WO2021253694A1 - 永磁电机的控制方法、装置、动力系统及电动汽车 - Google Patents

永磁电机的控制方法、装置、动力系统及电动汽车 Download PDF

Info

Publication number
WO2021253694A1
WO2021253694A1 PCT/CN2020/121300 CN2020121300W WO2021253694A1 WO 2021253694 A1 WO2021253694 A1 WO 2021253694A1 CN 2020121300 W CN2020121300 W CN 2020121300W WO 2021253694 A1 WO2021253694 A1 WO 2021253694A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet motor
frequency
stator
energization
Prior art date
Application number
PCT/CN2020/121300
Other languages
English (en)
French (fr)
Inventor
黄孝键
左希阳
但志敏
李宝
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to EP20923709.8A priority Critical patent/EP3957512B1/en
Priority to JP2022537768A priority patent/JP7263628B2/ja
Priority to KR1020227033422A priority patent/KR102563499B1/ko
Priority to US17/529,511 priority patent/US11309826B2/en
Publication of WO2021253694A1 publication Critical patent/WO2021253694A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to the field of electric vehicles, and more specifically, to a control method, device, power system, and electric vehicle of a permanent magnet motor.
  • An electric car refers to a car powered by a power battery. Due to the limitation of power battery materials, it can achieve the best performance stably under the rated ambient temperature. Therefore, when using electric vehicles in areas with low ambient temperature, the power battery needs to be heated to the rated ambient temperature.
  • Indirect heating refers to placing a heat source outside the power battery for heating.
  • Direct heating refers to heating the power battery inside the power battery.
  • the common direct heating method is heating by a motor. Specifically: the power battery is connected to the motor through the inverter, and the motor rotor is fixed and does not rotate. The power battery and the stator winding form a closed loop, and the stator winding stores electrical energy. Since the internal resistance of the power battery is relatively large in a low temperature environment, the power battery winding applies alternating current excitation to the power battery, and the power battery uses its own internal resistance for heating.
  • the present application provides a permanent magnet motor control method, device, power system, and electric vehicle, which can reduce the noise during the self-heating process of the power battery.
  • the present application provides a method for controlling a permanent magnet motor.
  • the method includes:
  • the system parameters include: the resonance bandwidth of the permanent magnet motor and the stator natural frequency of the permanent magnet motor;
  • the even multiples of the energizing frequency are outside the resonance frequency band, which is determined according to the stator natural frequency and resonance bandwidth of the permanent magnet motor.
  • the energizing frequency is outside the resonance frequency band, including:
  • the even multiple of the energizing frequency is less than or equal to the lower boundary of the resonance frequency band;
  • the even multiple of the energizing frequency is greater than or equal to the upper boundary of the resonance frequency band.
  • the even multiple of the energization frequency is less than or equal to the lower boundary of the resonance frequency band, specifically:
  • the even multiple of the energization frequency is greater than or equal to the upper boundary of the resonance frequency band, specifically:
  • f is the energization frequency
  • B is 1/2 of the resonance bandwidth of the permanent magnet motor stator
  • M is the highest order of the permanent magnet motor stator natural frequency
  • k is a positive integer.
  • An embodiment of the above invention has the following beneficial effects: Considering that the motor vibration is mainly caused by the radial electromagnetic force frequency in the first 4th order resonance frequency band of the motor stator, the energization frequency of the stator winding is changed to make the energization frequency even All times avoids the first four-order resonance frequency band of the stator, eliminates the main vibration, and reduces the difficulty of control.
  • the method further includes:
  • the power battery satisfies the self-heating conditions including:
  • the cell temperature is less than the preset temperature threshold and the running state is the stop state.
  • An embodiment of the above-mentioned invention has the following beneficial effects: when the cell temperature of the power battery is less than the preset temperature threshold, and the motor is in a stopped state, the energization frequency of the permanent magnet motor is outside the resonance frequency band. Alternating current can avoid the problem of vibration caused by the winding of the motor as an energy storage element to provide alternating current to the power battery.
  • the method further includes:
  • alternating current with energizing frequency to supply power to the permanent magnet motor includes:
  • the pulse width modulation signal is generated according to the energization frequency and the duty cycle, where the signal is used to provide the permanent magnet motor with alternating current at the energization frequency.
  • the signal for controlling the inverter is generated according to the energization frequency and the duty ratio, so that the permanent magnet motor is fed with alternating current with the energization frequency outside the resonance frequency band, so that the generated radial
  • the frequency of the electromagnetic force avoids the natural frequency of the motor stator and reduces the noise generated by the resonance of the radial electromagnetic force.
  • this application provides a permanent magnet motor control device, including:
  • the system parameters include: the resonance bandwidth of the permanent magnet motor and the stator natural frequency of the permanent magnet motor;
  • the control module is used to supply power to the permanent magnet motor using alternating current with the energizing frequency when the power battery meets the self-heating condition;
  • the even multiples of the energizing frequency are outside the resonance frequency band, which is determined according to the stator natural frequency and resonance bandwidth of the permanent magnet motor.
  • the energizing frequency is outside the resonance frequency band, including:
  • the even multiple of the energizing frequency is less than or equal to the lower boundary of the resonance frequency band;
  • the even multiple of the energizing frequency is greater than or equal to the upper boundary of the resonance frequency band.
  • the even multiple of the energization frequency is less than or equal to the lower boundary of the resonance frequency band, specifically:
  • the even multiple of the energization frequency is greater than or equal to the upper boundary of the resonance frequency band, specifically:
  • f is the energization frequency
  • B is 1/2 of the resonance bandwidth of the permanent magnet motor stator
  • M is the highest order of the permanent magnet motor stator natural frequency
  • k is a positive integer.
  • the acquisition module is also used to:
  • the power battery satisfies the self-heating conditions including:
  • the cell temperature is less than the preset temperature threshold and the running state is the stop state.
  • the acquisition module is also used to:
  • control module is specifically used for:
  • the pulse width modulation signal is generated according to the energization frequency and the duty cycle, where the pulse width modulation signal is used to provide the permanent magnet motor with alternating current with the energization frequency.
  • the present application provides a power system, including: a power battery, an inverter, a permanent magnet motor, and a motor controller.
  • the motor controller is used to execute the permanent magnet motor control method involved in the first aspect and the optional solutions .
  • the present application provides an electric vehicle, including a power system.
  • the power system includes a power battery, an inverter, a permanent magnet motor, and a motor controller. Control method of magneto.
  • the control method, device, power system, and electric vehicle of the permanent magnet motor of the present application use the relationship of the frequency of the radial electromagnetic force to be an even multiple of the energization frequency of the stator winding, and change the energization frequency of the stator winding so that the even multiple of the energization frequency is at the resonance frequency Outside the band, the frequency of the generated radial electromagnetic force avoids the natural frequency of the motor stator, and the noise generated by the resonance of the radial electromagnetic force is reduced.
  • Figure 1 is a schematic diagram of the structure of the power system of an electric vehicle provided by this application;
  • FIG. 2 is a schematic diagram of the structure of the power battery provided by this application.
  • FIG. 3 is a flow chart of the permanent magnet motor control method provided by Embodiment 1 of the application.
  • FIG. 4 is a schematic structural diagram of a permanent magnet motor control device provided by Embodiment 3 of the application;
  • FIG. 5 is a schematic structural diagram of a control device provided in Embodiment 4 of this application.
  • FIG. 6 is a schematic structural diagram of an electric vehicle provided in Embodiment 5 of the application.
  • An electric car refers to a car powered by a power battery.
  • a power system 100 of an electric vehicle includes a power battery 10, an inverter 20, a motor 30, and a motor controller (Motor Controller Unit, MCU for short) 40.
  • the positive and negative poles of the power battery 10 are connected to the DC side of the inverter 20, and the AC side of the inverter 20 is connected to the stator winding of the motor 30.
  • the power battery 10 supplies power to the motor through the inverter 20.
  • the MCU 40 is provided with multiple input terminals for receiving motor running status data and motor control commands.
  • PWM Pulse Width Modulation
  • the power battery 10 includes a battery module 101, a battery management system (Battery Management System, BMS for short) 102, and an auxiliary structure 103.
  • the battery module 101 is formed by a plurality of power cells in series and parallel.
  • the power cells are the core component of the power battery and are the source of the power battery to provide electrical energy.
  • the main functions of the battery management system 102 are to perform charge and discharge management, high voltage control, evaluation of battery status, collection of battery data, battery protection, and battery thermal management.
  • the auxiliary structure 103 generally includes an external frame, electrical connection devices, insulating components, and the like.
  • the external frame plays the role of protecting and supporting the battery module
  • the electrical connection device plays the role of connecting other electrical equipment, for example: connecting with the inverter, and the insulating part plays the role of insulation protection.
  • the thermal management function in the battery management system 102 is used to ensure that the power battery operates within a suitable temperature range.
  • the thermal management function is mainly to achieve accurate measurement and monitoring of battery temperature, effective heat dissipation when the battery pack temperature is too high, rapid heating under low temperature conditions, and ensuring the uniform distribution of the battery pack temperature field.
  • rapid heating under low temperature conditions refers to: when using in areas where the cell temperature is low, the power battery needs to be heated to the rated cell temperature so that the power battery can stably exert the best performance.
  • Indirect heating refers to placing a heat source outside the power battery for heating.
  • the indirect heating method can be air heating, liquid heating, and heating film heating.
  • the heating rate of the battery will be different for different heating sources. Since the battery is heated by an external heat source, heat loss will occur on the heat transfer medium, so the efficiency of indirect heating is not high.
  • Direct heating refers to heating the power battery internally.
  • the common direct heating method is heating through internal resistance, specifically: fixing the motor rotor, inputting a PWM signal to the control terminal of the inverter, the power battery and the stator winding form a closed loop, and the stator winding stores electric energy. Due to the inductance characteristics of the stator winding, the stator winding provides alternating current to the battery, and the power battery uses the alternating current to flow through its internal resistance for heating. Since the internal resistance of the power battery is relatively large in a low temperature environment, the heating efficiency of the power battery is higher.
  • the existing heating method is based on the internal resistance of the power battery.
  • the stator winding is used as an energy storage element to achieve the alternating current of the bus bar.
  • the above method changes the magnetic field distribution of the motor during normal operation, so that The internal force of the motor is unbalanced, which easily causes the motor to produce vibration and noise, making the NVH three-phase index of electric vehicles not up to standard.
  • NVH is the abbreviation of Noise, Vibration and Harshness, which represent noise, vibration and harshness respectively, and are an important indicator of the comfort of a car.
  • This application provides a permanent magnet motor control method, device, power system, and electric vehicle, aiming to solve the above-mentioned problems.
  • the inventive concept of this application is to determine the resonance frequency of the permanent magnet motor according to the system parameters of the permanent magnet motor, and by controlling the even multiples of the energization frequency of the permanent magnet motor to be outside the resonance frequency band, the vibration frequency of the permanent magnet motor is far away from the permanent magnet
  • the resonance frequency of the rotor of the motor reduces the vibration of the motor, thereby reducing the noise generated by the vibration, so as to improve the comfort of the user when riding in the car.
  • the main body of the control method is the MCU.
  • the permanent magnet motor control method provided in this application includes the following steps:
  • the MCU obtains the system parameters of the permanent magnet motor.
  • the system parameters of the permanent magnet motor include the resonance bandwidth of the permanent magnet motor and the stator natural frequency of the permanent magnet motor.
  • the MCU sets the energization frequency of the permanent magnet motor according to the system parameters.
  • setting the energization frequency of the permanent magnet motor according to the system parameters includes: determining the resonance frequency band according to the stator natural frequency and resonance bandwidth of the permanent magnet motor, determining the energization frequency according to the resonance frequency band, and setting the energization frequency of the permanent magnet motor even multiples Located outside the resonance frequency band.
  • the MCU uses alternating current of the energizing frequency to supply power to the permanent magnet motor.
  • the self-heating condition includes: the cell temperature of the power battery is less than a preset temperature threshold and the operating state of the permanent magnet motor is a stopped state.
  • the stopped state means that the rotor is stationary or the rotor is in a locked-rotor state.
  • the resonance frequency band of the stator is determined according to the stator natural frequency and the resonance bandwidth, and the permanent magnet motor is fed with alternating current with an even multiple of the energizing frequency outside the resonance frequency band to reduce the power battery self-resonance. Noise during heating.
  • the permanent magnet motor control method provided in the second embodiment of the present application includes the following steps:
  • the MCU obtains the system parameters of the permanent magnet motor.
  • the system parameters of the permanent magnet motor include the resonance bandwidth of the permanent magnet motor and the stator natural frequency of the permanent magnet motor.
  • the permanent magnet motor is subjected to a vibration test to measure the stator natural frequency of the permanent magnet motor.
  • the structural parameters of the permanent magnet motor can also be calculated.
  • the structural parameters include: stator mass distribution, stator stiffness, and the like.
  • the first few stator natural frequencies are selected to set the energization frequency to reduce the MCU
  • the first 4 stator natural frequencies are selected for the energization frequency setting to eliminate the main vibration and reduce the control difficulty.
  • the MCU sets the energization frequency of the permanent magnet motor according to the system parameters.
  • the resonance frequency band is determined according to the stator natural frequency and resonance bandwidth of the permanent magnet motor, which specifically includes:
  • the even multiple of the energization frequency of the permanent magnet motor is outside the resonance frequency band, specifically including: the even multiple of the energization frequency is less than or equal to the lower boundary of the resonance frequency band; or the even multiple of the energization frequency is greater than or equal to the resonance frequency band Upper boundary. That is to make the energization frequency of the permanent magnet motor meet the following relationship:
  • M is the highest order of the stator natural frequency of the permanent magnet motor, and k is a positive integer.
  • the MCU obtains the cell temperature of the power battery and the operating state of the permanent magnet motor.
  • the cell temperature of the power battery is detected by a sensor arranged inside the power battery.
  • the movement state of the rotor is detected by a sensor arranged on the permanent magnet motor.
  • the MCU uses alternating current of the energizing frequency to supply power to the permanent magnet motor.
  • the alternating current with the energization frequency is used to power the permanent magnet motor, which can avoid the winding of the motor as an energy storage element to the power battery The problem of vibration caused by the supply of alternating current.
  • the MCU when the AC power with the energization frequency is used to power the permanent magnet motor, the MCU generates the PWM signal according to the energization frequency and the preset duty cycle.
  • the control terminal of the inverter receives the PWM signal, and the output frequency is the AC with the energization frequency.
  • the windings of the magneto are fed with alternating current at the energizing frequency. Even multiples of the energizing frequency are outside the stator resonance frequency band.
  • the frequency of the radial electromagnetic force is an even multiple of the energizing frequency of the stator windings, so that the frequency of the radial electromagnetic force is Avoid the resonance frequency band, thereby reducing the resonance caused by the radial electromagnetic force, so as to reduce the problem of motor vibration.
  • the following three-phase permanent magnet synchronous motor is taken as an example to describe the feasibility of the control method provided in this embodiment.
  • the main sources of vibration and noise of the motor body can be divided into radial electromagnetic force, tangential electromagnetic force, unbalanced magnetic pulling force, unbalanced mechanical force and hysteresis force.
  • radial electromagnetic force tangential electromagnetic force
  • unbalanced magnetic pulling force unbalanced mechanical force
  • hysteresis force Taking the 8-pole 48-slot motor most commonly used in electric vehicles as an example, the amplitude of the radial electromagnetic force of the motor is often much higher than the other four noise sources, and it is also the main source of electric vehicle noise. Therefore, eliminating the radial electromagnetic force can effectively suppress the noise within the noise threshold range.
  • the stator of the motor can be equivalently regarded as a cylinder made of laminated silicon steel sheets. Since the vibration shape of the stator is inherent, the stator corresponds to the vibration shape of different orders, and each vibration shape corresponds to a natural frequency. .
  • the distribution shape and frequency of the radial electromagnetic force along the space are two important factors.
  • the battery self-heating technology makes the motor stator winding produce a pulsating magnetomotive force.
  • the harmonic content of the motor air gap magnetic density will be higher , which will produce more low-order low-frequency radial electromagnetic force.
  • the air gap shape of the motor cannot be calculated as a circle, but an ellipse for equivalent treatment.
  • the specific ellipse deformation is related to the energization frequency and current of the stator winding. The higher the energization frequency, the greater the current, and the greater the deformation of the ellipse.
  • the radial electromagnetic force distribution is obtained, and the following conclusions are drawn: under the battery self-heating control strategy, the main harmonic content in the radial electromagnetic force wave will be reduced, but additional Time and space harmonic components, these additional harmonic content will produce many low-order low-frequency radial electromagnetic force wave components, which will have a greater impact on the electromagnetic vibration of the motor. That is to say, in the battery self-heating condition, the spatial order of the radial electromagnetic force has changed, and many low-order electromagnetic forces will be generated, but no new electromagnetic force frequency will be generated. At this time, the frequency of the radial electromagnetic force can be calculated according to the formula under the normal operating conditions of the motor.
  • the radial electromagnetic force of the motor is caused by the interaction between the stator magnetic field and the rotor magnetic field. Due to the structure of the motor and the wiring method of the winding, it will cause the stator harmonic magnetic field and the rotor harmonic magnetic field, the stator fundamental wave magnetic field, and the stator harmonic magnetic field. Therefore, the radial electromagnetic force is not only caused by the interaction between the stator fundamental wave magnetic field and the rotor fundamental wave magnetic field, but also the interaction between the stator and the rotor fundamental wave magnetic field and the stator harmonic magnetic field. The action will also produce radial electromagnetic forces of different frequencies. Therefore, when the stator is connected to a three-phase symmetrical alternating current, the frequency calculation process of the radial electromagnetic force is as follows:
  • f r represents the radial electromagnetic forces
  • B S denotes a stator flux density
  • B R denotes a rotor flux density
  • ⁇ 0 represents the permeability of air.
  • ⁇ g represents the equivalent air gap permeance
  • is the angle of the air gap along the circumference
  • t represents time
  • F 1 represents the magnetomotive force generated by the three-phase symmetric stator winding
  • F 2 represents the magnetomotive force generated by the permanent magnets of the rotor.
  • v represents the harmonic order of the stator
  • represents the harmonic order of the rotor
  • is the stator angular frequency
  • F mv is the amplitude of the stator v-th harmonic magnetomotive force
  • F m ⁇ is the rotor
  • ⁇ ⁇ is the electrical angular frequency of the rotor's ⁇ -harmonic magnetomotive force, which is set to 0 under the battery heating control strategy
  • ⁇ ⁇ is the rotor's ⁇ -harmonic magnetomotive force and initial position
  • the angle between, p is the number of pole pairs.
  • the radial electromagnetic force frequency, the harmonics of the rotor magnetic field and the harmonics of the stator magnetic field can be obtained by using the product and difference formula.
  • the following takes the relationship between the radial electromagnetic force generated by the first 13 harmonics of the stator magnetic field and the rotor magnetic field and the frequency as an example for description. As shown in Table 1.
  • Table 1 shows the frequency of radial electromagnetic force
  • the frequency of the radial electromagnetic force always has an even multiple relationship with the winding frequency.
  • the relationship between the frequency of the radial electromagnetic force and the energization frequency is: ( ⁇ 1)f, where f represents the energization frequency of the winding.
  • the frequency of the radial electromagnetic force is an even multiple of the energization frequency of the stator winding.
  • the MCU makes the inverter output an alternating current with an even multiple of the energization frequency outside the stator resonance frequency band, so that the motor
  • the frequency of the generated radial electromagnetic force avoids the natural frequency of the motor stator and reduces the noise generated by the resonance of the radial electromagnetic force.
  • FIG. 4 is a schematic structural diagram of a permanent magnet motor control device provided in the third embodiment of the application.
  • the permanent magnet motor control device 400 is used to execute the permanent magnet motor control method provided in the foregoing embodiment.
  • the permanent magnet motor control device 400 provided in the third embodiment of the present application includes:
  • the obtaining module 401 is used to obtain system parameters of the permanent magnet motor, and the system parameters include: the resonance bandwidth of the permanent magnet motor and the stator natural frequency of the permanent magnet motor;
  • the determining module 402 is used to set the energization frequency of the permanent magnet motor according to the system parameters;
  • the control module 403 is used for supplying power to the permanent magnet motor by using alternating current with an energizing frequency when the power battery meets the self-heating condition;
  • the even multiples of the energizing frequency are outside the resonance frequency band, which is determined according to the stator natural frequency and resonance bandwidth of the permanent magnet motor.
  • the energizing frequency is outside the resonance frequency band, including:
  • the even multiple of the energizing frequency is less than or equal to the lower boundary of the resonance frequency band;
  • the even multiple of the energizing frequency is greater than or equal to the upper boundary of the resonance frequency band.
  • the even multiple of the energization frequency is less than or equal to the lower boundary of the resonance frequency band, specifically:
  • the even multiple of the energization frequency is greater than or equal to the upper boundary of the resonance frequency band, specifically:
  • f is the energization frequency
  • B is 1/2 of the resonance bandwidth of the permanent magnet motor stator
  • M is the highest order of the permanent magnet motor stator natural frequency
  • k is a positive integer.
  • the obtaining module 401 is also used for:
  • the power battery satisfies the self-heating conditions including:
  • the cell temperature is less than the preset temperature threshold and the running state is the stop state.
  • the obtaining module 401 is also used to: obtain a duty cycle
  • control module 403 specifically includes:
  • the PWM signal is generated according to the energization frequency and the duty cycle, where the PWM signal is used to provide alternating current at the energization frequency for the permanent magnet motor.
  • FIG. 5 is a schematic structural diagram of a control device shown in Embodiment 4 of this application.
  • the control device 500 provided in this embodiment includes: a memory 501 and a processor 502.
  • the memory 501 is used to store computer execution instructions
  • the processor 502 is configured to execute computer-executable instructions stored in the memory to implement each step executed by the permanent magnet motor control method in the foregoing embodiment. For details, refer to the relevant description in the foregoing embodiment of the permanent magnet motor control method.
  • the foregoing memory 501 may be independent or integrated with the processor 502.
  • control device When the memory 501 is independently provided, the control device further includes a bus for connecting the memory 501 and the processor 502.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer-executable instructions are stored.
  • the processor executes the computer-executed instructions, the permanent magnet motor control method executed by the above control device is implemented.
  • An embodiment of the present application also provides a power system, including: a power battery, an inverter, a permanent magnet motor, and a motor controller.
  • the motor controller is used to execute the permanent magnet motor control method provided in the foregoing embodiment.
  • an embodiment of the present application also provides an electric vehicle, including the power system 100 of the foregoing embodiment, and the power system 100 includes a power battery 10, an inverter 20, a permanent magnet motor 30, and a motor controller MCU 40,
  • the MCU 40 is used to execute the permanent magnet motor control method provided in the foregoing embodiment.
  • FIG. 6 install an acoustic package 604 and an active noise reduction system 600 on the vehicle.
  • the acoustic package 604 with sound insulation and attracting effects wraps the motor, which can reduce the noise of the motor.
  • the active noise reduction system 600 includes a detection unit 601, an output unit 602, and a control unit 603.
  • the detection unit 601 and the output unit 602 are respectively connected to the control unit 603.
  • the working principle of the active noise reduction system is explained below with reference to FIG. 6: the detection unit 601 is located in the cabin, and the detection unit 601 is used to collect the noise generated by the motor and transmit the noise generated by the motor to the control unit 603.
  • the control unit 603 outputs a sound wave with a phase difference of 180° from the noise and the same amplitude through an algorithm.
  • the output unit 602 outputs the sound wave to cancel the motor noise.
  • the detection unit 601 may be a microphone, and the output unit 602 is a player.
  • the output unit 602 may be located in the cabin or the passenger cabin to improve passenger comfort.
  • the MCU control frequency By changing the MCU control frequency to reduce vibration, combined with the acoustic package and active noise reduction scheme, it can effectively reduce the motor vibration caused by the battery self-heating technology, and can further optimize the motor vibration on the original basis. Where the motor vibration requirements are low, the combination of any two noise reduction schemes can also reduce the motor vibration, so that the three NVH indicators of electric vehicles can meet the standards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Secondary Cells (AREA)

Abstract

一种永磁电机(30)的控制方法、装置、动力系统(100)及电动汽车。通过获取永磁电机(30)的共振带宽和永磁电机(30)的定子固有频率等系统参数,设置永磁电机(30)的通电频率,并在动力电池(10)满足自加热条件时,使用通电频率的交流电为永磁电机(30)供电,降低动力电池(10)在自加热过程中电机(30)产生的噪声。

Description

永磁电机的控制方法、装置、动力系统及电动汽车
本申请要求于2020年06月15日提交中国专利局、申请号为202010540328.8、申请名称为“永磁电机的控制方法、装置、动力系统及电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车领域,更具体地,涉及一种永磁电机的控制方法、装置、动力系统及电动汽车。
背景技术
电动汽车是指由动力电池提供动力的汽车。由于动力电池材料限制,使其在额定环境温度下才能稳定地发挥出最佳性能,因此,在环境温度较低地区使用电动汽车时,需要将动力电池加热至额定环境温度。
现有动力电池加热方式可以分为间接加热和直接加热。间接加热就是指在动力电池外部放置热源进行加热。直接加热是指在动力电池内部对动力电池进行加热。其中,常见直接加热方式为通过电机加热。具体为:动力电池通过逆变器与电机连接,电机转子固定不转。动力电池和定子绕组形成闭合回路,定子绕组存储电能。由于动力电池内阻在低温环境时较大,动力电池绕组向动力电池施加交变的电流激励,动力电池利用自身的内阻进行加热。
然而,在利用电机对动力电池进行加热过程中噪声过大。
发明内容
本申请提供一种永磁电机的控制方法、装置、动力系统及电动汽车,可以降低动力电池自加热过程中的噪声。
第一方面,本申请提供一种永磁电机的控制方法,方法包括:
获取永磁电机的系统参数,系统参数包括:永磁电机的共振带宽和永磁电机的定子固有频率;
根据系统参数设置永磁电机的通电频率;
在动力电池满足自加热条件时,使用通电频率的交流电为永磁电机供电;
其中,通电频率的偶数倍位于共振频率带之外,共振频率带是根据永磁电机的定子固有频率和共振带宽确定的。
可选地,通电频率的偶数倍位于共振频率带之外,包括:
通电频率的偶数倍小于或等于共振频率带的下边界;或者
通电频率的偶数倍大于或等于共振频率带的上边界。
可选地,通电频率的偶数倍小于或等于共振频率带的下边界,具体为:
Figure PCTCN2020121300-appb-000001
通电频率的偶数倍大于或等于共振频率带的上边界,具体为:
Figure PCTCN2020121300-appb-000002
其中,
Figure PCTCN2020121300-appb-000003
为永磁电机定子的第i阶固有频率,f为通电频率,B为永磁电机定子的共振带宽的1/2,M为永磁电机的定子固有频率的最高阶次,k为正整数。
可选地,M=4。
上述发明中的一个实施例具有如下有益效果:考虑到电机振动主要是径向电磁力频率在电机定子的前4阶共振频率带内引起的,通过改变定子绕组的通电频率,使得通电频率的偶数倍统统避开定子前四阶的共振频率带,消除主要振动,降低控制难度。
可选地,方法还包括:
获取动力电池的电芯温度和永磁电机的运行状态;
相应地,动力电池满足自加热条件包括:
电芯温度小于预设温度阈值和运行状态为停止状态。
上述发明中的一个实施例具有如下有益效果:在动力电池的电芯温度小于预设温度阈值,以及电机运行状态为停止状态时,使永磁电机中通入通电频率位于共振频率带之外的交流电,能够避免由于电机中绕组作为储能元件向动力电池提供交变电流而产生振动的问题。
可选地,方法还包括:
获取占空比;
相应地,使用通电频率的交流电为永磁电机供电,具体包括:
根据通电频率和占空比生成脉宽调制信号,其中,信号用于为永磁电机提供通电频率的交流电。
上述发明中的一个实施例具有如下有益效果:根据通电频率和占空比生成控制逆变器的信号,使永磁电机中通入通电频率位于共振频率带之外的交流电,使得产生的径向电磁力的频率避开电机定子固有频率,降低由于径向电磁力共振产生的噪声。
第二方面,本申请提供一种永磁电机的控制装置,包括:
获取模块,获取永磁电机的系统参数,系统参数包括:永磁电机的共振带宽和永磁电机的定子固有频率;
确定模块,用于根据系统参数设置永磁电机的通电频率;
控制模块,用于在动力电池满足自加热条件时,使用通电频率的交流电为永磁电机供电;
其中,通电频率的偶数倍位于共振频率带之外,共振频率带是根据永磁电机的定子固有频率和共振带宽确定的。
可选地,通电频率的偶数倍位于共振频率带之外,包括:
通电频率的偶数倍小于或等于共振频率带的下边界;或者
通电频率的偶数倍大于或等于共振频率带的上边界。
可选地,通电频率的偶数倍小于或等于共振频率带的下边界,具体为:
Figure PCTCN2020121300-appb-000004
通电频率的偶数倍大于或等于共振频率带的上边界,具体为:
Figure PCTCN2020121300-appb-000005
其中,
Figure PCTCN2020121300-appb-000006
为永磁电机定子的第i阶固有频率,f为通电频率,B为永磁电机定子的共振带宽的1/2,M为永磁电机的定子固有频率的最高阶次,k为正整数。
可选地,M=4。
可选地,获取模块还用于:
获取动力电池的电芯温度和永磁电机的运行状态;
相应地,动力电池满足自加热条件包括:
电芯温度小于预设温度阈值和运行状态为停止状态。
可选地,获取模块还用于:
获取占空比;
相应地,控制模块具体用于:
根据通电频率和占空比生成脉宽调制信号,其中,脉宽调制信号用于为永磁电机提供通电频率的交流电。
第三方面,本申请提供一种动力系统,包括:动力电池、逆变器、永磁电机以及电机控制器,电机控制器用于执行第一方面及可选方案所涉及的永磁电机的控制方法。
第四方面,本申请提供一种电动汽车,包括动力系统,动力系统包括动力电池、逆变器、永磁电机以及电机控制器,电机控制器用于执行第一方面及可选方案所涉及的永磁电机的控制方法。
本申请永磁电机的控制方法、装置、动力系统及电动汽车,利用径向电磁力的频率为定子绕组通电频率的偶数倍关系,改变定子绕组的通电频率,使通电频率的偶数倍位于共振频率带之外,使得产生的径向电磁力的频率避开电机定子固有频率,降低由于径向电磁力共振产生的噪声。
附图说明
图1为本申请提供的电动汽车的动力系统的结构示意图;
图2为本申请提供的动力电池的结构示意图;
图3为本申请实施例一提供的永磁电机控制方法的流程图;
图4为本申请实施例三提供的永磁电机控制装置的结构示意图;
图5为本申请实施例四提供的控制设备的结构示意图;
图6为本申请实施例五提供的电动汽车的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的带。
电动汽车是指由动力电池提供动力的汽车。如图1所示,电动汽车的动力系统100包括动力电池10、逆变器20、电机30和电机控制器(Motor Controller Unit,简称:MCU)40。动力电池10的正负极与逆变器20的直流侧连接,逆变器20的交流侧与电机30的定子绕组连接。动力电池10通过逆变器20向电机供电。MCU 40设有多个输入端,用于接收电机运行状态数据、以及电机控制指令。MCU40根据电机控制指令、电机运行状态数据以及动力电池的运行状态数据,生成脉宽调制(Pulse Width Modulation,简称:PWM)信号,控制逆变器向电机30提供电压和电流大小,以控制电机转速,以实现汽车行驶速度控制。
如图2所示,动力电池10包括电池模组101、电池管理系统(Battery Management System,简称:BMS)102、以及辅助结构103。其中,电池模组101由多个动力电芯串并联而成,动力电芯是动力电池的核心部件,是动力电池提供电能的来源。电池管理系统102主要功能是进行充放电管理、高压控制、评估电池状态、采集电池数据、电池保护以及电池热管理。辅助结构103通常包括外部框架、电连接装置以及绝缘部件等。外部框架起到保护、支撑电池模组等作用,电连接装置起到连接其他用电设备的作用,例如:与逆变器连接,绝缘部分起到绝缘保护作用。
其中,电池管理系统102中热管理功能用于确保动力电池工作在适宜温度范围内。热管理功能主要是实现电池温度的准确测量和监控,电池组温度过高时有效散热,低温条件下的快速加热,以及保证电池组温度场的均匀分布。其中,低温条件下的快速加热是指:在电芯温度较低地区使用时,需要将动力电池加热至额定电芯温度,以使动力电池稳定地发挥出最佳性能。
现有动力电池加热方式可以分为间接加热和直接加热。间接加热就是指在动力电池外部放置热源进行加热。间接加热方法可以是空气加热、液体加热以及加热膜加热等。不同的加热源,电池的加热速率也会有所不同。由于是通过外部热源对电池进行加热,在传热介质上将会产生热损耗,因此,间接加热的效率并不高。
直接加热是指在内部对动力电池进行加热。其中,常见直接加热方式为通过内阻加热,具体为:固定电机转子,向逆变器的控制端输入PWM信号,动力电池和定子绕组形成闭合回路,定子绕组存储电能。由于定子绕 组的电感特性,定子绕组又向电池提供交变电流,动力电池利用交变电流流过自身内阻进行加热。由于动力电池内阻在低温环境时较大,动力电池的加热效率较高。
然而,现有通过动力电池内阻进行加热方式,电机在向动力电池提供加热电流时,利用定子绕组作为储能元件,实现母线电流的交变,上述方式改变电机正常工作时的磁场分布,使得电机内部受力不平衡,容易引起电机产生振动和噪声,使得电动汽车的NVH三相指标不达标。其中,NVH就是Noise,Vibration和Harshness的简称,分别表示噪声、振动以及声振粗糙度,是衡量汽车舒适度的重要指标。
本申请提供一种永磁电机的控制方法、装置、动力系统及电动汽车,旨在解决上述问题。本申请的发明构思是:根据永磁电机的系统参数确定永磁电机的共振频率,通过控制永磁电机的通电频率的偶数倍位于共振频率带之外,使得永磁电机的振动频率远离永磁电机的转子共振频率,减少电机振动,进而减少由振动产生的噪声,以提升用户在乘坐汽车时的舒适度。
下面结合实施例重点描述本申请提供永磁电机的控制方法,该控制方法的执行主体为MCU,图3为本申请实施例一提供的永磁电机控制方法的流程图,如图3所示,本申请提供的永磁电机的控制方法包括如下步骤:
S201、MCU获取永磁电机的系统参数。
其中,永磁电机的系统参数包括永磁电机的共振带宽和永磁电机的定子固有频率。
S202、MCU根据系统参数设置永磁电机的通电频率。
其中,根据系统参数设置永磁电机的通电频率,具体包括:根据永磁电机的定子固有频率和共振带宽确定共振频率带,根据共振频率带确定通电频率,设置永磁电机的通电频率的偶数倍位于共振频率带之外。
S203、MCU在动力电池满足自加热条件时,使用通电频率的交流电为永磁电机供电。
其中,动力电池满足自加热条件包括:动力电池的电芯温度小于预设温度阈值和永磁电机的运行状态为停止状态。其中,停止状态是指转子静止或者转子处于堵转状态。
在本申请实施例提供的控制方法中,根据定子固有频率和共振带宽确定定子的共振频率带,在永磁电机中通入通电频率的偶数倍位于共振频率带之外的交流电,降低动力电池自加热过程中的噪声。
下面描述本申请实施例二提供的永磁电机控制方法,本申请提供的永磁电机的控制方法包括如下步骤:
S301、MCU获取永磁电机的系统参数。
其中,永磁电机的系统参数包括永磁电机的共振带宽和永磁电机的定子固有频率。在获取定子固有频率时,作为一种实施方式,通过对永磁电机进行振动测试,测出永磁电机的定子固有频率。作为另一种实施方式还可以通过对永磁电机的结构参数进行计算,结构参数包括:定子质量分布、定子刚度等。由于在前几阶的定子固有频率内发生共振的振动幅值远大于在高阶的定子固有频率内发生振动的振动幅值,因此,选取前几阶定子固有频率进行通电频率设置,以降低MCU的控制复杂度,优选地,选取前4阶定子固有频率进行通电频率设置,消除主要振动,降低控制难度。
S302、MCU根据系统参数设置永磁电机的通电频率。
其中,据永磁电机的定子固有频率和共振带宽确定共振频率带,具体包括:
若永磁电机的定子固有频率表示为
Figure PCTCN2020121300-appb-000007
其中,i=1、2、……、N,i表示固有频率的阶次,B为永磁电机定子的共振带宽的1/2,则共振频率带表示为:
Figure PCTCN2020121300-appb-000008
其中,
Figure PCTCN2020121300-appb-000009
表示共振频率带的下边界,
Figure PCTCN2020121300-appb-000010
表示共振频率带的上边界。
相应地,永磁电机的通电频率的偶数倍位于共振频率带之外,具体包括:通电频率的偶数倍小于或等于共振频率带的下边界;或者通电频率的偶数倍大于或等于共振频率带的上边界。也就是使永磁电机的通电频率满足如下关系:
Figure PCTCN2020121300-appb-000011
Figure PCTCN2020121300-appb-000012
其中,M为永磁电机的定子固有频率的最高阶次,k为正整数。
S303、MCU获取动力电池的电芯温度和永磁电机的运行状态。
其中,在获取动力电池的电芯温度时,通过设置在动力电池内部的传感器检测动力电池的电芯温度。在获取永磁电机的运行状态时,通过设置在永磁电机上的传感器检测转子的运动状态。
S304、MCU在动力电池满足自加热条件时,使用通电频率的交流电为永磁电机供电。
其中,动力电池的电芯温度小于预设温度阈值,并且永磁电机的运行状态为停止状态时,使用通电频率的交流电为永磁电机供电,能够避免由于电机中绕组作为储能元件向动力电池提供交变电流而产生振动的问题。
其中,在使用通电频率的交流电为永磁电机供电时,MCU根据通电频率和预先设定的占空比生成PWM信号,逆变器的控制端接收PWM信号,输出频率为通电频率的交流电,永磁电机的绕组中通入频率为通电频率的交流电,通电频率的偶数倍位于定子共振频率带之外,径向电磁力的频率为定子绕组通电频率的偶数倍关系,使得径向电磁力的频率避开共振频率带,进而减少由径向电磁力引起的共振,以达到减小电机振动的问题。
下面三相永磁同步电机为例描述本实施例提供的控制方法的可行性。电机本体振动噪声的主要来源可以分为径向电磁力、切向电磁力、不平衡磁拉力、不平衡机械力和磁滞伸缩力。以电动汽车最常用的8极48槽电机为例,其电机径向电磁力的幅值往往远高于其他四大噪声来源,也是电动汽车噪声的主要来源。因此,消除径向电磁力,既可以有效将噪声抑制在噪声阈值范围内。
可以将电机定子等效的看成一个由硅钢片叠压制成的圆筒,由于定子的振动形状是固有的,定子对应有不同阶次的振动形状,且每个振动形状都对应一个固有的频率。
对于电机的振动,径向电磁力沿空间的分布形状和频率是两个重要因素。首先,当电机径向电磁力沿空间的分布与定子前四阶任意一阶定子振动形状一致时,这时即使未达到共振频率,其强迫振动的幅值也会比不匹配时大得多。其次,定子每一振动阶次对应的固有频率大小与径向电磁力的频率大小一致时将会发生共振,此时径向电磁力的幅值也会增强很多。 由于径向电磁力沿空间的分布需要改变电机的结构,所以通过改变径向电磁力的频率避开共振频率是最为行之有效的方法。
下面描述如何计算获得径向电磁力频率。与电机正常运行工况下定子绕组产生的圆形旋转磁场不同,电池自加热技术使得电机定子绕组产生的是一个脉振的磁动势,此时电机气隙磁密的谐波含量会更高,从而会产生更多的低阶低频的径向电磁力。此时计算电磁力,电机的气隙形状不能按圆形进行计算,而是要按椭圆形进行等效处理。具体的椭圆变形量与定子绕组的通电频率和电流大小有关,通电频率越高,电流大小越大,椭圆的变形量就越大。
通过有限元仿真模拟定子变形,得到的径向电磁力分布,得出如下结论:在电池自加热控制策略下,径向电磁力波中的主要谐波含量会有所减小,但是会产生附加的时空谐波成分,这些附加的谐波含量会产生许多低阶低频的径向电磁力波的分量,从而对电机的电磁振动产生更大的影响。也就是说,在电池自加热工况下,径向电磁力的空间阶次发生了变化,会产生许多阶次低的电磁力,但是不会产生新的电磁力频率。这时,径向电磁力的频率可以按照电机常规运行工况下公式进行计算。
电机径向电磁力是电机定子磁场和转子磁场相互作用引起的,由于电机结构及绕线的布线方式等原因将会引起定子谐波磁场和转子谐波磁场,定子基波磁场、定子谐波磁场与转子基波磁场、转子谐波磁场,所以,径向电磁力不仅是定子基波磁场和转子基波磁场相互作用产生的,定子与转子同次谐波磁场相互作用、定子谐波磁场的相互作用也会产生不同频率的径向电磁力。因此,定子通三相对称交流电时,径向电磁力的频率计算过程如下:
Figure PCTCN2020121300-appb-000013
其中,f r表示径向电磁力,B S表示定子磁密,B R表示转子磁密,μ 0表示空气导磁率。
B S=F 1(α,t)Λ g       (2)
B R=F 2(α,t)Λ g        (3)
其中,公式(2)、(3)中,Λ g表示等效气隙磁导,α为气隙沿圆周 的角度,t表示时间,F 1表示三相对称定子绕组产生的磁动势,F 2表示转子永磁体产生的磁动势。
Figure PCTCN2020121300-appb-000014
Figure PCTCN2020121300-appb-000015
其中,公式(4)、(5)中,v表示定子谐波次数;μ表示转子谐波次数,ω为定子角频率;F mv为定子v次谐波磁动势幅值;F 为转子μ次谐波磁动势幅值;ω μ为转子μ次谐波磁动势的电角频率,电池加热控制策略下,取为0;φ μ为转子μ次谐波磁动势与初始位置的夹角,p为极对数。
将公式(2)~(5)代入到公式(1)中,利用积化和差公式即可得到径向电磁力频率、转子磁场的谐波和定子磁场的谐波。下面以定子磁场和转子磁场的前13次谐波产生的径向电磁力与频率的关系为例,进行说明。如表1所示。
表1为径向电磁力的频率
Figure PCTCN2020121300-appb-000016
从表1可以得到,径向电磁力的频率总是和绕组通电频率的存在偶次 倍数的关系。并从表中可以推出径向电磁力的频率与通电频率的关系为:(μ±1)f,其中f表示绕组通电频率。在本申请实施例提供的控制方法,利用径向电磁力的频率为定子绕组通电频率的偶数倍关系,MCU使逆变器输出通电频率的偶数倍在定子共振频率带之外的交流电,使电机产生的径向电磁力的频率避开电机定子固有频率,降低由于径向电磁力共振产生的噪声。
图4为本申请实施例三提供的永磁电机控制装置的结构示意图,永磁电机控制装置400用于执行上述实施例提供的永磁电机的控制方法。如图4所示,本申请实施例三提供的永磁电机的控制装置400,包括:
获取模块401,用于获取永磁电机的系统参数,系统参数包括:永磁电机的共振带宽和永磁电机的定子固有频率;
确定模块402,用于根据系统参数设置永磁电机的通电频率;
控制模块403,用于在动力电池满足自加热条件时,使用通电频率的交流电为永磁电机供电;
其中,通电频率的偶数倍位于共振频率带之外,共振频率带是根据永磁电机的定子固有频率和共振带宽确定的。
可选地,通电频率的偶数倍位于共振频率带之外,包括:
通电频率的偶数倍小于或等于共振频率带的下边界;或者
通电频率的偶数倍大于或等于共振频率带的上边界。
可选地,通电频率的偶数倍小于或等于共振频率带的下边界,具体为:
Figure PCTCN2020121300-appb-000017
通电频率的偶数倍大于或等于共振频率带的上边界,具体为:
Figure PCTCN2020121300-appb-000018
其中,
Figure PCTCN2020121300-appb-000019
为永磁电机定子的第i阶固有频率,f为通电频率,B为永磁电机定子的共振带宽的1/2,M为永磁电机的定子固有频率的最高阶次,k为正整数。
可选地,M=4。
可选地,获取模块401还用于:
获取动力电池的电芯温度和永磁电机的运行状态;
相应地,动力电池满足自加热条件包括:
电芯温度小于预设温度阈值和运行状态为停止状态。
可选地,获取模块401还用于:获取占空比;
相应地,控制模块403具体包括:
根据通电频率和占空比生成PWM信号,其中,PWM信号用于为永磁电机提供通电频率的交流电。
图5为本申请实施例四示出的控制设备的结构示意图。如图5所示,本实施例提供的控制设备500包括:存储器501、及处理器502。
存储器501,用于存储计算机执行指令;
处理器502,用于执行存储器存储的计算机执行指令,以实现上述实施例中永磁电机控制方法所执行的各个步骤。具体可以参见前述永磁电机控制方法实施例中的相关描述。
可选地,上述存储器501既可以是独立的,也可以跟处理器502集成在一起。
当存储器501独立设置时,该控制设备还包括总线,用于连接存储器501和处理器502。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行计算机执行指令时,实现如上控制设备所执行的永磁电机控制方法。
本申请实施例还提供一种动力系统,包括:动力电池、逆变器、永磁电机以及电机控制器,电机控制器用于执行上述实施例提供的永磁电机的控制方法。
如图6所示,本申请实施例还提供一种电动汽车,包括上述实施例的动力系统100,动力系统100包括动力电池10、逆变器20、永磁电机30以及电机控制器MCU 40,MCU 40用于执行上述实施例提供的永磁电机控制方法。
为了进一步减少电机振动对整车汽车舒适度的影响,继续参考图6所示,在整车上安装一个声学包604以及加一套主动降噪系统600。
具有隔音与吸引效果的声学包604将电机包裹住,能够减少电机噪声。主动降噪系统600包括检测单元601、输出单元602和控制单元603。检测单元601和输出单元602分别与控制单元603连接。下面结合图6来说明主动降噪系统的工作原理:检测单元601位于机舱内,检测单 元601用于采集电机产生的噪声,并将电机产生的噪声传输至控制单元603中。控制单元603通过算法输出一个与噪声相位相差180°、幅值相同的声波。并由输出单元602输出该声波,进而抵消电机噪声。其中,检测单元601可以为麦克风,输出单元602为播放器。输出单元602可以位于机舱,也可以位于乘客舱,提高乘客舒适度。
通过改变MCU控制频率减少振动,再结合声学包以及主动降噪方案,能有效的降低电池自加热技术带来的电机振动,并且能在原有基础上进一步优化电机的振动。其中对电机振动要求较低的场合,任意两种降噪方案的组合也能起到降低电机振动的作用,以使电动汽车的NVH三项指标达标。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案。

Claims (14)

  1. 一种永磁电机的控制方法,其特征在于,所述方法包括:
    获取所述永磁电机的系统参数,所述系统参数包括:所述永磁电机的共振带宽和所述永磁电机的定子固有频率;
    根据所述系统参数设置所述永磁电机的通电频率;
    在动力电池满足自加热条件时,使用所述通电频率的交流电为所述永磁电机供电;
    其中,所述通电频率的偶数倍位于共振频率带之外,所述共振频率带是根据永磁电机的定子固有频率和共振带宽确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述通电频率的偶数倍位于共振频率带之外,包括:
    所述通电频率的偶数倍小于或等于所述共振频率带的下边界;或者
    所述通电频率的偶数倍大于或等于所述共振频率带的上边界。
  3. 根据权利要求2所述的方法,其特征在于,
    所述通电频率的偶数倍小于或等于所述共振频率带的下边界,具体为:
    Figure PCTCN2020121300-appb-100001
    所述通电频率的偶数倍大于或等于所述共振频率带的上边界,具体为:
    Figure PCTCN2020121300-appb-100002
    其中,
    Figure PCTCN2020121300-appb-100003
    为所述永磁电机定子的第i阶固有频率,f为所述通电频率,B为所述永磁电机定子的共振带宽的1/2,M为所述永磁电机的定子固有频率的最高阶次,k为正整数。
  4. 根据权利要求3所述的方法,其特征在于,M=4。
  5. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述方法还包括:
    获取所述动力电池的电芯温度和所述永磁电机的运行状态;
    相应地,所述动力电池满足自加热条件包括:
    所述电芯温度小于预设温度阈值和所述运行状态为停止状态。
  6. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述 方法还包括:
    获取占空比;
    相应地,使用所述通电频率的交流电为所述永磁电机供电,具体包括:
    根据所述通电频率和所述占空比生成脉宽调制信号,其中,所述信号用于为所述永磁电机提供所述通电频率的交流电。
  7. 一种永磁电机的控制装置,其特征在于,包括:
    获取模块,用于获取所述永磁电机的系统参数,所述系统参数包括:所述永磁电机的共振带宽和所述永磁电机的定子固有频率;
    确定模块,用于根据所述系统参数设置所述永磁电机的通电频率;
    控制模块,用于在动力电池满足自加热条件时,使用所述通电频率的交流电为所述永磁电机供电;
    其中,所述通电频率的偶数倍位于共振频率带之外,所述共振频率带是根据永磁电机的定子固有频率和共振带宽确定的。
  8. 根据权利要求7所述的装置,其特征在于,所述通电频率的偶数倍位于共振频率带之外,包括:
    所述通电频率的偶数倍小于或等于所述共振频率带的下边界;或者
    所述通电频率的偶数倍大于或等于所述共振频率带的上边界。
  9. 根据权利要求8所述的装置,其特征在于,
    所述通电频率的偶数倍小于或等于所述共振频率带的下边界,具体为:
    Figure PCTCN2020121300-appb-100004
    所述通电频率的偶数倍大于或等于所述共振频率带的上边界,具体为:
    Figure PCTCN2020121300-appb-100005
    其中,
    Figure PCTCN2020121300-appb-100006
    为所述永磁电机定子的第i阶固有频率,f为所述通电频率,B为所述永磁电机定子的共振带宽的1/2,M为所述永磁电机的定子固有频率的最高阶次,k为正整数。
  10. 根据权利要求9所述的装置,其特征在于,M=4。
  11. 根据权利要求7至10中任意一项所述的装置,其特征在于,获取模块还用于:
    获取所述动力电池的电芯温度和所述永磁电机的运行状态;
    相应地,所述动力电池满足自加热条件包括:
    所述电芯温度小于预设温度阈值和所述运行状态为停止状态。
  12. 根据权利要求7至10中任意一项所述的装置,其特征在于,获取模块还用于:
    获取占空比;
    相应地,控制模块具体用于:
    根据所述通电频率和所述占空比生成脉宽调制信号,其中,所述信号用于为所述永磁电机提供所述通电频率的交流电。
  13. 一种动力系统,其特征在于,包括:动力电池、逆变器、永磁电机以及电机控制器,所述电机控制器用于执行如权利要求1至6任一项所述永磁电机的控制方法。
  14. 一种电动汽车,其特征在于,包括动力系统,所述动力系统包括动力电池、逆变器、永磁电机以及电机控制器,所述电机控制器用于执行如权利要求1至6任一项所述永磁电机的控制方法。
PCT/CN2020/121300 2020-06-15 2020-10-15 永磁电机的控制方法、装置、动力系统及电动汽车 WO2021253694A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20923709.8A EP3957512B1 (en) 2020-06-15 2020-10-15 Method and device for controlling permanent magnet motor, power system, and electric vehicle
JP2022537768A JP7263628B2 (ja) 2020-06-15 2020-10-15 永久磁石モーターの制御方法、装置、動力システム及び電気自動車
KR1020227033422A KR102563499B1 (ko) 2020-06-15 2020-10-15 영구자석 모터의 제어 방법, 장치, 파워 시스템 및 전기 자동차
US17/529,511 US11309826B2 (en) 2020-06-15 2021-11-18 Method and apparatus for controlling permanent magnet motor, power system and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010540328.8 2020-06-15
CN202010540328.8A CN111439132B (zh) 2020-06-15 2020-06-15 永磁电机的控制方法、装置、动力系统及电动汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/529,511 Continuation US11309826B2 (en) 2020-06-15 2021-11-18 Method and apparatus for controlling permanent magnet motor, power system and electric vehicle

Publications (1)

Publication Number Publication Date
WO2021253694A1 true WO2021253694A1 (zh) 2021-12-23

Family

ID=71655546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121300 WO2021253694A1 (zh) 2020-06-15 2020-10-15 永磁电机的控制方法、装置、动力系统及电动汽车

Country Status (7)

Country Link
US (1) US11309826B2 (zh)
EP (1) EP3957512B1 (zh)
JP (1) JP7263628B2 (zh)
KR (1) KR102563499B1 (zh)
CN (1) CN111439132B (zh)
HU (1) HUE061805T2 (zh)
WO (1) WO2021253694A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111439132B (zh) 2020-06-15 2020-11-17 江苏时代新能源科技有限公司 永磁电机的控制方法、装置、动力系统及电动汽车
EP4043275A4 (en) * 2020-07-31 2022-12-28 Contemporary Amperex Technology Co., Limited ELECTRIC MOTOR, POWER SYSTEM, CONTROL METHOD, AND ELECTRIC VEHICLE
CN114670656A (zh) * 2020-12-24 2022-06-28 宁德时代新能源科技股份有限公司 控制方法、装置、动力系统及电动汽车
EP4046862B1 (en) 2020-12-24 2024-06-12 Contemporary Amperex Technology Co., Limited Control method and apparatus, power system and electric vehicle
CN113715692B (zh) * 2021-09-28 2023-04-14 重庆长安新能源汽车科技有限公司 电动汽车的动力电池脉冲加热噪音的控制系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259217A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp 駆動装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN105932363A (zh) * 2016-05-16 2016-09-07 北京理工大学 一种电源系统的自加热方法
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置
CN109823234A (zh) * 2019-04-23 2019-05-31 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车
CN110048192A (zh) * 2019-03-20 2019-07-23 石不凡 一种动力电池预加热方法
CN110557079A (zh) * 2018-06-04 2019-12-10 福特全球技术公司 基于马达运转区域的随机脉冲宽度调制
CN111439132A (zh) * 2020-06-15 2020-07-24 江苏时代新能源科技有限公司 永磁电机的控制方法、装置、动力系统及电动汽车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176484A (ja) * 2003-12-10 2005-06-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
CN100346572C (zh) * 2004-10-07 2007-10-31 丰田自动车株式会社 对输出转矩具有振动减小控制功能的电机驱动装置
JP2013027105A (ja) * 2011-07-19 2013-02-04 Toshiba Corp モータ駆動回路、および、モータ駆動システム
JP6015707B2 (ja) * 2014-05-08 2016-10-26 トヨタ自動車株式会社 ハイブリッド車両の動力制御システム
FR3030124B1 (fr) * 2014-12-16 2019-10-11 Renault S.A.S Procede de gestion d'un groupe motopropulseur hybride d'un vehicule automobile
JP6568658B2 (ja) * 2016-09-05 2019-08-28 日立オートモティブシステムズ株式会社 回転電動機の制御方法および制御装置、並びに回転電動機駆動システム
US10184917B2 (en) * 2016-09-08 2019-01-22 Linestream Technologies Method for automatically identifying resonance
US10027262B2 (en) * 2016-09-13 2018-07-17 Ford Global Technologies, Llc Pseudorandom PWM variation based on motor operating point
JP6715759B2 (ja) * 2016-12-28 2020-07-01 日立オートモティブシステムズ株式会社 インバータ駆動装置およびそれを用いた電動車両システム
JP7065452B2 (ja) * 2017-06-15 2022-05-12 パナソニックIpマネジメント株式会社 電動機制御装置、及び電動機制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259217A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp 駆動装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN105932363A (zh) * 2016-05-16 2016-09-07 北京理工大学 一种电源系统的自加热方法
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置
CN110557079A (zh) * 2018-06-04 2019-12-10 福特全球技术公司 基于马达运转区域的随机脉冲宽度调制
CN110048192A (zh) * 2019-03-20 2019-07-23 石不凡 一种动力电池预加热方法
CN109823234A (zh) * 2019-04-23 2019-05-31 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车
CN111439132A (zh) * 2020-06-15 2020-07-24 江苏时代新能源科技有限公司 永磁电机的控制方法、装置、动力系统及电动汽车

Also Published As

Publication number Publication date
US20220077811A1 (en) 2022-03-10
HUE061805T2 (hu) 2023-08-28
CN111439132A (zh) 2020-07-24
JP7263628B2 (ja) 2023-04-24
US11309826B2 (en) 2022-04-19
KR102563499B1 (ko) 2023-08-07
JP2022553436A (ja) 2022-12-22
EP3957512A4 (en) 2022-06-01
EP3957512A1 (en) 2022-02-23
KR20220137153A (ko) 2022-10-11
EP3957512B1 (en) 2023-04-12
CN111439132B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2021253694A1 (zh) 永磁电机的控制方法、装置、动力系统及电动汽车
Deng et al. Electromagnetic vibration and noise of the permanent-magnet synchronous motors for electric vehicles: An overview
Zhu et al. Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles
Zhang et al. Design and flux-weakening control of an interior permanent magnet synchronous motor for electric vehicles
Chen et al. A nine-phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for electric vehicle applications
Mademlis et al. Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives
Qiao et al. Research on design method and electromagnetic vibration of six-phase fractional-slot concentrated-winding PM motor suitable for ship propulsion
US8653779B2 (en) Rotating electrical-machine control system and method of operating magnet temperature of rotating electrical-machine
CN104201665B (zh) 一种基于虚拟直流发电机的负荷用直流变换器控制方法
WO2016188069A1 (zh) 风力发电机的振动抑制方法及装置
WO2020258802A1 (zh) 一种计及pwm谐波条件下的变频电机铁耗电阻的计算方法
Song et al. Exact multiphysics modeling and experimental validation of spoke-type permanent magnet brushless machines
Liu et al. Pre-and post-fault operations of six-phase electric-drive-reconstructed onboard charger for electric vehicles
US20150069977A1 (en) System and method for non-sinusoidal current waveform excitation of electrical generators
Wang et al. General topology derivation methods and control strategies of field winding-based flux adjustable PM machines for generator system in more electric aircraft
Xing et al. Optimization of stator slot parameters for electromagnetic vibration reduction of permanent magnet synchronous motors
CN113381670B (zh) 一种多三相永磁同步电机高频pwm振动抑制方法及系统
Li et al. Analysis of vibration and noise of IPMSM for electric vehicles under inverter harmonic in a wide-speed range
US20230130303A1 (en) Control method, device, power system and electric vehicle
Li et al. Electromagnetic Vibration and Noise Analysis of IPMSM for Electric Vehicles under Different Working Conditions
CN104767344B (zh) Pwm供电无刷直流电机通过频率计算抑制振动的方法
WO2022021449A1 (zh) 电机、控制方法、动力系统以及电动汽车
CN207939424U (zh) 一种单相永磁同步发电机串电容运行控制装置
Li et al. Vibration noise suppression approach based on random switching frequency control for permanent magnet motor
Zhang et al. Windage loss and torque ripple reduction in stator-permanent magnet flux-switching machines

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020923709

Country of ref document: EP

Effective date: 20210920

ENP Entry into the national phase

Ref document number: 2022537768

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033422

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE