6, so that the battery management module P6 controls the on and off of the main positive switch K1.
  • the vehicle controller P5 sends the second control signal and the third control signal.
  • it can cooperate with the first control signal sent by the auxiliary charging branch control module P8 to make the power supply P41 of the auxiliary charging branch P4 pass through the external port G1 And G2 transmits energy to the battery pack P1 and/or the motor P3. That is, the battery pack P1 is made to receive the energy transmitted from the power supply P41 of the auxiliary charging branch P4, and/or the motor P3 is made to receive the energy transmitted from the power supply P41 of the auxiliary charging branch P4.
  • the second control signal and the third control signal cooperate to make the battery pack P1 and the motor P3 transfer energy to each other, so as to heat the battery pack P1.
  • the energy is transferred from the battery pack P1 to the motor P3, and then transferred from the motor P3 back to the battery pack P1.
  • the cycle is repeated to form multiple cycles of charging and discharging the battery pack P1, thereby generating AC in the loop where the battery pack P1 is located. Current.
  • the vehicle controller P5 responds to the low-temperature and low-power heating request instruction, and can also control the on-board instrumentation to send a prompt message for prompting the user to select whether to allow the low-temperature and low-power heating request instruction. If an input operation characterizing a low-temperature and low-power heating request command is received, in the subsequent process, the auxiliary charging branch control module P8 sends the first control signal, and the vehicle controller P5 sends the second control signal and the third control. Signal etc.
  • the entire vehicle may also be powered on and self-checked. If the power-on self-check of the entire vehicle is normal, then the state parameters of the battery pack P1 of the battery management module P6 and the preset low-temperature and low-power conditions are judged. Specifically, the user opens the Key_On file of the car through the key, and the vehicle controller P5 will receive the power-on trigger signal to trigger the power-on. The vehicle controller P5 conducts self-checking whether it is normal. If it is not, it will report the vehicle fault information.
  • the battery management module P6 can also perform detection to detect whether the battery management module P6 and the battery pack P1 are faulty, and if a fault occurs, it sends battery management fault information to the vehicle controller P5.
  • the state parameters of the battery pack P1 of the battery management module P6 and the preset low temperature and low power conditions are not judged.
  • the vehicle controller P5 receives the battery management fault information and reports it.
  • the motor controller P7 can also perform detection. If the motor controller P7 detects that the vehicle is driving at this time, it sends a notification message to the vehicle controller P5, and the vehicle controller P5 controls the battery management module P6 not to proceed. Judgment of the state parameters of the battery pack P1 and the preset low-temperature and low-power conditions.
  • the state parameters of the battery pack P1 of the battery management module P6 and the preset low temperature and low power conditions Judgment and subsequent operations.
  • the battery management module P6 determines that the state parameters of the battery pack P1 meet the preset low-temperature and low-power conditions, and sends low-temperature and low-power heating request instructions to the vehicle controller P5 and the auxiliary charging branch control module P8, respectively, to Request low temperature and low battery heating mode.
  • the battery management module P6 controls the auxiliary charging branch control module P8, and the vehicle controller P5 controls the auxiliary charging branch P4, the main positive switch K1 and the switches in the inverter P2 by controlling the battery management module P6 and the motor controller P7.
  • the module enables the power supply P41 in the auxiliary charging branch P4 to transmit energy to the battery and/or the motor P3, so that the battery pack P1 and the motor P3 have sufficient energy to support the heating of the battery pack P1.
  • the battery pack P1 and the motor P3 transfer energy to each other to form a cycle of charging and discharging the battery pack P1, and current is generated in the loop where the battery pack P1 is located.
  • the alternating current can continuously pass through the battery pack P1, causing the internal resistance of the battery pack P1 to generate heat, so that even and high-efficiency self-heating of the battery pack P1 can be achieved even in the case of low power.
  • Fig. 2 is a schematic structural diagram of a battery pack heating system in another embodiment of the application.
  • the battery heating system also includes a supporting capacitor C1, a pre-charging branch P9, and an auxiliary charging branch P4.
  • the aforementioned auxiliary charging branch P4 may further include an auxiliary switch module.
  • the first switch module includes a first power switch device S1, the second switch module includes a second power switch device S2, the third switch module includes a third power switch device S3, and the fourth switch module includes a fourth power switch device S4.
  • the switch module includes a fifth power switch device S5, and the sixth switch module includes a sixth power switch device S6.
  • the diode of the first power switch device S1 is VD1
  • the diode of the second power switch device S2 is VD2
  • the diode of the third power switch device S3 is VD3
  • the diode of the fourth power switch device S4 is VD4
  • the diode of the fourth power switch device S4 is VD4.
  • the diode of the device S5 is VD5
  • the diode of the sixth power switch device S6 is VD6.
  • the auxiliary charging branch control module P8 is used to respond to the low-temperature and low-electricity heating request command and send a first control signal to the auxiliary switch module to control the auxiliary switch module to be turned on. That is, the auxiliary switch module is turned on in response to the first control signal.
  • the auxiliary switch module in the auxiliary charging branch P4 may specifically be the switching device K3. Then the switching device K3 can be turned on in response to the first control signal.
  • the precharge branch P9 is connected in parallel with the main positive switch K1.
  • the precharge branch P9 may include a precharge switch K4 and a precharge resistor.
  • the battery management module P6 is also used to send a third driving signal to the pre-charge switch K4 to control the pre-charge switch K4 to be turned on for pre-charging. It should be noted that the pre-charge switch K4 is turned on, the main positive switch K1 is turned off, and the main negative switch K2 is turned on.
  • the battery pack P1, the pre-charge branch P9, the support capacitor C1, and the main negative switch K2 form a loop to realize the pre-charge. Recharge.
  • the battery management module P6 If the battery management module P6 detects that the pre-charging is completed, it stops sending the third driving signal to the pre-charging switch K4 to control the pre-charging switch K4 to be turned off to end the pre-charging.
  • the motor controller P7 may be specifically configured to respond to the second control signal to send a first drive signal to some of the switch modules in the inverter P2 to drive some of the switch modules to be turned on and off periodically, so that the motor P3 can receive
  • the energy transmitted by the power supply P41 may cause the motor P3 to receive the energy transmitted from the battery pack P1, or the motor P3 may transmit energy to the battery pack P1.
  • the switch module that is turned on in response to the first drive signal includes a target upper bridge arm switch module and a target lower bridge arm switch module.
  • the target upper bridge arm switch module is a first-phase bridge arm, a second-phase bridge arm, and a third-phase bridge arm.
  • the switch module of the upper bridge arm of any one of the bridge arms, and the target lower bridge arm switch module is the switch module of the lower bridge arm of at least one bridge arm except the bridge arm where the target upper bridge arm switch module is located. Specifically, when the switch module is turned on, the power switch device in the switch module is turned on. When the switch module is disconnected, the power switch device in the switch module is disconnected.
  • the target upper switch module is the first switch module
  • the target lower switch module is the fifth switch module and/or the sixth switch module. If the target upper switch module is the second switch module, the target lower switch module is the fourth switch module and/or the sixth switch module. If the target upper switch module is the third switch module, the target lower switch module is the fourth switch module and/or the fifth switch module.
  • the battery management module P6 is also used to respond to the third control signal to send a second driving signal to the main positive switch K1 to drive the main positive switch K1 to be turned on and off periodically, so that the battery pack P1 receives the energy transmitted by the power supply P41 , Or make the battery P1 receive the energy transmitted from the motor P3, or make the battery P1 transmit energy to the motor P3.
  • the battery management module P6 sends a low-temperature and low-power heating request instruction to the auxiliary charging branch control module P8.
  • the vehicle controller P5 sends a third control signal to the battery management module P6.
  • the voltage of the power supply P41 is higher than the current voltage of the battery pack P1.
  • the incoming auxiliary charging branch control module P8 can send the first control signal to the auxiliary switch module.
  • the auxiliary switch module is turned on in response to the first control signal.
  • the battery management module P6 sends a second driving signal to the main positive switch K1.
  • the main positive switch K1 is periodically turned on and off in response to the second driving signal.
  • the energy of the power supply P41 of the auxiliary charging branch P4 can be transferred to the battery pack P1 through the switching device K3, which is equivalent to charging the battery pack P1.
  • the power supply P41 of the auxiliary charging branch P4 can transmit energy to the battery pack P1 through the switching device K3 and the external ports G1 and G2 through one or more times, which is not limited here.
  • the purpose is to enable the energy of the battery pack P1 to support self-heating of the battery pack P1.
  • the battery management module P6 sends to the auxiliary charging branch control module P8 a signal instructing to control the disconnection of the auxiliary switch module in the auxiliary charging branch P4.
  • the auxiliary charging branch control module P8 sends a signal indicating to control the auxiliary switch module to disconnect, and the auxiliary switch module is disconnected.
  • the vehicle controller P5 sends the second control signal to the motor controller P7.
  • the motor controller P7 sends a first driving signal to some switch modules in the inverter P2.
  • the target upper arm switch module and the target lower arm switch module in the inverter P2 are periodically turned on and off in response to the first driving signal.
  • the target upper switch module is the first switch module
  • the target lower switch module is the fifth switch module.
  • the first switch module and the fifth switch module can be turned on and off periodically.
  • the first power switching device S1 and the fifth power switching device S5 are turned on, which is equivalent to discharging the battery pack P1, and the current direction is: battery pack P1 ⁇ main positive switch K1 ⁇ first power switching device S1 ⁇ first stator Inductance L1 ⁇ first resistance R1 ⁇ second resistance R2 ⁇ second stator inductance L2 ⁇ fifth power switching device S5 ⁇ main negative switch K2 ⁇ battery pack P1.
  • the first power switching device S1 and the fifth power switching device S5 are disconnected, which is equivalent to charging the battery pack P1.
  • the current direction is: first stator inductance L1 ⁇ first resistance R1 ⁇ second resistance R2 ⁇ second stator inductance L2 ⁇ The diode VD2 of the second power switching device S2 ⁇ the main positive switch K1 ⁇ the battery pack P1 ⁇ the main negative switch K2 ⁇ the diode VD4 of the fourth power switching device S4 ⁇ the first stator inductance L1.
  • the selection of the target high-side switch module and the target low-side switch module is not limited to the above example, and the selection of the target high-side switch module and the target low-side switch module are different, forming the discharge loop and the charging loop of the battery pack P1 It is also different and is not limited here.
  • the main positive switch K1 is not turned on at the same time as the target upper switch module and the target lower switch module.
  • the energy of the battery pack P1 can be transmitted to the motor P3 through the supporting capacitor C1. Charging and discharging the battery pack P1.
  • the first driving signal drives part of the switch modules (that is, the target upper arm switch module and the target lower arm switch module) to disconnect. If the energy stored in the motor P3 is lower than the energy stored in the battery pack P1, the battery pack P1 transfers energy to the supporting capacitor C1. If the energy stored in the motor P3 is higher than the energy stored in the battery P1, the battery P1 receives the energy transmitted by the motor P3.
  • the second driving signal drives the main positive switch K1 to turn off.
  • the motor P3 receives the energy transmitted by the supporting capacitor C1, and the energy of the supporting capacitor C1 is obtained from the battery pack P1.
  • the process of discharging and charging the battery pack P1 is repeated repeatedly to realize self-heating of the battery pack P1.
  • the battery management module P6 sends a low-temperature and low-power heating request instruction to the auxiliary charging branch control module P8, and the vehicle controller P5 sends the second control signal to the motor controller P7.
  • the voltage of the power supply P41 is higher than the current voltage of the battery pack P1.
  • the auxiliary charging branch control module P8 responds to the low-temperature low-electricity heating request instruction and sends the first control signal to the auxiliary switch module.
  • the auxiliary switch module is turned on in response to the first control signal.
  • the motor controller P7 sends a first driving signal to some switch modules in the inverter P2.
  • the target upper arm switch module and the target lower arm switch module in the inverter P2 are periodically turned on and off in response to the first driving signal.
  • the energy of the power supply P41 of the auxiliary charging branch P4 can be transferred to the motor P3 through the switching device K3, which is equivalent to the motor P3.
  • P3 is charged.
  • the power supply P41 of the auxiliary charging branch P4 can transfer energy to the motor P3 through the switching device K3 and the external ports G1 and G2 through one or more times, which is not limited here.
  • the purpose is to enable the energy of the battery pack P1 and the energy of the motor P3 to support the self-heating of the battery pack P1.
  • the battery management module P6 sends to the auxiliary charging branch control module P8 a signal instructing to control the disconnection of the auxiliary switch module in the auxiliary charging branch P4.
  • the auxiliary charging branch control module P8 sends a signal indicating to control the auxiliary switch module to disconnect, and the auxiliary switch module is disconnected.
  • the vehicle controller P5 sends a third control signal to the battery management module P6.
  • the battery management module P6 sends a second driving signal to the main positive switch K1.
  • the main positive switch K1 is periodically turned on and off in response to the second driving signal.
  • the target upper arm switch module and the target lower arm switch module in the inverter P2 are periodically turned on and off, and the battery pack P1 can be switched on and off by the supporting capacitor C1.
  • the energy is transferred to the motor P3, and the motor P3 can transfer the energy to the battery pack P1.
  • the mutual transmission of energy between the battery pack P1 and the motor P3 can be referred to the above-mentioned embodiment, which will not be repeated here.
  • the battery management module P6 sends a low-temperature low-power heating request instruction to the auxiliary charging branch control module P8.
  • the vehicle controller P5 sends a second control signal to the motor controller P7 and a third control signal to the battery management module P6.
  • the voltage of the power supply P41 is higher than the current voltage of the battery pack P1.
  • the auxiliary charging branch control module P8 responds to the low-temperature low-electricity heating request instruction and sends the first control signal to the auxiliary switch module.
  • the auxiliary switch module is turned on in response to the first control signal.
  • the motor controller P7 sends a first driving signal to some switch modules in the inverter P2.
  • the target upper arm switch module and the target lower arm switch module in the inverter P2 are periodically turned on and off in response to the first driving signal.
  • the energy of the power supply P41 of the auxiliary charging branch P4 can be transferred to the motor through the switching device K3 and the external ports G1 and G2 P3 is equivalent to charging the motor P3.
  • the battery management module P6 sends a second driving signal to the main positive switch K1.
  • the main positive switch K1 is periodically turned on and off in response to the second driving signal.
  • the energy of the power supply P41 of the auxiliary charging branch P4 can be transferred to the battery pack P1 through the switching device K3 and the external ports G1 and G2, which is equivalent to the battery pack P1 Recharge.
  • the power supply P41 of the auxiliary charging branch P4 can transmit energy to the battery pack P1 and the motor P3 through the switching device K3 and the external ports G1 and G2 through one or more times. It is not limited here.
  • the purpose is The energy of the battery pack P1 and the energy of the motor P3 can support the self-heating of the battery pack P1.
  • the battery management module P6 sends to the auxiliary charging branch control module P8 a signal instructing to control the disconnection of the auxiliary switch module in the auxiliary charging branch P4.
  • the auxiliary charging branch control module P8 sends a signal indicating to control the auxiliary switch module to disconnect, and the auxiliary switch module is disconnected.
  • the target upper arm switch module and the target lower arm switch module in the inverter P2 are periodically turned on and off in response to the first driving signal.
  • the main positive switch K1 is periodically turned on and off in response to the second driving signal.
  • the energy of the battery pack P1 can be transferred to the motor P3 through the supporting capacitor C1, and the motor P3 can transfer the energy to the battery pack P1.
  • the mutual transmission of energy between the battery pack P1 and the motor P3 can be referred to the above-mentioned embodiment, which will not be repeated here.
  • the vehicle controller P5, the auxiliary charging branch control module P8, the battery management module P6 and the motor controller P7 cooperate with each other to control the auxiliary switch module, the switch module in the inverter P2 and the main positive switch K1 To realize self-heating of the battery pack P1.
  • the method of self-heating the battery pack P1 includes but is not limited to the method of the above-mentioned embodiment.
  • the battery management module P6 is also used to send the acquired state parameters of the battery pack P1 to the vehicle controller P5.
  • the state parameters of the battery pack P1 include the state of charge and temperature.
  • the vehicle controller P5 is also used to send the received state parameters of the battery pack P10 to the motor controller P7.
  • the motor controller P7 is also used to calculate the first desired frequency and the first desired duty cycle based on the desired temperature rise rate and the received state parameters of the battery pack P1, and adjust the frequency and the duty cycle of the first driving signal Is the first desired frequency and the first desired duty cycle.
  • the motor controller P7 can obtain the temperature rise rate of the battery pack P1 according to the temperature of the battery pack P1.
  • the expected temperature rise rate is the expected temperature rise rate, which can be set according to specific work scenarios and work requirements, and is not limited here.
  • Adjusting the frequency and duty ratio of the first driving signal to the first desired frequency and the first desired duty ratio can adjust the heating rate of the battery pack P1.
  • the process of calculating the first desired frequency and the first desired duty ratio can be performed in real time, and the frequency and duty ratio of the first driving signal can be adjusted in real time.
  • the battery management module P6 is also used to send the acquired state of charge of the battery pack P1 to the vehicle controller P5.
  • the vehicle controller P5 is also used to send the received state of charge of the battery pack P1 to the motor controller P7.
  • the motor controller P7 is also used to obtain the motor parameters, and based on the expected motor parameters, the motor parameters and the received state of charge of the battery pack, calculate the second expected frequency and the second expected duty cycle, and calculate the value of the first drive signal The frequency and the duty ratio are adjusted to the second desired frequency and the second desired duty ratio.
  • the motor parameters include the bus current or the phase current of the motor P3.
  • the bus current can specifically be the current flowing through the main positive switch K1.
  • the phase current of the motor P3 may specifically be the current flowing into or out of the three-phase input terminal of the motor P3.
  • the expected motor parameters include the expected bus current or the expected phase current of the motor P3.
  • the expected motor parameters are expected motor parameters, which can be set according to specific working scenarios and work requirements, and are not limited here.
  • Adjusting the frequency and duty ratio of the first driving signal to the second desired frequency and second desired duty ratio can adjust the heating rate of the battery pack P1.
  • the process of calculating the second desired frequency and the second desired duty ratio may be performed in real time, and the frequency and duty ratio of the first driving signal may be adjusted in real time.
  • the battery management module P6 is also used to calculate the third desired frequency and the third desired duty cycle based on the desired temperature rise rate and the acquired state parameters of the battery pack P1, and to sum the frequency of the second driving signal The duty ratio is adjusted to the third desired frequency and the third desired duty ratio.
  • the state parameters of the battery pack P1 include the state of charge of the battery pack and the temperature of the battery pack.
  • the battery management module P6 can obtain the temperature rise rate of the battery pack according to the temperature of the battery pack.
  • the expected temperature rise rate is the expected temperature rise rate, which can be set according to specific work scenarios and work requirements, and is not limited here.
  • Adjusting the frequency and duty ratio of the second driving signal to the third desired frequency and the third desired duty ratio can adjust the heating rate of the battery pack P1.
  • the process of calculating the third desired frequency and the third desired duty ratio can be performed in real time, and the frequency and duty ratio of the second driving signal can be adjusted in real time.
  • the motor controller P7 is also used to obtain motor parameters and send the motor parameters to the vehicle controller.
  • Motor parameters include bus current or motor phase current.
  • bus current or the phase current of the motor refer to the related description in the above-mentioned embodiment, which will not be repeated here.
  • the vehicle controller P5 is also used to send the received motor parameters to the battery management module P6.
  • the battery management module P6 is also used to calculate the fourth desired frequency and the fourth desired duty cycle based on the desired motor parameters, the acquired state of charge of the battery pack P1, and the received motor parameters, and to sum the frequency of the second drive signal
  • the duty ratio is adjusted to the fourth desired frequency and the fourth desired duty ratio.
  • the switching frequency and on-off time of the main positive switch K1 are adjusted to adjust the effective value of the bus current, thereby adjusting the self-heating process of the battery heating system.
  • the process of calculating the fourth desired frequency and the fourth desired duty ratio can be performed in real time, and the frequency and duty ratio of the second driving signal can be adjusted in real time.
  • the motor controller P7 is also used to obtain motor parameters and send the motor parameters to the vehicle controller P5.
  • the motor parameters include the bus current or the phase current of the motor.
  • the vehicle controller P5 is also used to send the received motor parameters to the battery management module P6.
  • the battery management module P6 is also used to obtain the expected heating time of the battery pack P1 according to the current temperature of the battery pack P1, the expected temperature of the battery pack P1, motor parameters, and expected motor parameters.
  • the expected temperature of the battery pack P1 can be set according to specific work scenarios and work requirements, which is not limited here.
  • the description of the expected motor parameters can refer to the relevant content in the above-mentioned embodiment, which will not be repeated here.
  • the battery management module P6 is also used to send duration information including the estimated heating duration to the vehicle controller P5.
  • the specific estimated heating time is not limited here, for example, it can be any value from 1 minute to 40 minutes.
  • the vehicle controller P5 is also used to receive time information and send out a prompt message for prompting the estimated heating time.
  • the prompt message can be specifically implemented as image information displayed on the vehicle-mounted instrumentation, and can also be implemented as sound information emitted by a loudspeaker and the vehicle-mounted instrument, which is not limited here.
  • the battery pack heating system can also enter the low-temperature heating mode or stop the heating mode.
  • the battery management module P6 is also configured to, if the temperature of the battery pack P1 is lower than the heating temperature threshold, and the state of charge of the battery pack P1 is higher than or equal to the heating state-of-charge requirement threshold, send the auxiliary charging branch control module P8 Send low temperature heating request command.
  • the low temperature heating request command is used to instruct the battery pack heating system to enter the low temperature heating mode.
  • the auxiliary charging branch control module P8 is also used to respond to the low-temperature heating request command and send a fourth control signal to the auxiliary charging branch P4 to control the battery pack heating system to disconnect from the auxiliary charging branch P4.
  • the battery management module P6 is further configured to report to the vehicle controller P5 if the temperature of the battery pack P1 is higher than or equal to the heating temperature threshold, and the state of charge of the battery pack P1 is higher than or equal to the heating state of charge requirement threshold.
  • the auxiliary charging branch control module P8 respectively send stop heating request instructions.
  • the heating stop request command is used to instruct the battery pack heating system to enter the heating stop mode.
  • the auxiliary charging branch control module P8 is also used to respond to the heating stop request command to send a fifth control signal to the auxiliary charging branch P4 to control the battery pack heating system to disconnect from the auxiliary charging branch P4.
  • the vehicle controller P5 is also used to respond to the heating stop request instruction, sending a sixth control signal to the motor controller P7, and a seventh control signal to the battery management module P6.
  • the motor controller P7 is further configured to respond to the sixth control signal to stop sending the first driving signal to some of the switch modules in the inverter P2.
  • the switch module of inverter P2 is disconnected.
  • the battery management module P6 is also used to respond to the seventh control signal to stop sending the second driving signal to the main positive switch K1.
  • the main positive switch K1 is off.
  • the motor controller P7 can also monitor the temperature of the switch module in the inverter P2, the stator of the motor P3, the bus current, the phase current of the motor P3, or others Parameters, and upload the monitored parameters to the vehicle controller P5.
  • the vehicle controller P5 can adjust the battery pack heating system according to the monitored parameters.
  • the battery management module P6 can also monitor the temperature, state of charge, insulation resistance and other parameters of the battery pack P1, and upload the detected parameters to the vehicle controller P5.
  • the vehicle controller P5 can adjust the battery pack heating system according to the monitored parameters.
  • the adjustment of the battery pack heating system may specifically include stopping the heating of the battery pack P1 by the entire battery pack heating system, or adjusting the first driving signal driving the switch module to adjust the switching frequency and on-off duty cycle of the switch module, or The second driving signal for driving the main positive switch K1 is adjusted to adjust the switching frequency and on-off duty ratio of the main positive switch K1.
  • FIG. 3 is a flowchart of a method for controlling a battery pack heating system in an embodiment of the application.
  • the control method of the battery pack heating system may include step S101 to step S103.
  • step S101 the battery management module obtains the state parameters of the battery pack, and if the state parameters of the battery pack meet the preset low-temperature and low-power conditions, send low-temperature and low-power heating request instructions to the vehicle controller and the auxiliary charging branch control module respectively.
  • the state parameters include temperature and state of charge
  • the preset low temperature and low battery condition includes that the temperature is lower than the heating temperature threshold, and the state of charge is lower than the heating state of charge requirement threshold.
  • the heating temperature threshold is greater than or equal to -50°C and less than or equal to 5°C.
  • the heating state of charge requires a threshold greater than or equal to 5% and less than 100%.
  • step S102 the auxiliary charging branch control module responds to the low-temperature and low-power heating request command and sends a first control signal to the auxiliary charging branch to control the connection between the battery pack heating system and the auxiliary charging branch so that the power supply can pass through the external interface Transfer energy to the battery pack and/or motor.
  • step S103 the vehicle controller sends a second control signal to the motor controller in response to the low-temperature and low-power heating request command, so that the motor controller controls the on and off of the switch module in the inverter, and sends the third control signal to the battery management module.
  • the control signal enables the battery management module to control the on and off of the main positive switch, so that the battery pack and the motor transfer energy to each other to heat the battery pack.
  • the battery management module determines that the state parameters of the battery pack meet the preset low-temperature and low-power conditions, and respectively sends low-temperature and low-power heating request instructions to the vehicle controller and the auxiliary charging branch control module to request low-temperature and low-power heating. Electric heating mode.
  • the battery management module controls the auxiliary charging branch control module, and the vehicle controller controls the auxiliary charging branch, the main positive switch and the switch module in the inverter by controlling the battery management module and the motor controller, so that the auxiliary charging branch is
  • the power supply transmits energy to the battery and/or the motor, so that the battery pack and the motor have sufficient energy to support the heating of the battery pack.
  • the battery pack and the motor transfer energy to each other, forming a cycle of charging and discharging the battery pack, and generating current in the loop where the battery pack is located.
  • the alternating current can continuously pass through the battery pack, so that the internal resistance of the battery pack generates heat, so that even and high-efficiency self-heating of the battery pack can be achieved even in the case of low power.
  • FIG. 4 is a flowchart of a method for controlling a battery pack heating system in another embodiment of the application.
  • the difference between FIG. 4 and FIG. 3 is that the control method of the battery pack heating system shown in FIG. 4 may further include steps S104 to S107.
  • step S104 the battery management module sends a third driving signal to the pre-charge switch to control the pre-charge switch to conduct and perform pre-charge.
  • the battery heating system also includes a precharge branch connected in parallel with the main positive switch, and the precharge branch includes a precharge switch and a precharge resistor.
  • step S105 the auxiliary charging branch control module responds to the low-temperature and low-power heating request instruction and sends a first control signal to the auxiliary switch module to control the auxiliary switch module to conduct.
  • the auxiliary charging branch also includes an auxiliary switch module.
  • the voltage of the power supply is higher than the current voltage of the battery pack.
  • step S106 the motor controller responds to the second control signal and sends a first drive signal to some of the switch modules in the inverter to drive some of the switch modules to be turned on and off periodically, so that the motor receives the power transmitted from the power supply. Energy, or make the motor receive the energy transferred from the battery pack, or make the motor transfer energy to the battery pack.
  • step S107 the battery management module responds to the third control signal and sends a second driving signal to the main positive switch to drive the main positive switch to periodically turn on and off, so that the battery pack can receive the energy transmitted from the power supply, or make The battery pack receives the energy transmitted by the motor, or enables the battery pack to transmit energy to the motor.
  • the battery pack heating system further includes a supporting capacitor connected in parallel with the inverter.
  • the first driving signal drives the partial switch module to turn off, so that the battery pack can transmit energy to the supporting capacitor, or the battery pack can receive energy from the motor.
  • the second driving signal drives the main positive switch to turn off, so that the motor receives the energy transferred from the supporting capacitor.
  • FIG. 5 is a flowchart of a method for controlling a battery pack heating system in another embodiment of the application. The difference between FIG. 5 and FIG. 3 is that the control method of the battery pack heating system shown in FIG. 5 further includes step S108 to step S114.
  • step S108 the battery management module determines that the temperature of the battery pack is lower than the heating temperature threshold, and the state of charge of the battery pack is higher than or equal to the heating state of charge requirement threshold, and sends a low temperature heating request instruction to the auxiliary charging branch control module.
  • step S109 the auxiliary charging branch control module responds to the low-temperature heating request command and sends a fourth control signal to the auxiliary charging branch to control the battery pack heating system to disconnect from the auxiliary charging branch.
  • step S110 the battery management module determines that the temperature of the battery pack is higher than or equal to the heating temperature threshold, and the state of charge of the battery pack is higher than or equal to the required threshold of the heating state of charge, to the vehicle controller and the auxiliary charging branch control module Send stop heating request commands respectively.
  • step S111 the auxiliary charging branch control module responds to the heating stop request command and sends a fifth control signal to the auxiliary charging branch to control the battery pack heating system to disconnect from the auxiliary charging branch.
  • step S112 the vehicle controller sends a sixth control signal to the motor controller and a seventh control signal to the battery management module in response to the heating stop request instruction.
  • step S113 the motor controller responds to the sixth control signal to stop sending the first driving signal to some of the switch modules in the inverter.
  • step S114 the battery management module responds to the seventh control signal and stops sending the second driving signal to the main positive switch.
  • the motor controller may adjust the first driving signal, thereby adjusting the switching frequency and on-off duration of the switching module of the inverter, so as to adjust the current used by the battery heating system to charge and discharge the battery.
  • the battery management module sends the acquired state parameters of the battery pack to the vehicle controller.
  • State parameters include state of charge and temperature.
  • the vehicle controller sends the received state parameters of the battery pack to the motor controller.
  • the motor controller calculates the first desired frequency and the first desired duty cycle based on the desired temperature rise rate and the received state parameters of the battery pack, and adjusts the frequency and duty cycle of the first drive signal to the first desired frequency And the first desired duty cycle.
  • the battery management module sends the acquired state of charge of the battery pack to the vehicle controller.
  • the vehicle controller sends the received state of charge of the battery pack to the motor controller.
  • the motor controller obtains the motor parameters, and based on the expected motor parameters, the motor parameters, and the received state of charge of the battery pack, calculates a second expected frequency and a second expected duty cycle, and calculates the The frequency and duty ratio of a driving signal are adjusted to the second desired frequency and the second desired duty ratio.
  • the motor parameters include bus current or phase current of the motor.
  • the battery management module may adjust the second driving signal, thereby adjusting the switching frequency and on-off duration of the main positive switch, so as to adjust the heating of the battery by the battery pack heating system.
  • the battery management module calculates the third desired frequency and the third desired duty cycle based on the desired temperature rise rate and the acquired state parameters of the battery pack, and adjusts the frequency and duty cycle of the second drive signal to the third desired Frequency and third desired duty cycle.
  • State parameters include state of charge and temperature.
  • the motor controller obtains the motor parameters and sends the motor parameters to the vehicle controller.
  • Motor parameters include bus current or motor phase current.
  • the vehicle controller sends the received motor parameters to the battery management module.
  • the battery management module calculates the fourth desired frequency and the fourth desired duty cycle based on the desired motor parameters, the acquired state of charge of the battery pack, and the received motor parameters, and adjusts the frequency and duty cycle of the second drive signal to The fourth desired frequency and the fourth desired duty cycle.
  • the motor controller obtains the motor parameters and sends the motor parameters to the vehicle controller.
  • the motor parameters include the bus current or the phase current of the motor.
  • the vehicle controller sends the received motor parameters to the battery management module.
  • the battery management module obtains the estimated heating time of the battery pack according to the current temperature of the battery pack, the expected temperature of the battery pack, the motor parameters and the expected motor parameters.
  • the battery management module sends time information including the estimated heating time to the vehicle controller.
  • the vehicle controller receives the time length information and sends out a prompt message for prompting the estimated heating time to remind the user of the estimated heating time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池组(P1)加热系统及其控制方法,涉及电池技术领域。该电池组(P1)加热系统包括主正开关(K1)、主负开关(K2)、逆变器(P2)、外接端口(G1、G2)、电机(P3)、辅助充电支路控制模块(P8)、整车控制器(P5)、电机控制器(P7)和电池管理模块(P6);电池管理模块(P6)获取电池组(P1)的状态参数,若状态参数满足预设低温低电量条件,向整车控制器(P5)和辅助充电支路控制模块(P8)分别发送低温低电量加热请求指令;辅助充电支路控制模块(P8)发送第一控制信号,控制辅助充电支路(P4)导通;整车控制器(P5)发送第二控制信号,使电机控制器(P7)控制逆变器(P2)中的开关模块(P21-P26)通断,发送第三控制信号,使电池管理模块(P6)控制主正开关(K1)通断,使电池组(P1)与电机(P3)相互传递能量,对电池组(P1)进行加热。该电池组(P1)加热系统及其控制方法能够提高对电池组(P1)的加热效率。

Description

电池组加热系统及其控制方法
相关申请的交叉引用
本申请要求享有于2019年6月24日提交的名称为“电池组加热系统及其控制方法”的中国专利申请201910547455.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于电池技术领域,尤其涉及一种电池组加热系统及其控制方法。
背景技术
随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
但是低温环境下电池的使用会受到一定限制。具体的,电池在低温环境下的放电容量会严重衰退,以及电池在低温环境下无法充电。因此,为了能够正常使用电池,需要在低温环境下为电池进行加热。
现阶段,可通过为电池配备专门的热循环容器,通过间接加热热循环容器中的导热物质,将热量传导到电池上,以实现对电池的加热。但是这种加热方式所花费的时间较长,加热效率较低。
发明内容
本申请实施例提供了一种电池组加热系统及其控制方法,能够提高对电池组的加热效率。
第一方面,本申请实施例提供了一种电池组加热系统,包括与电池组的正极连接的主正开关、与电池组的负极连接的主负开关、与主正开关和 主负开关连接的逆变器、与逆变器连接的外接端口、与逆变器连接的电机,以及辅助充电支路控制模块、整车控制器、电机控制器和电池管理模块;逆变器包括多个开关模块;外接端口连接辅助充电支路,辅助充电支路包括供电电源;电池管理模块用于获取电池组的状态参数,若电池组的状态参数满足预设低温低电量条件,向整车控制器和辅助充电支路控制模块分别发送低温低电量加热请求指令;辅助充电支路控制模块用于响应低温低电量加热请求指令,向辅助充电支路发送第一控制信号,以控制电池组加热系统与辅助充电支路导通,使得供电电源通过外接端口向电池组和/或电机传输能量;整车控制器用于响应低温低电量加热请求指令,向电机控制器发送第二控制信号,使电机控制器控制逆变器中的开关模块的通断,向电池管理模块发送第三控制信号,使电池管理模块控制主正开关的通断,使电池组与电机之间相互传递能量,以对电池组进行加热。
第二方面,本申请实施例提供了一种电池组加热系统的控制方法,应用于第一方面中的电池组加热系统,电池组加热系统的控制方法包括:电池管理模块获取电池组的状态参数,若电池组的状态参数满足预设低温低电量条件,向整车控制器和辅助充电支路控制模块分别发送低温低电量加热请求指令;辅助充电支路控制模块响应低温低电量加热请求指令,向辅助充电支路发送第一控制信号,以控制电池组加热系统与辅助充电支路导通,使得供电电源通过外接端口向电池组和/或电机传输能量;整车控制器响应低温低电量加热请求指令,向电机控制器发送第二控制信号,使电机控制器控制逆变器中的开关模块的通断,向电池管理模块发送第三控制信号,使电池管理模块控制主正开关的通断,使电池组与电机之间相互传递能量,以对电池组进行加热。
本申请实施例提供了一种电池组加热系统及其控制方法,电池管理模块确定电池组的状态参数满足预设低温低电量条件,向整车控制器和辅助充电支路控制模块分别发送低温低电量加热请求指令,以请求进行低温低电量加热模式。电池管理模块通过控制辅助充电支路控制模块,整车控制器通过控制电池管理模块和电机控制器,控制辅助充电支路、主正开关和逆变器中的开关模块,使辅助充电支路中供电电源向电池组和/或电机传输 能量,以使电池组和电机具有充足的可支持对电池组加热的能量。电池组与电机之间相互传递能量,形成电池组充、放电的循环,在电池组所在的回路中产生电流。交流电流可连续不断的通过电池组,使得电池组的内阻发热,从而在低电量的情况下也可实现对电池组的均匀、高效率的自加热。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中,相同或相似的附图标记表示相同或相似的特征。
图1为本申请一实施例中一种电池组加热系统的结构示意图;
图2为本申请另一实施例中一种电池组加热系统的结构示意图;
图3为本申请实施例中一种电池组加热系统的控制方法的流程图;
图4为本申请另一实施例中一种电池组加热系统的控制方法的流程图;
图5为本申请又一实施例中一种电池组加热系统的控制方法的流程图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
本申请实施例提供了一种电池组加热系统及其控制方法,可应用于温度较低且电池组荷电状态较低的条件下,对电池组进行加热的场景中。通过本申请实施例中的电池组加热系统和该电池组加热系统的控制方法,可 以使电池组的温度上升至电池组可正常使用的温度。其中,电池组可包括至少一个电池模组或至少一个电池单元,在此并不限定。电池组可应用于电动汽车,为电机供电,作为电动汽车的动力源。电池组还可为电动汽车中的其他用电器件供电,在此并不限定。
在本申请实施例中,通过对电池组加热系统的控制,使得在电池组的状态参数满足预设低温低电量条件的情况下,辅助充电支路中的供电电源能够为电池组和/或电机提供对电池组进行加热所需的电池组与电机之间相互传递的至少部分能量。即辅助充电支路中的供电电源提供的能量与电池组、电机中原有的能量总和足够支持对电池组的加热。从而实现在低温低电量条件下对电池组的充电,提高充电效率。
图1为本申请一实施例中一种电池组加热系统的结构示意图。如图1所示,该电池组加热系统包括与电池组P1的正极连接的主正开关K1、与电池组P1的负极连接的主负开关K2、与主正开关K1和主负开关K2连接的逆变器P2、与逆变器P2连接的外接端口G1和G2、与逆变器P2连接的电机P3,以及辅助充电支路控制模块P8、整车控制器P5(Vehicle Control Unit,VCU)、电机控制器P7(Motor Control Unit,MCU)和电池管理模块P6。电池管理模块P6具体可为电池管理系统(Battery Management System,BMS)。辅助充电支路控制模块P8具体可为电路控制单元(Circuit Control Unit,CCU)。
在一些示例中,还可以在电池组P1与主正开关K1之间设置保险模块,或者,在电池组中多个连接的单体电芯之间设置保险模块,在此并不限定。在一些示例中,保险模块可以为手动维护开关(Manual Service Disconnect,MSD)。
其中,逆变器P2包括多个开关模块。
在一些示例中,如图1所示,逆变器P2包括并联的第一相桥臂、第二相桥臂和第三相桥臂。第一相桥臂、第二相桥臂和第三相桥臂均具有上桥臂和下桥臂。上桥臂设置有开关模块,下桥臂设置有开关模块。即,第一相桥臂为U相桥臂,U相桥臂的上桥臂的开关模块为第一开关模块,U相桥臂的下桥臂的开关模块为第四开关模块。第二相桥臂为V相桥臂,V 相桥臂的上桥臂的开关模块为第二开关模块,V相桥臂的下桥臂的开关模块为第五开关模块。第三相桥臂为W相桥臂,W相桥臂的上桥臂的开关模块为第三开关模块,W相桥臂的下桥臂的开关模块为第六开关模块。
在一些示例中,开关模块可包括绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)芯片、IGBT模块、金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等功率开关器件中的一种或多种。在此对开关模块中各IGBT器件和MOSFET器件等的组合方式及连接方式并不限定。对上述功率开关器件的材料类型也不做限定,比如,可采用碳化硅(即SiC)或其他材料制得的功率开关器件。
具体的,开关模块具有二极管。针对上桥臂的开关模块,二极管的阳极与上桥臂和下桥臂的连接点连接,二极管的阴极位于上桥臂与主正开关K1之间。针对下桥臂的开关模块,二极管的阳极位于下桥臂与主负开关K2之间,二极管的阴极与上桥臂和下桥臂的连接点连接。
在一些示例中,开关模块包括功率开关器件。上述功率开关器件具有的二极管具体可以为寄生二极管或特意设置的二极管。二极管的材料类型也不做限定,比如,可采用硅(即Si)、碳化硅(即SiC)或其他材料制得的二极管。
逆变器P2与电机P3连接。在一些示例中,如图1所示,电机P3的第一相输入端、第二相输入端和第三相输入端分别与第一相桥臂中上桥臂和下桥臂的连接点、第二相桥臂中上桥臂和下桥臂的连接点和第三相桥臂中上桥臂和下桥臂的连接点连接。
比如,如图1所示,将电机P3的定子等效为三相定子电感和电阻。定子电感具有储能功能。每一相定子电感和电阻与一相桥臂连接。将三相定子电感分别作为第一定子电感L1、第二定子电感L2和第三定子电感L3。与第一定子电感L1对应连接的是第一电阻R1,与第二定子电感L2对应连接的是第二电阻R2,与第三定子电感L3对应连接的是第三电阻R3。第一相输入端为第一定子电感L1对应的输入端。第二相输入端为第二定子电感L2对应的输入端。第三相输入端为第三定子电感L3对应的输 入端。值得一提的是,电机P3的第一相输入端、第二相输入端和第三相输入端可作为输入端输入电流,也可作为输出端输出电流。
具体的,第一定子电感L1的一端即为第一相输入端,第一定子电感L1的另一端与第二定子电感L2的另一端和第三定子电感L3的另一端连接。第二定子电感L2的一端即为第二相输入端。第三定子电感L3的一端即为第三相输入端。
外接端口G1和G2可连接辅助充电支路P4。该辅助充电支路P4包括供电电源P41。比如,外接端口G1和G2可为高压充电接口。在一些示例中,供电电源P41可以为电压源,该电压源的电压可调。
电池管理模块P6用于获取电池组P1的状态参数,若电池组P1的状态参数满足预设低温低电量条件,向整车控制器P5和辅助充电支路控制模块P8分别发送低温低电量加热请求指令。若电池组P1的状态参数满足预设低温低电量条件,表示电池组P1的状态参数不足以支持电池组P1的正常工作。低温低电量加热请求指令用于指示请求电池组加热系统进入低温低电量加热模式。
在一些示例中,状态参数包括温度和荷电状态。预设低温低电量条件包括温度低于加热温度阈值,且荷电状态低于加热荷电状态要求阈值。若状态参数满足预设低温低电量条件,表示电池组P1的温度不足以支持电池组P1正常工作,且电池组P1的荷电状态不足以支持对电池组P1的加热。
这里的电池组P1的温度具体可为电池组P1壳体的温度,也可为电池组P1内部空间中空气的温度,也可为电池组P1中任意一个电池组P1或电池单元的温度,还可为电池组P1中所有电池单元的温度的平均值等等,在此并不限定。
加热温度阈值可为电池组P1可正常工作的最低要求温度,即电池组加热系统需要被加热的温度的门限。加热温度阈值可根据工作场景和工作需求设定,在此并不限定。比如,加热温度阈值可为阈值范围[-50℃,5℃]中的任一取值。若电池组P1的温度低于加热温度阈值,则电池组P1无法正常工作,需要进行加热。
加热荷电状态要求阈值可为对电池组P1进行本次加热所需要消耗的荷电状态,即电池组加热系统对电池组P1进行加热所需的荷电状态的门限。加热荷电状态要求阈值可根据工作场景和工作需求预先设定,也可由电池管理模块P6根据电池组P1的当前温度进行估算得到,在此并不限定。比如,加热荷电状态要求阈值可为阈值范围[5%,100%)中的任一取值。若电池组P1的温度低于加热温度阈值,且电池组P1的荷电状态低于加热荷电状态要求阈值,需要辅助充电支路P4的供电电源P41提供用于加热电池组P1的至少部分能量。
辅助充电支路控制模块P8用于响应低温低电量加热请求指令,向辅助充电支路P4发送第一控制信号,以控制电池组加热系统与辅助充电支路P4导通,使得供电电源P41通过外接端口G1和G2向电池组P1和/或电机P3传输能量。
整车控制器P5用于向电机控制器P7发送第二控制信号,使电机控制器P7控制逆变器P2中的开关模块的通断。
整车控制器P5还用于向电池管理模块P6发送第三控制信号,使电池管理模块P6控制主正开关K1的通断。
整车控制器P5发送第二控制信号、第三控制信号,一方面可与辅助充电支路控制模块P8发送的第一控制信号相配合,使辅助充电支路P4的供电电源P41通过外接端口G1和G2向电池组P1和/或电机P3传输能量。即,使电池组P1接收辅助充电支路P4的供电电源P41传输来的能量,和/或使电机P3接收辅助充电支路P4的供电电源P41传输来的能量。另一方面,第二控制信号和第三控制信号相配合,使电池组P1与电机P3之间相互传递能量,以对电池组P1进行加热。即,使能量由电池组P1传输至电机P3,由电机P3再传输回电池组P1,循环多次,形成电池组P1充、放电的多次循环,从而在电池组P1所在的回路中产生交流电流。
在一些示例中,整车控制器P5响应低温低电量加热请求指令,还可控制车载仪器仪表发出用于提示用户选择是否允许低温低电量加热请求指令的提示消息。若接收到表征允许低温低电量加热请求指令的输入操作,在后续的过程中,辅助充电支路控制模块P8再发送第一控制信号,整车 控制器P5再发送第二控制信号和第三控制信号等。
需要说明的是,在电池管理模块P6获取电池组P1的状态参数,判断电池组P1的状态参数满足预设低温低电量条件之前,还可先进行整车的上电自检。若整车的上电自检正常,再进行电池管理模块P6的电池组P1的状态参数与预设低温低电量条件的判断。具体的,用户通过钥匙打开汽车的Key_On档,整车控制器P5会接收到触发上电信号,从而触发上电。整车控制器P5进行自检是否正常,若不正常,则上报整车故障信息。电池管理模块P6也可进行检测,检测电池管理模块P6以及电池组P1是否发生故障,若发生故障,向整车控制器P5发送电池管理故障信息。并不进行电池管理模块P6的电池组P1的状态参数与预设低温低电量条件的判断。整车控制器P5接收电池管理故障信息,并上报。同理,电机控制器P7也可进行检测,若电机控制器P7检测到车辆此时正处于行驶状态,则向整车控制器P5发送通知消息,整车控制器P5控制电池管理模块P6不进行电池组P1的状态参数与预设低温低电量条件的判断。即当电池管理模块P6、电池组P1、整车控制器P5、电机控制器P7和电机P3均处于正常状态,才进行电池管理模块P6的电池组P1的状态参数与预设低温低电量条件的判断以及后续的操作。
在本申请实施例中,电池管理模块P6确定电池组P1的状态参数满足预设低温低电量条件,向整车控制器P5和辅助充电支路控制模块P8分别发送低温低电量加热请求指令,以请求进行低温低电量加热模式。电池管理模块P6通过控制辅助充电支路控制模块P8,整车控制器P5通过控制电池管理模块P6和电机控制器P7,控制辅助充电支路P4、主正开关K1和逆变器P2中的开关模块,使辅助充电支路P4中供电电源P41向电池和/或电机P3传输能量,以使电池组P1和电机P3具有充足的可支持对电池组P1加热的能量。电池组P1与电机P3之间相互传递能量,形成电池组P1充、放电的循环,在电池组P1所在的回路中产生电流。交流电流可连续不断的通过电池组P1,使得电池组P1的内阻发热,从而在低电量的情况下也可实现对电池组P1的均匀、高效率的自加热。
图2为本申请另一实施例中一种电池组加热系统的结构示意图。如图 2所示,电池组加热系统还包括支撑电容C1、预充支路P9和辅助充电支路P4。上述辅助充电支路P4还可包括辅助开关模块。
为了便于说明,在本申请实施例中,以图2所示的各个器件为例进行说明。第一开关模块包括第一功率开关器件S1,第二开关模块包括第二功率开关器件S2,第三开关模块包括第三功率开关器件S3,第四开关模块包括第四功率开关器件S4,第五开关模块包括第五功率开关器件S5,第六开关模块包括第六功率开关器件S6。其中,第一功率开关器件S1的二极管为VD1,第二功率开关器件S2的二极管为VD2,第三功率开关器件S3的二极管为VD3,第四功率开关器件S4的二极管为VD4,第五功率开关器件S5的二极管为VD5,第六功率开关器件S6的二极管为VD6。
辅助充电支路控制模块P8用于响应低温低电量加热请求指令,向辅助开关模块发送第一控制信号,以控制辅助开关模块导通。即辅助开关模块响应第一控制信号而导通。辅助充电支路P4中的辅助开关模块具体可为开关器件K3。则开关器件K3可响应于第一控制信号导通。
预充支路P9与主正开关K1并联。预充支路P9可包括预充开关K4和预充电阻。
电池管理模块P6还用于向预充开关K4发送第三驱动信号,以控制预充开关K4导通,进行预充电。需要说明的是,预充开关K4导通,主正开关K1断开,主负开关K2导通,电池组P1、预充支路P9、支撑电容C1、主负开关K2形成回路,从而实现预充电。
电池管理模块P6若检测到预充电完成,停止向预充开关K4发送第三驱动信号,以控制预充开关K4断开,结束预充电。
下面介绍进入低温低电量加热模式,电池组加热系统中各个部分的功能和具体运行。
具体的,电机控制器P7可具体用于响应第二控制信号,向逆变器P2中的部分开关模块发送第一驱动信号,以驱动部分开关模块周期性导通和断开,使电机P3接收供电电源P41传输来的能量,或使电机P3接收电池组P1传输来的能量,或使电机P3向电池组P1传输能量。
其中,响应第一驱动信号被导通的开关模块包括目标上桥臂开关模块 和目标下桥臂开关模块,目标上桥臂开关模块为第一相桥臂、第二相桥臂、第三相桥臂中任意一个桥臂的上桥臂的开关模块,目标下桥臂开关模块为除目标上桥臂开关模块所在的桥臂外的至少一个桥臂的下桥臂的开关模块。具体的,开关模块导通,则开关模块中的功率开关器件导通。开关模块断开,则开关模块中的功率开关器件断开。
需要说明的是,没有收到第一驱动信号驱动的开关模块均断开。即除目标上桥臂开关模块和目标下桥臂开关模块之外的开关模块均断开。
比如,如图2所示,若目标上桥臂开关模块为第一开关模块,则目标下桥臂开关模块为第五开关模块和/或第六开关模块。若目标上桥臂开关模块为第二开关模块,则目标下桥臂开关模块为第四开关模块和/或第六开关模块。若目标上桥臂开关模块为第三开关模块,则目标下桥臂开关模块为第四开关模块和/或第五开关模块。
电池管理模块P6还用于响应第三控制信号,向主正开关K1发送第二驱动信号,以驱动主正开关K1周期性导通和断开,使电池组P1接收供电电源P41传输来的能量,或使电池组P1接收电机P3传输来的能量,或使电池组P1向电机P3传输能量。
在一些实施例中,电池管理模块P6向辅助充电支路控制模块P8发送低温低电量加热请求指令。整车控制器P5向电池管理模块P6发送第三控制信号。
需要说明的是,供电电源P41的电压高于电池组P1的当前电压。入辅助充电支路控制模块P8响应低温低电量加热请求,可向辅助开关模块发送第一控制信号。辅助开关模块响应第一控制信号而导通。
电池管理模块P6响应第三控制信号,向主正开关K1发送第二驱动信号。主正开关K1响应第二驱动信号周期性导通和断开。在主正开关K1周期性导通和断开的过程中,辅助充电支路P4的供电电源P41的能量可通过开关器件K3传递给电池组P1,相当于对电池组P1充电。值得一提的是,辅助充电支路P4的供电电源P41通过开关器件K3、外接端口G1和G2向电池组P1传输能量可通过一次或多次完成,在此并不限定。目的是使电池组P1的能量能够支持对电池组P1进行自加热。
电池管理模块P6向辅助充电支路控制模块P8发送指示控制辅助充电支路P4中辅助开关模块断开的信号。辅助充电支路控制模块P8响应该信号,向辅助开关模块发送指示控制辅助开关模块断开的信号,辅助开关模块断开。整车控制器P5向电机控制器P7发送第二控制信号。电机控制器P7响应第二控制信号,向逆变器P2中的部分开关模块发送第一驱动信号。逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块响应第一驱动信号周期性导通和断开。
比如,目标上桥臂开关模块为第一开关模块,目标下桥臂开关模块为第五开关模块。响应第一驱动信号,第一开关模块和第五开关模块可周期性导通和断开。具体的,第一功率开关器件S1和第五功率开关器件S5导通,相当于电池组P1放电,电流方向为:电池组P1→主正开关K1→第一功率开关器件S1→第一定子电感L1→第一电阻R1→第二电阻R2→第二定子电感L2→第五功率开关器件S5→主负开关K2→电池组P1。第一功率开关器件S1和第五功率开关器件S5断开,相当于电池组P1充电,电流方向为:第一定子电感L1→第一电阻R1→第二电阻R2→第二定子电感L2→第二功率开关器件S2的二极管VD2→主正开关K1→电池组P1→主负开关K2→第四功率开关器件S4的二极管VD4→第一定子电感L1。
目标上桥臂开关模块和目标下桥臂开关模块的选取并不限于上述示例,且目标上桥臂开关模块和目标下桥臂开关模块的选取不同,形成的电池组P1的放电回路和充电回路也不同,在此并不限定。
需要说明的是,在一些示例中,主正开关K1与目标上桥臂开关模块和目标下桥臂开关模块不同时导通,可通过支撑电容C1将电池组P1的能量传输给电机P3,实现电池组P1的充电和放电。
在第二驱动信号驱动主正开关K1导通的情况下,第一驱动信号驱动部分开关模块(即目标上桥臂开关模块和目标下桥臂开关模块)断开。若电机P3中存储的能量低于电池组P1存储的能量,则电池组P1向支撑电容C1传输能量。若电机P3中存储的能量高于电池组P1存储的能量,则电池组P1接收电机P3传输来的能量。
在第一驱动信号驱动部分开关模块(即目标上桥臂开关模块和目标下 桥臂开关模块)导通的情况下,第二驱动信号驱动主正开关K1断开。电机P3接收支撑电容C1传输来的能量,支撑电容C1的能量是从电池组P1得来的。
反复重复上述电池组P1放电和充电的过程,以实现对电池组P1的自加热。
在另一个实施例中,电池管理模块P6向辅助充电支路控制模块P8发送低温低电量加热请求指令,整车控制器P5向电机控制器P7发送第二控制信号。
供电电源P41的电压高于电池组P1的当前电压。辅助充电支路控制模块P8响应低温低电量加热请求指令,向辅助开关模块发送第一控制信号。辅助开关模块响应第一控制信号而导通。
电机控制器P7响应第二控制信号,向逆变器P2中的部分开关模块发送第一驱动信号。逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块响应第一驱动信号周期性导通和断开。逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块导通的过程中,辅助充电支路P4的供电电源P41的能量可通过开关器件K3传递给电机P3,相当于对电机P3进行充电。值得一提的是,辅助充电支路P4的供电电源P41通过开关器件K3、外接端口G1和G2向电机P3传递能量可通过一次或多次完成,在此并不限定。目的是使电池组P1的能量和电机P3的能量能够支持对电池组P1进行自加热。
电池管理模块P6向辅助充电支路控制模块P8发送指示控制辅助充电支路P4中辅助开关模块断开的信号。辅助充电支路控制模块P8响应该信号,向辅助开关模块发送指示控制辅助开关模块断开的信号,辅助开关模块断开。整车控制器P5向电池管理模块P6发送第三控制信号。电池管理模块P6响应第三控制信号,向主正开关K1发送第二驱动信号。主正开关K1响应第二驱动信号周期性导通和断开。
在主正开关K1周期性导通和断开,逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块周期性导通和断开,可通过支撑电容C1将电池组P1的能量传输至电机P3,电机P3可将能量传输至电池组P1。电池组 P1与电机P3之间的能量的相互传输可参见上述实施例,在此不再赘述。
在又一个实施例中,电池管理模块P6向辅助充电支路控制模块P8发送低温低电量加热请求指令。整车控制器P5向电机控制器P7发送第二控制信号,向电池管理模块P6发送第三控制信号。
供电电源P41的电压高于电池组P1的当前电压。辅助充电支路控制模块P8响应低温低电量加热请求指令,向辅助开关模块发送第一控制信号。辅助开关模块响应第一控制信号而导通。
电机控制器P7响应第二控制信号,向逆变器P2中的部分开关模块发送第一驱动信号。逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块响应第一驱动信号周期性导通和断开。逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块导通的过程中,辅助充电支路P4的供电电源P41的能量可通过开关器件K3、外接端口G1和G2传递给电机P3,相当于对电机P3进行充电。
电池管理模块P6响应第三控制信号,向主正开关K1发送第二驱动信号。主正开关K1响应第二驱动信号周期性导通和断开。在主正开关K1周期性导通和断开的过程中,辅助充电支路P4的供电电源P41的能量可通过开关器件K3、外接端口G1和G2传递给电池组P1,相当于对电池组P1充电。
值得一提的是,辅助充电支路P4的供电电源P41通过开关器件K3、外接端口G1和G2向电池组P1和电机P3传输能量可通过一次或多次完成,在此并不限定,目的是使电池组P1的能量和电机P3的能量能够支持对电池组P1进行自加热。
电池管理模块P6向辅助充电支路控制模块P8发送指示控制辅助充电支路P4中辅助开关模块断开的信号。辅助充电支路控制模块P8响应该信号,向辅助开关模块发送指示控制辅助开关模块断开的信号,辅助开关模块断开。
逆变器P2中的目标上桥臂开关模块和目标下桥臂开关模块响应第一驱动信号周期性导通和断开。主正开关K1响应第二驱动信号周期性导通和断开。可通过支撑电容C1将电池组P1的能量传输至电机P3,电机P3 可将能量传输至电池组P1。电池组P1与电机P3之间的能量的相互传输可参见上述实施例,在此不再赘述。
需要说明的是,整车控制器P5、辅助充电支路控制模块P8、电池管理模块P6和电机控制器P7的相互配合,控制辅助开关模块、逆变器P2中的开关模块和主正开关K1的通断,以实现对电池组P1的自加热。对电池组P1的自加热的方式包括但并不限于上述实施例的方式。
在一些示例中,电池管理模块P6还用于将获取的电池组P1的状态参数向整车控制器P5发送。其中,电池组P1的状态参数包括荷电状态和温度。
整车控制器P5还用于将接收到的电池组P10的状态参数向电机控制器P7发送。
电机控制器P7还用于基于期望温升速率和接收到的电池组P1的状态参数,计算得到第一期望频率和第一期望占空比,并将第一驱动信号的频率和占空比调节为第一期望频率和第一期望占空比。
电机控制器P7可根据电池组P1的温度,得到电池组P1的温升速率。期望温升速率为预期的温升速率,可根据具体工作场景和工作需求设定,在此并不限定。将第一驱动信号的频率和占空比调节为第一期望频率和第一期望占空比,可调整对电池组P1的加热速率。计算第一期望频率和第一期望占空比的过程可实时进行,并实时调节第一驱动信号的频率和占空比。
在一些示例中,电池管理模块P6还用于将获取的电池组P1的荷电状态向整车控制器P5发送。
整车控制器P5还用于将接收到的电池组P1的荷电状态向电机控制器P7发送。
电机控制器P7还用于获取电机参数,并基于期望电机参数、电机参数和接收的电池组的荷电状态,计算得到第二期望频率和第二期望占空比,并将第一驱动信号的频率和占空比调节为第二期望频率和第二期望占空比。
其中,电机参数包括母线电流或电机P3的相电流。母线电流具体可 为流过主正开关K1的电流。电机P3的相电流具体可以为流入或流出电机P3的三相输入端的电流。期望电机参数包括期望母线电流或电机P3的期望相电流,期望电机参数为预期的电机参数,可根据具体工作场景和工作需求设定,在此并不限定。
将第一驱动信号的频率和占空比调节为第二期望频率和第二期望占空比,可调整对电池组P1的加热速率。计算第二期望频率和第二期望占空比的过程可实时进行,并实时调节第一驱动信号的频率和占空比。
在一些示例中,电池管理模块P6还用于基于期望温升速率和获取的电池组P1的状态参数,计算得到第三期望频率和第三期望占空比,并将第二驱动信号的频率和占空比调节为第三期望频率和第三期望占空比。
其中,电池组P1的状态参数包括电池组的荷电状态和电池组的温度。电池管理模块P6可根据电池组的温度,得到电池组的温升速率。期望温升速率为预期的温升速率,可根据具体工作场景和工作需求设定,在此并不限定。将第二驱动信号的频率和占空比调节为第三期望频率和第三期望占空比,可调整对电池组P1的加热速率。计算第三期望频率和第三期望占空比的过程可实时进行,并实时调节第二驱动信号的频率和占空比。
在一些示例中,电机控制器P7还用于获取电机参数,并将电机参数向整车控制器发送。电机参数包括母线电流或电机的相电流。母线电流或电机的相电流和参见上述实施例中的相关说明,在此不再赘述。
整车控制器P5还用于将接收的电机参数向电池管理模块P6发送。
电池管理模块P6还用于基于期望电机参数、获取的电池组P1的荷电状态和接收的电机参数,计算得到第四期望频率和第四期望占空比,并将第二驱动信号的频率和占空比调节为第四期望频率和第四期望占空比。从而通过控制第二驱动信号的频率和占空比,调整主正开关K1的开关频率以及通断时间,以调整母线电流的有效值,从而调整电池组加热系统的自加热过程。期望电机参数的相关说明可参见上述实施例中的相关内容,在此不再赘述。
计算第四期望频率和第四期望占空比的过程可实时进行,并实时调节 第二驱动信号的频率和占空比。
在一些示例中,电机控制器P7还用于获取电机参数,并将电机参数向整车控制器P5发送。其中,电机参数包括母线电流或电机的相电流。
整车控制器P5还用于将接收到的电机参数向电池管理模块P6发送。
电池管理模块P6还用于根据电池组P1的当前温度、电池组P1的期望温度、电机参数和期望电机参数,得到电池组P1的预计加热时长。电池组P1的期望温度可根据具体工作场景和工作需求设定,在此并不限定。期望电机参数的说明可参见上述实施例中的相关内容,在此不再赘述。
以及,电池管理模块P6还用于向整车控制器P5发送包括预计加热时长的时长信息。具体得到的预计加热时长在此并不限定,比如,可以为1分钟至40分钟内的任意一个值。
整车控制器P5还用于接收时长信息,并发出用于提示预计加热时长的提示消息。提示消息具体可实现为显示于车载仪器仪表上的图像信息,也可实现为通过扩音器和车载仪器发出的声音信息,在此并不限定。
除了上述的低温低电量加热模式,电池组加热系统还可进入低温加热模式或停止加热模式。
在一些示例中,电池管理模块P6还用于若电池组P1的温度低于加热温度阈值,且电池组P1的荷电状态高于等于加热荷电状态要求阈值,向辅助充电支路控制模块P8发送低温加热请求指令。低温加热请求指令用于指示请求电池组加热系统进入低温加热模式。
由于电池组P1的荷电状态高于或等于加热荷电状态要求阈值,表明电池组P1的能量足够支持对电池组P1的自加热。因此不需要辅助充电支路P4的供电电源P41再提供能量。辅助充电支路控制模块P8还用于响应低温加热请求指令,向辅助充电支路P4发送第四控制信号,以控制电池组加热系统与辅助充电支路P4断开。
在一些示例中,电池管理模块P6还用于若电池组P1的温度高于等于加热温度阈值,且电池组P1的荷电状态高于或等于加热荷电状态要求阈值,向整车控制器P5和辅助充电支路控制模块P8分别发送停止加热请求 指令。停止加热请求指令用于指示请求电池组加热系统进入停止加热模式。
辅助充电支路控制模块P8还用于响应停止加热请求指令,向辅助充电支路P4发送第五控制信号,以控制电池组加热系统与辅助充电支路P4断开。
整车控制器P5还用于响应停止加热请求指令,向电机控制器P7发送第六控制信号,向电池管理模块P6发送第七控制信号。
电机控制器P7还用于响应第六控制信号,停止向逆变器P2中的部分开关模块发送第一驱动信号。逆变器P2的开关模块断开。
电池管理模块P6还用于响应第七控制信号,停止向主正开关K1发送第二驱动信号。主正开关K1断开。
在电池组加热系统对电池组P1进行加热的过程中,电机控制器P7还可监测逆变器P2中的开关模块、电机P3的定子等位置的温度、母线电流、电机P3的相电流或其他参数,并将监测得到的参数上传至整车控制器P5。整车控制器P5可根据监测得到的参数,对电池组加热系统进行调整。
电池管理模块P6也可监测电池组P1的温度、荷电状态、绝缘电阻等参数,并将检测得到的参数上传至整车控制器P5。整车控制器P5可根据监测得到的参数,对电池组加热系统进行调整。
对电池组加热系统进行的调整具体可包括停止整个电池组加热系统对电池组P1的加热,或调整驱动开关模块的第一驱动信号,以调整开关模块的开关频率和通断占空比,或调整驱动主正开关K1的第二驱动信号,以调整主正开关K1的开关频率和通断占空比。
与上述实施例中的电池组加热系统对应,本申请实施例还提供了一种电池组加热系统的控制方法。图3为本申请实施例中一种电池组加热系统的控制方法的流程图。如图3所示,该电池组加热系统的控制方法可包括步骤S101至步骤S103。
在步骤S101中,电池管理模块获取电池组的状态参数,若电池组的状态参数满足预设低温低电量条件,向整车控制器和辅助充电支路控制模 块分别发送低温低电量加热请求指令。
在一些示例中,状态参数包括温度和荷电状态,预设低温低电量条件包括温度低于加热温度阈值,且荷电状态低于加热荷电状态要求阈值。比如,加热温度阈值大于等于-50℃,小于等于5℃。加热荷电状态要求阈值大于等于5%,小于100%。
在步骤S102中,辅助充电支路控制模块响应低温低电量加热请求指令,向辅助充电支路发送第一控制信号,以控制电池组加热系统与辅助充电支路导通,使得供电电源通过外接接口向电池组和/或电机传输能量。
在步骤S103中,整车控制器响应低温低电量加热请求指令,向电机控制器发送第二控制信号,使电机控制器控制逆变器中的开关模块的通断,向电池管理模块发送第三控制信号,使电池管理模块控制主正开关的通断,使电池组与电机之间相互传递能量,以对电池组进行加热。
在本申请实施例中,电池管理模块确定电池组的状态参数满足预设低温低电量条件,向整车控制器和辅助充电支路控制模块分别发送低温低电量加热请求指令,以请求进行低温低电量加热模式。电池管理模块通过控制辅助充电支路控制模块,整车控制器通过控制电池管理模块和电机控制器,控制辅助充电支路、主正开关和逆变器中的开关模块,使辅助充电支路中供电电源向电池和/或电机传输能量,以使电池组和电机具有充足的可支持对电池组加热的能量。电池组与电机之间相互传递能量,形成电池组充、放电的循环,在电池组所在的回路中产生电流。交流电流可连续不断的通过电池组,使得电池组的内阻发热,从而在低电量的情况下也可实现对电池组的均匀、高效率的自加热。
与图1和图2所示的电池组加热系统对应,图4为本申请另一实施例中一种电池组加热系统的控制方法的流程图。图4与图3的不同之处在于,图4所示的电池组加热系统的控制方法还可包括步骤S104至步骤S107。
在步骤S104中,电池管理模块向预充开关发送第三驱动信号,以控制预充开关导通,进行预充电。
其中,电池组加热系统还包括与主正开关并联的预充支路,预充支路 包括预充开关和预充电阻。
在步骤S105中,辅助充电支路控制模块响应低温低电量加热请求指令,向辅助开关模块发送第一控制信号,以控制辅助开关模块导通。
其中,辅助充电支路还包括辅助开关模块。供电电源的电压高于电池组的当前电压。
在步骤S106中,电机控制器响应第二控制信号,向逆变器中的部分开关模块发送第一驱动信号,以驱动部分开关模块周期性导通和断开,使电机接收供电电源传输来的能量,或使电机接收电池组传输来的能量,或使电机向电池组传输能量。
在步骤S107中,电池管理模块响应第三控制信号,向主正开关发送第二驱动信号,以驱动主正开关周期性导通和断开,使电池组接收供电电源传输来的能量,或使电池组接收电机传输来的能量,或使电池组向电机传输能量。
在一些示例中,电池组加热系统还包括与逆变器并联的支撑电容。在第二驱动信号驱动主正开关导通的情况下,第一驱动信号驱动部分开关模块断开,以使电池组向支撑电容传输能量,或使电池组接收电机传输来的能量。在第一驱动信号驱动部分开关模块导通的情况下,第二驱动信号驱动主正开关断开,以使电机接收支撑电容传输来的能量。
图5为本申请又一实施例中一种电池组加热系统的控制方法的流程图。图5与图3的不同之处在于,图5所示的电池组加热系统的控制方法还包括步骤S108至步骤S114。
在步骤S108中,电池管理模块确定电池组的温度低于加热温度阈值,且电池组的荷电状态高于等于加热荷电状态要求阈值,向辅助充电支路控制模块发送低温加热请求指令。
在步骤S109中,辅助充电支路控制模块响应低温加热请求指令,向辅助充电支路发送第四控制信号,以控制电池组加热系统与辅助充电支路断开。
在步骤S110中,电池管理模块确定电池组的温度高于等于加热温度阈值,且电池组的荷电状态高于或等于加热荷电状态要求阈值,向整车控 制器和辅助充电支路控制模块分别发送停止加热请求指令。
在步骤S111中,辅助充电支路控制模块响应停止加热请求指令,向辅助充电支路发送第五控制信号,以控制电池组加热系统与辅助充电支路断开。
在步骤S112中,整车控制器响应停止加热请求指令,向电机控制器发送第六控制信号,向电池管理模块发送第七控制信号。
在步骤S113中,电机控制器响应第六控制信号,停止向逆变器中的部分开关模块发送第一驱动信号。
在步骤S114中,电池管理模块响应第七控制信号,停止向主正开关发送第二驱动信号。
在一些示例中,电机控制器可调节第一驱动信号,从而调整逆变器的开关模块的开关频率和通断时长,以调节电池组加热系统对电池加热进行充、放电的电流。
比如,电池管理模块将获取的电池组的状态参数向整车控制器发送。状态参数包括荷电状态和温度。整车控制器将接收到的电池组的状态参数向电机控制器发送。电机控制器基于期望温升速率和接收到的电池组的状态参数,计算得到第一期望频率和第一期望占空比,并将第一驱动信号的频率和占空比调节为第一期望频率和第一期望占空比。
又比如,所述电池管理模块将获取的所述电池组的荷电状态向所述整车控制器发送。所述整车控制器将接收到的所述电池组的荷电状态向所述电机控制器发送。所述电机控制器获取电机参数,并基于期望电机参数、所述电机参数和接收的所述电池组的荷电状态,计算得到第二期望频率和第二期望占空比,并将所述第一驱动信号的频率和占空比调节为所述第二期望频率和所述第二期望占空比。所述电机参数包括母线电流或所述电机的相电流。
在一些示例中,电池管理模块可调节第二驱动信号,从而调整主正开关的开关频率和通断时长,以调节电池组加热系统对电池的加热。
比如,电池管理模块基于期望温升速率和获取的电池组的状态参数,计算得到第三期望频率和第三期望占空比,并将第二驱动信号的频率和占 空比调节为第三期望频率和第三期望占空比。状态参数包括荷电状态和温度。
又比如,电机控制器获取电机参数,并将电机参数向整车控制器发送。电机参数包括母线电流或电机的相电流。整车控制器将接收的电机参数向电池管理模块发送。电池管理模块基于期望电机参数、获取的电池组的荷电状态和接收的电机参数,计算得到第四期望频率和第四期望占空比,并将第二驱动信号的频率和占空比调节为第四期望频率和第四期望占空比。
在一些示例中,电机控制器获取电机参数,并将电机参数向整车控制器发送,电机参数包括母线电流或电机的相电流。整车控制器将接收到的电机参数向电池管理模块发送。电池管理模块根据电池组的当前温度、电池组的期望温度、电机参数和期望电机参数,得到电池组的预计加热时长。电池管理模块向整车控制器发送包括预计加热时长的时长信息。整车控制器接收时长信息,并发出用于提示预计加热时长的提示消息,以提示用户预计加热时长。
本申请实施例中电池组加热系统的控制方法的相关说明可参见上述实施例中电池组加热系统的相关内容,在此不再赘述。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于控制方法实施例而言,相关之处可以参见电池组加热系统实施例的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申请的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、 “第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (31)

  1. 一种电池组加热系统,包括与电池组的正极连接的主正开关、与所述电池组的负极连接的主负开关、与所述主正开关和所述主负开关连接的逆变器、与所述逆变器连接的外接端口、与所述逆变器连接的电机,以及辅助充电支路控制模块、整车控制器、电机控制器和电池管理模块;
    所述逆变器包括多个开关模块;
    所述外接端口连接辅助充电支路,所述辅助充电支路包括供电电源;
    所述电池管理模块用于获取所述电池组的状态参数,若所述电池组的状态参数满足预设低温低电量条件,向所述整车控制器和所述辅助充电支路控制模块分别发送低温低电量加热请求指令;
    所述辅助充电支路控制模块用于响应所述低温低电量加热请求指令,向所述辅助充电支路发送第一控制信号,以控制所述电池组加热系统与所述辅助充电支路导通,使得所述供电电源通过所述外接端口向所述电池组和/或所述电机传输能量;
    所述整车控制器用于响应所述低温低电量加热请求指令,向所述电机控制器发送第二控制信号,使电机控制器控制所述逆变器中的开关模块的通断,向所述电池管理模块发送第三控制信号,使电池管理模块控制所述主正开关的通断,使所述电池组与所述电机之间相互传递能量,以对所述电池组进行加热。
  2. 根据权利要求1所述的电池组加热系统,其中,
    所述电机控制器还用于响应所述第二控制信号,向所述逆变器中的部分开关模块发送第一驱动信号,以驱动所述部分开关模块周期性导通和断开,使所述电机接收所述供电电源传输来的能量,或使所述电机接收所述电池组传输来的能量,或使所述电机向所述电池组传输能量;
    所述电池管理模块还用于响应所述第三控制信号,向所述主正开关发送第二驱动信号,以驱动所述主正开关周期性导通和断开,使所述电池组接收所述供电电源传输来的能量,或使所述电池组接收所述电机传输来的能量,或使所述电池组向所述电机传输能量。
  3. 根据权利要求1所述的电池组加热系统,其中,
    所述状态参数包括温度和荷电状态,所述预设低温低电量条件包括所述温度低于加热温度阈值,且所述荷电状态低于加热荷电状态要求阈值。
  4. 根据权利要求2所述的电池组加热系统,其中,所述逆变器包括并联的第一相桥臂、第二相桥臂和第三相桥臂,所述第一相桥臂、所述第二相桥臂和所述第三相桥臂均具有上桥臂和下桥臂,且所述上桥臂设置有开关模块,所述下桥臂设置有开关模块;
    其中,响应所述第一驱动信号被导通的开关模块包括目标上桥臂开关模块和目标下桥臂开关模块,所述目标上桥臂开关模块为所述第一相桥臂、所述第二相桥臂、所述第三相桥臂中任意一个桥臂的上桥臂的开关模块,所述目标下桥臂开关模块为除所述目标上桥臂开关模块所在的桥臂外的至少一个桥臂的下桥臂的开关模块;
    所述开关模块具有二极管;
    针对所述上桥臂的所述开关模块,所述二极管的阳极与所述上桥臂和所述下桥臂的连接点连接,所述二极管的阴极位于所述上桥臂与所述主正开关之间;
    针对所述下桥臂的所述开关模块,所述二极管的阳极位于所述下桥臂与所述主负开关之间,所述二极管的阴极与所述上桥臂和所述下桥臂的连接点连接;
    所述电机的第一相输入端、第二相输入端和第三相输入端分别与所述第一相桥臂中上桥臂和下桥臂的连接点、所述第二相桥臂中上桥臂和下桥臂的连接点和所述第三相桥臂中上桥臂和下桥臂的连接点连接。
  5. 根据权利要求1所述的电池组加热系统,其中,所述电池组加热系统还包括与所述逆变器并联的支撑电容;
    在所述第二驱动信号驱动所述主正开关导通的情况下,所述第一驱动信号驱动所述部分开关模块断开,以使所述电池组向所述支撑电容传输能量,或使所述电池组接收所述电机传输来的能量;
    在所述第一驱动信号驱动所述部分开关模块导通的情况下,所述第二驱动信号驱动所述主正开关断开,以使所述电机接收所述支撑电容传输来 的能量。
  6. 根据权利要求5所述的电池组加热系统,其中,还包括与所述主正开关并联的预充支路,所述预充支路包括预充开关和预充电阻;
    所述电池管理模块还用于向所述预充开关发送第三驱动信号,以控制所述预充开关导通,进行预充电。
  7. 根据权利要求1所述的电池组加热系统,其中,所述供电电源的电压高于所述电池组的当前电压。
  8. 根据权利要求1所述的电池组加热系统,其中,所述电池组加热系统还包括所述辅助充电支路,所述辅助充电支路还包括辅助开关模块,
    所述辅助充电支路控制模块具体用于响应所述低温低电量加热请求指令,向所述辅助开关模块发送所述第一控制信号,以控制所述辅助开关模块导通。
  9. 根据权利要求3所述的电池组加热系统,其中,
    所述电池管理模块还用于若所述电池组的温度低于所述加热温度阈值,且所述电池组的荷电状态高于等于所述加热荷电状态要求阈值,向所述辅助充电支路控制模块发送低温加热请求指令;
    所述辅助充电支路控制模块还用于响应所述低温加热请求指令,向所述辅助充电支路发送第四控制信号,以控制所述电池组加热系统与所述辅助充电支路断开。
  10. 根据权利要求3所述的电池组加热系统,其中,
    所述电池管理模块还用于若所述电池组的温度高于等于所述加热温度阈值,且所述电池组的荷电状态高于或等于所述加热荷电状态要求阈值,向所述整车控制器和所述辅助充电支路控制模块分别发送停止加热请求指令;
    所述辅助充电支路控制模块还用于响应所述停止加热请求指令,向所述辅助充电支路发送第五控制信号,以控制所述电池组加热系统与所述辅助充电支路断开;
    所述整车控制器还用于响应所述停止加热请求指令,向所述电机控制器发送第六控制信号,向所述电池管理模块发送第七控制信号;
    所述电机控制器还用于响应所述第六控制信号,停止向所述逆变器中的部分开关模块发送第一驱动信号;
    所述电池管理模块还用于响应所述第七控制信号,停止向所述主正开关发送第二驱动信号。
  11. 根据权利要求1所述的电池组加热系统,其中,
    所述电池管理模块还用于将获取的所述电池组的状态参数向所述整车控制器发送,所述状态参数包括荷电状态和温度;
    所述整车控制器还用于将接收到的所述电池组的状态参数向所述电机控制器发送;
    所述电机控制器还用于基于期望温升速率和接收到的所述电池组的状态参数,计算得到第一期望频率和第一期望占空比,并将所述第一驱动信号的频率和占空比调节为所述第一期望频率和所述第一期望占空比。
  12. 根据权利要求1所述的电池组加热系统,其中,
    所述电池管理模块还用于将获取的所述电池组的荷电状态向所述整车控制器发送;
    所述整车控制器还用于将接收到的所述电池组的荷电状态向所述电机控制器发送;
    所述电机控制器还用于获取电机参数,并基于期望电机参数、所述电机参数和接收的所述电池组的荷电状态,计算得到第二期望频率和第二期望占空比,并将所述第一驱动信号的频率和占空比调节为所述第二期望频率和所述第二期望占空比,所述电机参数包括母线电流或所述电机的相电流。
  13. 根据权利要求1所述的电池组加热系统,其中,
    所述电池管理模块还用于基于期望温升速率和获取的所述电池组的状态参数,计算得到第三期望频率和第三期望占空比,并将所述第二驱动信号的频率和占空比调节为所述第三期望频率和所述第三期望占空比,所述状态参数包括荷电状态和温度。
  14. 根据权利要求1所述的电池组加热系统,其中,
    所述电机控制器还用于获取电机参数,并将所述电机参数向所述整车 控制器发送,所述电机参数包括母线电流或所述电机的相电流;
    所述整车控制器还用于将接收的所述电机参数向所述电池管理模块发送;
    所述电池管理模块还用于基于期望电机参数、获取的所述电池组的荷电状态和接收的所述电机参数,计算得到所述第四期望频率和第四期望占空比,并将所述第二驱动信号的频率和占空比调节为所述第四期望频率和所述第四期望占空比。
  15. 根据权利要求1所述的电池组加热系统,其中,
    所述电机控制器还用于获取电机参数,并将所述电机参数向所述整车控制器发送,所述电机参数包括母线电流或所述电机的相电流;
    所述整车控制器还用于将接收到的所述电机参数向所述电池管理模块发送;
    所述电池管理模块还用于根据所述电池组的当前温度、所述电池组的期望温度、所述电机参数和期望电机参数,得到所述电池组的预计加热时长,以及,向所述整车控制器发送包括所述预计加热时长的时长信息;
    所述整车控制器还用于接收所述时长信息,并发出用于提示预计加热时长的提示消息。
  16. 根据权利要求3所述的电池组加热系统,其中,
    所述加热温度阈值大于等于-50℃,小于等于5℃;
    所述加热荷电状态要求阈值大于等于5%,小于100%。
  17. 一种电池组加热系统的控制方法,应用于权利要求1至16中任意一项所述的电池组加热系统,所述电池组加热系统的控制方法包括:
    所述电池管理模块获取所述电池组的状态参数,若所述电池组的状态参数满足预设低温低电量条件,向所述整车控制器和所述辅助充电支路控制模块分别发送低温低电量加热请求指令;
    所述辅助充电支路控制模块响应所述低温低电量加热请求指令,向所述辅助充电支路发送第一控制信号,以控制所述电池组加热系统与所述辅助充电支路导通,使得所述供电电源通过所述外接端口向所述电池组和/或 所述电机传输能量;
    所述整车控制器响应所述低温低电量加热请求指令,向所述电机控制器发送第二控制信号,使电机控制器控制所述逆变器中的开关模块的通断,向所述电池管理模块发送第三控制信号,使电池管理模块控制所述主正开关的通断,使所述电池组与所述电机之间相互传递能量,以对所述电池组进行加热。
  18. 根据权利要求17所述的电池组加热系统的控制方法,其中,还包括:
    所述电机控制器响应所述第二控制信号,向所述逆变器中的部分开关模块发送第一驱动信号,以驱动所述部分开关模块周期性导通和断开,使所述电机接收所述供电电源传输来的能量,或使所述电机接收所述电池组传输来的能量,或使所述电机向所述电池组传输能量;
    所述电池管理模块响应所述第三控制信号,向所述主正开关发送第二驱动信号,以驱动所述主正开关周期性导通和断开,使所述电池组接收所述供电电源传输来的能量,或使所述电池组接收所述电机传输来的能量,或使所述电池组向所述电机传输能量。
  19. 根据权利要求17所述的电池组加热系统的控制方法,其中,
    所述状态参数包括温度和荷电状态,所述预设低温低电量条件包括所述温度低于加热温度阈值,且所述荷电状态低于加热荷电状态要求阈值。
  20. 根据权利要求17所述的电池组加热系统的控制方法,其中,所述电池组加热系统还包括与所述逆变器并联的支撑电容;
    在所述第二驱动信号驱动所述主正开关导通的情况下,所述第一驱动信号驱动所述部分开关模块断开,以使所述电池组向所述支撑电容传输能量,或使所述电池组接收所述电机传输来的能量;
    在所述第一驱动信号驱动所述部分开关模块导通的情况下,所述第二驱动信号驱动所述主正开关断开,以使所述电机接收所述支撑电容传输来的能量。
  21. 根据权利要求17所述的电池组加热系统的控制方法,其中,所述电池组加热系统还包括与所述主正开关并联的预充支路,所述预充支路 包括预充开关和预充电阻;
    所述电池组加热系统的控制方法还包括:
    所述电池管理模块向所述预充开关发送第三驱动信号,以控制所述预充开关导通,进行预充电。
  22. 根据权利要求17所述的电池组加热系统的控制方法,其中,所述供电电源的电压高于所述电池组的当前电压。
  23. 根据权利要求17所述的电池组加热系统的控制方法,其中,所述电池组加热系统还包括所述辅助充电支路,所述辅助充电支路还包括辅助开关模块;
    所述辅助充电支路控制模块响应所述低温低电量加热请求指令,向所述辅助充电支路发送第一控制信号,以控制所述辅助充电支路导通,包括:
    所述辅助充电支路控制模块响应所述低温低电量加热请求指令,向所述辅助开关模块发送所述第一控制信号,以控制所述辅助开关模块导通。
  24. 根据权利要求19所述的电池组加热系统的控制方法,其中,还包括:
    所述电池管理模块确定所述电池组的温度低于所述加热温度阈值,且所述电池组的荷电状态高于等于所述加热荷电状态要求阈值,向所述辅助充电支路控制模块发送低温加热请求指令;
    所述辅助充电支路控制模块响应所述低温加热请求指令,向所述辅助充电支路发送所述第四控制信号,以控制所述电池组加热系统与所述辅助充电支路断开。
  25. 根据权利要求19所述的电池组加热系统的控制方法,其中,还包括:
    所述电池管理模块确定所述电池组的温度高于等于所述加热温度阈值,且所述电池组的荷电状态高于或等于所述加热荷电状态要求阈值,向所述整车控制器和所述辅助充电支路控制模块分别发送停止加热请求指令;
    所述辅助充电支路控制模块响应所述停止加热请求指令,向所述辅助 充电支路发送第五控制信号,以控制所述电池组加热系统与所述辅助充电支路断开;
    所述整车控制器响应所述停止加热请求指令,向所述电机控制器发送第六控制信号,向所述电池管理模块发送第七控制信号;
    所述电机控制器响应所述第六控制信号,停止向所述逆变器中的部分开关模块发送第一驱动信号;
    所述电池管理模块响应所述第七控制信号,停止向所述主正开关发送第二驱动信号。
  26. 根据权利要求17所述的电池组加热系统的控制方法,其中,还包括:
    所述电池管理模块将获取的所述电池组的状态参数向所述整车控制器发送,所述状态参数包括荷电状态和温度;
    所述整车控制器将接收到的所述电池组的状态参数向所述电机控制器发送;
    所述电机控制器基于期望温升速率和接收到的所述电池组的状态参数,计算得到第一期望频率和第一期望占空比,并将所述第一驱动信号的频率和占空比调节为所述第一期望频率和所述第一期望占空比。
  27. 根据权利要求17所述的电池组加热系统的控制方法,其中,还包括:
    所述电池管理模块将获取的所述电池组的荷电状态向所述整车控制器发送;
    所述整车控制器将接收到的所述电池组的荷电状态向所述电机控制器发送;
    所述电机控制器获取电机参数,并基于期望电机参数、所述电机参数和接收的所述电池组的荷电状态,计算得到第二期望频率和第二期望占空比,并将所述第一驱动信号的频率和占空比调节为所述第二期望频率和所述第二期望占空比,所述电机参数包括母线电流或所述电机的相电流。
  28. 根据权利要求17所述的电池组加热系统的控制方法,其中,还包括:
    所述电池管理模块基于期望温升速率和获取的所述电池组的状态参数,计算得到所述第三期望频率和第三期望占空比,并将所述第二驱动信号的频率和占空比调节为所述第三期望频率和所述第三期望占空比,所述状态参数包括荷电状态和温度。
  29. 根据权利要求17所述的电池组加热系统的控制方法,其中,还包括:
    所述电机控制器获取电机参数,并将所述电机参数向所述整车控制器发送,所述电机参数包括母线电流或所述电机的相电流;
    所述整车控制器将接收的所述电机参数向所述电池管理模块发送;
    所述电池管理模块基于期望电机参数、获取的所述电池组的荷电状态和接收的所述电机参数,计算得到所述第四期望频率和第四期望占空比,并将所述第二驱动信号的频率和占空比调节为所述第四期望频率和所述第四期望占空比。
  30. 根据权利要求17所述的电池组加热系统的控制方法,其中,还包括:
    所述电机控制器获取电机参数,并将所述电机参数向所述整车控制器发送,所述电机参数包括母线电流或所述电机的相电流;
    所述整车控制器将接收到的所述电机参数向所述电池管理模块发送;
    所述电池管理模块根据所述电池组的当前温度、所述电池组的期望温度、所述电机参数和期望电机参数,得到所述电池组的预计加热时长;
    所述电池管理模块向所述整车控制器发送包括所述预计加热时长的时长信息;
    所述整车控制器接收所述时长信息,并发出用于提示预计加热时长的提示消息。
  31. 根据权利要求19所述的电池组加热系统的控制方法,其中,
    所述加热温度阈值大于等于-50℃,小于等于5℃;
    所述加热荷电状态要求阈值大于等于5%,小于100%。
PCT/CN2020/087767 2019-06-24 2020-04-29 电池组加热系统及其控制方法 WO2020259071A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/385,879 US11772515B2 (en) 2019-06-24 2021-07-26 Battery pack heating system and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547455.8 2019-06-24
CN201910547455.8A CN110962692B (zh) 2019-06-24 2019-06-24 电池组加热系统及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/385,879 Continuation US11772515B2 (en) 2019-06-24 2021-07-26 Battery pack heating system and control method thereof

Publications (1)

Publication Number Publication Date
WO2020259071A1 true WO2020259071A1 (zh) 2020-12-30

Family

ID=70028414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087767 WO2020259071A1 (zh) 2019-06-24 2020-04-29 电池组加热系统及其控制方法

Country Status (5)

Country Link
US (1) US11772515B2 (zh)
EP (1) EP3758131B1 (zh)
JP (1) JP6999725B2 (zh)
CN (2) CN112373351B (zh)
WO (1) WO2020259071A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937848A (zh) * 2021-09-27 2022-01-14 东集技术股份有限公司 一种电池充电控制装置及电池充电控制方法
CN114094234A (zh) * 2021-10-26 2022-02-25 华人运通(江苏)技术有限公司 一种电池加热控制方法、装置、设备及介质
CN115377555A (zh) * 2022-04-26 2022-11-22 宁德时代新能源科技股份有限公司 电池加热控制方法、装置、设备及存储介质

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373351B (zh) * 2019-06-24 2022-04-22 宁德时代新能源科技股份有限公司 电池组加热方法
CN113733986A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 电池自加热装置及其控制方法和车辆
CN113746152A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 电池能量处理装置和车辆
CN111391718B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN111605439B (zh) * 2020-06-08 2021-08-27 安徽江淮汽车集团股份有限公司 电机辅助加热控制方法、装置、设备及存储介质
CN113904026A (zh) * 2020-06-22 2022-01-07 比亚迪股份有限公司 动力电池自加热控制方法、系统以及汽车
CN113904025A (zh) * 2020-06-22 2022-01-07 比亚迪股份有限公司 动力电池自加热控制方法、系统以及汽车
CN114069102A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、系统及电动车辆
US20220102769A1 (en) * 2020-09-30 2022-03-31 GM Global Technology Operations LLC Architecture for battery self heating
EP4056415A1 (en) * 2021-03-08 2022-09-14 Volvo Car Corporation Method for heating a battery in a vehicle, control unit and vehicle
CN113561847B (zh) * 2021-06-30 2024-03-22 安徽和鼎机电设备有限公司 一种锂电池系统及工作方法
KR102607669B1 (ko) * 2021-08-05 2023-11-29 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 전원 배터리 가열 시스템 및 그 제어 방법 및 제어 회로
KR20230035505A (ko) * 2021-08-31 2023-03-14 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리 팩 가열 방법, 배터리 가열 시스템 및 전기 장치
CN113696789A (zh) * 2021-08-31 2021-11-26 东风小康汽车有限公司重庆分公司 一种用于电池的低温直流加热控制方法
FR3127332A1 (fr) 2021-09-21 2023-03-24 Renault S.A.S Procédé de commande d’un organe de réchauffage de batterie de véhicule automobile
DE102021126347A1 (de) 2021-10-12 2023-04-13 Audi Aktiengesellschaft Verfahren zur Vorbereitung einer Antriebsbatterie auf einen ausgewählten Batteriebetrieb sowie elektrische Antriebsvorrichtung und Kraftfahrzeug
EP4274002A1 (en) * 2021-10-29 2023-11-08 Contemporary Amperex Technology Co., Limited Power battery heating method and heating system
CN116080422A (zh) * 2022-02-17 2023-05-09 华为电动技术有限公司 一种动力电池组装置、加热控制系统及电动汽车
CN114834319B (zh) * 2022-03-04 2023-06-06 华为电动技术有限公司 动力电池加热方法、装置、芯片系统及电动汽车
CN115377554B (zh) * 2022-04-24 2023-12-22 宁德时代新能源科技股份有限公司 用电装置及其加热的控制方法、装置及介质
CN114889497B (zh) * 2022-04-28 2024-05-07 重庆大学 一种电动车辆动力系统复合加热装置和控制方法
WO2024040479A1 (zh) * 2022-08-24 2024-02-29 宁德时代新能源科技股份有限公司 用于电池的调节电路、调节系统和调节方法
CN116995804B (zh) * 2023-06-25 2024-04-05 安徽博达项目管理咨询有限公司 一种通信基站电源并联监控方法
CN116960526A (zh) * 2023-09-18 2023-10-27 浙江艾罗网络能源技术股份有限公司 电池加热方法、装置及系统、电池包

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
JP2014089915A (ja) * 2012-10-31 2014-05-15 Sumitomo Electric Ind Ltd 電源システム及び電動車両
CN104396083A (zh) * 2012-08-29 2015-03-04 丰田自动车株式会社 蓄电系统及其温度控制方法
JP5849917B2 (ja) * 2012-09-28 2016-02-03 株式会社豊田自動織機 電気自動車におけるバッテリ昇温制御装置
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置
CN110962692A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259937A (ja) * 1996-03-22 1997-10-03 Mitsubishi Chem Corp 二次電池の予熱方法および予熱装置
US8452490B2 (en) * 2009-12-14 2013-05-28 Control Solutions LLC Electronic circuit for charging and heating a battery
KR101230353B1 (ko) 2010-01-28 2013-02-06 주식회사 엘지화학 전지 내부 저항을 이용한 저온 성능 개선 전지팩 시스템
JP5502603B2 (ja) * 2010-06-04 2014-05-28 本田技研工業株式会社 車両の電池加温装置
US8884588B2 (en) * 2010-07-29 2014-11-11 Panasonic Corporation Battery warming circuit and battery warming apparatus
CN103419663B (zh) * 2012-05-22 2015-11-25 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
FR2992480B1 (fr) * 2012-06-22 2016-10-21 Renault Sas Dispositif de rechauffement d'une batterie d'accumulateurs d'un vehucule automobile et procede de rechauffement correspondant
CN103066662B (zh) * 2013-01-07 2015-08-05 雷星亮 应急电源
US20140285135A1 (en) * 2013-03-22 2014-09-25 Ec Power, Llc Systems for heating a battery and processes thereof
CN103427137B (zh) * 2013-08-20 2015-10-07 重庆长安汽车股份有限公司 纯电动汽车动力电池的低温充电加热系统及加热方法
CN104779652B (zh) * 2014-01-09 2017-01-25 同济大学 一种利用交流充放电快速预加热的动力电池充电机
CN204289653U (zh) * 2014-11-28 2015-04-22 富奥汽车零部件股份有限公司 一种内置于电机驱动系统的电池加热结构
CN108028443B (zh) * 2015-09-28 2021-01-22 本田技研工业株式会社 电力消耗控制装置
CN105762434B (zh) 2016-05-16 2018-12-07 北京理工大学 一种具有自加热功能的电源系统和车辆
CN106229583B (zh) * 2016-07-25 2018-08-03 北京理工大学 一种基于lc谐振进行加热的蓄电装置加热方法
US10272758B2 (en) * 2016-11-02 2019-04-30 Proterra Inc. Battery system of an electric vehicle
CN106965700A (zh) * 2017-04-28 2017-07-21 北京新能源汽车股份有限公司 一种电动汽车加热充电电路及充电方法
US11500346B2 (en) * 2019-04-25 2022-11-15 David Valin Energy generation, solar panel racking switching pumping apparatus mechanism and system
CN108847513B (zh) * 2018-05-08 2020-07-24 北京航空航天大学 一种锂离子电池低温加热控制方法
CN108682909B (zh) * 2018-05-22 2021-06-08 宁德时代新能源科技股份有限公司 电池组系统及其控制方法、管理设备
CN112706657B (zh) 2018-12-29 2022-12-23 宁德时代新能源科技股份有限公司 控制方法、电池管理模块、电机控制器及介质
CN110962631B (zh) 2018-12-29 2020-11-17 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN110970965B (zh) * 2019-06-24 2020-11-06 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396083A (zh) * 2012-08-29 2015-03-04 丰田自动车株式会社 蓄电系统及其温度控制方法
JP5849917B2 (ja) * 2012-09-28 2016-02-03 株式会社豊田自動織機 電気自動車におけるバッテリ昇温制御装置
JP2014089915A (ja) * 2012-10-31 2014-05-15 Sumitomo Electric Ind Ltd 電源システム及び電動車両
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置
CN110962692A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937848A (zh) * 2021-09-27 2022-01-14 东集技术股份有限公司 一种电池充电控制装置及电池充电控制方法
CN114094234A (zh) * 2021-10-26 2022-02-25 华人运通(江苏)技术有限公司 一种电池加热控制方法、装置、设备及介质
CN115377555A (zh) * 2022-04-26 2022-11-22 宁德时代新能源科技股份有限公司 电池加热控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112373351B (zh) 2022-04-22
EP3758131A1 (en) 2020-12-30
JP6999725B2 (ja) 2022-01-19
JP2021002513A (ja) 2021-01-07
CN110962692B (zh) 2020-12-11
US11772515B2 (en) 2023-10-03
US20210354592A1 (en) 2021-11-18
CN110962692A (zh) 2020-04-07
CN112373351A (zh) 2021-02-19
EP3758131B1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2020259071A1 (zh) 电池组加热系统及其控制方法
US11338702B2 (en) Control system and method for battery pack heating system, and battery pack heating management system
US10971771B2 (en) Battery heating system and control method thereof
KR102278905B1 (ko) 배터리 가열 시스템 및 이의 제어 방법
US20210359348A1 (en) Switch control device and method, motor controller, and battery pack heating control system
CN101685971B (zh) 车载磷酸铁锂锂电池的低温激活装置及方法
KR102463393B1 (ko) 배터리 가열 시스템
CN104917388A (zh) 电力转换装置及其起动方法
JP5862366B2 (ja) 電力変換装置
JP2016119167A (ja) 電源システム
CN117544062A (zh) 一种动力总成、用于动力总成升压充电加热电池的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831304

Country of ref document: EP

Kind code of ref document: A1