CN111347936A - 一种车辆及其动力电池加热方法与装置 - Google Patents

一种车辆及其动力电池加热方法与装置 Download PDF

Info

Publication number
CN111347936A
CN111347936A CN201811574235.6A CN201811574235A CN111347936A CN 111347936 A CN111347936 A CN 111347936A CN 201811574235 A CN201811574235 A CN 201811574235A CN 111347936 A CN111347936 A CN 111347936A
Authority
CN
China
Prior art keywords
power battery
heating
phase
motor
control module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811574235.6A
Other languages
English (en)
Other versions
CN111347936B (zh
Inventor
凌和平
宁荣华
宋淦
张宇昕
宋鹏辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201811574235.6A priority Critical patent/CN111347936B/zh
Publication of CN111347936A publication Critical patent/CN111347936A/zh
Application granted granted Critical
Publication of CN111347936B publication Critical patent/CN111347936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

本公开提出了一种车辆及其动力电池加热方法与装置,动力电池加热装置包括开关模块、三相逆变器、三相交流电机以及控制模块,控制模块用于确定动力电池的温度低于预设温度值且满足加热条件时,控制开关模块的通断状态,使得加热能量源提供加热能量,并控制三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热,加热时不需要使用发动机或者增加加热装置就可以实现动力电池的温度提升,并且实现加热过程的热均衡,避免三相逆变器的单相桥臂过热,且一个周期内电机摆动时没有连续转矩。

Description

一种车辆及其动力电池加热方法与装置
技术领域
本公开涉及车辆技术领域,尤其涉及一种车辆及其动力电池加热方法与装置。
背景技术
近几年新能源汽车蓬勃发展,基于锂离子的动力电池得到大量应用,由于电池的固有特性,在低温时动力电池的充放电能力会大幅降低,这将影响车辆在寒冷地区的使用。
为解决这一问题,现有技术中一种技术方案是通过电池管理系统检测和发送动力电池单元的温度,如果低于预设温度阈值,则整车控制器通过CAN通讯命令发动机控制器控制发动机在某一转速下匀速转动,且发动机带动发电机转动,通过发电机向动力电池单元快速充电及放电,达到预热电池包的目的,该技术方案中由于能量传递路径上多了一个发动机,且发动机热效率很低,导致整个电池加热效率低下。
现有技术中另一种技术方案是当环境温度低,需要给动力电池加热时,水泵将冷却液由冷冻液箱抽出,经PTC加热器加热后送入动力电池液冷板,使得动力电池液冷板温度升高,再由动力电池液冷板给动力电池加热,从而提高动力电池寒冷条件下的工作性能。该技术方案中需要用到一个PTC加热器,导致增加成本,且PTC加热器如果损坏后,导致二次成本增加。
综上所述,现有技术中存在在低温状态下对动力电池进行加热时采用发动机进行加热导致电池加热效率低下以及采用PTC加热器进行加热导致成本增加的问题。
发明内容
本公开的目的在于提供一种车辆及其动力电池加热方法与装置,以解决现有技术中存在在低温状态下对动力电池进行加热时采用发动机进行加热导致电池加热效率低下以及采用PTC加热器进行加热导致成本增加的问题。
本公开是这样实现的,本公开第一方面提供一种动力电池加热方法,应用于动力电池加热装置,所述动力电池加热装置包括开关模块、三相逆变器、三相交流电机以及控制模块,所述开关模块接通加热能量源与所述动力电池加热装置,并且所述开关模块与所述三相逆变器并联连接,所述三相逆变器与所述三相交流电机连接,所述控制模块与所述开关模块、所述三相逆变器以及所述三相交流电机连接,所述动力电池加热方法包括:
所述控制模块获取动力电池的当前温度值,以及电机的当前工作状态;
所述控制模块根据所述当前温度值和所述电机的当前工作状态判断所述动力电池是否满足加热条件;
若所述动力电池满足加热条件,则所述控制模块控制所述开关模块的通断状态,以使得所述加热能量源提供加热能量,并且所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热。
本公开第二方面提供一种动力电池加热装置,所述动力电池加热装置包括:
开关模块,用于接通加热能量源与所述动力电池加热装置;
三相逆变器,所述三相逆变器与所述开关模块并联连接;
三相交流电机,所述三相交流电机的三相线圈与所述三相逆变器的三相桥臂连接;
控制模块,所述控制模块分别与所述开关模块、所述三相逆变器以及所述三相交流电机连接,所述控制模块用于获取所述动力电池的当前温度值,以及电机的当前工作状态,并根据所述当前温度值和所述电机的当前工作状态判断所述动力电池是否满足加热条件,且在所述动力电池满足加热条件时,控制所述开关模块的通断状态,以使得所述加热能量源提供加热能量,并且所述控制模块还用于控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热。
本公开第三方面提供一种车辆,所述车辆包括第二方面所述动力电池加热装置。
本公开提出了一种车辆及其动力电池加热方法与装置,动力电池加热装置包括开关模块、三相逆变器、三相交流电机以及控制模块,控制模块用于确定动力电池的温度低于预设温度值且满足加热条件时,控制开关模块的通断状态,使得加热能量源提供加热能量,并控制三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热,加热时不需要使用发动机或者增加加热装置就可以实现动力电池的温度提升,并且实现加热过程的热均衡,避免三相逆变器的单相桥臂过热,且一个周期内电机摆动时没有连续转矩。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一种实施例提供的一种动力电池加热装置的结构示意图;
图2是本公开一种实施例提供的一种动力电池加热装置的另一结构示意图;
图3是本公开一种实施例提供的一种动力电池加热装置的电路图;
图4是本公开一种实施例提供的一种动力电池加热装置中三相逆变器的六次工作切换过程中电机定子磁场分布方向示意图;
图5是本公开一种实施例提供的一种动力电池加热装置中三相逆变器的六次工作切换过程中三相交流电机的A相电流波形示意图;
图6是本公开一种实施例提供的一种动力电池加热装置中三相逆变器的十二次工作切换过程中电机定子磁场分布方向示意图;
图7是本公开一种实施例提供的一种动力电池加热装置工作在电池供电加热时的电流路径图;
图8是本公开一种实施例提供的一种动力电池加热装置工作在电池供电加热时的另一电流路径图;
图9是本公开一种实施例提供的一种动力电池加热装置工作在电池供电加热时的又一电流路径图;
图10是本公开一种实施例提供的一种动力电池加热装置工作在外部供电设备供电加热时的电流路径图;
图11是本公开一种实施例提供的一种动力电池加热装置工作在外部供电设备供电加热时的另一电流路径图;
图12是本公开一种实施例提供的一种动力电池加热装置工作在外部供电设备充电加热时的又一电流路径图;
图13是本公开一种实施例提供的一种动力电池加热方法的流程示意图;
图14是本公开一种实施例提供的一种车辆的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
为了说明本公开的技术方案,下面通过具体实施例来进行说明。
本公开实施例提供一种动力电池加热装置,如图1所示,动力电池加热装置包括:
开关模块10,用于接通加热能量源14与动力电池加热装置;
三相逆变器11,三相逆变器11与开关模块10并联连接;
三相交流电机12,三相交流电机12的三相线圈与三相逆变器11的三相桥臂连接;
控制模块13,控制模块13分别与开关模块10、三相逆变器11、三相交流电机12连接,控制模块13用于获取动力电池的当前温度值,以及电机的当前工作状态,并根据当前温度值和电机的当前工作状态判断动力电池是否满足加热条件,且在动力电池满足加热条件时,控制开关模块10的通断状态,使得加热能量源14提供加热能量,进而控制三相逆变器11按照预设切换顺序进行六种或十二种工作状态循环切换,使得三相交流电机12根据加热能量产生热量以对流经动力电池的冷却液进行加热。
其中,加热能量源14可以采用外部供电设备例如充电桩实现,也可以是动力电池本身,即加热能量源14提供的加热能量可以是动力电池输出的,也可以是直流充电器输出的,或者是交流充电器经过整流后输出的,此处不做具体限制;三相逆变器11包括六个功率开关单元,功率开关可以是晶体管、IGBT、MOS管等器件类型,两个功率开关单元构成一相桥臂,共形成三相桥臂,每相桥臂中两个功率开关单元的连接点连接三相交流电机12中的一相线圈,三相交流电机12包括三相线圈,三相线圈连接于一个中点,三相交流电机12可以是永磁同步电机或异步电机;控制模块13可以采集动力电池的电压、电流、温度以及三相交流电机12的相电流,控制模块13可以包括整车控制器、电机控制器的控制电路和BMS电池管理器电路,三者通过CAN线连接,控制模块13中的不同模块根据所获取的信息控制三相逆变器11中功率开关的导通和关断以实现不同电流回路的导通,此外,在动力电池、三相逆变器11以及三相交流电机12上设有冷却液管,该冷却液管内流动冷却液,可以通过对冷却液管内的冷却液进行温度调节,以调节动力电池的温度。
其中,由于电池的固有特性,在低温状态时动力电池的充放电能力会大幅降低,会影响新能源汽车在寒冷地区的使用,为了使动力电池正常工作,需要在动力电池温度过低时提升动力电池的温度,因此,通过控制模块13获取动力电池的温度,可以采用电池管理器来获取动力电池的温度,将动力电池的温度与预设温度值进行比较来判断动力电池是否处于低温状态,当检测到动力电池的温度低于预设温度值时,可以通过提升流经动力电池的冷却液的温度方式提高动力电池的温度,由于三相逆变器11以及三相交流电机12在工作的过程中均产生热量,因此,可以控制三相逆变器11以及三相交流电机12对流经动力电池的冷却液进行加热,对冷却液加热的方式可以是使三相逆变器11按照预设切换顺序进行六种或十二种工作状态的循环切换工作,并在每种工作方式下三相逆变器11向三相交流电机12的三相线圈通电加热,直至当检测到动力电池的温度不低于预设温度值时停止加热。
在本实施方式中,通过在动力电池满足加热条件时,控制开关模块的通断状态,使得加热能量源提供加热能量,并且控制三相逆变器按照六种或十二种工作状态进行循环切换,使得三相逆变器在每种工作状态下向三相交流电机内部三相线圈提供热源,加热冷却液后经过冷却回路实现对动力电池的加热,不需要使用发动机或者增加加热装置就可以实现动力电池的温度提升,并且加热效率高,动力电池温度升高快;此外,控制三相逆变器进行六种或十二种工作状态的切换,可以实现加热过程的热均衡,避免三相逆变器11的单相桥臂过热,且一个周期内电机摆动时没有连续转矩。
进一步的,作为一种实施方式,控制模块13在根据当前温度值和电机的当前工作状态判断动力电池是否满足加热条件具体为:
若所述当前温度值低于预设温度值,且所述电机的当前工作状态处于非驱动状态,则表明所述动力电池满足加热条件;
若所述当前温度值不低于所述预设温度值,或者所述电机的当前工作状态处于驱动状态,则表明所述动力电池不满足加热条件。
其中,在本公开实施方式中,加热条件的满足需要当前温度和电机的当前工作状态同时满足要求方可,即只有在动力电池的当前温度低于预设温度值,且电机的当前工作状态为P档驻车非驱动状态时,动力电池满足加热条件,当动力电池的当前温度不低于预设温度值,或者电机的当前工作状态为驱动状态时,则不满足动力电池加热条件;需要说明的是,在本公开实施例中,动力电池的当前温度是否低于预设温度值,以及电机的当前工作状态是否处于驱动状态的两个判断条件不分先后顺序。
在本实施方式中,根据动力电池的当前温度值和电机的当前工作状态两个条件确定动力电池是否满足加热条件,使得两个条件中任意一个条件不满足时都无法对动力电池加热,防止车辆在驱动状态对动力电池加热,提高了行车安全。
进一步地,从前述描述可知,在对流经动力电池的冷却液进行加热之前,需要判断动力电池是否满足加热条件,而电机的当前工作状态则是判断动力电池是否满足加热条件的重要参数,因此在判断动力电池是否满足加热条件之前,需要获取电机的当前工作状态,在获取电机的当前工作状态时,控制模块13主要通过以下方法:
获取档位信息、车辆的驱动模式信息以及车速信息,并根据所述档位信息、车辆的驱动模式信息以及所述车速信息获取所述电机的当前工作状态。
其中,在本公开实施例中,车辆的驱动模式包括但不限于混合动力驱动模式、燃油驱动模式以及纯电动驱动模式。
具体的,当判定当前档位为P档且车速为0时,则表明电机的当前工作状态为非驱动状态;当判定当前档位不为P档或者是车速不为零时,则表明电机的当前工作状态为驱动状态。
本实施方式中,通过获取档位信息、车辆的驱动模式信息以及车速信息,并根据档位信息、车辆的驱动模式信息以及车速信息获取电机的当前工作状态,使得在之后根据电机的工作状态和动力电池的当前温度值判断动力电池是否满足加热条件时,可根据档位信息、车速信息以及温度值三个条件进行判断,在任意一个条件不满足时便无法对动力电池加热,防止车辆的电机在正常驱动状态下对动力电池加热,进而影响车辆性能和行车安全,还可以获取车辆的驱动模式信息,若车辆此时工作在燃油模式下,电机处于非驱动状态,如果要切换到EV模式,可以先对电池进行加热,不会干涉行车安全。
进一步地,作为一种实施方式,可以采用以下方式控制三相逆变器11:控制模块13向三相逆变器11输出PWM控制信号,使三相逆变器11按照预设切换顺序进行六种或十二种工作状态循环切换,并获取加热能量源14的输出功率,将输出功率与预设加热功率进行对比,根据对比结果调节PWM控制信号的占空比,以调节输出功率至预设加热功率。
其中,控制模块13接收加热能量源14输出的电压和电流数据,计算动力电池的输出功率,把输出功率认为是电池加热功率,将计算的加热功率与预设加热功率相比较,如果计算的加热功率偏低,则增加PWM占空比,增大动力电池的输出电流,如果计算的加热功率偏高,则减小PWM占空比,减小动力电池的输出电流,直至加热功率达到加热指令功率附近为止;需要说明的是,在本公开实施方式中,控制模块13还用于获取电机的温度,并在电机的温度达到限值时,控制加热功率不再增加。
在本实施方式中,通过获取加热能量源14的输出功率,并将该输出功率与预设加热功率进行对比,进而根据对比结果调节控制三相逆变器11的PWM控制信号的占空比,以使得加热功率闭环可控。
进一步地,作为本公开一种实施方式,控制模块13还用于在动力电池的加热过程中,实时监测动力电池的温度,若动力电池的温度达到指定加热温度,则停止向动力电池加热。
其中,在本公开实施例中,当动力电池的温度达到指定加热温度,即不低于预设温度值时,则表明动力电池无需再加热,此时需要停止向动力电池加热,即控制三相逆变器中所有功率开关器件断开。
在本实施方式中,通过在加热过程中实时监测动力电池的温度,并且在动力电池的温度达到指定加热温度时,停止向动力电池加热,以此有效防止动力电池过热,防止动力电池发生损坏,提高了动力电池的使用寿命。
进一步地,作为本公开一种实施方式,如图2所示,加热能量源包括外部供电设备141与动力电池142,开关模块10包括第一开关单元101与第二开关单元102,并且第一开关单元101连接外部供电设备141,第二开关单元102连接动力电池142,控制模块13在控制开关模块通断状态,以使得加热能量源提供加热能量时,具体用于:
控制第一开关单元101导通,第二开关单元102断开,以使得外部供电设备141提供加热能量;
控制第二开关单元102导通,第一开关单元101断开,以使得动力电池142提供加热能量。
在本实施方式中,将外部供电设备和动力电池作为加热能量源向动力电池加热,使得动力电池加热过程中的能量来源多样化,有效避免加热能量源为一种且发生故障时,动力电池无法加热的弊端。
具体的,当加热能量源由动力电池142提供时,控制模块13具体用于控制三相逆变器11按照预设切换顺序进行六种或十二种工作状态循环切换,使得动力电池142根据加热能量对三相交流电机12的三相线圈的储能过程以及三相交流电机12的三相线圈的放电过程交替进行,使得三相交流电机12产生热量以对流经动力电池142的冷却液进行加热。
在其他实施方式中,当加热能量由外部供电设备141提供时,控制模块13具体用于控制三相逆变器11按照预设切换顺序进行六种或十二种工作状态循环切换,使得外部供电设备141根据加热能量对三相交流电机12的三相线圈的储能过程以及三相交流电机12的三相线圈的放电过程交替进行,使得三相交流电机12产生热量以对流经动力电池142的冷却液进行加热。
进一步地,作为本公开一种实施方式,如图3所示,第一开关单元101包括第一开关元件K1与第二开关元件K2,该第一开关元件K1的第一端与外部供电设备141的正极连接,该第二开关元件K2的第一端与外部供电设备141的负极连接,该第一开关元件K1的第二端与三相逆变器11的正端连接,该第二开关元件K2的第二端与三相逆变器11的负端连接。
进一步地,作为本公开一种实施方式,如图3所示,第二开关单元102包括第三开关元件K3与第四开关元件K4,该第三开关元件K3的第二端与动力电池142的正极连接,该第四开关元件K4的第二端与动力电池142的负极连接,该第三开关元件K3的第一端与三相逆变器11的正端连接,该第四开关元件K4的第二端与三相逆变器11的负端连接。
进一步地,对于三相逆变器11,具体实施时,如图3所示,三相逆变器11包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关以及第六功率开关。其中,每个功率开关单元的控制端连接控制模块13(图中未示出),第一功率开关单元、第三功率开关单元以及第五功率开关单元的第一端共接形成三相逆变器11的正端,第二功率开关单元、第四功率开关单元以及第六功率开关单元的第二端共接形成三相逆变器11的负端,三相交流电机12的第一相线圈连接第一功率开关单元的第二端和第四功率开关单元的第一端,三相交流电机12的第二相线圈连接第三功率开关单元的第二端和第六功率开关单元的第一端,三相交流电机12的第三相线圈连接第五功率开关单元的第二端和第二功率开关单元的第一端。
其中,三相逆变器11中第一功率开关单元和第四功率开关单元构成第一相桥臂(A相桥臂),第三功率开关单元和第六功率开关单元构成第二相桥臂(B相桥臂),第五功率开关单元的输入端和第二功率开关单元构成第三相桥臂(C相桥臂),对三相逆变器11的控制方式可以如下所示:
三相逆变器11在控制模块13输出的PWM控制信号作用下依次按照由第一相桥臂将加热能量输入至三相交流电机12,并且第二相桥臂和第三相桥臂将三相交流电机12输出的电流输出至外部供电设备141或动力电池142的第一种状态、由第二相桥臂和第三相桥臂将高压直流电输入至三相交流电机12,并且第一相桥臂将三相交流电机输出的电流输出至外部供电设备141或动力电池142的第二种状态、由第一相桥臂和第二相桥臂将高压直流电输入至三相交流电机12,并且第三相桥臂将三相交流电机输出的电流输出至外部供电设备141或动力电池142的第三种状态、由第三相桥臂将高压直流电输入至三相交流电机12,并且第一相桥臂和第二相桥臂将三相交流电机12输出的电流输出至外部供电设备141或动力电池142的第四种状态、由第一相桥臂和第三相桥臂将高压直流电输入至三相交流电机12,并且第二相桥臂将三相交流电机12输出的电流输出至外部供电设备141或动力电池142的第五种状态、以及由第二相桥臂将高压直流电输入至三相交流电机12,并且第一相桥臂和第三相桥臂将三相交流电机12输出的电流输出至外部供电设备141或动力电池142的第六种状态进行六种工作状态循环切换。
具体的,工作时三相逆变器11在控制模块13的控制下,其内部的六个功率开关单元每间隔一段时间切换一次开关顺序,并且切换顺序及三相电流如下表所示:
Figure BDA0001916281830000111
需要说明的是,上表中三相逆变器11中的功率开关单元的切换顺序为最优的切换顺序,而三相逆变器11在工作时,并不局限于上述切换顺序,且还可以按照其他顺序进行切换,例如1、2、5、6、3、4。
进一步地,如图4所示,本公开实施例提供的电池加热装置中的三相交流电机绕组ABC的接法为逆时针Y型接法,而三相交流电机中的转子可以是绕线型或是永磁型,本实施例中以永磁型为例说明三相逆变器11的六个功率开关单元的开关状态。
具体的,结合上表和图4,以电流流入电机绕组方向为正方向,流出为负方向,如A→BC,表示三相逆变器11的A相桥臂的上下桥输入互补对称的PWM信号控制上下桥功率开关单元的通断,即上桥通,下桥断,而B、C两相均是上桥功率开关单元一直关断,下桥功率开关单元一直开通,即电流从A相绕组流入,从B、C两相流出,此时如果A相电流为Ic,则B、C相电流都是
Figure BDA0001916281830000121
Ic,并且A、B、C三相都是直流电流,此时电机定子磁场与A相轴线重合且沿着A相轴线正方向,即图4中序号为1的箭头方向,电机转子受到一个与A相轴线重合的电磁力。再如BC→A,表示B、C两相桥臂的上下桥输入同样互补对称的PWM信号控制上下桥功率开关单元的通断,而A相上桥功率开关单元一直关断,下桥功率开关单元一直开通,电流从B、C相绕组流入,从A相绕组流出,此时B、C两相电流为
Figure BDA0001916281830000122
Ic,A相电流为-Ic,并且A、B、C三相都是直流电流,此时电机定子磁场与A相轴线重合且沿着A相轴线反方向,即图4中序号为2的箭头方向,电机转子受到一个要与A相轴线反方向重合的电磁力,这个电磁力与A→BC状态时的电磁力方向相反。
以此类推,三相逆变器11每隔一段时间切换一次开关状态,直到B→AC状态时,六个开关状态切换了一轮,即三相逆变器11按照预设的顺序进行六种工作状态的循环切换;需要说明的是,在本公开实施例中,仅以A→BC和B→AC两种工作状态对三相逆变器11的六种工作状态进行示例性说明,其他四种工作状态的方式可参考A→BC和B→AC两种工作状态的相关描述,此处不再赘述;可选地在实际中可以考虑为了不让电机大电流阶跃上升导致电机输出转矩对整车的冲击,可以将设定的PWM占空比从小逐渐变化到设定值,从而让电机电流从小逐渐上升增大,这样可以大大减缓状态切换时电机转矩对整车的冲击。此外,本公开动力电池加热装置中的三相逆变器11的A相电流在工作过程中波形示意图如图5所示,B、C相波形类似,都是由和A相相同的6段电流的不同顺序组合而得来,此处同样不再追逐。
在本实施方式中,控制三相逆变器11按照上述六种工作方式进行循环切换工作,使得电机不会产生连续固定方向的转矩,并且当电机轴被P档的驻车功能锁住后,三相逆变器11切换一个周期后,电机依次产生方向相反的转矩,平均转矩接近零,即使电机没有被P档驻车功能锁住,或者电机转轴可以自由旋转,此时电机转轴只会产生不大于±45°的往复摆动,而不会产生连续的旋转方向的转矩,如此将确保了电动车不会因为电机通电加热而使车辆自行开车;此外,对于绕线性型转子,由于转子没有磁场,所以定子绕组产生的恒定磁场不会引起转子受到电磁力,转子不会转动,三相逆变器11切换一个周期后,三相逆变器11及三相交流电机12的三相电流有效值是基本相等的,从而使三相逆变器11及三相交流电机12的三相发热均衡,热负荷均衡,寿命、可靠性均衡。
进一步地,作为本公开另一种实施方式,控制模块13对三相逆变器11的控制方式可以如下所示:
三相逆变器11在控制模块13输出的PWM控制信号作用下依次按照由第一相桥臂将加热能量输入至三相交流电机12,并且第二相桥臂和第三相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第一种状态、由第一相桥臂将加热能量输入至三相交流电机12,并且第三相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第二种状态、由第一相桥臂和第二相桥臂将加热能量输入至三相交流电机12,并且第三相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第三种状态、由第二相桥臂将加热能量输入至三相交流电机12,并且第三相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第四种状态、由第二相桥臂将加热能量输入至三相交流电机12,并且第一相桥臂和第三相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第五种状态、由第二相桥臂将加热能量输入至三相交流电机12,并且第一相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第六种状态、由第二相桥臂和第三相桥臂将加热能量输入至三相交流电机12,并且第一相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第七种状态、由第三相桥臂将加热能量输入至三相交流电机12,并且第一相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第八种状态、由第三相桥臂将加热能量输入至三相交流电机12,并且第一相桥臂和第二相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第九种状态、由第三相桥臂将加热能量输入至三相交流电机12,并且第二相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第十种状态、由第一相桥臂和第三相桥臂将加热能量输入至三相交流电机12,并且第二相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第十一种状态、以及由第一相桥臂将加热能量输入至三相交流电机12,并且第二相桥臂将三相交流电机12输出的电流输出至加外部供电设备141或动力电池142的第十二种状态。
具体的,工作时三相逆变器11在控制模块13的控制下,其内部的六个功率开关单元每间隔一段时间切换一次开关顺序,并且切换顺序及三相电流如下表所示:
Figure BDA0001916281830000141
Figure BDA0001916281830000151
需要说明的是,上表中三相逆变器11中的功率开关单元的切换顺序为最优的切换顺序,而三相逆变器11在工作时,并不局限于上述切换顺序,且还可以按照其他顺序进行切换,例如1、2、5、6、3、4、7、8、9、10、11、12。
进一步地,如图6所示,本公开实施例提供的电池加热装置中的三相交流电机绕组ABC的接法为逆时针Y型接法,而三相交流电机中的转子可以是绕线型或是永磁型,本实施例中以永磁型为例说明三相逆变器11的六个功率开关单元的开关状态。
具体的,结合上表和图6,以电流流入电机绕组方向为正方向,流出为负方向,三相逆变器11的十二个开关状态及电机定子磁场分布方向如图6所示,如A→BC,表示A相上下桥输入互补对称的PWM信号控制上下桥功率单元的通断,而B、C两相都是上桥功率单元一直关断,下桥功率单元一直开通,表示电流从A相绕组流入,从B、C两相流出,此时如果A相电流为Ic,则B、C相电流都是
Figure BDA0001916281830000152
Ic,并且A、B、C三相都是直流电流,此时电机定子磁场与A相轴线重合且沿着A相轴线正方向,如图6序号为1的箭头方向,电机转子受到一个要与A相轴线重合的电磁力。
再如BC→A,表示B、C两相上下桥输入同样互补对称的PWM信号控制上下桥功率单元的通断,而A相上桥功率单元一直关断,下桥功率单元一直开通,电流从B、C相绕组流入,从A相绕组流出,此时B、C两相电流为
Figure BDA0001916281830000153
Ic,A相电流为-Ic,并且A、B、C三相都是直流电流,此时电机定子磁场与A相轴线重合且沿着A相轴线反方向,如图6序号为7的箭头方向,电机转子受到一个要与A相轴线反方向重合的电磁力,这个电磁力与A→BC状态时的电磁力方向相反。
再如A→B,表示A相上下桥输入互补对称的PWM信号控制上下桥功率单元的通断,而B相是上桥功率单元一直关断,下桥功率单元一直开通,表示电流从A相绕组流入,从B相流出,此时A相电流为Ic,则B相电流都是-Ic,C相上下桥开关管都关断,电流为0,A、B相都是直流电流,此时电机定子磁场与A相轴线顺时针偏转30°电角度,如图6序号为12的箭头方向,电机转子受到一个要与此磁场重合的电磁力。需要说明的是,在本公开实施例中,仅以A→BC、B→AC以及A→B三种为例对三相逆变器11的十二种开关状态进行示例性说明,其他九种开关状态的具体工作方式可A→BC、B→AC以及A→B三种开关状态的相关描述,此处不再赘述。
在本实施方式中,控制三相逆变器11按照上述十二种工作方式进行循环切换工作,使得电机不会产生连续固定方向的转矩,并且当电机轴被P档的驻车功能锁住后,三相逆变器11切换一个周期后,电机依次产生方向相反的转矩,平均转矩接近零,即使电机没有被P档驻车功能锁住,或者电机转轴可以自由旋转,此时电机转轴只会产生不大于±45°的往复摆动,而不会产生连续的旋转方向的转矩,如此将确保了电动车不会因为电机通电加热而使车辆自行开车;此外,对于绕线性型转子,由于转子没有磁场,所以定子绕组产生的恒定磁场不会引起转子受到电磁力,转子不会转动,三相逆变器11切换一个周期后,三相逆变器11及三相交流电机12的三相电流有效值是基本相等的,从而使三相逆变器11及三相交流电机12的三相发热均衡,热负荷均衡,寿命、可靠性均衡。
下面通过具体的电路结构对本公开技术方案进行说明:
图3为本公开动力电池加热装置一种举例的电路图,为方便说明动力电池加热装置,上图忽略了其它电器设备,只考虑了动力电池、开关模块、三相逆变器以及三相交流电机,三相逆变器11中第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,三相交流电机12可以是永磁同步电机或异步电机,电机三相线圈分别和三相逆变器中的A、B、C上下桥臂之间连接,在具体实施中,当需要加热动力电池142时,为了实现对动力电池142的加热,控制模块的控制步骤具体包括:
步骤1,整车上电时整车控制器接收档位信息、车速信号、电池管理器发来的动力电池142的温度信号。
步骤2,整车控制器检测当前档位是否处在P档且车速是否为零。
步骤3,如果不是,则退出电机加热程序。
步骤4,如果是,再判断动力电池温度是否低于设定阈值。
步骤5,如果不是,则退出电机加热程序。
步骤6,如果是,则整车控制器向电池管理器及电机控制器发出加热电池指令及加热功率。
步骤7,电池管理器控制开关K1、K2断开,控制开关K3和K4闭合;
步骤8,电机控制器控制电路在PWM周期导通期间控制三相逆变器11的A相上桥功率开关(第一上桥臂VT1)导通,A相下桥功率开关(第四下桥臂VT4)关断,B、C相上桥功率开关(第三上桥臂VT3和第五上桥臂VT5)在当前切换状态下一直处于关断,B、C相下桥功率开关(第二下桥臂VT2和第六下桥臂VT6)在当前切换状态下一直处于开通,这时动力电池放电,电流经过动力电池正极、开关K3、三相逆变器11的A相上桥功率开关VT1、三相交流电机12的A相线圈、三相交流电机B、C相线圈,再经过三相逆变器11的B、C相下桥功率开关VT6和VT2、开关K4到动力电池负极,构成一个电感储能回路,如图7所示;
步骤9,电机控制器控制电路在PWM周期关断期间控制三相逆变器11的A相上桥功率开关(第一上桥臂VT1)持续处于导通状态,A相下桥功率开关(第四下桥臂VT4)持续处于关断状态,B、C相上桥功率开关(第三上桥臂VT3和第五上桥臂VT5)在当前切换状态下一直处于关断,B、C相下桥功率开关(第二下桥臂VT2和第六下桥臂VT6)在当前切换状态下同样一直处于关断,这时动力电池放电通路被关断,A相线圈电流通过上桥功率单元VT1形成续流,电流经过A相上桥功率开关VT1、A相线圈、三相交流电机12的B、C相线圈,再经过三相逆变器11的B、C相上桥续流二极管VD3和VD5,再到A相上桥功率开关VT1构成一个电感电流续流回路,如图8所示;
步骤10,每隔一定时间切换一种加热状态,六种加热状态轮流、循环切换;
步骤11,电机控制器接收电池电压、电流数据,计算输出功率,把输出功率认为是电池加热功率,将计算的加热功率与电池管理器发送的加热指令功率相比较,如果计算的加热功率偏低,则增加PWM占空比,增大电池输出电流,如果计算的加热功率偏高,则减小PWM占空比,减小电池输出电流,直至加热功率达到加热指令功率附近为止;
步骤12,然后整车控制器循环检测档位、车速、动力电池温度,满足条件就重复步骤8-11,不满足就退出加热程序;
步骤13,如果不满足加热条件,退出加热程序,三相逆变器上下桥全部关断、电池管理器根据需要可以控制开关K3、K4断开或闭合。
需要说明的是,以上动力电池加热装置的具体工作过程是以动力电池放电加热电机进行的,并且其具体工作过程分为电机三相绕组储能和续流两个阶段,当电池电量充足且温度不是很低,如零下20℃左右,电池能够提供加热所需的功率,可以采取动力电池放电实现加热功能,并且上述过程以三相逆变器工作在第一种状态,即电机电流流向为A相线圈流入,B、C相线圈流出为例进行说明的。
进一步地,基于上述图7和图8示出的动力电池放电加热自身时一种实施方式的具体描述,本公开实施例提供的动力电池加热装置还可以通过在PWM关断期间,使得电机三相绕组电流以回馈的方式向电池充电,进而实现加热电池功能;需要说明的是,在电机三相绕组电流以回馈的方式向电池充电,进而实现加热电池方式的工作过程中,同样以三相逆变器工作在电机电流流向为A相线圈流入,B、C相线圈流出为例。
具体的,该电机三相绕组电流以回馈的方式向电池充电,进而实现加热电池的具体电路结构和电流流向如图9所示,其具体的工作过程中的其他控制方式都和前述动力电池放电加热自身的相同,只是在步骤9有所不同,该实施方式中步骤9具体为:电机控制器控制电路在PWM周期关断期间控制三相逆变器11的A相上桥功率开关(第一上桥臂VT1)关断,A相下桥功率开关(第四下桥臂VT4)持续关断,B、C相上桥功率开关(第三上桥臂VT3和第五上桥臂VT5)关断,B、C相下桥功率开关(第二下桥臂VT2和第六下桥臂VT6)关断,这时动力电池放电通路被关断,A相线圈电流通过下桥二极管VD4形成续流,电流经过A相线圈、三相交流电机B、C相线圈,再经过三相逆变器B、C相上桥续流二极管VD3和VD5,再到动力电池正极流入,负极流出,再流到A相下桥二极管VD4形成对动力电池的回馈充电电流,这样可以节省电池电量,且充电电流增加了电池内阻的发热量,使电池快速升温。
进一步地,前述主要描述了动力电池放电加热电池时的具体工作过程,而当电池电量很低,或者电池温度过低,电池不被允许放电时,可以采用外部供电设备供电的方式实现动力电池加热,下面对该改方式中控制模块的控制步骤进行具体描述,详述如下:
步骤1,整车上电时整车控制器接收档位信息、车速信号、电池管理器发来的动力电池142的温度信号。
步骤2,整车控制器检测当前档位是否处在P档且车速是否为零。
步骤3,如果不是,则退出电机加热程序。
步骤4,如果是,再判断动力电池温度是否低于设定阈值。
步骤5,如果不是,则退出电机加热程序。
步骤6,如果是,则整车控制器向电池管理器及电机控制器发出加热电池指令及加热功率。
步骤7,电池管理器控制开关K1、K2闭合,控制开关K3、K4可以闭合,也可以断开,即可以实现一边充电一边加热电池;其余的逆变器控制方式和动力电池放电加热方法一样;
步骤8,电机控制器控制电路在PWM周期导通期间控制三相逆变器11的A相上桥功率开关(第一上桥臂VT1)导通,A相下桥功率开关(第四下桥臂VT4)关断,B、C相上桥功率开关(第三上桥臂VT3和第五上桥臂VT5)在当前切换状态下一直处于关断,B、C相下桥功率开关(第二下桥臂VT2和第六下桥臂VT6)在当前切换状态下一直处于开通,这时外部供电设备141放电,电流经过外部供电设备141的正极、开关K1、三相逆变器11的A相上桥功率开关VT1、三相交流电机12的A相线圈、三相交流电机B、C相线圈,再经过三相逆变器11的B、C相下桥功率开关VT6和VT2、开关K2到外部供电设备141的负极,构成一个电感储能回路,如图10所示;
步骤9,电机控制器控制电路在PWM周期关断期间控制三相逆变器11的A相上桥功率开关(第一上桥臂VT1)持续处于导通状态,A相下桥功率开关(第四下桥臂VT4)持续处于关断状态,B、C相上桥功率开关(第三上桥臂VT3和第五上桥臂VT5)在当前切换状态下一直处于关断,B、C相下桥功率开关(第二下桥臂VT2和第六下桥臂VT6)在当前切换状态下同样一直处于关断,这时外部供电设备141的放电通路被关断,A相线圈电流通过上桥功率单元VT1形成续流,电流经过A相线圈、三相交流电机12的B、C相线圈,再经过三相逆变器11的B、C相上桥续流二极管VD3和VD5,再到A相上桥功率单元VT1构成一个电感电流续流回路,如图11所示;
步骤10,每隔一定时间切换一种加热状态,六种加热状态轮流、循环切换;
步骤11,电机控制器接收电池电压、电流数据,计算输出功率,把输出功率认为是电池加热功率,将计算的加热功率与电池管理器发送的加热指令功率相比较,如果计算的加热功率偏低,则增加PWM占空比,增大电池输出电流,如果计算的加热功率偏高,则减小PWM占空比,减小电池输出电流,直至加热功率达到加热指令功率附近为止;
步骤12,然后整车控制器循环检测档位、车速、动力电池温度,满足条件就重复步骤8-11,不满足就退出加热程序;
步骤13,如果不满足加热条件,退出加热程序,三相逆变器上下桥全部关断、电池管理器根据需要可以控制开关K1、K2、K3、K4断开或闭合。
需要说明的是,以上动力电池加热装置的具体工作过程是以外部供电设备放电加热电机进行的,并且其具体工作过程分为电机三相绕组储能和续流两个阶段,并且上述过程以三相逆变器工作在第一种状态,即电机电流流向为A相线圈流入,B、C相线圈流出为例进行说明的。
进一步地,基于上述图10和图11示出的外部供电设备放电加热动力电池时一种实施方式的具体描述,本公开实施例提供的动力电池加热装置还可以通过在PWM关断期间,使得电机三相绕组电流以回馈的方式向外部供电设备充电;需要说明的是,在电感电流以回馈的方式向外部供电设备充电的工作过程中,同样以三相逆变器工作在电机电流流向为A相线圈流入,B、C相线圈流出为例。
具体的,该电感电流以回馈的方式向外部供电设备充电的具体电路结构和电流流向如图12所示,其具体的工作过程中的其他控制方式都和前述外部供电设备放电加热动力电池的相同,只是在步骤9有所不同,该实施方式中步骤9具体为:电机控制器控制电路在PWM周期关断期间控制三相逆变器11的A相上桥功率开关(第一上桥臂VT1)关断,A相下桥功率开关(第四下桥臂VT4)持续关断,B、C相上桥功率开关(第三上桥臂VT3和第五上桥臂VT5)关断,B、C相下桥功率开关(第二下桥臂VT2和第六下桥臂VT6)关断,这时外部供电设备放电通路被关断,A相线圈电流通过下桥二极管VD4形成续流,电流经过A相线圈、三相交流电机B、C相线圈,再经过三相逆变器B、C相上桥续流二极管VD3和VD5,再到外部供电设备正极流入,负极流出,再流到A相下桥二极管VD4形成对外部供电设备的回馈充电电流,如此将节省外部供电设备电量。
在本公开实施例中,本公开提供的动力电池加热装置由于不需要发动机参与,因此既可以应用于混合动力,也可以应用于纯电动及燃料电池等电动汽车,无明显噪声、无污染物产生;此外,由于无需发动机参与,因此电机、电机控制器产生的热量通过水道传给动力电池,热效率高;另外不需要PTC加热器,利用原有的电机、电机控制器直接加热动力电池,且不易损坏,成本较低。
进一步地,如图13所示,公开还提供一种动力电池加热方法,还动力电池加热方法应用于图1至图12所示的动力电池加热装置,动力电池加热装置包括开关模块、三相逆变器、三相交流电机以及控制模块,开关模块接通加热能量源与动力电池加热装置,并且与三相逆变器连接,三相逆变器与三相交流电机并联连接,控制模块与开关模块、三相逆变器以及三相交流电机连接,动力电池加热方法包括:
步骤S131:控制模块获取动力电池的当前温度值,以及电机的当前工作状态。
其中,在本公开实施例中,步骤S131具体为:
获取档位信息、车辆的驱动模式信息以及车速信息,并根据所述档位信息、车辆的驱动模式信息以及所述车速信息获取所述电机的当前工作状态。
步骤S132:控制模块根据当前温度值和电机的当前工作状态判断动力电池是否满足加热条件。
其中,在本公开实施例中,步骤S132具体为:
若所述当前温度值低于预设温度值,且所述电机的当前工作状态处于非驱动状态,则表明所述动力电池满足加热条件;
若所述当前温度值不低于所述预设温度值,或者所述电机的当前工作状态处于驱动状态,则表明所述动力电池不满足加热条件。
步骤S133:若动力电池满足加热条件,则控制模块控制开关模块的通断状态,以使得加热能量源提供加热能量,并且控制模块控制三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得三相交流电机根据加热能量产生热量以对流经动力电池的冷却液进行加热。
步骤S134:在所述动力电池的加热过程中,实时监测所述动力电池的温度,若所述动力电池的温度达到指定加热温度,则停止向所述动力电池加热。
此外,在该动力电池加热方法中,由于加热能量源包括外部供电设备与动力电池,开关模块包括第一开关单元与第二开关单元,第一开关单元连接外部供电设备,第二开关单元连接动力电池,因此步骤S133中的所述控制模块控制所述开关模块的通断状态,以使得所述加热能量源提供加热能量包括:
所述控制模块控制所述第一开关单元导通,所述第二开关单元断开,以使得所述外部供电设备提供所述加热能量;
所述控制模块控制所述第二开关单元导通,所述第一开关单元断开,以使得所述动力电池提供所述加热能量。
进一步地,作为本公开一种实施方式,步骤S133中的控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热包括:
所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述动力电池根据所述加热能量对所述三相交流电机的三相线圈的储能过程以及所述三相交流电机的三相线圈的放电过程交替进行,使得所述三相交流电机产生热量以对流经所述动力电池的冷却液进行加热。
进一步地,作为本公开一种实施方式,步骤S133中的控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热包括:
所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述外部供电设备根据所述加热能量对所述三相交流电机的三相线圈的储能过程以及所述三相交流电机的三相线圈的放电过程交替进行,使得所述三相交流电机产生热量以对流经所述动力电池的冷却液进行加热。
需要说明的是,在本公开实施方式中,由于该动力电池加热方法是基于图1是图12所示的动力电池加热装置实现的,因此该动力电池加热方法的具体原理过程可参考图1至图12所述,此处不再赘述。
本公开另一种实施例提供一种车辆,车辆还包括上述实施例提供的动力电池加热装置,车辆还包括动力电池、冷却液箱、水泵以及水管线,水泵根据控制信号将冷却液箱中的冷却液输入至水管线,水管线穿过动力电池和动力电池加热装置。
具体的,如图14所示,车辆包括:至少一台三相交流电机(图中以两个为例),至少一台电机控制器(图中以两个为例),至少一个动力电池,冷却液箱,水泵,以及电池管理器,整车控制器,可选的充电器(外部供电设备),必要的冷却液管道。其中,电机控制器与三相交流电机连接,动力电池的正负与电机控制器的正负极连接,并且动力电池还与电池管理器连接,电池管理器、电机控制器通过CAN线与整车控制器通讯。电池管理器用于采集动力电池信息,包括电压、电流、温度,及控制动力电池开关的通断,充放电功能等,电机控制器用于控制三相逆变器上下桥功率开关及采集三相电流,整车控制器用于管理整车的运行及车上其他控制器设备。水泵将冷却液从冷却液箱抽出,经水管线输送到第一个三相交流电机,第一个三相交流电机输出接到第一个电机控制器,第一个电机控制器输出接到第二个三相交流电机,第二个三相交流电机输出接到第二个电机控制器,第二个电机控制器输出接到动力电池输入,动力电池输出接回到冷却液箱,构成一个加热循环回路,以此实现动力电池的加热。
本公开提出了一种车辆,通过控制三相逆变器按照六种或十二种工作状态进行循环切换,使得三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热,加热时不需要使用发动机或者增加加热装置就可以实现动力电池的温度提升,并且实现加热过程的热均衡,避免单相桥臂过热,且一个周期内电机摆动时没有连续转矩。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (15)

1.一种动力电池加热方法,应用于动力电池加热装置,其特征在于,所述动力电池加热装置包括开关模块、三相逆变器、三相交流电机以及控制模块,所述开关模块接通加热能量源与所述动力电池加热装置,并且所述开关模块与所述三相逆变器并联连接,所述三相逆变器与所述三相交流电机连接,所述控制模块与所述开关模块、所述三相逆变器以及所述三相交流电机连接,所述动力电池加热方法包括:
所述控制模块获取动力电池的当前温度值,以及电机的当前工作状态;
所述控制模块根据所述当前温度值和所述电机的当前工作状态判断所述动力电池是否满足加热条件;
若所述动力电池满足加热条件,则所述控制模块控制所述开关模块的通断状态,以使得所述加热能量源提供加热能量,并且所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热。
2.如权利要求1所述的动力电池加热方法,其特征在于,所述控制模块根据所述当前温度值和所述电机的当前工作状态判断所述动力电池是否满足加热条件包括:
若所述当前温度值低于预设温度值,且所述电机的当前工作状态处于非驱动状态,则表明所述动力电池满足加热条件;
若所述当前温度值不低于所述预设温度值,或者所述电机的当前工作状态处于驱动状态,则表明所述动力电池不满足加热条件。
3.如权利要求1所述的动力电池加热方法,其特征在于,所述获取电机的当前工作状态包括:
获取档位信息、车辆的驱动模式信息以及车速信息,并根据所述档位信息、车辆的驱动模式信息以及所述车速信息获取所述电机的当前工作状态。
4.如权利要求1至3任一项所述的动力电池加热方法,其特征在于,所述动力电池加热方法还包括:
在所述动力电池的加热过程中,实时监测所述动力电池的温度,若所述动力电池的温度达到指定加热温度,则停止向所述动力电池加热。
5.如权利要求1所述的动力电池加热方法,其特征在于,所述加热能量源包括外部供电设备与动力电池,所述开关模块包括第一开关单元与第二开关单元,所述第一开关单元连接所述外部供电设备,所述第二开关单元连接所述动力电池,所述控制模块控制所述开关模块的通断状态,以使得所述加热能量源提供加热能量包括:
所述控制模块控制所述第一开关单元导通,所述第二开关单元断开,以使得所述外部供电设备提供所述加热能量;
所述控制模块控制所述第二开关单元导通,所述第一开关单元断开,以使得所述动力电池提供所述加热能量。
6.如权利要求5所述的动力电池加热方法,其特征在于,所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热包括:
所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述动力电池根据所述加热能量对所述三相交流电机的三相线圈的储能过程以及所述三相交流电机的三相线圈的放电过程交替进行,使得所述三相交流电机产生热量以对流经所述动力电池的冷却液进行加热。
7.如权利要求5所述的动力电池加热方法,其特征在于,所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热包括:
所述控制模块控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述外部供电设备根据所述加热能量对所述三相交流电机的三相线圈的储能过程以及所述三相交流电机的三相线圈的放电过程交替进行,使得所述三相交流电机产生热量以对流经所述动力电池的冷却液进行加热。
8.一种动力电池加热装置,其特征在于,所述动力电池加热装置包括:
开关模块,用于接通加热能量源与所述动力电池加热装置;
三相逆变器,所述三相逆变器与所述开关模块并联连接;
三相交流电机,所述三相交流电机的三相线圈与所述三相逆变器的三相桥臂连接;
控制模块,所述控制模块分别与所述开关模块、所述三相逆变器以及所述三相交流电机连接,所述控制模块用于获取所述动力电池的当前温度值,以及电机的当前工作状态,并根据所述当前温度值和所述电机的当前工作状态判断所述动力电池是否满足加热条件,且在所述动力电池满足加热条件时,控制所述开关模块的通断状态,以使得所述加热能量源提供加热能量,并且所述控制模块还用于控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述三相交流电机根据所述加热能量产生热量以对流经所述动力电池的冷却液进行加热。
9.如权利要求8所述的动力电池加热装置,其特征在于,所述控制模块具体用于:
若所述当前温度值低于预设温度值,且所述电机的当前工作状态处于非驱动状态,则表明所述动力电池满足加热条件;
若所述当前温度值不低于所述预设温度值,或者所述电机的当前工作状态处于驱动状态,则表明所述动力电池不满足加热条件。
10.如权利要求8所述的动力电池加热装置,其特征在于,所述控制模块还具体用于:
获取档位信息、车辆的驱动模式信息以及车速信息,并根据所述档位信息、车辆的驱动模式信息以及所述车速信息获取所述电机的当前工作状态。
11.如权利要求8至10任一项所述的动力电池加热装置,其特征在于,所述控制模块还用于:
在所述动力电池的加热过程中,实时监测所述动力电池的温度,若所述动力电池的温度达到指定加热温度,则停止向所述动力电池加热。
12.如权利要求8所述的动力电池加热装置,其特征在于,所述加热能量源包括外部供电设备与动力电池,所述开关模块包括第一开关单元与第二开关单元,所述第一开关单元连接所述外部供电设备,所述第二开关单元连接所述动力电池,所述控制模块具体用于:
控制所述第一开关单元导通,所述第二开关单元断开,以使得所述外部供电设备提供所述加热能量;
控制所述第二开关单元导通,所述第一开关单元断开,以使得所述动力电池提供所述加热能量。
13.如权利要求12所述的动力电池加热装置,其特征在于,所述控制模块具体用于:
控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述动力电池根据所述加热能量对所述三相交流电机的三相线圈的储能过程以及所述三相交流电机的三相线圈的放电过程交替进行,使得所述三相交流电机产生热量以对流经所述动力电池的冷却液进行加热。
14.如权利要求12所述的动力电池加热装置,其特征在于,所述控制模块具体用于:
控制所述三相逆变器按照预设切换顺序进行六种或十二种工作状态循环切换,使得所述外部供电设备根据所述加热能量对所述三相交流电机的三相线圈的储能过程以及所述三相交流电机的三相线圈的放电过程交替进行,使得所述三相交流电机产生热量以对流经所述动力电池的冷却液进行加热。
15.一种车辆,其特征在于,所述车辆包括权利要求8至14任一项所述动力电池加热装置。
CN201811574235.6A 2018-12-21 2018-12-21 一种车辆及其动力电池加热方法与装置 Active CN111347936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811574235.6A CN111347936B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811574235.6A CN111347936B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热方法与装置

Publications (2)

Publication Number Publication Date
CN111347936A true CN111347936A (zh) 2020-06-30
CN111347936B CN111347936B (zh) 2022-07-15

Family

ID=71190414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811574235.6A Active CN111347936B (zh) 2018-12-21 2018-12-21 一种车辆及其动力电池加热方法与装置

Country Status (1)

Country Link
CN (1) CN111347936B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112078433A (zh) * 2020-08-31 2020-12-15 上海交通大学 车用动力电池低温预热装置及其控制方法
CN112977173A (zh) * 2021-04-30 2021-06-18 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN113864434A (zh) * 2021-09-18 2021-12-31 华人运通(江苏)技术有限公司 一种提升低温续航里程的方法
CN114337475A (zh) * 2021-04-30 2022-04-12 华为数字能源技术有限公司 电机加热控制方法及装置、动力电池辅助加热方法及装置
CN114514694A (zh) * 2021-01-29 2022-05-17 华为数字能源技术有限公司 一种电机控制器、动力总成、控制方法及电动车辆
CN114834260A (zh) * 2022-03-17 2022-08-02 极氪汽车(宁波杭州湾新区)有限公司 电驱主动发热控制方法及设备
WO2022183401A1 (zh) * 2021-03-03 2022-09-09 华为数字能源技术有限公司 异步电机处理方法、装置、设备、系统以及交通工具
WO2023070553A1 (zh) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 动力电池的加热方法和加热系统
WO2023201659A1 (zh) * 2022-04-21 2023-10-26 宁德时代新能源科技股份有限公司 电池加热系统、及其控制方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668229A (zh) * 2010-07-29 2012-09-12 松下电器产业株式会社 电池升温电路和电池升温装置
CN103392258A (zh) * 2011-02-24 2013-11-13 Zf腓德烈斯哈芬股份公司 用于加热交通工具的牵引用电池的方法和设备
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
JP2014072955A (ja) * 2012-09-28 2014-04-21 Toyota Industries Corp 電気自動車におけるバッテリ昇温制御装置
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668229A (zh) * 2010-07-29 2012-09-12 松下电器产业株式会社 电池升温电路和电池升温装置
CN103392258A (zh) * 2011-02-24 2013-11-13 Zf腓德烈斯哈芬股份公司 用于加热交通工具的牵引用电池的方法和设备
JP2014072955A (ja) * 2012-09-28 2014-04-21 Toyota Industries Corp 電気自動車におけるバッテリ昇温制御装置
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112078433A (zh) * 2020-08-31 2020-12-15 上海交通大学 车用动力电池低温预热装置及其控制方法
CN114514694A (zh) * 2021-01-29 2022-05-17 华为数字能源技术有限公司 一种电机控制器、动力总成、控制方法及电动车辆
CN114514694B (zh) * 2021-01-29 2024-04-09 华为数字能源技术有限公司 一种电机控制器、动力总成、控制方法及电动车辆
WO2022160286A1 (zh) * 2021-01-29 2022-08-04 华为数字能源技术有限公司 一种电机控制器、动力总成、控制方法及电动车辆
EP4276977A4 (en) * 2021-01-29 2024-03-13 Huawei Digital Power Tech Co Ltd ENGINE CONTROL, POWER ARRANGEMENT, CONTROL METHOD AND ELECTRIC VEHICLE
WO2022183401A1 (zh) * 2021-03-03 2022-09-09 华为数字能源技术有限公司 异步电机处理方法、装置、设备、系统以及交通工具
CN112977173A (zh) * 2021-04-30 2021-06-18 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN114337475A (zh) * 2021-04-30 2022-04-12 华为数字能源技术有限公司 电机加热控制方法及装置、动力电池辅助加热方法及装置
CN112977173B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN113864434B (zh) * 2021-09-18 2023-12-01 华人运通(江苏)技术有限公司 一种提升低温续航里程的方法
CN113864434A (zh) * 2021-09-18 2021-12-31 华人运通(江苏)技术有限公司 一种提升低温续航里程的方法
WO2023070553A1 (zh) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 动力电池的加热方法和加热系统
WO2023174191A1 (zh) * 2022-03-17 2023-09-21 极氪汽车(宁波杭州湾新区)有限公司 电驱主动发热控制方法及设备
CN114834260A (zh) * 2022-03-17 2022-08-02 极氪汽车(宁波杭州湾新区)有限公司 电驱主动发热控制方法及设备
WO2023201659A1 (zh) * 2022-04-21 2023-10-26 宁德时代新能源科技股份有限公司 电池加热系统、及其控制方法、装置和电子设备

Also Published As

Publication number Publication date
CN111347936B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN111347936B (zh) 一种车辆及其动力电池加热方法与装置
CN111347853B (zh) 电机控制电路、充放电方法、加热方法及车辆
AU2019409171B2 (en) Vehicle and temperature control apparatus thereof
CN111347893B (zh) 电机控制电路、动力电池的充电方法及加热方法
CN111347924B (zh) 电机控制电路、车辆、加热方法及充放电方法
CN109823234B (zh) 一种驱动系统的控制方法、驱动系统及新能源汽车
CN111355000B (zh) 一种车辆及其动力电池加热装置与方法
CN111347937B (zh) 动力电池的加热方法、电机控制电路及车辆
CN111347926B (zh) 动力电池充放电装置、车辆及加热装置
CN111354996B (zh) 车辆及其动力电池温度控制装置
CN111347900B (zh) 一种车辆、电机控制电路、动力电池充电与加热方法
US11990853B2 (en) Motor drive apparatus, method for controlling the same, vehicle, and readable storage medium
CN111347925B (zh) 一种车辆、电机控制电路、动力电池充电方法与加热方法
CN111355435B (zh) 电机控制电路、车辆及其加热方法
CN112977171B (zh) 一种电动汽车及动力电池脉冲加热系统
CN111355433B (zh) 电机控制电路、车辆及其加热方法
CN111355430B (zh) 电机控制电路、充放电方法、加热方法及车辆
CN111347938A (zh) 一种车辆及其动力电池加热装置与方法
EP3992014A1 (en) Energy conversion apparatus and vehicle
CN216033900U (zh) 能量转换装置及车辆
CN111355434B (zh) 电机控制电路、车辆及其加热方法
US20240056013A1 (en) Controller for drive motor and related device thereof
CN115139854A (zh) 能量转换装置及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant