CN107666028A - 一种电动车用锂离子电池低温交流加热装置 - Google Patents

一种电动车用锂离子电池低温交流加热装置 Download PDF

Info

Publication number
CN107666028A
CN107666028A CN201710702666.5A CN201710702666A CN107666028A CN 107666028 A CN107666028 A CN 107666028A CN 201710702666 A CN201710702666 A CN 201710702666A CN 107666028 A CN107666028 A CN 107666028A
Authority
CN
China
Prior art keywords
control unit
battery
electrokinetic cell
lithium ion
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710702666.5A
Other languages
English (en)
Inventor
孙泽昌
魏学哲
戴海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710702666.5A priority Critical patent/CN107666028A/zh
Publication of CN107666028A publication Critical patent/CN107666028A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种电动车用锂离子电池低温交流加热装置,用于对动力电池进行交流加热,包括控制单元、能量转换电路、储能电感、电容、预充电路和启动开关,动力电池、储能电感、能量转换电路和电容依次连接形成回路,预充电路和启动开关并联于动力电池和电容之间,控制单元分别连接能量转换电路、预充电路和启动开关;控制单元实时根据动力电池的温度信息控制启动开关的开通和关断,实现动力电池交流加热状态和正常供电状态的转换,在进入交流加热状态,控制单元实时根据动力电池的电流信息控制能量转换电路的工作状态,在动力电池的交流充放电过程实现内部加热。与现有技术相比,本发明具有加热均匀,效率高,新增器件少,成本低等优点。

Description

一种电动车用锂离子电池低温交流加热装置
技术领域
本发明属于电动车技术领域,涉及一种电动车用锂离子电池低温交流加热装置,尤其是涉及一种借助于现有电池管理系统资源与车载驱动电机逆变器的并联电容、并利用交流充放电方法的动力电池快速预加热装置,适用于电动汽车或其他锂离子动力电池应用在低温环境下的预加热。
背景技术
随着能源及环境问题的不断加剧,以动力电池为能量源的新能源汽车成为汽车发展的趋势。其中,锂离子电池工作电压高、能量密度大、循环寿命长、充电速度快,成为电动汽车用能量源的重要发展方向。同时,锂离子电池在便携式式电子设备、军工设备以及航空航天设备中也有着广泛的应用空间。虽然锂离子电池具有诸多优点,但其低温性能较差,限制了使用范围。现有的技术条件下,锂离子电池在-10℃温度下工作,其容量及输出电压会明显降低。工作温度低于-20℃时,锂离子电池放电比容量迅速下降,仅为常温时的30%左右。由此,锂离子电池在温度较低的地区或季节性能较差,严重制约了锂离子电池的广泛应用。
现有的电池低温预加热方法主要为加热膜加热、宽线法加热等外部加热方法,能量消耗大,加热效果不明显。同时,也有借助于外接充电机的交流加热方法,如中国专利CN205811017U公开一种电动车锂离子动力电池组加热装置,以充电机为加热电源,但由于需要外接充电机的支持,无法实现不受充电限制的车载加热。上述的外部加热方法无法满足车载应用对效率、成本以及重量上的要求。为此,还需引入新方法来克服传统方法的种种缺点,满足车载动力电池低温预加热的需要。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种低成本、高效率的电动车用锂离子电池低温交流加热装置。本发明借助于待加热的电池管理系统控制器、电池包温度传感器和电流传感器和车载驱动电机逆变电路的母线并联电容组成交流预加热装置,新增器件少,加热效率高,可以很好地与现有电动汽车动力系统兼容。
本发明的目的可以通过以下技术方案来实现:
一种电动车用锂离子电池低温交流加热装置,用于对动力电池进行交流加热,包括控制单元、能量转换电路、储能电感、电容、预充电路和启动开关,所述动力电池、储能电感、能量转换电路和电容依次连接形成回路,所述预充电路和启动开关并联于动力电池和电容之间,所述控制单元分别连接能量转换电路、预充电路和启动开关;
所述控制单元实时根据动力电池的温度信息控制启动开关的开通和关断,实现动力电池交流加热状态和正常供电状态的转换,在进入交流加热状态,控制单元实时根据动力电池的电流信息控制能量转换电路的工作状态,在动力电池的交流充放电过程实现内部加热。
所述能量转换电路包括分别与控制单元连接的开关管M1和M2,所述开关管M1、动力电池、储能电感依次连接形成回路,所述开关管M2一端与储能电感连接,另一端与电容连接;
控制单元根据动力电池的电流信息调整开关管M1和M2的占空比,实现任意交流波形下的动力电池交流充放电。
所述开关管M1和M2均为半导体开关管器件。
所述预充电路包括电池管理系统中的预充电阻和预充继电器,所述预充电阻和预充继电器相连接,所述预充继电器与控制单元连接。
所述控制单元包括控制器以及分别与控制器连接的温度传感器和电流传感器。
所述控制器为电池管理系统控制器或专用加热控制器。
所述储能电感包括高频磁芯电感或无芯电感。
所述电容为驱动电机逆变电路母线电容或驱动电机逆变电路外置电容或驱动电机逆变电路母线电容与驱动电机逆变电路外置电容的组合。
所述动力电池交流充放电具体包括电池放电电容充电模式和电池充电电容放电模式,控制单元实时改变开关管M1和M2的占空比,以调整动力电池交流充放电电流的波形与幅值。
所述控制单元的工作频率高于电化学阻抗谱测试中电池电化学反应过程的最低频率点。
与现有技术相比,本发明具有以下优点:
1)本发明通过对动力电池的交流充放电实现电池内部加热。由锂离子电池电化学反应的机理可知,电池交流内阻客观存在。在电池循环充放电过程中,内阻会产生热量,从而实现电池内部均匀加热。传统的外部加热方式依靠电池包壳壁来传递热量,加热效率低且温度分布不均匀,而电池内部加热可以使电池受热更均匀。相比之下,本发明的能量损耗小,效率更高,温升更均匀。
2)在低温环境下,锂离子电池的大倍率、长时间充电可能会使电池负极产生锂沉积和枝晶,从而影响电池的使用寿命及安全性。本发明交流充放电频率可由控制单元控制,控制单元的工作频率高于电化学阻抗谱测试中电池电化学反应过程的最低频率点,有效避免锂沉积及枝晶形成。
3)本发明复用待加热电池管理系统资源和车载驱动电机逆变电路中的母线电容,需要新增的器件很少,能够有效地节省成本。因此,对新增器件的布置空间要求很小,能在较少增加电池包结构设计空间负担的同时,实现交流加热功能。复用的电池管理系统控制器(BMS)仅需控制两个开关管的占空比,不占用过多控制器资源。
4)本发明通过采集电池输入输出电流,实时调整开关管占空比,可以实现在能量平均状态下的任意动力电池交流充放电电流波形,适用于不同电池种类以及不用工况下的电池交流加热。通过监测电流、温度信息,本发明可在电池电流过大和电压过低时终止交流加热过程,安全性更高。
5)本发明无需借助额外电源即可实现动力电池的低温快速加热,并避免充电过程中有锂金属析出。
附图说明
图1为本发明的整体电路拓扑图;
图2为本发明交流加热工作时电池放电示意图;
图3为本发明交流加热工作时电容充电示意图;
图4为本发明交流加热工作时电容放电示意图;
图5为本发明交流加热工作时电池充电示意图;
图6为本发明交流加热工作前驱动电机逆变器母线电容预充电时的电流流向示意图;
图7为本发明交流加热不需工作时的电流流向示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,一种电动车用锂离子电池低温交流加热装置,用于对动力电池B进行交流加热,包括控制单元、能量转换电路、储能电感L、电容C、预充电路和启动开关S2,动力电池、储能电感、能量转换电路和电容依次连接形成回路,预充电路和启动开关并联于动力电池和电容之间,控制单元分别连接能量转换电路、预充电路和启动开关。储能电感L包括高频磁芯电感或无芯电感。待加热的动力电池包包括由n节单体动力电池串并联而成的电池包,其中R1表示电池包的等效交流阻抗。
能量转换电路为buck-boost电路,包括分别与控制单元连接的开关管M1和M2,开关管M1、动力电池B、储能电感L依次连接形成回路,开关管M2一端与储能电感L连接,另一端与电容C连接;控制单元根据动力电池B的电流信息调整开关管M1和M2的占空比,实现任意交流波形(如:三角波、梯形波、正弦波等)下的动力电池交流充放电。开关管M1和M2均为半导体开关管器件,包括MOSFET、IGBT、碳化硅器件或其它功率半导体器件。
预充电路采用电池管理系统(BMS)中的预充电阻R2和预充继电器S1,预充电阻R2和预充继电器S1相连接,预充继电器S1与控制单元连接。
控制单元包括控制器以及分别与控制器连接的温度传感器和电流传感器。控制器可以复用电池管理系统控制器BMS,也可以设置专用加热控制器。温度传感器为热电偶或其它热-电转换传感器件。电流传感器为霍尔传感器、采样电阻或其它电流采样传感器。
电容C为驱动电机逆变电路母线电容(作为电机逆变器的一部分)或驱动电机逆变电路外置电容或驱动电机逆变电路母线电容与驱动电机逆变电路外置电容的组合。本实施例中,电容C复用驱动电机逆变电路的母线电容。
上述电动车用锂离子电池低温交流加热装置中,控制单元实时根据动力电池的温度信息控制启动开关的开通和关断,实现动力电池交流加热状态和正常供电状态的转换,在进入交流加热状态,控制单元实时根据动力电池的电流信息控制能量转换电路的工作状态,合理调控开关管占空比以及启动开关的开关状态,在动力电池的交流充放电过程实现内部加热。
根据电池交流加热充放电状态以及继电器开关状态,本发明的交流加热装置有以下四种工作模式:
1)电池放电、电容充电模式:图2、图3为本发明交流加热工作时电池放电、电容充电模式下工作示意图。该模式下,电感电流方向为从左至右,由电池系统向逆变器电容充电。BMS控制器控制开关管M1、M2的占空比,即可控制电池电流一个脉宽调制周期内的上升下降量。图2所示为M1开通、M2关断时的电流路径;图3所示为M2开通、M1关断时的电流路径。结合电池包温度信息以及电池电流信息,BMS实时改变M1、M2占空比,以实时调整电池放电电流的波形与幅值。
2)电池充电、电容放电模式:图4、图5为本发明交流加热工作时电池充电、电容放电模式下工作示意图。该模式下,电感电流方向为从右至左,由逆变器电容向电池系统充电。BMS控制开关管M1、M2的占空比,即可控制电池电流一个脉宽调制周期内的上升下降量。图4所示为M2开通、M1关断时的电流路径;图5所示为M1开通、M2关断时的电流路径。结合电池包温度信息以及电池电流信息,BMS实时改变M1、M2占空比,以实时调整电池充电电流的波形与幅值。
3)电容预充电模式:在动力电池进入交流加热模式之前,需要对驱动电机逆变电路母线电容C充电,将电容C两端电压接近于或高于电池电压。如图6所示,为本发明交流加热前电容C预充电电流流向图。利用预充电路,开通继电器开关S1,电池经S1、预充电阻R1向电容C充电,预充电阻R1用以防止预充电流过大,直至电容电压与电池电压接近,关闭继电器开关S1
4)电池正常供电模式:本发明可根据上层控制器以及当前电池温度状态,实时开启或关闭交流加热过程。BMS关断开关S1、S2,同时禁止驱动电机逆变器工作时,通过控制开关管M1、M2状态,使交流加热过程开启。BMS开通开关S1,关断S2以及开关管M1、M2,进入电容C预充过程。BMS开通S2,关闭S1以及开关管M1、M2,使交流加热功能关闭。此时可以使能驱动电机逆变电路,电池向驱动电机提供能量,使驱动电机工作,该过程的电流流向见图7。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种电动车用锂离子电池低温交流加热装置,用于对动力电池进行交流加热,其特征在于,包括控制单元、能量转换电路、储能电感、电容、预充电路和启动开关,所述动力电池、储能电感、能量转换电路和电容依次连接形成回路,所述预充电路和启动开关并联于动力电池和电容之间,所述控制单元分别连接能量转换电路、预充电路和启动开关;
所述控制单元实时根据动力电池的温度信息控制启动开关的开通和关断,实现动力电池交流加热状态和正常供电状态的转换,在进入交流加热状态,控制单元实时根据动力电池的电流信息控制能量转换电路的工作状态,在动力电池的交流充放电过程实现内部加热。
2.根据权利要求1所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述能量转换电路包括分别与控制单元连接的开关管M1和M2,所述开关管M1、动力电池、储能电感依次连接形成回路,所述开关管M2一端与储能电感连接,另一端与电容连接;
控制单元根据动力电池的电流信息调整开关管M1和M2的占空比,实现任意交流波形下的动力电池交流充放电。
3.根据权利要求2所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述开关管M1和M2均为半导体开关管器件。
4.根据权利要求1所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述预充电路包括电池管理系统中的预充电阻和预充继电器,所述预充电阻和预充继电器相连接,所述预充继电器与控制单元连接。
5.根据权利要求1所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述控制单元包括控制器以及分别与控制器连接的温度传感器和电流传感器。
6.根据权利要求5所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述控制器为电池管理系统控制器或专用加热控制器。
7.根据权利要求1所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述储能电感包括高频磁芯电感或无芯电感。
8.根据权利要求1所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述电容为驱动电机逆变电路母线电容或驱动电机逆变电路外置电容或驱动电机逆变电路母线电容与驱动电机逆变电路外置电容的组合。
9.根据权利要求2所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述动力电池交流充放电具体包括电池放电电容充电模式和电池充电电容放电模式,控制单元实时改变开关管M1和M2的占空比,以调整动力电池交流充放电电流的波形与幅值。
10.根据权利要求1所述的电动车用锂离子电池低温交流加热装置,其特征在于,所述控制单元的工作频率高于电化学阻抗谱测试中电池电化学反应过程的最低频率点。
CN201710702666.5A 2017-08-16 2017-08-16 一种电动车用锂离子电池低温交流加热装置 Pending CN107666028A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710702666.5A CN107666028A (zh) 2017-08-16 2017-08-16 一种电动车用锂离子电池低温交流加热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710702666.5A CN107666028A (zh) 2017-08-16 2017-08-16 一种电动车用锂离子电池低温交流加热装置

Publications (1)

Publication Number Publication Date
CN107666028A true CN107666028A (zh) 2018-02-06

Family

ID=61097750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710702666.5A Pending CN107666028A (zh) 2017-08-16 2017-08-16 一种电动车用锂离子电池低温交流加热装置

Country Status (1)

Country Link
CN (1) CN107666028A (zh)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742486A (zh) * 2019-01-14 2019-05-10 山东大学 一种锂电池交流电内部加热电路及加热方法
CN109786878A (zh) * 2019-03-25 2019-05-21 哈尔滨理工大学 一种电动汽车动力电池充电/加热控制方法
CN109950660A (zh) * 2019-03-25 2019-06-28 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN110534820A (zh) * 2018-05-26 2019-12-03 罗伯特·博世有限公司 用于加热电池组模块的方法
CN110544808A (zh) * 2018-05-28 2019-12-06 大众汽车有限公司 车载电网、行驶装置和用于加热电池的电路
CN110600833A (zh) * 2019-09-06 2019-12-20 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统
CN110962692A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法
CN110970965A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN111098760A (zh) * 2018-10-26 2020-05-05 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN111123133A (zh) * 2020-01-02 2020-05-08 北京理工大学 一种非接触式动力电池阻抗测量和充电的装置
CN111261978A (zh) * 2020-01-16 2020-06-09 武汉理工大学 一种基于储能电池交流预热的储能电站冬季保温方法
CN111354998A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 车辆及其温度控制装置
CN111347936A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 一种车辆及其动力电池加热方法与装置
WO2020135733A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
WO2020135734A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN111391719A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 能量转换装置及车辆
CN111391717A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 能量转换装置、方法及车辆
CN111404247A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN111525196A (zh) * 2020-04-21 2020-08-11 深圳威迈斯新能源股份有限公司 电池自加热电路、采用该电路的电动汽车及其控制方法
CN112133987A (zh) * 2019-06-25 2020-12-25 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置
CN112234277A (zh) * 2020-09-04 2021-01-15 重庆雅讯科技有限公司 电池预热方法及装置
WO2021032413A1 (de) * 2019-08-21 2021-02-25 Robert Bosch Gmbh Batteriesystem für ein kraftfahrzeug mit schalteinheit zur erwärmung der batteriezellen, verfahren zum betreiben des batteriesystems und kraftfahrzeug
CN113291200A (zh) * 2021-05-19 2021-08-24 广州小鹏汽车科技有限公司 一种车辆电池组件监测方法和装置
CN113715690A (zh) * 2021-08-31 2021-11-30 经纬恒润(天津)研究开发有限公司 一种电源系统及其控制方法
CN113733986A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 电池自加热装置及其控制方法和车辆
CN113745701A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 动力电池的加热方法和装置、控制器和车辆
CN113752912A (zh) * 2020-06-04 2021-12-07 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN113783477A (zh) * 2021-09-24 2021-12-10 同济大学 一种用于电动汽车的多工作模式电机驱动系统
WO2021253694A1 (zh) * 2020-06-15 2021-12-23 江苏时代新能源科技有限公司 永磁电机的控制方法、装置、动力系统及电动汽车
CN113871757A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113859052A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113904025A (zh) * 2020-06-22 2022-01-07 比亚迪股份有限公司 动力电池自加热控制方法、系统以及汽车
CN113904026A (zh) * 2020-06-22 2022-01-07 比亚迪股份有限公司 动力电池自加热控制方法、系统以及汽车
CN114050330A (zh) * 2021-10-11 2022-02-15 华为数字能源技术有限公司 电池系统及供电系统
CN114113750A (zh) * 2021-11-25 2022-03-01 同济大学 一种电池极片面电流密度的测量装置及方法
CN114204163A (zh) * 2020-09-02 2022-03-18 威马智慧出行科技(上海)有限公司 电动汽车电池包加热方法及电子设备
CN114374199A (zh) * 2022-01-24 2022-04-19 阳光电源股份有限公司 一种储能系统
CN115224397A (zh) * 2022-08-26 2022-10-21 阿维塔科技(重庆)有限公司 一种电池包自加热电路及汽车
DE102021213950A1 (de) 2021-12-08 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zum Heizen eines Energiespeichersystems mit mindestens einem elektrochemischen Energiespeicher
CN117317456A (zh) * 2023-11-27 2023-12-29 江苏欧力特能源科技有限公司 一种家用储能锂电池低温冷启动系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213508A (zh) * 2012-01-18 2013-07-24 比亚迪股份有限公司 一种电动车行车控制系统
CN103560307A (zh) * 2013-11-26 2014-02-05 山东威能环保电源有限公司 一种振荡式电池组快速加热电路及方法
CN203721845U (zh) * 2014-01-09 2014-07-16 同济大学 一种升压式dc-dc动力电池交流充放电低温加热电路
CN104282965A (zh) * 2013-10-11 2015-01-14 同济大学 一种锂离子电池自加热装置及方法
CN106025443A (zh) * 2016-07-25 2016-10-12 北京理工大学 一种基于lc谐振进行加热的电源系统及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213508A (zh) * 2012-01-18 2013-07-24 比亚迪股份有限公司 一种电动车行车控制系统
CN104282965A (zh) * 2013-10-11 2015-01-14 同济大学 一种锂离子电池自加热装置及方法
CN103560307A (zh) * 2013-11-26 2014-02-05 山东威能环保电源有限公司 一种振荡式电池组快速加热电路及方法
CN203721845U (zh) * 2014-01-09 2014-07-16 同济大学 一种升压式dc-dc动力电池交流充放电低温加热电路
CN106025443A (zh) * 2016-07-25 2016-10-12 北京理工大学 一种基于lc谐振进行加热的电源系统及车辆

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534820A (zh) * 2018-05-26 2019-12-03 罗伯特·博世有限公司 用于加热电池组模块的方法
CN110544808A (zh) * 2018-05-28 2019-12-06 大众汽车有限公司 车载电网、行驶装置和用于加热电池的电路
CN111098760B (zh) * 2018-10-26 2021-12-10 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN111098760A (zh) * 2018-10-26 2020-05-05 法法汽车(中国)有限公司 用于为电动汽车的电池包加热的装置和方法及电动汽车
CN111347936B (zh) * 2018-12-21 2022-07-15 比亚迪股份有限公司 一种车辆及其动力电池加热方法与装置
CN111354998B (zh) * 2018-12-21 2022-03-18 比亚迪股份有限公司 车辆及其温度控制装置
US11807068B2 (en) 2018-12-21 2023-11-07 Byd Company Limited Vehicle and temperature control device thereof
CN111347936A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 一种车辆及其动力电池加热方法与装置
CN111354998A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 车辆及其温度控制装置
WO2020135734A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN112706657B (zh) * 2018-12-29 2022-12-23 宁德时代新能源科技股份有限公司 控制方法、电池管理模块、电机控制器及介质
CN112706657A (zh) * 2018-12-29 2021-04-27 宁德时代新能源科技股份有限公司 控制方法、电池管理模块、电机控制器及介质
WO2020135733A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
US10971771B2 (en) 2018-12-29 2021-04-06 Contemporary Amperex Technology Co., Limited Battery heating system and control method thereof
US10780795B2 (en) 2018-12-29 2020-09-22 Contemporary Amperex Technology Co., Limited Battery heating system and control method thereof
CN109742486A (zh) * 2019-01-14 2019-05-10 山东大学 一种锂电池交流电内部加热电路及加热方法
CN109786878A (zh) * 2019-03-25 2019-05-21 哈尔滨理工大学 一种电动汽车动力电池充电/加热控制方法
CN109950660B (zh) * 2019-03-25 2022-01-18 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN109950660A (zh) * 2019-03-25 2019-06-28 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN109786878B (zh) * 2019-03-25 2022-01-21 哈尔滨理工大学 一种电动汽车动力电池充电/加热控制方法
EP3758131A1 (en) * 2019-06-24 2020-12-30 Contemporary Amperex Technology Co., Limited Battery pack heating system and control method thereof
US11772515B2 (en) 2019-06-24 2023-10-03 Contemporary Amperex Technology Co., Limited Battery pack heating system and control method thereof
CN110970965B (zh) * 2019-06-24 2020-11-06 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN110962692B (zh) * 2019-06-24 2020-12-11 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法
WO2020259071A1 (zh) * 2019-06-24 2020-12-30 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法
CN110962692A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统及其控制方法
CN110970965A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 开关控制装置及方法、电机控制器和电池组加热控制系统
CN112133987A (zh) * 2019-06-25 2020-12-25 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置
WO2021032413A1 (de) * 2019-08-21 2021-02-25 Robert Bosch Gmbh Batteriesystem für ein kraftfahrzeug mit schalteinheit zur erwärmung der batteriezellen, verfahren zum betreiben des batteriesystems und kraftfahrzeug
CN110600833A (zh) * 2019-09-06 2019-12-20 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统
CN111123133A (zh) * 2020-01-02 2020-05-08 北京理工大学 一种非接触式动力电池阻抗测量和充电的装置
CN111123133B (zh) * 2020-01-02 2021-03-16 北京理工大学 一种非接触式动力电池阻抗测量和充电的装置
CN111261978B (zh) * 2020-01-16 2021-11-23 武汉理工大学 一种基于储能电池交流预热的储能电站冬季保温方法
CN111261978A (zh) * 2020-01-16 2020-06-09 武汉理工大学 一种基于储能电池交流预热的储能电站冬季保温方法
CN111525196B (zh) * 2020-04-21 2022-09-02 深圳威迈斯新能源股份有限公司 电池自加热电路、采用该电路的电动汽车及其控制方法
WO2021212852A1 (zh) * 2020-04-21 2021-10-28 深圳威迈斯新能源股份有限公司 电池自加热电路、采用该电路的电动汽车及其控制方法
CN111525196A (zh) * 2020-04-21 2020-08-11 深圳威迈斯新能源股份有限公司 电池自加热电路、采用该电路的电动汽车及其控制方法
CN113733986A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 电池自加热装置及其控制方法和车辆
CN113745701A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 动力电池的加热方法和装置、控制器和车辆
CN111391717A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 能量转换装置、方法及车辆
CN111404247A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN111391719B (zh) * 2020-06-04 2020-10-20 比亚迪股份有限公司 能量转换装置及车辆
CN113752912B (zh) * 2020-06-04 2023-06-13 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
CN111404247B (zh) * 2020-06-04 2020-10-23 比亚迪股份有限公司 电池能量处理装置、方法及车辆
CN111391719A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 能量转换装置及车辆
CN113752912A (zh) * 2020-06-04 2021-12-07 比亚迪股份有限公司 车辆、能量转换装置及其控制方法
WO2021253694A1 (zh) * 2020-06-15 2021-12-23 江苏时代新能源科技有限公司 永磁电机的控制方法、装置、动力系统及电动汽车
US11309826B2 (en) 2020-06-15 2022-04-19 Jiangsu Contemporary Amperex Technology Limited Method and apparatus for controlling permanent magnet motor, power system and electric vehicle
CN113904026A (zh) * 2020-06-22 2022-01-07 比亚迪股份有限公司 动力电池自加热控制方法、系统以及汽车
CN113904025A (zh) * 2020-06-22 2022-01-07 比亚迪股份有限公司 动力电池自加热控制方法、系统以及汽车
CN113859052A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN113871757A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 电池加热系统及其电池加热方法
CN114204163B (zh) * 2020-09-02 2023-10-27 威马智慧出行科技(上海)有限公司 电动汽车电池包加热方法及电子设备
CN114204163A (zh) * 2020-09-02 2022-03-18 威马智慧出行科技(上海)有限公司 电动汽车电池包加热方法及电子设备
CN112234277A (zh) * 2020-09-04 2021-01-15 重庆雅讯科技有限公司 电池预热方法及装置
CN113291200A (zh) * 2021-05-19 2021-08-24 广州小鹏汽车科技有限公司 一种车辆电池组件监测方法和装置
CN113715690B (zh) * 2021-08-31 2023-12-01 经纬恒润(天津)研究开发有限公司 一种电源系统及其控制方法
CN113715690A (zh) * 2021-08-31 2021-11-30 经纬恒润(天津)研究开发有限公司 一种电源系统及其控制方法
CN113783477A (zh) * 2021-09-24 2021-12-10 同济大学 一种用于电动汽车的多工作模式电机驱动系统
WO2023061278A1 (zh) * 2021-10-11 2023-04-20 华为数字能源技术有限公司 电池系统及供电系统
CN114050330A (zh) * 2021-10-11 2022-02-15 华为数字能源技术有限公司 电池系统及供电系统
CN114113750A (zh) * 2021-11-25 2022-03-01 同济大学 一种电池极片面电流密度的测量装置及方法
DE102021213950A1 (de) 2021-12-08 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zum Heizen eines Energiespeichersystems mit mindestens einem elektrochemischen Energiespeicher
CN114374199A (zh) * 2022-01-24 2022-04-19 阳光电源股份有限公司 一种储能系统
CN115224397A (zh) * 2022-08-26 2022-10-21 阿维塔科技(重庆)有限公司 一种电池包自加热电路及汽车
CN115224397B (zh) * 2022-08-26 2023-12-15 阿维塔科技(重庆)有限公司 一种电池包自加热电路及汽车
CN117317456A (zh) * 2023-11-27 2023-12-29 江苏欧力特能源科技有限公司 一种家用储能锂电池低温冷启动系统
CN117317456B (zh) * 2023-11-27 2024-02-06 江苏欧力特能源科技有限公司 一种家用储能锂电池低温冷启动系统

Similar Documents

Publication Publication Date Title
CN107666028A (zh) 一种电动车用锂离子电池低温交流加热装置
CN106450586B (zh) 一种基于lc谐振和ptc电阻带进行加热的电源系统及车辆
CN105762434B (zh) 一种具有自加热功能的电源系统和车辆
Duan et al. A solar power-assisted battery balancing system for electric vehicles
CN105932363B (zh) 一种电源系统的自加热方法
Shang et al. Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature operations
CN106025443B (zh) 一种基于lc谐振进行加热的电源系统及车辆
CN107146917B (zh) 用于车载两套电池系统并联的方法
CN103887578B (zh) 提高电动汽车低温续航里程的动力电池加热方法和系统
CN204966636U (zh) 一种电池加热装置、动力电池包设备及电动车辆
CN107845840A (zh) 电池加热电路
CN103427137A (zh) 纯电动汽车动力电池的低温充电加热系统及加热方法
CN106229583B (zh) 一种基于lc谐振进行加热的蓄电装置加热方法
CN206878144U (zh) 动力电池交流充放电低温加热系统
CN107994299A (zh) 车载动力电池低温全时间交错并联加热拓扑电路及其应用
CN108511822A (zh) 一种锂离子电池低温加热装置及电动汽车
CN106558746B (zh) 驱动装置、输送设备及控制方法
CN113506934B (zh) 一种锂电池加热系统及加热方法
CN105093113B (zh) 汽车行进过程中蓄电池内阻的测量
CN105870997B (zh) 串联蓄电池组均衡电流的定量控制方法
CN207967253U (zh) 电池组低温加热装置、电池模块及车辆
CN205811017U (zh) 一种电动车锂离子动力电池组加热装置
CN108321465A (zh) 基于电容器的电池内部交流加热电路、系统及方法
KR102192819B1 (ko) 전기자동차 배터리 급속 방전장치 및 방전방법
CN108054468A (zh) 电动汽车动力电池低温交流加热基本拓扑电路及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180206