WO2023245421A1 - 域控制器、储能系统和储能系统的控制方法 - Google Patents

域控制器、储能系统和储能系统的控制方法 Download PDF

Info

Publication number
WO2023245421A1
WO2023245421A1 PCT/CN2022/100146 CN2022100146W WO2023245421A1 WO 2023245421 A1 WO2023245421 A1 WO 2023245421A1 CN 2022100146 W CN2022100146 W CN 2022100146W WO 2023245421 A1 WO2023245421 A1 WO 2023245421A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
status information
domain controller
cloud server
Prior art date
Application number
PCT/CN2022/100146
Other languages
English (en)
French (fr)
Inventor
左希阳
李忠宏
许金梅
余慈拱
罗广生
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/100146 priority Critical patent/WO2023245421A1/zh
Priority to CN202280006709.5A priority patent/CN117616656A/zh
Priority to PCT/CN2022/126015 priority patent/WO2023245930A1/zh
Priority to PCT/CN2022/126016 priority patent/WO2023245931A1/zh
Publication of WO2023245421A1 publication Critical patent/WO2023245421A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of energy storage technology, and in particular, to a domain controller, an energy storage system, and a control method of the energy storage system.
  • This application provides a domain controller, an energy storage system and a control method for the energy storage system, which can intelligently adjust the management strategy of the energy storage system and achieve efficient and energy-saving management of the energy storage system.
  • a domain controller for an energy storage system.
  • the energy storage system includes an energy storage unit and a non-energy storage unit.
  • the non-energy storage unit is used to assist the energy storage unit; the The domain controller integrates the management module of the energy storage unit and the management module of the non-energy storage unit, and is used to manage the energy storage unit and the non-energy storage unit.
  • the management module of the energy storage unit and the management module of the non-energy storage unit are integrated into the domain controller.
  • the solution of decentralized module arrangement integrates the management module of the energy storage unit and the management module of the non-energy storage unit into the domain controller.
  • the management module of the energy storage unit and the management module of the non-energy storage unit can be centrally controlled through the domain controller.
  • the management module enables smooth and rapid information exchange between the management module of the energy storage unit and the management module of the non-energy storage unit, improves the efficiency of system management, and can conduct information exchange between the management module of the energy storage unit and the management module of the non-energy storage unit. Integrate processing to avoid the waste of system resources caused by multiple information processing.
  • the management module of the energy storage unit includes a battery management system (Battery Management System, BMS), a power conversion system (Power Convert System, PCS), and an energy management system (Energy Management System, EMS). at least one of them.
  • BMS Battery Management System
  • PCS Power Convert System
  • EMS Energy Management System
  • the battery management system BMS, power conversion system PCS and energy management system EMS can manage and control the entire battery energy storage system based on the status information of the energy storage unit.
  • the management module of the energy storage unit includes multiple control nodes, and the domain controller integrates the multiple control nodes.
  • the domain controller integrates multiple control nodes of the energy storage unit's management module, which can improve the integration of the energy storage unit's management module and reduce hardware costs.
  • the non-energy storage unit includes a thermal management unit or a fire protection unit.
  • the thermal management unit and fire protection unit can perform thermal management on the energy storage unit. When the temperature of the energy storage unit is too high, it will be cooled down. When the temperature of the energy storage unit is too low, it will be heated.
  • the thermal management unit integrates the thermal management unit of the energy storage unit and the thermal management unit of the PCS.
  • the thermal management unit of the energy storage unit and the thermal management unit of the PCS are integrated, and energy conversion can be performed between the two thermal management units to improve system energy utilization.
  • the domain controller is configured to manage the non-energy storage unit according to the status information of the energy storage unit.
  • the domain controller manages the non-energy storage unit according to the status information of the energy storage unit, so that the non-energy storage unit adjusts the working conditions of the energy storage unit to the required working conditions.
  • the state information of the energy storage unit includes: temperature, voltage, state of charge (State of Charge, SOC), state of health (State of Health, SOH), and state of charge and discharge. of at least one.
  • the temperature, voltage, state of charge SOC, health state SOH and charge and discharge status of the energy storage unit are all status information related to the working status of the energy storage unit. Obtaining these status information of the energy storage unit can grasp the real-time status of the energy storage unit. working conditions.
  • the domain controller is configured to: obtain the intelligent management policy of the non-energy storage unit according to the status information of the energy storage unit; manage the non-storage unit according to the intelligent management policy. energy unit.
  • the domain controller obtains the intelligent management strategy of the non-energy storage unit based on the status information of the energy storage unit.
  • the management strategy of the non-energy storage unit can be flexibly adjusted based on the status information of the energy storage unit, and the non-energy storage unit can be managed according to the intelligent management strategy. , so that the non-energy storage unit can adjust the working conditions of the energy storage unit to the required working conditions.
  • the intelligent management policy is a management policy associated with user usage behavior of the energy storage unit.
  • the intelligent management strategy is associated with the user behavior of the energy storage unit and can efficiently manage non-energy storage units, allowing the non-energy storage unit to adjust the working conditions of the energy storage unit to the required working conditions.
  • the domain controller is configured to: obtain the intelligent management policy of the non-energy storage unit from the energy storage cloud server according to the status information of the energy storage unit.
  • the energy storage cloud server is simple, efficient, safe and reliable, and its processing capacity is elastically scalable.
  • the energy storage cloud server can store a large amount of information.
  • the information interaction of the energy storage system is carried out through the energy storage cloud server, which is efficient and rapid, improving the management efficiency of the system.
  • the domain controller is configured to: obtain the status information of the energy storage unit and send the status information to the energy storage cloud server; receive the status information sent by the energy storage cloud server.
  • the intelligent management strategy is configured to: obtain the status information of the energy storage unit and send the status information to the energy storage cloud server; receive the status information sent by the energy storage cloud server.
  • the domain controller obtains the intelligent management strategy of non-energy storage units through the energy storage cloud server, which is simple, efficient, safe and reliable, and improves the management efficiency of the system.
  • the domain controller is configured to: obtain the first status information of the energy storage unit and send the first status information to the energy storage cloud server; receive the energy storage cloud server The first instruction sent by the server, according to the first instruction, obtains the second status information of the energy storage unit, and sends the second status information to the energy storage cloud server, wherein the second status information Containing more information than the first status information, the second status information is used by the energy storage cloud server to determine the intelligent management strategy; receiving the intelligent management strategy sent by the energy storage cloud server .
  • the domain controller obtains the first status information of the energy storage unit and sends it to the energy storage cloud server, and then obtains the second status information of the energy storage unit according to the first instruction sent by the energy storage cloud server and sends it to the energy storage cloud server. By obtaining the first status information and the second status information, the intelligent management policy of the non-energy storage unit is finally determined.
  • the domain controller obtains the intelligent management policy from the energy storage cloud server and manages the non-energy storage unit according to the intelligent management policy so that the non-energy storage unit The energy storage unit adjusts the working conditions of the energy storage unit to the required working conditions.
  • the domain controller is configured to determine the intelligent management policy of the non-energy storage unit according to the status information of the energy storage unit.
  • the domain controller determines the intelligent management strategy of the non-energy storage unit based on the status information of the energy storage unit. There is no need to perform information interaction and data calculation through other processing units.
  • the domain controller itself can determine the intelligent management strategy of the non-energy storage unit, reducing information Interactive and save system resources.
  • the intelligent management strategy includes: before the energy storage unit starts the working mode, turning on the non-energy storage unit to adjust the working conditions of the energy storage unit so that the energy storage unit The unit is in preset operating conditions when said operating mode is activated.
  • the non-energy storage unit adjusts the working conditions of the energy storage unit so that the energy storage unit is in the preset working condition when starting the working mode. In this way, the energy storage unit can be in a suitable state when it first starts working. working conditions and improve the working efficiency of the energy storage unit.
  • an energy storage system including: an energy storage unit; a non-energy storage unit, the non-energy storage unit being used to assist the energy storage unit; a domain controller, the domain controller integrating the The management module of the energy storage unit and the management module of the non-energy storage unit are used to manage the energy storage unit and the non-energy storage unit.
  • the management module of the energy storage unit includes at least one of a battery management system BMS, a power conversion system PCS, and an energy management system EMS.
  • the management module of the energy storage unit includes multiple control nodes, and the domain controller integrates the multiple control nodes.
  • the non-energy storage unit includes a thermal management unit or a fire protection unit.
  • the thermal management unit integrates the thermal management unit of the energy storage unit and the thermal management unit of the PCS.
  • the domain controller is configured to manage the non-energy storage unit according to the status information of the energy storage unit.
  • the state information of the energy storage unit includes: at least one of temperature, voltage, state of charge SOC, health state SOH, and charge and discharge state.
  • the domain controller is configured to: obtain the intelligent management policy of the non-energy storage unit according to the status information of the energy storage unit; manage the non-storage unit according to the intelligent management policy. energy unit.
  • the intelligent management policy is a management policy associated with user usage behavior of the energy storage unit.
  • the energy storage system further includes an energy storage cloud server
  • the domain controller is configured to: obtain the non-standard energy storage cloud server from the energy storage cloud server according to the status information of the energy storage unit. Intelligent management strategies for energy storage units.
  • the domain controller is configured to: obtain status information of the energy storage unit and send the status information to the energy storage cloud server; the energy storage cloud server is configured to: according to The status information determines the intelligent management policy and sends the intelligent management policy to the domain controller.
  • the energy storage cloud server is configured to: extract the first user usage behavior data of the energy storage unit according to the status information; determine the first user usage behavior data according to the first user usage behavior data.
  • the first user uses the intelligent management policy corresponding to the behavior data.
  • the energy storage cloud server extracts the first user usage behavior data of the energy storage unit based on the status information, and determines the intelligent management strategy corresponding to the first user usage behavior data. In this way, the non-energy storage unit can be flexibly adjusted according to the status information of the energy storage unit. management strategies.
  • the domain controller is configured to: obtain the first status information of the energy storage unit, and send the first status information to the energy storage cloud server; the energy storage cloud server For: sending a first instruction to the domain controller according to the first status information, the first instruction being used to instruct the domain controller to send the second status information of the energy storage unit, wherein: The second status information includes more information than the first status information; the domain controller is further configured to: obtain the second status information of the energy storage unit according to the first instruction, and Send the second status information to the energy storage cloud server; the energy storage cloud server is also used to: determine the intelligent management policy according to the second status information, and send the intelligent management policy to the domain controller. management strategies.
  • the energy storage cloud server is configured to: extract second user usage behavior data of the energy storage unit according to the first status information; and determine that the second user usage behavior data has In the case of application features corresponding to the intelligent management policy, the first instruction is sent to the domain controller.
  • the energy storage cloud server first extracts the second user usage behavior data of the energy storage unit based on the first status information, and then sends the first user usage behavior data to the domain controller after determining that the second user usage behavior data has application characteristics corresponding to the intelligent management policy. Instructions to instruct the domain controller to send the second status information of the energy storage unit.
  • the second status information includes more information than the first status information. Therefore, the energy storage cloud server can determine the status of the non-energy storage unit based on the second status information. Intelligent management strategy, and manage non-energy storage units according to the intelligent management strategy, so that the non-energy storage unit adjusts the working conditions of the energy storage unit to the required working conditions.
  • the domain controller is configured to determine the intelligent management policy of the non-energy storage unit according to the status information of the energy storage unit.
  • the intelligent management strategy includes: before the energy storage unit starts the working mode, turning on the non-energy storage unit to adjust the working conditions of the energy storage unit so that the energy storage unit The unit is in preset operating conditions when said operating mode is activated.
  • a control method for an energy storage system includes an energy storage unit, a non-energy storage unit and a domain controller.
  • the non-energy storage unit is used to assist the energy storage unit, so
  • the domain controller integrates the management module of the energy storage unit and the management module of the non-energy storage unit; the method includes: the domain controller manages the energy storage unit and the non-energy storage unit.
  • the management module of the energy storage unit includes at least one of a battery management system BMS, a power conversion system PCS, and an energy management system EMS.
  • the management module of the energy storage unit includes multiple control nodes, and the domain controller integrates the multiple control nodes.
  • the non-energy storage unit includes a thermal management unit or a fire protection unit.
  • the thermal management unit integrates the thermal management unit of the energy storage unit and the thermal management unit of the PCS.
  • the domain controller manages the energy storage unit and the non-energy storage unit, including: the domain controller manages the non-energy storage unit according to the status information of the energy storage unit. unit.
  • the state information of the energy storage unit includes: at least one of temperature, voltage, state of charge SOC, health state SOH, and charge and discharge state.
  • the domain controller manages the non-energy storage unit according to the status information of the energy storage unit, including: the domain controller obtains The intelligent management policy of the non-energy storage unit; the domain controller manages the non-energy storage unit according to the intelligent management policy.
  • the intelligent management policy is a management policy associated with user usage behavior of the energy storage unit.
  • the energy storage system further includes an energy storage cloud server, and the domain controller obtains the intelligent management policy of the non-energy storage unit according to the status information of the energy storage unit, including : The domain controller obtains the intelligent management policy of the non-energy storage unit from the energy storage cloud server based on the status information of the energy storage unit.
  • the domain controller obtains the intelligent management policy of the non-energy storage unit from the energy storage cloud server based on the status information of the energy storage unit, including: The domain controller obtains the status information of the energy storage unit and sends the status information to the energy storage cloud server, so that the energy storage cloud server determines the intelligent management policy based on the status information and sends the status information to the energy storage cloud server. The domain controller sends the intelligent management policy.
  • the energy storage cloud server determines the intelligent management strategy based on the status information, including:
  • the energy storage cloud server extracts the first user usage behavior data of the energy storage unit according to the status information, and determines the intelligence corresponding to the first user usage behavior data based on the first user usage behavior data. management strategies.
  • the domain controller obtains the intelligent management policy of the non-energy storage unit from the energy storage cloud server based on the status information of the energy storage unit, including: The domain controller obtains the first status information of the energy storage unit and sends the first status information to the energy storage cloud server, so that the energy storage cloud server sends a request to the domain according to the first status information.
  • the controller sends a first instruction, the first instruction is used to instruct the domain controller to send second status information of the energy storage unit, wherein the second status information includes more information than the first status
  • the information includes: the domain controller acquires the second status information of the energy storage unit according to the first instruction, and sends the second status information to the energy storage cloud server so that the The energy storage cloud server determines the intelligent management policy based on the second status information, and sends the intelligent management policy to the domain controller.
  • the energy storage cloud server sends a first instruction to the domain controller according to the first status information, including: the energy storage cloud server extracts the first instruction based on the first status information. If the second user usage behavior data of the energy storage unit is determined to have application characteristics corresponding to the intelligent management policy, the first instruction is sent to the domain controller.
  • the domain controller obtains the intelligent management policy of the non-energy storage unit according to the status information of the energy storage unit, including: the domain controller obtains the intelligent management policy of the non-energy storage unit according to the energy storage unit.
  • the status information determines the intelligent management strategy of the non-energy storage unit.
  • the intelligent management strategy includes: before the energy storage unit starts the working mode, turning on the non-energy storage unit to adjust the working conditions of the energy storage unit so that the energy storage unit The unit is in preset operating conditions when said operating mode is activated.
  • a control device for an energy storage system including a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call the computer program to enable the device to implement the third aspect. Or the method described in any possible implementation of the third aspect.
  • a readable storage medium stores a computer program.
  • the computing device When the computer program is executed by a computing device, the computing device causes the computing device to implement the third aspect or any one of the third aspects. possible implementation methods.
  • This application provides a domain controller for an energy storage system.
  • the domain controller integrates the management module of the energy storage unit and the management module of the non-energy storage unit.
  • the domain controller integrates the management module of the energy storage unit and the management module of the non-energy storage unit.
  • the management module of the energy storage unit and the management module of the non-energy storage unit are dispersedly arranged.
  • This application integrates the management module of the energy storage unit and the management module of the non-energy storage unit into a domain controller, which can be controlled centrally by the domain controller.
  • the management module of the energy storage unit and the management module of the non-energy storage unit enable smooth and rapid information exchange between the management module of the energy storage unit and the management module of the non-energy storage unit, improve the efficiency of system management, and can manage the energy storage unit.
  • the information of the module and the management module of the non-energy storage unit is integrated and processed to avoid the waste of system resources caused by multiple information processing.
  • Figure 1 is a schematic diagram of an energy storage system disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an energy storage system disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an energy storage system disclosed in an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a method for optimizing thermal management strategies for peak-shaving and valley-filling applications disclosed in an embodiment of the present application
  • Figure 9 is a schematic diagram of a control device of an energy storage system disclosed in an embodiment of the present application.
  • the battery energy storage system realizes the functions of storing electric energy, peak shaving and valley filling, and smoothing the fluctuation of new energy output in distributed power generation and microgrid systems. It is an indispensable link in the system. With the continuous development of energy storage technology and the strong support for batteries and new energy technologies from countries around the world, large-scale battery energy storage system devices have been increasingly developed and applied.
  • embodiments of the present application provide a domain controller for use in an energy storage system.
  • This domain controller integrates the management module of the energy storage unit and the management module of the non-energy storage unit.
  • the management module of the energy storage unit and the management module of the non-energy storage unit are dispersedly set up.
  • this application integrates the management module of the energy storage unit and the management module of the non-energy storage unit into the domain controller.
  • the management module of the energy storage unit and the management module of the non-energy storage unit can be centrally controlled through the domain controller, so that The information exchange between the management module of the energy storage unit and the management module of the non-energy storage unit is smooth and rapid, improving the system management efficiency; and the information of the management module of the energy storage unit and the management module of the non-energy storage unit can be integrated and processed to avoid System resources are wasted caused by multiple information processing.
  • FIG 1 is a schematic diagram of an energy storage system 100 provided by this application.
  • the energy storage system 100 includes multiple battery clusters, such as battery cluster 1 to battery cluster m as shown in Figure 1, where m can be a natural number greater than 1, that is, in practical applications, the battery clusters can be flexibly adjusted according to the energy storage capacity. If the energy storage capacity is large, the number of battery clusters can be appropriately increased. If the energy storage capacity is small, the number of battery clusters can be appropriately reduced.
  • Each battery cluster is composed of at least two battery energy storage systems (ESS) connected in series, such as energy storage module 1 to energy storage module j in Figure 1, where j can be greater than or equal to 2 Natural number.
  • Each energy storage module ESS is composed of several energy storage elements connected in series or parallel to form the smallest energy storage and management unit.
  • BMS battery management system
  • the power conversion system PCS performs real-time information exchange to realize the management and control of the entire battery energy storage system.
  • the battery management system BMS, energy management system EMS, and power conversion system PCS of the above-mentioned energy storage system are usually designed dispersedly in the energy storage system, and the information exchange between the systems has problems such as delays and poor communication.
  • the energy storage system may be the energy storage system 100 in Figure 1 .
  • the energy storage system 200 includes an energy storage unit 201 and a non-energy storage unit 202 .
  • the non-energy storage unit 202 is used to assist the energy storage unit 201 .
  • the non-energy storage unit 202 may include, for example, a thermal management unit or a fire protection unit.
  • the thermal management unit can cool down the battery pack of the energy storage unit 201 when its temperature is too high, or when the battery pack needs to be heated to increase the charging and discharging speed. Heating it; the fire-fighting unit can perform fire-extinguishing when the battery energy storage system experiences thermal runaway.
  • the domain controller 203 integrates the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202, and is used to manage the energy storage unit 201 and the non-energy storage unit 202.
  • the domain controller 203 integrates the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 201 to form a "domain".
  • Each management module in the domain is connected by communication lines to achieve centralized management. Since the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202 are integrated together, the information exchange between the various management modules can be smooth and rapid, and the information of multiple management modules can be integrated and processed to avoid multiple Waste of system resources caused by information processing.
  • the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202 are integrated into the domain controller 203.
  • 2011 and the management module 2021 of the non-energy storage unit 202 are dispersedly arranged.
  • This application integrates the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202 into the domain controller 203.
  • the controller 203 centrally controls the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202, so that the information exchange between the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202 is smooth and rapid, improving The system management efficiency is improved, and the information of the management module 2011 of the energy storage unit 201 and the management module 2021 of the non-energy storage unit 202 can be integrated and processed to avoid the waste of system resources caused by multiple information processing.
  • the management module 2011 of the energy storage unit 201 includes at least one of a battery management system BMS, a power conversion system PCS, and an energy management system EMS.
  • the battery management system BMS monitors the battery's state of charge SOC, temperature, current and other battery information, and interacts with the power conversion system PCS or energy management system EMS to manage and control the entire battery energy storage system. For example, the battery management system BMS estimates the state of charge SOC of the battery to ensure that the SOC is maintained within a reasonable range and prevents damage to the battery due to overcharge or overdischarge; during the battery charging and discharging process, the battery management system BMS collects real-time data The terminal voltage and temperature of each battery in the battery pack, the charge and discharge current and the total voltage of the battery pack can prevent the battery from overcharging or over-discharging, thereby extending the service life of the battery.
  • management module 2011 of the energy storage unit 201 described above is only an illustrative example and does not constitute a limitation of the present application.
  • the management module 2011 of the energy storage unit 201 in the embodiment of the present application may include any of the above. management modules, but are not limited to the management modules mentioned above.
  • the management module 2011 of the energy storage unit 201 includes multiple control nodes
  • the domain controller 203 can also integrate multiple control nodes of the management module 2011 of the energy storage unit 201, for example, Integrate the control module, display module and wireless communication module of the battery management system BMS, and integrate the information receiving, information processing and information sending of the battery management system BMS to increase the speed of information interaction and improve the efficiency of information processing. , while avoiding scattered transmission of multi-layer information and saving system resources.
  • the domain controller 203 integrates multiple control nodes of the management module 2011 of the energy storage unit 201, which can improve the integration level of the management module 2011 of the energy storage unit 201 and reduce hardware costs.
  • the thermal management unit of the battery and the thermal management unit of the power conversion system PCS are integrated, the energy transfer between the thermal management unit of the battery and the thermal management unit of the power conversion system PCS is centrally controlled by the domain controller 203, so that the thermal management of the battery The energy transfer between the management unit and the thermal management unit of the power conversion system PCS is timely and rapid.
  • the thermal management unit of the energy storage unit 201 and the thermal management unit of the PCS are integrated together, and energy conversion can be performed between the two thermal management units to improve system energy utilization.
  • the domain controller 203 is configured to manage the non-energy storage unit 202 according to the status information of the energy storage unit 201 .
  • the domain controller 203 manages the non-energy storage unit 202 according to the status information of the energy storage unit 201, so that the non-energy storage unit 202 adjusts the working conditions of the energy storage unit 201 to required working conditions.
  • the domain controller 203 obtains the intelligent management policy of the non-energy storage unit 202 according to the status information of the energy storage unit 201.
  • the management policy of the non-energy storage unit 202 can be flexibly adjusted according to the status information of the energy storage unit 201, and the intelligent management policy can be adjusted according to the status information of the energy storage unit 201.
  • the non-energy storage unit 202 is managed so that the non-energy storage unit 202 adjusts the working conditions of the energy storage unit 201 to the required working conditions.
  • the intelligent management policy is a management policy associated with the user usage behavior of the energy storage unit 201.
  • the intelligent management strategy is associated with the user behavior of the energy storage unit 201, and can efficiently manage the non-energy storage unit 202, so that the non-energy storage unit 202 can adjust the working conditions of the energy storage unit 201 to the required working conditions.
  • the status information of the energy storage unit 201 includes: at least one of temperature, voltage, state of charge SOC, health state SOH, and charge and discharge state.
  • Battery temperature is an important factor affecting battery aging.
  • a suitable working temperature can slow down the aging of the battery and maximize the battery's performance. Therefore, the battery temperature needs to be monitored in real time to ensure that the battery maintains a suitable working temperature.
  • the battery's state of charge is a physical quantity used to reflect the remaining capacity of the battery. It represents the ratio of the remaining capacity of the battery after it has been used for a period of time or left unused for a long time and its capacity in the fully charged state.
  • the battery's health state SOH is a quality factor that compares the battery with its ideal state. Generally, the battery's health state SOH decreases with the increase in usage time and frequency.
  • the health status SOH of the battery is usually determined by changes in electrical parameters such as battery internal resistance, capacity, voltage, self-discharge speed, charging capacity, and number of charge and discharge cycles.
  • state information of the energy storage unit 201 described above is only an illustrative example and does not constitute a limitation of the present application.
  • the state information of the energy storage unit 201 in the embodiment of the present application may include any of the above states. information, but is not limited to the status information described above.
  • the temperature, voltage, state of charge SOC, health state SOH and charge and discharge status of the energy storage unit 201 are all status information related to the working status of the energy storage unit 201. Obtaining these status information of the energy storage unit 201 can grasp the energy storage Real-time operating conditions of unit 201.
  • the domain controller 203 can determine the intelligent management strategy of the non-energy storage unit 202 on its own based on the status information; it can also obtain the status information of the energy storage unit 201. Then, the status information is sent to other processing units, and the other processing units determine the intelligent management policy of the non-energy storage unit 202 based on the status information, and send the intelligent management policy to the domain controller 203 .
  • the domain controller 203 is configured to obtain the intelligent management policy of the non-energy storage unit 202 from the energy storage cloud server according to the status information of the energy storage unit 201 .
  • the domain controller 203 is used to: obtain the status information of the energy storage unit 201 and send the status information to the energy storage cloud server; receive the intelligent management policy sent by the energy storage cloud server.
  • the domain controller 203 obtains the intelligent management policy of the non-energy storage unit 202 through the energy storage cloud server, which is simple, efficient, safe and reliable, and improves the management efficiency of the system.
  • the energy storage cloud server can analyze the status information once to determine the intelligent management strategy of the non-energy storage unit 202; after receiving the status information of the energy storage unit 201, it can first conduct a preliminary analysis to determine the user's usage. Whether the behavioral data has application characteristics corresponding to the intelligent management strategy, the subsequent steps are then performed to determine the intelligent management strategy of the non-energy storage unit 202.
  • the domain controller 203 is configured to: obtain the first status information of the energy storage unit 201 and send the first status information to the energy storage cloud server; receive the first status information sent by the energy storage cloud server.
  • instruction according to the first instruction, obtain the second status information of the energy storage unit 201 and send the second status information to the energy storage cloud server, where the second status information includes more information than the first status information includes, and the second status information includes:
  • the second status information is used by the energy storage cloud server to determine the intelligent management strategy; it receives the intelligent management strategy sent by the energy storage cloud server.
  • the preset working conditions described here refer to the best working conditions or better working conditions of the energy storage unit 201 determined based on the historical working status of the energy storage unit 201 .
  • the preset working conditions can be adjusted according to different states of the energy storage unit 201 .
  • the non-energy storage unit 202 adjusts the working conditions of the energy storage unit 201 so that the energy storage unit 201 is in the preset working condition when starting the working mode. In this way, the energy storage unit 201 first starts working. , then it can be in suitable working conditions and improve the working efficiency of the energy storage unit 201.
  • the intelligent management strategy in the embodiment of the present application may include the above-mentioned intelligent management strategy, but is not limited thereto.
  • the intelligent management strategy in the embodiment of the present application may also include shutting down the non-energy storage unit 202 when the energy storage unit 201 stops working to save power consumption.
  • the status information of the energy storage unit 201 can be monitored in real time, and the intelligent management strategy of the non-energy storage unit 202 can be adjusted in time based on the status information to achieve efficient and energy-saving management of the energy storage system 200.
  • the energy storage system 300 includes an energy storage unit 301, a non-energy storage unit 302 and a domain controller 303.
  • the non-energy storage unit 302 is used to assist the energy storage unit 301; for example, the operating temperature of the energy storage unit 301 is adjusted according to the working state of the energy storage unit 301, so that the energy storage unit 301 is at a suitable operating temperature.
  • the non-energy storage unit 302 may include, for example, a thermal management unit or a fire protection unit.
  • the thermal management unit can cool down the battery pack of the energy storage unit 301 when its temperature is too high, or when the battery pack needs to be heated to increase the charging and discharging speed. Heating it; the fire-fighting system can extinguish fires when thermal runaway occurs in the battery energy storage system.
  • the domain controller 303 integrates the management module of the energy storage unit 301 and the management module of the non-energy storage unit 302, and is used to manage the energy storage unit 301 and the non-energy storage unit 302.
  • the management module of the energy storage unit 301 and the management module of the non-energy storage unit 302 are integrated into the domain controller 303.
  • the management module of the energy storage unit 301 and the non-energy storage unit 302 are integrated into the domain controller 303.
  • the management module of the energy storage unit 302 is decentralized. This application integrates the management module of the energy storage unit 301 and the management module of the non-energy storage unit 302 into the domain controller 303.
  • the energy storage can be centrally controlled through the domain controller 303.
  • the management module of the unit 301 and the management module of the non-energy storage unit 302 enable smooth and rapid information exchange between the management module of the energy storage unit 301 and the management module of the non-energy storage unit 302, improve the system management efficiency, and can control the energy storage unit.
  • the information of the management module of 301 and the management module of the non-energy storage unit 302 are integrated and processed to avoid the waste of system resources caused by multiple information processing.
  • the management module of the energy storage unit 301 includes at least one of a battery management system BMS, a power conversion system PCS, and an energy management system EMS.
  • the battery management system BMS monitors the battery's state of charge SOC, temperature, current and other battery information, and interacts with the power conversion system PCS or energy management system EMS to manage and control the entire battery energy storage system. For example, the battery management system BMS estimates the state of charge SOC of the battery to ensure that the SOC is maintained within a reasonable range and prevents damage to the battery due to overcharge or overdischarge; during the battery charging and discharging process, the battery management system BMS collects real-time data The terminal voltage and temperature of each battery in the battery pack, the charge and discharge current and the total voltage of the battery pack can prevent the battery from overcharging or over-discharging, thereby extending the service life of the battery.
  • management module of the energy storage unit 301 described above is only an illustrative example and does not constitute a limitation of the present application.
  • the management module of the energy storage unit 301 in the embodiment of the present application may include any of the above management methods. modules, but are not limited to the management modules described above.
  • the management module of the energy storage unit 301 includes multiple control nodes.
  • the domain controller 303 can also integrate multiple control nodes of the management module of the energy storage unit 301.
  • the battery The control module, display module and wireless communication module of the management system BMS are integrated to integrate the information receiving, information processing and information sending of the battery management system BMS to increase the speed of information interaction and improve the efficiency of information processing. Avoid scattered transmission of multi-layer information and save system resources.
  • the domain controller 303 integrates multiple control nodes of the management module of the energy storage unit 301, which can improve the integration level of the management module of the energy storage unit 301 and reduce hardware costs.
  • the thermal management unit integrates the thermal management unit of the energy storage unit 301 and the thermal management unit of the power conversion system PCS.
  • the thermal management unit of the power conversion system PCS can transfer the heat of the power conversion system PCS to the thermal management unit of the battery; at the same time, the heat of the battery can also be transferred through the thermal management unit of the battery. Transferred to the thermal management unit of the power conversion system PCS.
  • the thermal management unit of the battery and the thermal management unit of the power conversion system PCS are integrated, the energy transfer between the thermal management unit of the battery and the thermal management unit of the power conversion system PCS is centrally controlled by the domain controller 303, so that the thermal management of the battery The energy transfer between the management unit and the thermal management unit of the power conversion system PCS is timely and rapid.
  • the thermal management unit of the energy storage unit 301 is integrated with the thermal management unit of the PCS, and energy conversion can be performed between the two thermal management units to improve system energy utilization.
  • the domain controller 303 is configured to manage the non-energy storage unit 302 according to the status information of the energy storage unit 301.
  • the domain controller 303 manages the non-energy storage unit 302 according to the status information of the energy storage unit 301, so that the non-energy storage unit 302 adjusts the working conditions of the energy storage unit 301 to required working conditions.
  • the domain controller 303 can obtain the intelligent management policy of the non-energy storage unit 302 according to the status information of the energy storage unit 301, and manage the non-energy storage unit 302 according to the intelligent management policy.
  • the domain controller 303 obtains the intelligent management policy of the non-energy storage unit 302 according to the status information of the energy storage unit 301. In this way, the management policy of the non-energy storage unit 302 can be flexibly adjusted according to the status information of the energy storage unit 301, and the management policy of the non-energy storage unit 302 can be flexibly adjusted according to the intelligent management policy.
  • the non-energy storage unit 302 is managed so that the non-energy storage unit 302 adjusts the working conditions of the energy storage unit 301 to the required working conditions.
  • the intelligent management policy is a management policy associated with the user usage behavior of the energy storage unit 301.
  • the intelligent management strategy is associated with the user behavior of the energy storage unit 301, and can efficiently manage the non-energy storage unit 302, so that the non-energy storage unit 302 can adjust the working conditions of the energy storage unit 301 to the required working conditions.
  • the status information of the energy storage unit 301 includes: at least one of temperature, voltage, state of charge SOC, health state SOH, and charge and discharge state.
  • Battery temperature is an important factor affecting battery aging.
  • a suitable working temperature can slow down the aging of the battery and maximize the battery's performance. Therefore, the battery temperature needs to be monitored in real time to ensure that the battery maintains a suitable working temperature.
  • the battery's state of charge is a physical quantity used to reflect the remaining capacity of the battery. It represents the ratio of the remaining capacity of the battery after it has been used for a period of time or left unused for a long time and its capacity in the fully charged state.
  • the battery's health state SOH is a quality factor that compares the battery with its ideal state. Generally, the battery's health state SOH decreases with the increase in usage time and frequency.
  • the health status SOH of the battery is usually determined by changes in electrical parameters such as battery internal resistance, capacity, voltage, self-discharge speed, charging capacity, and number of charge and discharge cycles.
  • the above-mentioned status information of the energy storage unit 301 is only an illustrative example and does not constitute a limitation of the present application.
  • the status information of the energy storage unit 301 in the embodiment of the present application may include any of the above-mentioned statuses. information, but is not limited to the status information described above.
  • the temperature, voltage, state of charge SOC, health state SOH and charge and discharge status of the energy storage unit 301 are all status information related to the working status of the energy storage unit 301. Obtaining these status information of the energy storage unit 301 can grasp the energy storage Real-time operating conditions of unit 301.
  • the domain controller 303 is configured to determine the intelligent management policy of the non-energy storage unit 302 according to the status information of the energy storage unit 301 .
  • the domain controller 303 determines the intelligent management strategy of the non-energy storage unit 302 based on the status information of the energy storage unit 301.
  • the domain controller 303 itself can determine the intelligence of the non-energy storage unit 302 without the need for information interaction and data calculation through other processing units. Manage policies, reduce information interaction, and save system resources.
  • the domain controller 303 can determine the intelligent management strategy of the non-energy storage unit 302 on its own based on the status information; it can also obtain the status information of the energy storage unit 301. Then, the status information is sent to other processing units, and the other processing units determine the intelligent management policy of the non-energy storage unit 302 based on the status information, and send the intelligent management policy to the domain controller 303 .
  • the energy storage system 300 also includes an energy storage cloud server 304, and the domain controller 303 is configured to: obtain the non-energy storage unit 302 from the energy storage cloud server 304 according to the status information of the energy storage unit 301. intelligent management strategies.
  • the energy storage cloud server 304 is simple, efficient, safe and reliable, and its processing capacity is elastically scalable.
  • the energy storage cloud server 304 can store a large amount of information.
  • the information interaction of the energy storage system 300 is carried out through the energy storage cloud server 304, which is efficient and rapid, improving the management efficiency of the system. .
  • the domain controller 303 is used to: obtain the status information of the energy storage unit 301 and send the status information to the energy storage cloud server 304; the energy storage cloud server 304 is used to: determine based on the status information Intelligent management policy, and the intelligent management policy is reported to the domain controller 303.
  • the domain controller 303 obtains the intelligent management policy of the non-energy storage unit 302 through the energy storage cloud server 304, which is simple, efficient, safe and reliable, and improves the management efficiency of the system.
  • the energy storage cloud server 304 can analyze the status information once to determine the intelligent management strategy of the non-energy storage unit 302; after receiving the status information of the energy storage unit 301, it can first conduct a preliminary analysis to determine the user's status information. Whether the usage behavior data has application characteristics corresponding to the intelligent management strategy, then subsequent steps are performed to determine the intelligent management strategy of the non-energy storage unit 302.
  • the energy storage cloud server 304 is configured to: extract the first user usage behavior data of the energy storage unit 301 according to the status information; determine the first user usage behavior data according to the first user usage behavior data. Intelligent management strategies corresponding to behavioral data.
  • the energy storage cloud server 304 extracts the first user usage behavior data of the energy storage unit 301 based on the status information, and determines the intelligent management policy corresponding to the first user usage behavior data. In this way, non-storage management policies can be flexibly adjusted based on the status information of the energy storage unit 301. Management strategy of functional unit 302.
  • the domain controller 303 is used to: obtain the first status information of the energy storage unit 301, and send the first status information to the energy storage cloud server 304; the energy storage cloud server 304 is used to: Send a first instruction to the domain controller 303 according to the first status information.
  • the first instruction is used to instruct the domain controller 303 to send second status information of the energy storage unit 301, where the second status information includes more information than the first status.
  • the information includes information; the domain controller 303 is also used to: obtain the second status information of the energy storage unit 301 according to the first instruction, and send the second status information to the energy storage cloud server 304; the energy storage cloud server 304 is also used to: : Determine the intelligent management policy according to the second status information, and send the intelligent management policy to the domain controller 303.
  • the domain controller 303 obtains the first status information of the energy storage unit 301 and sends it to the energy storage cloud server 304, and then obtains the second status information of the energy storage unit 301 according to the first instruction sent by the energy storage cloud server 304 and sends it to the energy storage cloud server. 304.
  • the energy storage cloud server 304 finally determines the intelligent management policy of the non-energy storage unit 302 by obtaining the first status information and the second status information.
  • the domain controller 303 obtains the intelligent management policy from the energy storage cloud server 304 and performs the intelligent management according to the intelligent management policy.
  • the policy manages the non-energy storage unit 302 so that the non-energy storage unit 302 adjusts the working conditions of the energy storage unit 301 to the required working conditions.
  • the energy storage cloud server 304 is configured to: extract the second user usage behavior data of the energy storage unit 301 according to the first status information; and determine that the second user usage behavior data has an intelligent management policy corresponding to In the case of application features, the first instruction is sent to the domain controller 303.
  • the energy storage cloud server 304 first extracts the second user usage behavior data of the energy storage unit 301 based on the first status information. When it is determined that the second user usage behavior data has application characteristics corresponding to the intelligent management policy, it then sends the data to the domain controller 303 Send a first instruction to instruct the domain controller 303 to send second status information of the energy storage unit 301.
  • the second status information includes more information than the first status information. Therefore, the energy storage cloud server 304 can send the second status information according to the second status information.
  • the intelligent management strategy of the non-energy storage unit 302 is determined, and the non-energy storage unit 302 is managed according to the intelligent management strategy, so that the non-energy storage unit 302 adjusts the working conditions of the energy storage unit 301 to the required working conditions.
  • the intelligent management strategy includes: before the energy storage unit 301 starts the working mode, turning on the non-energy storage unit 302 to adjust the working conditions of the energy storage unit 301, so that the energy storage unit 301 starts working. mode is in preset working conditions.
  • the preset working conditions described here refer to the best or better working conditions of the energy storage unit 301 determined based on the historical working status of the energy storage unit 301 .
  • the preset working conditions can be adjusted according to different states of the energy storage unit 301.
  • the non-energy storage unit 302 adjusts the working conditions of the energy storage unit 301 so that the energy storage unit 301 is in the preset working condition when starting the working mode. In this way, the energy storage unit 301 first starts working. , it can be in suitable working conditions and improve the working efficiency of the energy storage unit 301.
  • the intelligent management strategy in the embodiment of the present application may include the above-mentioned intelligent management strategy, but is not limited thereto.
  • the intelligent management strategy in the embodiment of the present application may also include shutting down the non-energy storage unit 302 when the energy storage unit 301 stops working to save power consumption.
  • the status information of the energy storage unit 301 can be monitored in real time, and the intelligent management strategy of the non-energy storage unit 302 can be adjusted in a timely manner based on the status information to achieve efficient and energy-saving management of the energy storage system 300.
  • the domain controller 303 obtains the intelligent management policy of the non-energy storage unit 302 according to the status information of the energy storage unit 301, and manages the non-energy storage unit 302 according to the intelligent management policy, so that the non-energy storage unit 302 can flexibly and efficiently assist the energy storage unit 301, so that the energy storage unit 301 is in appropriate working conditions. That is to say, according to the status information of the energy storage unit 301, the non-energy storage unit 302 can be flexibly adjusted to assist the energy storage unit 301 to achieve appropriate Strategies for working conditions to avoid unnecessary energy waste and achieve efficient energy-saving management of the energy storage system 300.
  • Figure 4 shows a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • the domain controller manages energy storage units and non-energy storage units.
  • the domain controller can manage the non-energy storage unit according to the status information of the energy storage unit.
  • the status information of the energy storage unit may include: at least one of temperature, voltage, state of charge SOC, health state SOH, and charge and discharge status.
  • the temperature, voltage, state of charge SOC, health state SOH and charge and discharge status of the energy storage unit are all status information related to the working status of the energy storage unit. Obtaining these status information of the energy storage unit can grasp the real-time status of the energy storage unit. working conditions.
  • Figure 5 is a schematic flow chart of a control method for an energy storage system disclosed in yet another embodiment of the present application.
  • the domain controller obtains the intelligent management policy of the non-energy storage unit based on the status information of the energy storage unit.
  • the domain controller manages the non-energy storage unit according to the intelligent management policy.
  • the domain controller can determine the intelligent management policy of the non-energy storage unit on its own based on the status information.
  • the energy storage system also includes an energy storage cloud server.
  • the domain controller After obtaining the status information of the energy storage unit, the domain controller sends the status information to the energy storage cloud server, and the energy storage cloud server The status information determines the intelligent management policy of the non-energy storage unit and sends the intelligent management policy to the domain controller.
  • Figure 6 is a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • the domain controller obtains the status information of the energy storage unit and sends the status information to the energy storage cloud server.
  • the energy storage cloud server extracts the first user usage behavior data of the energy storage unit according to the status information.
  • the energy storage cloud server determines the intelligent management policy corresponding to the first user's usage behavior data based on the first user's usage behavior data, and sends the intelligent management policy to the domain controller.
  • the energy storage cloud server can extract the first user usage behavior data of the energy storage unit after receiving the status information of the energy storage unit, and determine the intelligent management strategy corresponding to the first user usage behavior data. In other words, the energy storage cloud server only needs to analyze the status information once to determine the intelligent management strategy for non-energy storage units.
  • the energy storage cloud server can first perform a preliminary analysis to determine whether the user usage behavior data has application characteristics corresponding to the intelligent management strategy, and then follow-up steps are taken to determine smart management strategies for non-storage units.
  • Figure 7 is a schematic flow chart of a control method for an energy storage system disclosed in an embodiment of the present application.
  • the domain controller obtains the first status information of the energy storage unit and sends the first status information to the energy storage cloud server.
  • the energy storage cloud server determines whether the second user's usage behavior data has application characteristics corresponding to the intelligent management strategy.
  • the energy storage cloud server sends the first instruction to the domain controller.
  • the domain controller obtains the second status information of the energy storage unit according to the first instruction, and sends the second status information to the energy storage cloud server.
  • the energy storage cloud server determines the intelligent management policy based on the second status information, and sends the intelligent management policy to the domain controller.
  • the domain controller obtains the first status information of the energy storage unit and sends it to the energy storage cloud server, and then obtains the second status information of the energy storage unit according to the first instruction sent by the energy storage cloud server and sends it to the energy storage cloud server. By obtaining the first status information and the second status information, the intelligent management policy of the non-energy storage unit is finally determined.
  • the domain controller obtains the intelligent management policy from the energy storage cloud server and manages the non-energy storage unit according to the intelligent management policy so that the non-energy storage unit The energy storage unit adjusts the working conditions of the energy storage unit to the required working conditions.
  • the domain controller packages and compresses the battery pack temperature, charge and discharge status and other status information, compresses the current status information and uploads it to the energy storage cloud server.
  • the domain controller can use wireless communication templates, such as 3G/4G/5G/ETH, etc., to upload the status information of the battery pack to the energy storage cloud server.
  • wireless communication templates such as 3G/4G/5G/ETH, etc.
  • the energy storage cloud server determines whether it has peak-shaving and valley-filling application characteristics.
  • the energy storage cloud server requires the domain controller to send more detailed status information of the energy storage unit and compare it with the template status information or historical status information.
  • the energy storage cloud server can use wireless communication templates, such as 3G/4G/5G/ETH, etc., to deliver the peak-shaving and valley-filling application APP to the domain controller.
  • wireless communication templates such as 3G/4G/5G/ETH, etc.
  • the domain controller applies the peak shaving and valley filling application APP to optimize and upgrade the thermal management strategy of peak shaving and valley filling.
  • the energy storage cloud server can determine its application characteristics and whether it is a peak shaving and valley filling application based on the status information of the battery pack.
  • the domain controller can also Based on the status information of the battery pack, determine its application characteristics and whether it is a peak-shaving or valley-filling application. Combined with the judgment of the energy storage cloud server and domain controller, the application characteristics of the battery pack and whether it is a peak-shaving or valley-filling application are determined.
  • the domain controller will turn on the thermal management unit of the battery pack before 8:00 to ensure that the temperature of the battery pack is adjusted to optimal charging at around 8:00. range, its charging capacity ensures that it can be charged to about 15:30.
  • the battery pack temperature window is adjusted to the optimal range around 15:30, ensuring that it is between 15:30 and 20 :00.
  • the thermal management unit of the battery pack will be turned off and will not be turned on again until 8:00 the next day.
  • the domain controller will still monitor and upload the status information of the battery pack to the energy storage cloud server in real time, and determine whether the peak shaving and valley filling application will continue to be executed in the next time period. Continuously update the thermal management strategy of the thermal management unit to achieve intelligent adjustment of the energy storage system.
  • the embodiment of the present application also provides a control device 900 for an energy storage system.
  • the control device 900 includes a processor 901 and a memory 902.
  • the memory 902 is used to store computer programs
  • the processor 901 is used to store computer programs.
  • the computer program is called to cause the device to implement the methods of the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种域控制器,用于储能系统,该储能系统包括储能单元和非储能单元,非储能单元用于辅助储能单元;域控制器集成储能单元的管理模块和非储能单元的管理模块,用于管理储能单元和非储能单元。本申请的技术方案,能够智能调节储能系统的管理策略,实现对储能系统的高效节能管理。

Description

域控制器、储能系统和储能系统的控制方法 技术领域
本申请涉及储能技术领域,特别是涉及一种域控制器、储能系统和储能系统的控制方法。
背景技术
基于国家电力改革、可再生能源发电装机数量大幅度提升的背景下,储能技术在电力系统的发、输、变、配、用五大环节中都将起到重要作用,电池储能系统在新能源、智能电网、节能技术等领域应用的越来越广泛。
随着储能行业的发展,电池储能系统的工作效率、安全性能和循环寿命等性能是人们关注的重点,如何合理地管理电池储能系统,提高电池储能系统的性能是目前亟待解决的问题。
发明内容
本申请提供一种域控制器、储能系统和储能系统的控制方法,能够智能调节储能系统的管理策略,实现对储能系统的高效节能管理。
第一方面,提供了一种域控制器,用于储能系统,所述储能系统包括储能单元和非储能单元,所述非储能单元用于辅助所述储能单元;所述域控制器集成所述储能单元的管理模块和所述非储能单元的管理模块,用于管理所述储能单元和所述非储能单元。
本申请实施例中,将储能单元的管理模块和非储能单元的管理模块集成于域控制器,相较于现有的储能系统的储能单元的管理模块和非储能单元的管理模块分散设置的方案,本申请将储能单元的管理模块和非储能单元的管理模块集成于域控制器的方案,可以通过域控制器集中控制储能单元的管理模块和非储能单元的管理模块,使储能单元的管理模块和非储能单元的管理模块之间信息交互顺畅迅速,提升系统管理效率,且可以对储能单元的管理模块和非储能单元的管理模块的信息进行整合处理,避免多次信息处理带来的系统资源浪费。
在一种可能的实现方式中,所述储能单元的管理模块包括电池管理系统(Battery Management System,BMS),功率转换系统(Power Convert System,PCS),能量管理系统(Energy Management System,EMS)中的至少一个。
电池管理系统BMS,功率转换系统PCS和能量管理系统EMS可以根据储 能单元的状态信息,实现对整个电池储能系统的管理和控制。
在一种可能的实现方式中,所述储能单元的管理模块包括多个控制节点,所述域控制器集成所述多个控制节点。
域控制器将储能单元的管理模块的多个控制节点集成在一起,这样可以提高储能单元的管理模块的集成度,降低硬件成本。
在一种可能的实现方式中,所述非储能单元包括热管理单元或消防单元。
热管理单元和消防单元可以对储能单元进行热管理,在储能单元温度过高时,对其进行冷却降温,在储能单元温度过低时对其进行加热升温。
在一种可能的实现方式中,所述热管理单元集成所述储能单元的热管理单元和PCS的热管理单元。
储能单元的热管理单元和PCS的热管理单元集成在一起,两个热管理单元之间可以进行能量转换,提升系统能量利用率。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的状态信息管理所述非储能单元。
域控制器根据储能单元的状态信息管理非储能单元,以使非储能单元将储能单元的工作条件调节至所需的工作条件。
在一种可能的实现方式中,所述储能单元的所述状态信息包括:温度、电压、荷电状态(State of Charge,SOC)、健康状态(State of Health,SOH)和充放电状态中的至少一种。
储能单元的温度、电压、荷电状态SOC、健康状态SOH和充放电状态都是与储能单元的工作状态相关的状态信息,获取储能单元的这些状态信息,可以掌握储能单元的实时工作条件。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略;根据所述智能管理策略管理所述非储能单元。
域控制器根据储能单元的状态信息获取非储能单元的智能管理策略,这样,可以根据储能单元的状态信息灵活调整非储能单元的管理策略,并根据智能管理策略管理非储能单元,以使非储能单元将储能单元的工作条件调节至所需的工作条件。
在一种可能的实现方式中,所述智能管理策略为与所述储能单元的用户使用行为关联的管理策略。
智能管理策略与储能单元的用户使用行为相关联,可以高效管理非储能单元,使非储能单元将储能单元的工作条件调节至所需的工作条件。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的所述状态信息从储能云服务器获取所述非储能单元的所述智能管理策略。
储能云服务器简单高效、安全可靠、处理能力可弹性伸缩,储能云服务器可存储大量信息,通过储能云服务器进行储能系统的信息交互,高效迅速,提升系统的管理效率。
在一种可能的实现方式中,所述域控制器用于:获取所述储能单元的所述状态信息,并向所述储能云服务器发送所述状态信息;接收所述储能云服务器发送的所述智能管理策略。
域控制器通过储能云服务器获取非储能单元的智能管理策略,简单高效、安全可靠,提升系统的管理效率。
在一种可能的实现方式中,所述域控制器用于:获取所述储能单元的第一状态信息,并向所述储能云服务器发送所述第一状态信息;接收所述储能云服务器发送的第一指令,根据所述第一指令,获取所述储能单元的第二状态信息,并向所述储能云服务器发送所述第二状态信息,其中,所述第二状态信息包括的信息多于所述第一状态信息包括的信息,所述第二状态信息用于所述储能云服务器确定所述智能管理策略;接收所述储能云服务器发送的所述智能管理策略。
域控制器获取储能单元的第一状态信息发送给储能云服务器,再根据储能云服务器发送的第一指令获取储能单元的第二状态信息发送给储能云服务器,储能云服务器通过获取第一状态信息和第二状态信息,最后确定非储能单元的智能管理策略,域控制器从储能云服务器获取智能管理策略,并根据智能管理策略管理非储能单元,以使非储能单元将储能单元的工作条件调节至所需的工作条件。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的所述状态信息确定所述非储能单元的所述智能管理策略。
域控制器根据储能单元的状态信息确定非储能单元的智能管理策略,无需通过其他处理单元进行信息交互和数据计算,域控制器自身即可确定非储能单元的智能管理策略,减少信息交互,节省系统资源。
在一种可能的实现方式中,所述智能管理策略包括:在所述储能单元启动工作模式前,开启所述非储能单元调节所述储能单元的工作条件,以使所述储能单元在启动所述工作模式时处于预设工作条件。
在储能单元启动工作模式前,非储能单元调节储能单元的工作条件,使储能单元在启动工作模式时处于预设工作条件,这样储能单元在刚开始工作时,便能处于适宜的工作条件,提升储能单元的工作效率。
第二方面,提供了一种储能系统,包括:储能单元;非储能单元,所述非储能单元用于辅助所述储能单元;域控制器,所述域控制器集成所述储能单元的管理模块和所述非储能单元的管理模块,用于管理所述储能单元和所述非储能单元。
在一种可能的实现方式中,所述储能单元的管理模块包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
在一种可能的实现方式中,所述储能单元的管理模块包括多个控制节点, 所述域控制器集成所述多个控制节点。
在一种可能的实现方式中,所述非储能单元包括热管理单元或消防单元。
在一种可能的实现方式中,所述热管理单元集成所述储能单元的热管理单元和PCS的热管理单元。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的状态信息管理所述非储能单元。
在一种可能的实现方式中,所述储能单元的所述状态信息包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略;根据所述智能管理策略管理所述非储能单元。
在一种可能的实现方式中,所述智能管理策略为与所述储能单元的用户使用行为关联的管理策略。
在一种可能的实现方式中,所述储能系统还包括储能云服务器,所述域控制器用于:根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的智能管理策略。
在一种可能的实现方式中,所述域控制器用于:获取所述储能单元的状态信息,并向所述储能云服务器发送所述状态信息;所述储能云服务器用于:根据所述状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
在一种可能的实现方式中,所述储能云服务器用于:根据所述状态信息提取所述储能单元的第一用户使用行为数据;根据所述第一用户使用行为数据,确定所述第一用户使用行为数据对应的所述智能管理策略。
储能云服务器根据状态信息提取出储能单元的第一用户使用行为数据,并确定第一用户使用行为数据对应的智能管理策略,这样可以根据储能单元的状态信息灵活调整非储能单元的管理策略。
在一种可能的实现方式中,所述域控制器用于:获取所述储能单元的第一状态信息,并向所述储能云服务器发送所述第一状态信息;所述储能云服务器用于:根据所述第一状态信息向所述域控制器发送第一指令,所述第一指令用于指示所述域控制器发送所述储能单元的第二状态信息,其中,所述第二状态信息包括的信息多于所述第一状态信息包括的信息;所述域控制器还用于:根据所述第一指令,获取所述储能单元的所述第二状态信息,并向所述储能云服务器发送所述第二状态信息;所述储能云服务器还用于:根据所述第二状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
在一种可能的实现方式中,所述储能云服务器用于:根据所述第一状态信息提取所述储能单元的第二用户使用行为数据;在确定所述第二用户使用行为数据具有所述智能管理策略对应的应用特征的情况下,向所述域控制器发送所述第一指令。
储能云服务器先根据第一状态信息提取储能单元的第二用户使用行为数据,在确定第二用户使用行为数据具有智能管理策略对应的应用特征的情况下,再向域控制器发送第一指令,指示域控制器发送储能单元的第二状态信息,第二状态信息包括的信息多于第一状态信息包括的信息,因此储能云服务器可根据第二状态信息确定非储能单元的智能管理策略,并根据智能管理策略管理非储能单元,以使非储能单元将储能单元的工作条件调节至所需的工作条件。
在一种可能的实现方式中,所述域控制器用于:根据所述储能单元的所述状态信息确定所述非储能单元的所述智能管理策略。
在一种可能的实现方式中,所述智能管理策略包括:在所述储能单元启动工作模式前,开启所述非储能单元调节所述储能单元的工作条件,以使所述储能单元在启动所述工作模式时处于预设工作条件。
第三方面,提供了一种储能系统的控制方法,所述储能系统包括储能单元、非储能单元和域控制器,所述非储能单元用于辅助所述储能单元,所述域控制器集成所述储能单元的管理模块和所述非储能单元的管理模块;所述方法包括:所述域控制器管理所述储能单元和所述非储能单元。
在一种可能的实现方式中,所述储能单元的管理模块包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
在一种可能的实现方式中,所述储能单元的管理模块包括多个控制节点,所述域控制器集成所述多个控制节点。
在一种可能的实现方式中,所述非储能单元包括热管理单元或消防单元。
在一种可能的实现方式中,所述热管理单元集成所述储能单元的热管理单元和PCS的热管理单元。
在一种可能的实现方式中,所述域控制器管理所述储能单元和所述非储能单元,包括:所述域控制器根据所述储能单元的状态信息管理所述非储能单元。
在一种可能的实现方式中,所述储能单元的状态信息包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
在一种可能的实现方式中,所述域控制器根据所述储能单元的状态信息管理所述非储能单元,包括:所述域控制器根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略;所述域控制器根据所述智能管理策略管理所述非储能单元。
在一种可能的实现方式中,所述智能管理策略为与所述储能单元的用户使用行为关联的管理策略。
在一种可能的实现方式中,所述储能系统还包括储能云服务器,所述域控制器根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略,包括:所述域控制器根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的所述智能管理策略。
在一种可能的实现方式中,所述域控制器根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的所述智能管理策略,包括:所述域控制器获取所述储能单元的状态信息,并向所述储能云服务器发送所述状态信息,以使所述储能云服务器根据所述状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
在一种可能的实现方式中,所述储能云服务器根据所述状态信息确定所述智能管理策略,包括:
所述储能云服务器根据所述状态信息提取所述储能单元的第一用户使用行为数据,并根据所述第一用户使用行为数据,确定所述第一用户使用行为数据对应的所述智能管理策略。
在一种可能的实现方式中,所述域控制器根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的所述智能管理策略,包括:所述域控制器获取所述储能单元的第一状态信息,并向所述储能云服务器发送所述第一状态信息,以使所述储能云服务器根据所述第一状态信息向所述域控制器发送第一指令,所述第一指令用于指示所述域控制器发送所述储能单元的第二状态信息,其中,所述第二状态信息包括的信息多于所述第一状态信息包括的信息;所述域控制器根据所述第一指令,获取所述储能单元的所述第二状态信息,并向所述储能云服务器发送所述第二状态信息,以使所述储能云服务器根据所述第二状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
在一种可能的实现方式中,所述储能云服务器根据所述第一状态信息向所述域控制器发送第一指令,包括:所述储能云服务器根据所述第一状态信息提取所述储能单元的第二用户使用行为数据,在确定所述第二用户使用行为数据具有所述智能管理策略对应的应用特征的情况下,向所述域控制器发送所述第一指令。
在一种可能的实现方式中,所述域控制器根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略,包括:所述域控制器根据所述储能单元的所述状态信息确定所述非储能单元的所述智能管理策略。
在一种可能的实现方式中,所述智能管理策略包括:在所述储能单元启动工作模式前,开启所述非储能单元调节所述储能单元的工作条件,以使所述储能单元在启动所述工作模式时处于预设工作条件。
第四方面,提供了一种储能系统的控制装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,使所述装置实现上述第三方面或第三方面的任一种可能的实现方式中所述的方法。
第五方面,提供了一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被计算设备执行时使得所述计算设备实现上述第三方面或第三方面的任一种可能的实现方式中所述的方法。
本申请提供了一种域控制器,用于储能系统,该域控制器将储能单元的管理模块和非储能单元的管理模块集成在一起,相较于现有的储能系统的储能单元的管 理模块和非储能单元的管理模块分散设置的方案,本申请将储能单元的管理模块和非储能单元的管理模块集成于域控制器的方案,可以通过域控制器集中控制储能单元的管理模块和非储能单元的管理模块,使储能单元的管理模块和非储能单元的管理模块之间信息交互顺畅迅速,提升系统管理效率,且可以对储能单元的管理模块和非储能单元的管理模块的信息进行整合处理,避免多次信息处理带来的系统资源浪费。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的储能系统的示意图;
图2是本申请一实施例公开的储能系统的示意图;
图3是本申请一实施例公开的储能系统的示意图;
图4是本申请一实施例公开的储能系统的控制方法的示意性流程图;
图5是本申请一实施例公开的储能系统的控制方法的示意性流程图;
图6是本申请一实施例公开的储能系统的控制方法的示意性流程图;
图7是本申请一实施例公开的储能系统的控制方法的示意性流程图;
图8是本申请一实施例公开的削峰填谷应用的热管理策略优化的方法的示意性流程图;
图9是本申请一实施例公开的储能系统的控制装置的示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结 构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
基于国家电力改革、可再生能源发电装机数量大幅度提升的背景下,储能技术在电力系统的发、输、变、配、用五大环节中都将起到重要作用。电池储能系统在新能源、智能电网、节能技术等领域应用的越来越广泛。
电池储能系统在分布式发电与微电网系统中实现电能的存储、削峰填谷、平抑新能源出力波动等功能,是该系统中必不可少的环节。随着储能技术的不断发展,以及世界各国对电池和新能源技术的大力支持,大型的电池储能系统装置已经被越来越多的研发和应用。
随着储能行业的发展,电池储能系统的工作效率、安全性能和循环寿命等性能是人们关注的重点,而电池储能系统的这些性能与电池储能系统的管理息息相关,合理地管理电池储能系统,可以有效提升电池储能系统的性能。现有的电池储能系统的管理方法大都是分散式管理,即电池储能系统的各个单元或模块分别管理,未进行整合,各单元或模块间的信息交互不顺畅,信息延迟,未能及时把握电池储能系统的整体状况,对于电池储能系统的管理与实际情况存在偏差,长此以往会导致电池储能系统的性能下降。因此如何合理地管理电池储能系统,提高电池储能系统的性能是目前亟待解决的问题。
鉴于此,本申请实施例提供了一种域控制器,用于储能系统。该域控制器将储能单元的管理模块和非储能单元的管理模块集成在一起,相较于现有的储能系统的储能单元的管理模块和非储能单元的管理模块分散设置的方案,本申请将储能单元的管理模块和非储能单元的管理模块集成于域控制器的方案,可以通过域控制器集中控制储能单元的管理模块和非储能单元的管理模块,使储能单元的管理模块和非储能单元的管理模块之间信息交互顺畅迅速,提升系统管理效率;且可以对储能单元的管理模块和非储能单元的管理模块的信息进行整合处理,避免多次信息处理带来的系统资源浪费。
图1是本申请提供的一种储能系统100的示意图。
该储能系统100包含多个电池簇,如图1所示的电池簇1到电池簇m,其中,m可以为大于1的自然数,即,在实际应用中可根据储能容量灵活调整电池簇的数量,如果储能容量大,则可适当多设置电池簇的数量,如果储能容量少,则也可适当减少电池簇的数量。
每个电池簇由至少两个电池储能模组(energy storage system,ESS)串联组 成,如图1中的储能模组1~储能模组j,其中,j可以为大于或等于2的自然数。每个储能模组ESS由若干储能元件串联或并联组成,形成最小的能量存储和管理单元。为实现储能系统的检测和控制,每个储能模组和电池簇中会设计有电池管理系统BMS来监控电池荷电状态SOC、温度、电流等电池信息,并跟上层能量管理系统EMS或者功率转换系统PCS进行实时的信息交互,实现整个电池储能系统的管理和控制。
上述储能系统的电池管理系统BMS、能量管理系统EMS以及功率转换系统PCS等通常是分散设计于储能系统中,各系统之间的信息交互存在延迟以及通信不畅等问题。
本申请提供了一种域控制器,用于储能系统,该储能系统可以为图1中的储能系统100。
如图2所示,储能系统200包括储能单元201和非储能单元202,非储能单元202用于辅助储能单元201。非储能单元202可以包括,比如热管理单元或消防单元,热管理单元在储能单元201的电池组温度过高时可以对其进行冷却降温,在电池组需要进行加热提高充放电速度时可以对其进行加热升温;消防单元可以在电池储能系统发生热失控时进行消防灭火。
域控制器203集成储能单元201的管理模块2011和非储能单元202的管理模块2021,用于管理储能单元201和非储能单元202。域控制器203将储能单元201的管理模块2011和非储能单元201的管理模块2021集成在一起,形成一个“域”,域内的各个管理模块由通信线连接,实现集中管理。储能单元201的管理模块2011和非储能单元202的管理模块2021由于集成在一起,各个管理模块之间的信息交互顺畅迅速,且可以对多个管理模块的信息进行整合处理,避免多次信息处理带来的系统资源浪费。
本申请实施例中,将储能单元201的管理模块2011和非储能单元202的管理模块2021集成于域控制器203,相较于现有的储能系统200的储能单元201的管理模块2011和非储能单元202的管理模块2021分散设置的方案,本申请将储能单元201的管理模块2011和非储能单元202的管理模块2021集成于域控制器203的方案,可以通过域控制器203集中控制储能单元201的管理模块2011和非储能单元202的管理模块2021,使储能单元201的管理模块2011和非储能单元202的管理模块2021之间信息交互顺畅迅速,提升系统管理效率,且可以对储能单元201的管理模块2011和非储能单元202的管理模块2021的信息进行整合处理,避免多次信息处理带来的系统资源浪费。
可选地,在本申请实施例中,储能单元201的管理模块2011包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
电池管理系统BMS通过监控电池的荷电状态SOC、温度、电流等电池信息,与功率转换系统PCS或能量管理系统EMS进行信息交互,实现对整个电池储能系统的管理和控制。比如,电池管理系统BMS通过估测电池的荷电状态SOC,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤;在电池充放电过程中,电池管理系统BMS实时采集电池组中的每块电池的端电压和温度、充放电电流及电池 包总电压,防止电池发生过充电或过放电现象,从而延长电池的使用寿命。
应理解,以上所述的储能单元201的管理模块2011,只是示例性的举例,不构成对本申请的限定,本申请实施例中的储能单元201的管理模块2011可以包括以上任一所述的管理模块,但不限于以上所述的管理模块。
可选地,在本申请实施例中,储能单元201的管理模块2011包括多个控制节点,域控制器203也可以将储能单元201的管理模块2011的多个控制节点进行集成,比如,将电池管理系统BMS的控制模组、显示模组以及无线通信模组等集成,将电池管理系统BMS的信息接收、信息处理和信息发送集成于一体,提高信息交互的速度,提升信息处理的效率,同时避免多层信息分散传输,节省系统资源。
域控制器203将储能单元201的管理模块2011的多个控制节点集成在一起,这样可以提高储能单元201的管理模块2011的集成度,降低硬件成本。
可选地,在本申请实施例中,热管理单元集成储能单元201的热管理单元和功率转换系统PCS的热管理单元。这样,在功率转换系统PCS的温度过高时,功率转换系统PCS的热管理单元可以将功率转换系统PCS的热量转移至电池的热管理单元;同时,电池的热量也可以通过电池的热管理单元转移至功率转换系统PCS的热管理单元。由于将电池的热管理单元和功率转换系统PCS的热管理单元集成在一起,电池的热管理单元和功率转换系统PCS的热管理单元的能量转移由域控制器203集中控制完成,使得电池的热管理单元和功率转换系统PCS的热管理单元之间的能量转移及时迅速。
储能单元201的热管理单元和PCS的热管理单元集成在一起,两个热管理单元之间可以进行能量转换,提升系统能量利用率。
可选地,在本申请实施例中,域控制器203用于:根据储能单元201的状态信息管理非储能单元202。
域控制器203根据储能单元201的状态信息管理非储能单元202,以使非储能单元202将储能单元201的工作条件调节至所需的工作条件。
进一步地,在本申请实施例中,域控制器203可以根据储能单元201的状态信息获取非储能单元202的智能管理策略,根据智能管理策略管理非储能单元202。
域控制器203根据储能单元201的状态信息获取非储能单元202的智能管理策略,这样,可以根据储能单元201的状态信息灵活调整非储能单元202的管理策略,并根据智能管理策略管理非储能单元202,以使非储能单元202将储能单元201的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,该智能管理策略为与储能单元201的用户使用行为关联的管理策略。
智能管理策略与储能单元201的用户使用行为相关联,可以高效管理非储能单元202,使非储能单元202将储能单元201的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,储能单元201的状态信息包括:温度、电压、 荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
电池的温度温度是影响电池老化的重要因素,合适的工作温度能够减缓电池的老化,同时发挥电池的最优性能,因此需要实时监控电池的温度,保证电池维持合适的工作温度。
电池的荷电状态SOC是用来反映电池的剩余容量状况的物理量,代表的是电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值。
电池的健康状态SOH是电池同其理想状态相比较的一个品质因素,通常电池的健康状态SOH随着使用时间与次数的增加而降低。通常采用电池内阻、容量、电压、自放电快慢、充电能力、充放电圈数等电学参数的变化来确定电池的健康状态SOH。
应理解,以上所述的储能单元201的状态信息,只是示例性的举例,不构成对本申请的限定,本申请实施例中的储能单元201的状态信息可以包括以上任一所述的状态信息,但不限于以上所述的状态信息。
储能单元201的温度、电压、荷电状态SOC、健康状态SOH和充放电状态都是与储能单元201的工作状态相关的状态信息,获取储能单元201的这些状态信息,可以掌握储能单元201的实时工作条件。
可选地,在本申请实施例中,域控制器203用于:根据所述储能单元201的所述状态信息确定所述非储能单元202的所述智能管理策略。
域控制器203根据储能单元201的状态信息确定非储能单元202的智能管理策略,无需通过其他处理单元进行信息交互和数据计算,域控制器203自身即可确定非储能单元202的智能管理策略,减少信息交互,节省系统资源。
应理解,域控制器203在获取储能单元201的状态信息后,可根据状态信息,域控制器203自行确定非储能单元202的智能管理策略;也可在获取储能单元201的状态信息后,将该状态信息发送至其他处理单元,由其他处理单元根据状态信息确定非储能单元202的智能管理策略,并将该智能管理策略发送给域控制器203。
可选地,在本申请实施例中,域控制器203用于:根据储能单元201的状态信息从储能云服务器获取非储能单元202的智能管理策略。
储能云服务器简单高效、安全可靠、处理能力可弹性伸缩,储能云服务器可存储大量信息,通过储能云服务器进行储能系统200的信息交互,高效迅速,提升系统的管理效率。
可选地,在本申请实施例中,域控制器203用于:获取储能单元201的状态信息,并向储能云服务器发送状态信息;接收储能云服务器发送的智能管理策略。
域控制器203通过储能云服务器获取非储能单元202的智能管理策略,简单高效、安全可靠,提升系统的管理效率。
应理解,储能云服务器可以进行一次状态信息的分析,即可确定非储能单 元202的智能管理策略;可以在接收到储能单元201的状态信息后,先进行初步的分析,判断用户使用行为数据是否具有智能管理策略对应的应用特征,再进行后续步骤确定非储能单元202的智能管理策略。
可选地,在本申请实施例中,域控制器203用于:获取储能单元201的第一状态信息,并向储能云服务器发送第一状态信息;接收储能云服务器发送的第一指令,根据第一指令,获取储能单元201的第二状态信息,并向储能云服务器发送第二状态信息,其中,第二状态信息包括的信息多于第一状态信息包括的信息,第二状态信息用于储能云服务器确定智能管理策略;接收储能云服务器发送的智能管理策略。
域控制器203获取储能单元201的第一状态信息发送给储能云服务器,再根据储能云服务器发送的第一指令获取储能单元201的第二状态信息发送给储能云服务器,储能云服务器通过获取第一状态信息和第二状态信息,最后确定非储能单元202的智能管理策略,域控制器203从储能云服务器获取智能管理策略,并根据智能管理策略管理非储能单元202,以使非储能单元202将储能单元201的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,智能管理策略包括:在储能单元201启动工作模式前,开启非储能单元202调节储能单元201的工作条件,以使储能单元201在启动工作模式时处于预设工作条件。
此处描述的预设工作条件是指根据储能单元201的历史工作状态,判断出的储能单元201的最佳工作条件或较优的工作条件。该预设工作条件可根据储能单元201的不同状态进行调整。
在储能单元201启动工作模式前,非储能单元202调节储能单元201的工作条件,使储能单元201在启动工作模式时处于预设工作条件,这样储能单元201在刚开始工作时,便能处于适宜的工作条件,提升储能单元201的工作效率。
应理解,上述的智能管理策略只是一个示例性的举例,不构成对本申请的限定,本申请实施例中的智能管理策略可以包括上述的智能管理策略,但不限于此。比如,本申请实施例中的智能管理策略还可以包括在储能单元201停止工作时,关闭非储能单元202,以节省功耗。另外,在储能单元201工作过程中,可以实时监控储能单元201的状态信息,根据状态信息及时调整非储能单元202的智能管理策略,实现对储能系统200的高效节能管理。
本申请还提供了一种储能系统300,如图3所示,该储能系统300包括储能单元301、非储能单元302和域控制器303。
非储能单元302用于辅助储能单元301;比如,根据储能单元301的工作状态调整储能单元301的工作温度,以使储能单元301处于适宜的工作温度。非储能单元302可以包括,比如热管理单元或消防单元,热管理单元在储能单元301的电池组温度过高时可以对其进行冷却降温,在电池组需要进行加热提高充放电速度时可以对其进行加热升温;消防系统可以在电池储能系统发生热失控时进行消防灭火。
域控制器303集成储能单元301的管理模块和非储能单元302的管理模块, 用于管理储能单元301和非储能单元302。
本申请实施例中,将储能单元301的管理模块和非储能单元302的管理模块集成于域控制器303,相较于现有的储能系统300的储能单元301的管理模块和非储能单元302的管理模块分散设置的方案,本申请将储能单元301的管理模块和非储能单元302的管理模块集成于域控制器303的方案,可以通过域控制器303集中控制储能单元301的管理模块和非储能单元302的管理模块,使储能单元301的管理模块和非储能单元302的管理模块之间信息交互顺畅迅速,提升系统管理效率,且可以对储能单元301的管理模块和非储能单元302的管理模块的信息进行整合处理,避免多次信息处理带来的系统资源浪费。
可选地,在本申请实施例中,储能单元301的管理模块包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
电池管理系统BMS通过监控电池的荷电状态SOC、温度、电流等电池信息,与功率转换系统PCS或能量管理系统EMS进行信息交互,实现对整个电池储能系统的管理和控制。比如,电池管理系统BMS通过估测电池的荷电状态SOC,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤;在电池充放电过程中,电池管理系统BMS实时采集电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发生过充电或过放电现象,从而延长电池的使用寿命。
应理解,以上所述的储能单元301的管理模块,只是示例性的举例,不构成对本申请的限定,本申请实施例中的储能单元301的管理模块可以包括以上任一所述的管理模块,但不限于以上所述的管理模块。
可选地,在本申请实施例中,储能单元301的管理模块包括多个控制节点,域控制器303也可以将储能单元301的管理模块的多个控制节点进行集成,比如,将电池管理系统BMS的控制模组、显示模组以及无线通信模组等集成,将电池管理系统BMS的信息接收、信息处理和信息发送集成于一体,提高信息交互的速度,提升信息处理的效率,同时避免多层信息分散传输,节省系统资源。
域控制器303将储能单元301的管理模块的多个控制节点集成在一起,这样可以提高储能单元301的管理模块的集成度,降低硬件成本。
可选地,在本申请实施例中,热管理单元集成储能单元301的热管理单元和功率转换系统PCS的热管理单元。这样,在功率转换系统PCS的温度过高时,功率转换系统PCS的热管理单元可以将功率转换系统PCS的热量转移至电池的热管理单元;同时,电池的热量也可以通过电池的热管理单元转移至功率转换系统PCS的热管理单元。由于将电池的热管理单元和功率转换系统PCS的热管理单元集成在一起,电池的热管理单元和功率转换系统PCS的热管理单元的能量转移由域控制器303集中控制完成,使得电池的热管理单元和功率转换系统PCS的热管理单元之间的能量转移及时迅速。
储能单元301的热管理单元和PCS的热管理单元集成在一起,两个热管理单元之间可以进行能量转换,提升系统能量利用率。
可选地,在本申请实施例中,域控制器303用于:根据储能单元301的状态信息管理非储能单元302。
域控制器303根据储能单元301的状态信息管理非储能单元302,以使非储能单元302将储能单元301的工作条件调节至所需的工作条件。
进一步地,在本申请实施例中,域控制器303可以根据储能单元301的状态信息获取非储能单元302的智能管理策略,根据智能管理策略管理非储能单元302。
域控制器303根据储能单元301的状态信息获取非储能单元302的智能管理策略,这样,可以根据储能单元301的状态信息灵活调整非储能单元302的管理策略,并根据智能管理策略管理非储能单元302,以使非储能单元302将储能单元301的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,该智能管理策略为与储能单元301的用户使用行为关联的管理策略。
智能管理策略与储能单元301的用户使用行为相关联,可以高效管理非储能单元302,使非储能单元302将储能单元301的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,储能单元301的状态信息包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
电池的温度温度是影响电池老化的重要因素,合适的工作温度能够减缓电池的老化,同时发挥电池的最优性能,因此需要实时监控电池的温度,保证电池维持合适的工作温度。
电池的荷电状态SOC是用来反映电池的剩余容量状况的物理量,代表的是电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值。
电池的健康状态SOH是电池同其理想状态相比较的一个品质因素,通常电池的健康状态SOH随着使用时间与次数的增加而降低。通常采用电池内阻、容量、电压、自放电快慢、充电能力、充放电圈数等电学参数的变化来确定电池的健康状态SOH。
应理解,以上所述的储能单元301的状态信息,只是示例性的举例,不构成对本申请的限定,本申请实施例中的储能单元301的状态信息可以包括以上任一所述的状态信息,但不限于以上所述的状态信息。
储能单元301的温度、电压、荷电状态SOC、健康状态SOH和充放电状态都是与储能单元301的工作状态相关的状态信息,获取储能单元301的这些状态信息,可以掌握储能单元301的实时工作条件。
可选地,在本申请实施例中,域控制器303用于:根据所述储能单元301的所述状态信息确定所述非储能单元302的所述智能管理策略。
域控制器303根据储能单元301的状态信息确定非储能单元302的智能管理策略,无需通过其他处理单元进行信息交互和数据计算,域控制器303自身即可确定非 储能单元302的智能管理策略,减少信息交互,节省系统资源。
应理解,域控制器303在获取储能单元301的状态信息后,可根据状态信息,域控制器303自行确定非储能单元302的智能管理策略;也可在获取储能单元301的状态信息后,将该状态信息发送至其他处理单元,由其他处理单元根据状态信息确定非储能单元302的智能管理策略,并将该智能管理策略发送给域控制器303。
可选地,在本申请实施例中,储能系统300还包括储能云服务器304,域控制器303用于:根据储能单元301的状态信息从储能云服务器304获取非储能单元302的智能管理策略。
储能云服务器304简单高效、安全可靠、处理能力可弹性伸缩,储能云服务器304可存储大量信息,通过储能云服务器304进行储能系统300的信息交互,高效迅速,提升系统的管理效率。
可选地,在本申请实施例中,域控制器303用于:获取储能单元301的状态信息,并向储能云服务器304发送状态信息;储能云服务器304用于:根据状态信息确定智能管理策略,并向域控制器303所述智能管理策略。
域控制器303通过储能云服务器304获取非储能单元302的智能管理策略,简单高效、安全可靠,提升系统的管理效率。
应理解,储能云服务器304可以进行一次状态信息的分析,即可确定非储能单元302的智能管理策略;可以在接收到储能单元301的状态信息后,先进行初步的分析,判断用户使用行为数据是否具有智能管理策略对应的应用特征,再进行后续步骤确定非储能单元302的智能管理策略。
可选地,在本申请实施例中,所述储能云服务器304用于:根据状态信息提取储能单元301的第一用户使用行为数据;根据第一用户使用行为数据,确定第一用户使用行为数据对应的智能管理策略。
储能云服务器304根据状态信息提取出储能单元301的第一用户使用行为数据,并确定第一用户使用行为数据对应的智能管理策略,这样可以根据储能单元301的状态信息灵活调整非储能单元302的管理策略。
可选地,在本申请实施例中,域控制器303用于:获取储能单元301的第一状态信息,并向储能云服务器304发送第一状态信息;储能云服务器304用于:根据第一状态信息向域控制器303发送第一指令,第一指令用于指示域控制器303发送储能单元301的第二状态信息,其中,第二状态信息包括的信息多于第一状态信息包括的信息;域控制器303还用于:根据第一指令,获取储能单元301的第二状态信息,并向储能云服务器304发送第二状态信息;储能云服务器304还用于:根据第二状态信息确定智能管理策略,并向域控制器303发送智能管理策略。
域控制器303获取储能单元301的第一状态信息发送给储能云服务器304,再根据储能云服务器304发送的第一指令获取储能单元301的第二状态信息发送给储能云服务器304,储能云服务器304通过获取第一状态信息和第二状态信息,最后确定非 储能单元302的智能管理策略,域控制器303从储能云服务器304获取智能管理策略,并根据智能管理策略管理非储能单元302,以使非储能单元302将储能单元301的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,储能云服务器304用于:根据第一状态信息提取储能单元301的第二用户使用行为数据;在确定第二用户使用行为数据具有智能管理策略对应的应用特征的情况下,向域控制器303发送所述第一指令。
储能云服务器304先根据第一状态信息提取储能单元301的第二用户使用行为数据,在确定第二用户使用行为数据具有智能管理策略对应的应用特征的情况下,再向域控制器303发送第一指令,指示域控制器303发送储能单元301的第二状态信息,第二状态信息包括的信息多于第一状态信息包括的信息,因此储能云服务器304可根据第二状态信息确定非储能单元302的智能管理策略,并根据智能管理策略管理非储能单元302,以使非储能单元302将储能单元301的工作条件调节至所需的工作条件。
可选地,在本申请实施例中,智能管理策略包括:在储能单元301启动工作模式前,开启非储能单元302调节储能单元301的工作条件,以使储能单元301在启动工作模式时处于预设工作条件。
此处描述的预设工作条件是指根据储能单元301的历史工作状态,判断出的储能单元301的最佳工作条件或较优的工作条件。该预设工作条件可根据储能单元301的不同状态进行调整。
在储能单元301启动工作模式前,非储能单元302调节储能单元301的工作条件,使储能单元301在启动工作模式时处于预设工作条件,这样储能单元301在刚开始工作时,便能处于适宜的工作条件,提升储能单元301的工作效率。
应理解,上述的智能管理策略只是一个示例性的举例,不构成对本申请的限定,本申请实施例中的智能管理策略可以包括上述的智能管理策略,但不限于此。比如,本申请实施例中的智能管理策略还可以包括在储能单元301停止工作时,关闭非储能单元302,以节省功耗。另外,在储能单元301工作过程中,可以实时监控储能单元301的状态信息,根据状态信息及时调整非储能单元302的智能管理策略,实现对储能系统300的高效节能管理。
应理解,在本申请实施例中,域控制器303根据储能单元301的状态信息获取非储能单元302的智能管理策略,根据智能管理策略管理非储能单元302,以使非储能单元302能够灵活高效辅助储能单元301,使储能单元301处于适宜的工作条件,也就是说,根据储能单元301的状态信息,来灵活调整非储能单元302辅助储能单元301达到适宜的工作条件的策略,避免不必要的能量浪费,实现储能系统300的高效节能管理。
上文描述了本申请实施例的储能系统,下面描述本申请实施例的储能系统的控制方法,其中未详细描述的部分可参见前述各实施例。
图4示出了本申请一实施例公开的储能系统的控制方法的示意性流程图。
401,域控制器管理储能单元和非储能单元。
可选地,在本申请实施例中,域控制器可以根据储能单元的状态信息管理非储能单元。储能单元的状态信息可以包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。储能单元的温度、电压、荷电状态SOC、健康状态SOH和充放电状态都是与储能单元的工作状态相关的状态信息,获取储能单元的这些状态信息,可以掌握储能单元的实时工作条件。
图5是本申请又一实施例公开的储能系统的控制方法的示意性流程图。
501,域控制器根据储能单元的状态信息获取非储能单元的智能管理策略。
502,域控制器根据智能管理策略管理非储能单元。
可选地,本申请实施例中,域控制器在获取储能单元的状态信息后,可根据状态信息,域控制器自行确定非储能单元的智能管理策略。
可选地,本申请实施例中,储能系统还包括储能云服务器,域控制器在获取储能单元的状态信息后,将该状态信息发送至储能云服务器,由储能云服务器根据状态信息确定非储能单元的智能管理策略,并将该智能管理策略发送给域控制器。参考图6,图6是本申请一实施例公开的储能系统的控制方法的示意性流程图。
601,域控制器获取储能单元的状态信息,并向储能云服务器发送状态信息。
602,储能云服务器根据状态信息提取储能单元的第一用户使用行为数据。
603,储能云服务器根据第一用户使用行为数据,确定第一用户使用行为数据对应的智能管理策略,并向域控制器发送智能管理策略。
上述控制方法中,储能云服务器可以在接收到储能单元的状态信息后,提取储能单元的第一用户使用行为数据,并确定第一用户使用行为数据对应的智能管理策略。也就是说,储能云服务器只需要进行一次状态信息的分析,即可确定非储能单元的智能管理策略。
可选地,在本申请一个实施例中,储能云服务器可以在接收到储能单元的状态信息后,先进行初步的分析,判断用户使用行为数据是否具有智能管理策略对应的应用特征,再进行后续步骤确定非储能单元的智能管理策略。参考图7,图7是本申请一实施例公开的储能系统的控制方法的示意性流程图。
701,域控制器获取储能单元的第一状态信息,并向储能云服务器发送第一状态信息。
702,储能云服务器根据第一状态信息提取储能单元的第二用户使用行为数据。
703,储能云服务器判断第二用户使用行为数据是否具有智能管理策略对应的应用特征。
704,在第二用户使用行为数据具有智能管理策略对应的应用特征的情况下,储能云服务器向域控制器发送第一指令。
705,域控制器根据第一指令,获取储能单元的第二状态信息,并向储能云服务器发送第二状态信息。
706,储能云服务器根据第二状态信息确定智能管理策略,并向域控制器发送智能管理策略。
域控制器获取储能单元的第一状态信息发送给储能云服务器,再根据储能云服务器发送的第一指令获取储能单元的第二状态信息发送给储能云服务器,储能云服务器通过获取第一状态信息和第二状态信息,最后确定非储能单元的智能管理策略,域控制器从储能云服务器获取智能管理策略,并根据智能管理策略管理非储能单元,以使非储能单元将储能单元的工作条件调节至所需的工作条件。
下面,结合具体的电池储能系统的应用场景说明本申请实施例提供的储能系统的控制方法,如图8所示,以配电网的削峰填谷应用的热管理为例进行说明。
801,域控制器将电池组温度、充放电状态等状态信息打包压缩,将当前状态信息压缩后上传到储能云服务器上。
具体地,域控制器可以使用无线通信模板,比如:3G/4G/5G/ETH等,将电池组的状态信息上传到储能云服务器。
802,储能云服务器根据当前状态信息,计算对比一段时间内的状态信息,初步提取出用户行为数据。
803,判断用户行为数据是否具有时间和空间上的规律性,从时间和空间维度上进行对比,储能云服务器判断是否具有削峰填谷应用特性。
804,在确定具有削峰填谷应用特性的情况下,储能云服务器则要求域控制器发送更详细的储能单元的状态信息,和模板状态信息或历史状态信息对比。
805,储能云服务器根据更详细的储能单元的状态信息,判断是否属于削峰填谷应用。
806,在确定属于削峰填谷应用后,储能云服务器调度出削峰填谷应用APP,下发至域控制器。
具体地,储能云服务器可以使用无线通信模板,比如:3G/4G/5G/ETH等,将削峰填谷应用APP下发至域控制器。
807,域控制器应用削峰填谷应用APP对削峰填谷的热管理策略进行优化升级。
在上述对削峰填谷应用下的热管理策略进行优化的方法中,储能云服务器可以根据电池组的状态信息判断其应用特性以及是否属于削峰填谷应用,同时,域控制器也可以根据电池组的状态信息判断其应用特性以及是否属于削峰填谷应用。结合储能云服务器和域控制器的判断,判定电池组的应用特性以及是否属于削峰填谷应用。
下面举例说明该削峰填谷应用下的具体热管理策略。例如,电池组在每天8:00左右开始进行充电,那么在8:00之前,域控制器便将电池组的热管理单元开启, 保证在8:00左右,电池组的温度调节到最佳充电区间,其充电能力保证其能够充电到15:30左右,同时在充电过程中,按照电池组温度变化速率,15:30左右将电池组温度窗口调整到最佳区间,保证在15:30~20:00之间的放电能力,放电完成后便关闭电池组的热管理单元,直至第二天8:00之前再次开启。
另外,在执行削峰填谷应用过程中,域控制器仍会实时监控并向储能云服务器上传电池组的状态信息,并判断下一时间段内,是否会继续执行削峰填谷应用,以不断更新热管理单元的热管理策略,实现储能系统的智能化调节。
本申请实施例还提供了一种储能系统的控制装置900,如图9所示,该控制装置900包括处理器901和存储器902,其中,存储器902用于存储计算机程序,处理器901用于调用计算机程序,使装置实现前述本申请各种实施例的方法。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,计算机程序被计算设备执行时使得计算设备实现前述本申请各种实施例的方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (46)

  1. 一种域控制器,用于储能系统,其特征在于,所述储能系统包括储能单元和非储能单元,所述非储能单元用于辅助所述储能单元;
    所述域控制器集成所述储能单元的管理模块和所述非储能单元的管理模块,用于管理所述储能单元和所述非储能单元。
  2. 根据权利要求1所述的域控制器,其特征在于,所述储能单元的管理模块包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
  3. 根据权利要求1或2所述的域控制器,其特征在于,所述储能单元的管理模块包括多个控制节点,所述域控制器集成所述多个控制节点。
  4. 根据权利要求1至3中任一项所述的域控制器,其特征在于,所述非储能单元包括热管理单元或消防单元。
  5. 根据权利要求4所述的域控制器,其特征在于,所述热管理单元集成所述储能单元的热管理单元和PCS的热管理单元。
  6. 根据权利要求1至5中任一项所述的域控制器,其特征在于,所述域控制器用于:
    根据所述储能单元的状态信息管理所述非储能单元。
  7. 根据权利要求6所述的域控制器,其特征在于,所述储能单元的所述状态信息包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
  8. 根据权利要求6或7所述的域控制器,其特征在于,所述域控制器用于:
    根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略;
    根据所述智能管理策略管理所述非储能单元。
  9. 根据权利要求8所述的域控制器,其特征在于,所述智能管理策略为与所述储能单元的用户使用行为关联的管理策略。
  10. 根据权利要求8或9所述的域控制器,其特征在于,所述域控制器用于:
    根据所述储能单元的所述状态信息从储能云服务器获取所述非储能单元的所述智能管理策略。
  11. 根据权利要求10所述的域控制器,其特征在于,所述域控制器用于:
    获取所述储能单元的所述状态信息,并向所述储能云服务器发送所述状态信息;
    接收所述储能云服务器发送的所述智能管理策略。
  12. 根据权利要求10所述的域控制器,其特征在于,所述域控制器用于:
    获取所述储能单元的第一状态信息,并向所述储能云服务器发送所述第一状态信息;
    接收所述储能云服务器发送的第一指令,根据所述第一指令,获取所述储能单元的第二状态信息,并向所述储能云服务器发送所述第二状态信息,其中,所述第二状 态信息包括的信息多于所述第一状态信息包括的信息,所述第二状态信息用于所述储能云服务器确定所述智能管理策略;
    接收所述储能云服务器发送的所述智能管理策略。
  13. 根据权利要求8或9所述的域控制器,其特征在于,所述域控制器用于:
    根据所述储能单元的所述状态信息确定所述非储能单元的所述智能管理策略。
  14. 根据权利要求8至13中任一项所述的域控制器,其特征在于,所述智能管理策略包括:
    在所述储能单元启动工作模式前,开启所述非储能单元调节所述储能单元的工作条件,以使所述储能单元在启动所述工作模式时处于预设工作条件。
  15. 一种储能系统,其特征在于,包括:
    储能单元;
    非储能单元,所述非储能单元用于辅助所述储能单元;和
    域控制器,所述域控制器集成所述储能单元的管理模块和所述非储能单元的管理模块,用于管理所述储能单元和所述非储能单元。
  16. 根据权利要求15所述的储能系统,其特征在于,所述储能单元的管理模块包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
  17. 根据权利要求15或16所述的储能系统,其特征在于,所述储能单元的管理模块包括多个控制节点,所述域控制器集成所述多个控制节点。
  18. 根据权利要求16或17所述的储能系统,其特征在于,所述非储能单元包括热管理单元或消防单元。
  19. 根据权利要求18所述的储能系统,其特征在于,所述热管理单元集成所述储能单元的热管理单元和PCS的热管理单元。
  20. 根据权利要求15至19中任一项所述的储能系统,其特征在于,所述域控制器用于:
    根据所述储能单元的状态信息管理所述非储能单元。
  21. 根据权利要求20所述的储能系统,其特征在于,所述储能单元的所述状态信息包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
  22. 根据权利要求20或21所述的储能系统,其特征在于,所述域控制器用于:
    根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略;
    根据所述智能管理策略管理所述非储能单元。
  23. 根据权利要求22所述的储能系统,其特征在于,所述智能管理策略为与所述储能单元的用户使用行为关联的管理策略。
  24. 据权利要求22或23所述的储能系统,其特征在于,所述储能系统还包括储能云服务器,所述域控制器用于:
    根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的智能管理策略。
  25. 根据权利要求24所述的储能系统,其特征在于,
    所述域控制器用于:获取所述储能单元的状态信息,并向所述储能云服务器发送所述状态信息;
    所述储能云服务器用于:根据所述状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
  26. 根据权利要求25所述的储能系统,其特征在于,所述储能云服务器用于:
    根据所述状态信息提取所述储能单元的第一用户使用行为数据;
    根据所述第一用户使用行为数据,确定所述第一用户使用行为数据对应的所述智能管理策略。
  27. 根据权利要求24所述的储能系统,其特征在于,
    所述域控制器用于:获取所述储能单元的第一状态信息,并向所述储能云服务器发送所述第一状态信息;
    所述储能云服务器用于:根据所述第一状态信息向所述域控制器发送第一指令,所述第一指令用于指示所述域控制器发送所述储能单元的第二状态信息,其中,所述第二状态信息包括的信息多于所述第一状态信息包括的信息;
    所述域控制器还用于:根据所述第一指令,获取所述储能单元的所述第二状态信息,并向所述储能云服务器发送所述第二状态信息;
    所述储能云服务器还用于:根据所述第二状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
  28. 根据权利要求27所述的储能系统,其特征在于,所述储能云服务器用于:
    根据所述第一状态信息提取所述储能单元的第二用户使用行为数据;
    在确定所述第二用户使用行为数据具有所述智能管理策略对应的应用特征的情况下,向所述域控制器发送所述第一指令。
  29. 根据权利要求22或23所述的储能系统,其特征在于,所述域控制器用于:
    根据所述储能单元的所述状态信息确定所述非储能单元的所述智能管理策略。
  30. 根据权利要求22至29中任一项所述的储能系统,其特征在于,所述智能管理策略包括:
    在所述储能单元启动工作模式前,开启所述非储能单元调节所述储能单元的工作条件,以使所述储能单元在启动所述工作模式时处于预设工作条件。
  31. 一种储能系统的控制方法,其特征在于,所述储能系统包括储能单元、非储能单元和域控制器,所述非储能单元用于辅助所述储能单元,所述域控制器集成所述储能单元的管理模块和所述非储能单元的管理模块;
    所述方法包括:
    所述域控制器管理所述储能单元和所述非储能单元。
  32. 根据权利要求31所述的控制方法,其特征在于,所述储能单元的管理模块包括电池管理系统BMS,功率转换系统PCS,能量管理系统EMS中的至少一个。
  33. 根据权利要求31或32所述的控制方法,其特征在于,所述储能单元的管理模块包括多个控制节点,所述域控制器集成所述多个控制节点。
  34. 根据权利要求31至33中任一项所述的控制方法,其特征在于,所述非储能单元包括热管理单元或消防单元。
  35. 根据权利要求34所述的控制方法,其特征在于,所述热管理单元集成所述储能单元的热管理单元和PCS的热管理单元。
  36. 根据权利要求31至35中任一项所述的控制方法,其特征在于,所述域控制器管理所述储能单元和所述非储能单元,包括:
    所述域控制器根据所述储能单元的状态信息管理所述非储能单元。
  37. 根据权利要求36所述的控制方法,其特征在于,所述储能单元的状态信息包括:温度、电压、荷电状态SOC、健康状态SOH和充放电状态中的至少一种。
  38. 根据权利要求36或37所述的控制方法,其特征在于,所述域控制器根据所述储能单元的状态信息管理所述非储能单元,包括:
    所述域控制器根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略;
    所述域控制器根据所述智能管理策略管理所述非储能单元。
  39. 根据权利要求38所述的控制方法,其特征在于,所述智能管理策略为与所述储能单元的用户使用行为关联的管理策略。
  40. 根据权利要求38或39所述的控制方法,其特征在于,所述储能系统还包括储能云服务器,所述域控制器根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略,包括:
    所述域控制器根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的所述智能管理策略。
  41. 根据权利要求40所述的控制方法,其特征在于,所述域控制器根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的所述智能管理策略,包括:
    所述域控制器获取所述储能单元的状态信息,并向所述储能云服务器发送所述状态信息,以使所述储能云服务器根据所述状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
  42. 根据权利要求41所述的控制方法,其特征在于,所述储能云服务器根据所述状态信息确定所述智能管理策略,包括:
    所述储能云服务器根据所述状态信息提取所述储能单元的第一用户使用行为数据,并根据所述第一用户使用行为数据,确定所述第一用户使用行为数据对应的所述智能管理策略。
  43. 根据权利要求40所述的控制方法,其特征在于,所述域控制器根据所述储能单元的所述状态信息从所述储能云服务器获取所述非储能单元的所述智能管理策略,包括:
    所述域控制器获取所述储能单元的第一状态信息,并向所述储能云服务器发送所述第一状态信息,以使所述储能云服务器根据所述第一状态信息向所述域控制器发送 第一指令,所述第一指令用于指示所述域控制器发送所述储能单元的第二状态信息,其中,所述第二状态信息包括的信息多于所述第一状态信息包括的信息;
    所述域控制器根据所述第一指令,获取所述储能单元的所述第二状态信息,并向所述储能云服务器发送所述第二状态信息,以使所述储能云服务器根据所述第二状态信息确定所述智能管理策略,并向所述域控制器发送所述智能管理策略。
  44. 根据权利要求43所述的控制方法,其特征在于,所述储能云服务器根据所述第一状态信息向所述域控制器发送第一指令,包括:
    所述储能云服务器根据所述第一状态信息提取所述储能单元的第二用户使用行为数据,在确定所述第二用户使用行为数据具有所述智能管理策略对应的应用特征的情况下,向所述域控制器发送所述第一指令。
  45. 根据权利要求38或39所述的控制方法,其特征在于,所述域控制器根据所述储能单元的所述状态信息获取所述非储能单元的智能管理策略,包括:
    所述域控制器根据所述储能单元的所述状态信息确定所述非储能单元的所述智能管理策略。
  46. 根据权利要求31至45中任一项所述的控制方法,其特征在于,所述智能管理策略包括:
    在所述储能单元启动工作模式前,开启所述非储能单元调节所述储能单元的工作条件,以使所述储能单元在启动所述工作模式时处于预设工作条件。
PCT/CN2022/100146 2022-06-21 2022-06-21 域控制器、储能系统和储能系统的控制方法 WO2023245421A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/100146 WO2023245421A1 (zh) 2022-06-21 2022-06-21 域控制器、储能系统和储能系统的控制方法
CN202280006709.5A CN117616656A (zh) 2022-06-21 2022-06-21 域控制器、储能系统和储能系统的控制方法
PCT/CN2022/126015 WO2023245930A1 (zh) 2022-06-21 2022-10-18 域控制器和储能系统
PCT/CN2022/126016 WO2023245931A1 (zh) 2022-06-21 2022-10-18 储能系统的控制方法和储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100146 WO2023245421A1 (zh) 2022-06-21 2022-06-21 域控制器、储能系统和储能系统的控制方法

Publications (1)

Publication Number Publication Date
WO2023245421A1 true WO2023245421A1 (zh) 2023-12-28

Family

ID=89378759

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/100146 WO2023245421A1 (zh) 2022-06-21 2022-06-21 域控制器、储能系统和储能系统的控制方法
PCT/CN2022/126016 WO2023245931A1 (zh) 2022-06-21 2022-10-18 储能系统的控制方法和储能系统
PCT/CN2022/126015 WO2023245930A1 (zh) 2022-06-21 2022-10-18 域控制器和储能系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/126016 WO2023245931A1 (zh) 2022-06-21 2022-10-18 储能系统的控制方法和储能系统
PCT/CN2022/126015 WO2023245930A1 (zh) 2022-06-21 2022-10-18 域控制器和储能系统

Country Status (2)

Country Link
CN (1) CN117616656A (zh)
WO (3) WO2023245421A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222106A1 (en) * 2008-02-18 2009-09-03 Ulrich Braun Automation system and method for operating such an automation system
CN105262157A (zh) * 2015-09-25 2016-01-20 江苏峰谷源储能技术研究院有限公司 一种集装箱储能控制系统
CN110970672A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统
CN111725889A (zh) * 2020-04-24 2020-09-29 江苏慧智能源工程技术创新研究院有限公司 基于“3s+云”架构的储能集群快速控制系统及方法
CN213715751U (zh) * 2020-12-17 2021-07-16 北京元坤天成电子科技有限公司 一种域控制器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010008444A1 (de) * 2010-02-18 2011-08-18 Bayerische Motoren Werke Aktiengesellschaft, 80809 Energiespeichersystem
EP3309000B1 (en) * 2016-10-12 2019-11-20 Danfoss Mobile Electrification Oy An energy-storage module for a working machine
CN109273801A (zh) * 2018-08-21 2019-01-25 中国电力科学研究院有限公司 一种锂电池储能系统的热管理预警方法及装置
CN110957542B (zh) * 2019-04-30 2021-03-09 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN110571492A (zh) * 2019-09-16 2019-12-13 中国检验检疫科学研究院 储能电池热管理装置和方法
CN112467237B (zh) * 2020-11-26 2022-04-26 许继集团有限公司 一种储能系统热管理装置及其控制方法和储能系统
CN215934480U (zh) * 2021-05-24 2022-03-01 上海采日能源科技有限公司 集群式储能系统
CN113394482A (zh) * 2021-07-15 2021-09-14 若普自动化技术(北京)有限公司 一种储能集装箱电池热管理及消防系统
CN113679987A (zh) * 2021-08-19 2021-11-23 厦门海辰新能源科技有限公司 储能系统的消防控制方法、消防控制装置和储能系统
CN113948781A (zh) * 2021-09-26 2022-01-18 深圳普瑞赛思检测技术有限公司 一种电池热失控预警方法和装置
CN114583335B (zh) * 2022-03-08 2023-05-02 南通国轩新能源科技有限公司 一种全功能锂离子电池储能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222106A1 (en) * 2008-02-18 2009-09-03 Ulrich Braun Automation system and method for operating such an automation system
CN105262157A (zh) * 2015-09-25 2016-01-20 江苏峰谷源储能技术研究院有限公司 一种集装箱储能控制系统
CN110970672A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池组加热系统的控制系统和方法、电池组加热管理系统
CN111725889A (zh) * 2020-04-24 2020-09-29 江苏慧智能源工程技术创新研究院有限公司 基于“3s+云”架构的储能集群快速控制系统及方法
CN213715751U (zh) * 2020-12-17 2021-07-16 北京元坤天成电子科技有限公司 一种域控制器

Also Published As

Publication number Publication date
WO2023245930A1 (zh) 2023-12-28
WO2023245931A1 (zh) 2023-12-28
CN117616656A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
AU2021202731B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
WO2018129829A1 (zh) 一种新型微网系统以及基于该系统的组网调度方法
US20210021126A1 (en) Data center energy management system
CN102195304B (zh) 一种管理电池使用时间的方法、装置和便携式计算机
CN107968429B (zh) 一种光储充系统能量管理装置、系统
US20220123576A1 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
CN113675952A (zh) 一种多元储能融合控制终端及其控制系统
CN110808598A (zh) 一种梯次利用退役动力锂电池的储能系统
CN115459381A (zh) 电池管理方法、系统、计算机可读存储介质及电子设备
CN110165689A (zh) 一种用于储能系统的控制系统以及相应储能系统
CN217642739U (zh) 一种储能电池系统及储能设备
CN105515032B (zh) 智能微网储能控制方法
WO2023004716A1 (zh) 充放电装置、电池充电和放电的方法、以及充放电系统
CN117060456B (zh) 一种基于人工智能的储能系统控制方法及装置
WO2024066911A1 (zh) 智能电池管理系统、方法、电子设备及可读存储介质
WO2023245421A1 (zh) 域控制器、储能系统和储能系统的控制方法
CN112701748A (zh) 基于触摸屏的能源管理方法、控制器和系统
CN116865412A (zh) 一种光储充备的运行管理系统
CN112467774B (zh) 基于全局能效寻优和soc自适应的储能系统管控方法及装置
Li et al. Supply and demand oriented energy management in the internet of things
CN113629317A (zh) 一种光伏储能电池冷却系统及运行方法
CN116683060B (zh) 蓄电池组维护方法、装置、终端设备及存储介质
CN217984657U (zh) 一种数据中心供电系统
CN215680783U (zh) 一种光伏储能电池冷却系统
Ma et al. Green Base Station Battery Dispatchable Capacity Modeling and Optimization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006709.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947201

Country of ref document: EP

Kind code of ref document: A1