WO2020255786A1 - 一方向性繊維強化樹脂シート並びにそれを含む積層体及び自動車部材 - Google Patents
一方向性繊維強化樹脂シート並びにそれを含む積層体及び自動車部材 Download PDFInfo
- Publication number
- WO2020255786A1 WO2020255786A1 PCT/JP2020/022613 JP2020022613W WO2020255786A1 WO 2020255786 A1 WO2020255786 A1 WO 2020255786A1 JP 2020022613 W JP2020022613 W JP 2020022613W WO 2020255786 A1 WO2020255786 A1 WO 2020255786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reinforced resin
- fiber reinforced
- resin sheet
- unidirectional fiber
- filler
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/14—Copolymers of propene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/26—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Definitions
- the present invention relates to a unidirectional fiber reinforced resin sheet having excellent vibration fatigue characteristics, a laminate containing a plurality of the sheets, and an automobile member including the sheets.
- a unidirectional fiber reinforced resin sheet is known as a fiber reinforced resin containing reinforcing fibers.
- This unidirectional fiber reinforced resin sheet is a sheet in which a fiber bundle (a bundle composed of a plurality of fibers) aligned in one direction is impregnated with resin. It is lighter than sheet-shaped metal and has better mechanical strength than sheets made entirely of resin. Therefore, this unidirectional fiber reinforced resin sheet may be used, for example, for the purpose of partially reinforcing the resin molded product to improve its strength.
- the resin molded body reinforced in this way is useful as a substitute for, for example, a metal member.
- Patent Document 1 describes a unidirectional fiber-reinforced resin sheet containing acid-modified propylene and non-acid-modified polypropylene as a matrix resin. It is also explained that this sheet may contain an inorganic filler as an optional component.
- the unidirectional fiber reinforced resin sheet described in Patent Document 1 is used for stamping molding, and it is not described that it is used as a reinforcing material in the sheet state.
- Examples of applications for using the seat as a reinforcing material include components of vehicles and aircraft that are required to be lightweight and strong. However, since vehicles and aircraft generate vibration during operation, they are also required to have excellent vibration fatigue characteristics.
- an object of the present invention is to provide a unidirectional fiber reinforced resin sheet having excellent vibration fatigue characteristics, a laminate containing a plurality of the sheets, and an automobile member including the sheets.
- the present inventors first tried adding a general filler such as talc having a relatively small aspect ratio in order to improve the vibration fatigue characteristics of the unidirectional fiber reinforced resin sheet. In this case, the vibration fatigue characteristics were slightly improved, but the level was not yet sufficient. Therefore, this time, when a filler having a relatively large aspect ratio (a filler having an aspect ratio within a specific range) was added, it was found that the vibration fatigue characteristics were remarkably improved, and the present invention was completed. That is, the present invention is specified by the following matters.
- thermoplastic resin contains an unmodified propylene resin (P1) having a melt flow rate of 100 g / 10 minutes or more measured at 230 ° C. and a load of 2.16 kg according to ASTM D1238.
- P1 unmodified propylene resin
- thermoplastic resin contains a modified propylene resin (P2) containing at least a carboxylate bonded to a polymer chain.
- P2 modified propylene resin
- thermoplastic resin contains a polyamide resin having a melt flow rate of 40 g / 10 minutes or more measured at 230 ° C. and a load of 2.16 kg according to ASTM D1238 after drying at 80 ° C. for 5 hours [1].
- the described unidirectional fiber reinforced resin sheet is a polyamide resin having a melt flow rate of 40 g / 10 minutes or more measured at 230 ° C. and a load of 2.16 kg according to ASTM D1238 after drying at 80 ° C. for 5 hours [1].
- the present invention it is possible to provide a unidirectional fiber reinforced resin sheet having excellent vibration fatigue characteristics, a laminate containing a plurality of the sheets, and an automobile member including the sheets.
- the vibration fatigue characteristics largely depend on the material of the surface of the sheet, and the surface of the conventional unidirectional fiber reinforced resin sheet is usually dominated by matrix resin. Therefore, the vibration fatigue characteristics of the conventional sheet largely depend on the strength of the matrix resin.
- the matrix resin contains the filler (S)
- the surface strength is increased and the vibration fatigue characteristics of the matrix resin are improved.
- the vibration fatigue characteristics are remarkably improved as compared with the case where a filler having a small aspect ratio is used.
- the filler having a large aspect ratio tends to be oriented along the same direction as the fibers of the carbon filament (L), and as a result, the filler having a small aspect ratio is used. It is presumed that the area occupied by the filler on the surface of the sheet becomes larger than in the case, and the effect of improving the strength of the filler is more remarkable.
- the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
- the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
- the long carbon fiber (L) used in the present invention is a carbon fiber having a fiber length of 20 mm or more.
- the upper limit of the fiber length is not particularly limited, and any length may be used as long as it corresponds to the size required in the application in which the unidirectional fiber reinforced resin sheet is used.
- the aspect ratio of the long carbon fiber (L) usually exceeds 500.
- the average fiber diameter of the long carbon fiber (L) is not particularly limited, but is preferably 1 to 20 ⁇ m, more preferably 3 to 15 ⁇ m from the viewpoint of the mechanical properties and surface appearance of the obtained molded product.
- the type of long carbon fiber (L) is not particularly limited, and various known carbon fibers can be used. Among them, PAN-based, pitch-based or rayon-based long carbon fibers are preferable from the viewpoint of improving mechanical properties and reducing the weight of molded products. Further, PAN-based carbon filaments are more preferable from the viewpoint of the balance between the strength and elastic modulus of the obtained molded product.
- the upper limit of the surface oxygen concentration ratio is not particularly limited, but 0.5 or less is generally preferable from the viewpoint of the balance between handleability and productivity of carbon fibers.
- the surface oxygen concentration ratio [O / C] of this carbon fiber can be measured by the method described in International Publication No. 2017/183672.
- the method for controlling the surface oxygen concentration ratio [O / C] of the carbon fiber is not particularly limited. For example, it can be controlled by a method such as electrolytic oxidation treatment, chemical solution oxidation treatment, and gas phase oxidation treatment. Above all, electrolytic oxidation treatment is preferable.
- the carbon filaments (L) are preferably those in which carbon fiber bundles bundled with a sizing agent (sizing agent) are opened.
- the number of single yarns of the carbon fiber bundle is not particularly limited, but is usually 100 to 350,000, preferably 1,000 to 250,000, and more preferably 5,000 to 220,000.
- the sizing agent constituting the carbon fiber bundle is, for example, an olefin emulsion, a urethane emulsion, an epoxy emulsion, or a nylon emulsion, preferably an olefin emulsion, and more preferably a propylene emulsion.
- a propylene emulsion containing an unmodified propylene resin and a modified propylene resin is preferable from the viewpoint of improving the adhesiveness between the reinforcing fiber bundle and the matrix resin.
- the unmodified propylene resin and the modified propylene resin used for this sizing agent the same ones as the unmodified propylene resin (P1) and the modified propylene resin (P2) used for the matrix resin (M) described later are preferably used. Can be used.
- thermoplastic resin used in the present invention is mainly a matrix resin (M) of a unidirectional fiber reinforced resin sheet.
- thermoplastic resin examples include polycarbonate resin, styrene resin, polyamide resin, polyester resin, polyphenylene sulfide resin (PPS resin), modified polyphenylene ether resin (modified PPE resin), polyacetal resin (POM resin), and liquid crystal polyester.
- Polyetherlate acrylic resin such as polymethylmethacrylate resin (PMMA), vinyl chloride, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone, polyethersulfone, polyketone, polyetherketone, Examples thereof include polyolefins such as polyetheretherketone (PEEK), polyethylene and polypropylene, modified polyolefins, phenol resins and phenoxy resins.
- the resin having polarity is preferably a polyamide resin or a polyester resin, and the resin having low polarity is preferably a polyolefin resin.
- the thermoplastic resin preferably contains a propylene resin and / or a polyamide resin.
- the type of the propylene-based resin is not particularly limited, and either a propylene homopolymer or a propylene-based copolymer may be used, or they may be used in combination.
- the stereoregularity may be isotactic, syndiotactic, or atactic. In particular, it is preferably isotactic or syndiotactic.
- the mass ratio [(P1) / (P2)] of the two is preferably 99.9 / 0.1 to 80/20, more preferably 99.5 / 0.5 to 85/15, and particularly preferably. It is 99/1 to 90/10.
- the melt flow rate (MFR) measured at 230 ° C. and a load of 2.16 kg according to ASTM D1238 of the unmodified propylene resin (P1) is preferably 100 g / 10 minutes or more, more preferably 130 to 500 g / 10 minutes. is there.
- MFR melt flow rate
- the weight average molecular weight (Mw) of the unmodified propylene resin (P1) is preferably 50,000 to 300,000, more preferably 50,000 to 200,000.
- the unmodified propylene resin (P1) is a resin having a structural unit derived from propylene, and the amount of the structural unit derived from propylene is preferably 50 mol% or more. It may be a copolymer containing a structural unit derived from propylene, at least one olefin (excluding propylene) selected from the group consisting of ⁇ -olefin, conjugated diene and non-conjugated diene, and a structural unit derived from polyene.
- the unmodified propylene resin (P1) is a copolymer
- specific examples of the ⁇ -olefin as a copolymerization component include ethylene, 1-butene, 3-methyl-1-butene, and 4-methyl-1-. Penten, 3-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 1-nonen, 1-octene, 1-hexene, 1-hexene, 1-decene, 1- Examples thereof include ⁇ -olefins having 2 to 20 carbon atoms excluding propylene such as undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene.
- 1-butene, ethylene, 4-methyl-1-pentene and 1-hexene are preferable, and 1-butene and 4-methyl-1-pentene are more preferable.
- Specific examples of the conjugated diene and the non-conjugated diene which are copolymerization components include butadiene, ethylidene norbornene, dicyclopentadiene, and 1,5-hexadiene. Two or more kinds of the above ⁇ -olefin, conjugated diene and non-conjugated diene may be used in combination.
- the modified propylene resin (P2) is a propylene resin containing at least a carboxylate bonded to the polymer chain.
- the carboxylate of the modified propylene resin (P2) has an effect of increasing the interfacial adhesive strength between the long carbon fibers (L) and the matrix resin (M).
- the propylene polymer includes, for example, a propylene homopolymer; an ethylene / propylene copolymer, a propylene / 1-butene copolymer, and an ethylene / propylene / 1-butene polymer.
- examples thereof include a polymer typified by a polymer and a copolymer of propylene and ⁇ -olefin alone or in combination of two or more.
- the monomer having a carboxylic acid structure includes, for example, a monomer having a carboxylic acid group that has been neutralized or not neutralized, and a carboxylic acid that has been saponified or has not been saponified.
- Monomers having an ester can be mentioned.
- a method of radical-grafting polymerizing such a propylene-based polymer and a monomer having a carboxylic acid structure is a typical method for producing a modified propylene-based resin (P2).
- Specific examples of the olefin used in the propylene-based polymer are the same as those used in the unmodified propylene-based resin (P1).
- the modified propylene resin (P2) can be obtained by directly polymerizing propylene and a monomer having a carboxylic acid ester by using a special catalyst, or ethylene and propylene if it is a polymer containing a large amount of ethylene. And a monomer having a carboxylic acid structure may be obtained by high-pressure radical polymerization.
- Examples of the monomer having a carboxylic acid group that has been neutralized or not neutralized and the monomer having a carboxylic acid ester that has been sanitized or not sanitized include ethylene-based unsaturated compounds.
- Carboxylic acids, their anhydrides, their esters; compounds having unsaturated vinyl groups other than olefins can be mentioned.
- ethylenically unsaturated carboxylic acid examples include (meth) acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid.
- acid anhydride examples include Nasicic Acid TM (endosis-bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid), maleic anhydride, and citraconic anhydride.
- compounds having an unsaturated vinyl group other than olefins include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and the like.
- tert-butyl (meth) acrylate n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, Dodecyl (meth) acrylate, octadecyl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) acrylate, lauroyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, isobolonyl ( (Meta) acrylic acid esters such as meta) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acryl
- Aromatic vinyls such as acrylamide, methacrylicamide, N-methylolmethacrylate, N-methylolacrylamide, diacetoneacrylamide, maleic acid amide; vinyl esters such as vinyl acetate and vinyl propionate; N, N- Dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dipropylaminoethyl (meth) acrylate, N, N-dibutylamino Aminoa such as ethyl (meth) acrylate, N, N-dihydroxyethylaminoethyl (meth) acrylate Lucil (meth) acrylates; unsaturated sulfonic acids such as styrene sulfonic acid, sodium styrene sulfonic acid, 2-
- Two or more types of the above monomers may be used in combination. Among them, acid anhydride is preferable, and maleic anhydride is more preferable.
- the modified propylene resin (P2) can be obtained by various methods as described above. More specifically, for example, in the presence of a polymerization initiator, a propylene-based polymer and an ethylene-based unsaturated carboxylic acid having an unsaturated vinyl group or a monomer having an unsaturated vinyl group other than an olefin are mixed in an organic solvent.
- a method of reacting with a propylene-based polymer and then removing the solvent a method of reacting a melt obtained by heating and melting a propylene-based polymer, a carboxylic acid having an unsaturated vinyl group, and a polymerization initiator with stirring; Examples thereof include a method in which a mixture of a carboxylic acid having an unsaturated vinyl group and a polymerization initiator is supplied to an extruder and reacted while being heated and kneaded, and then converted into a carboxylate by a method such as neutralization or saponification.
- polymerization initiator examples include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (peroxybenzoate) hexin-3.
- examples thereof include various peroxide compounds such as 1,4-bis (tert-butylperoxyisopropyl) benzene.
- an azo compound such as azobisisobutyronitrile may be used. Two or more kinds of polymerization initiators may be used in combination.
- organic solvent examples include aromatic hydrocarbons such as xylene, toluene and ethylbenzene; aliphatic hydrocarbons such as hexane, heptane, octane, decane, isooctane and isodecane; and fats such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane.
- aromatic hydrocarbons such as xylene, toluene and ethylbenzene
- aliphatic hydrocarbons such as hexane, heptane, octane, decane, isooctane and isodecane
- fats such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane.
- Cyclic hydrocarbons include ester solvents such as ethyl acetate, n-butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxybutyl acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone ; Can be mentioned. A mixture of two or more kinds of organic solvents may be used. Of these, aromatic hydrocarbons, aliphatic hydrocarbons, and alicyclic hydrocarbons are preferable, and aliphatic hydrocarbons and alicyclic hydrocarbons are more preferable.
- the method of obtaining the modified propylene resin (P2) through a neutralization or saponification step is a practical and preferable method because it is easy to treat the raw material of the modified propylene resin (P2) as an aqueous dispersion. is there.
- alkali metals such as sodium, potassium, lithium, calcium, magnesium and zinc, alkaline earth metals or other metals; hydroxylamine, water.
- Inorganic amines such as ammonium oxide; organic amines such as ammonia, (tri) methylamine, (tri) ethanolamine, (tri) ethylamine, dimethylethanolamine, morpholine; alkali metals such as zinc such as sodium oxide and sodium peroxide.
- alkali earth metals or other metal oxides, hydroxides or hydrides; alkali metals such as sodium carbonate or alkaline earth metals or weak acid salts of other metals; may be mentioned.
- alkali metal carboxylic acid salts such as sodium carboxylate and potassium carboxylate; ammonium carboxylate are particularly suitable.
- the degree of neutralization or saponification that is, the conversion rate of the carboxylic acid group of the raw material of the modified propylene resin (P2) to a carboxylic acid salt such as a metal salt or an ammonium salt, depends on the stability of the aqueous dispersion and the fiber. From the viewpoint of adhesiveness, it is usually 50 to 100%, preferably 70 to 100%, and more preferably 85 to 100%.
- the carboxylic acid groups in the modified propylene resin (P2) are preferably all neutralized or saponified by a basic substance, but some of the carboxylic acid groups may remain without being neutralized or saponified. ..
- a method for analyzing the salt component of the carboxylic acid group for example, a method for detecting a metal species forming a salt by ICP emission spectrometry, IR, NMR, mass spectrometry or elemental analysis is used to analyze the salt of the acid group. There is a way to identify the structure.
- the weight average molecular weight (Mw) of the modified propylene resin (P2) is preferably 01,000 to 100,000, more preferably 02,000 to 80,000.
- the adhesiveness to the metal tends to be improved.
- the type of the polyamide resin is not particularly limited, and various known polyamide resins can be used. Specific examples include polyamide 6, polyamide 12, polyamide 66, polyamide 11, and aromatic polyamide. Of these, polyamide 6 and polyamide 12 are preferable.
- the melt flow rate (MFR) of the polyamide resin measured at 230 ° C. and a load of 2.16 kg according to ASTM D1238 after drying at 80 ° C. for 5 hours is preferably 40 g / 10 minutes or more, more preferably 40 to 400 g / 10 Minutes.
- MFR melt flow rate
- the weight average molecular weight (Mw) of the polyamide resin is preferably 05,000 to 50,000, more preferably 55,000 to 30,000.
- the aspect ratio of the filler (S) used in the present invention is 5.0 to 500, preferably 5.0 to 200, and more preferably 5.0 to 100. When the aspect ratio is within this range, the vibration fatigue characteristics tend to be remarkably improved.
- the reason why the vibration fatigue characteristics are remarkably improved is not always clear, but when the aspect ratio of the filler (S) is within this specific range, the filler (S) becomes a carbon filament (L). It is presumed that the fibers tend to be oriented along the same direction as the fibers of the above, and as a result, the effect of improving the strength of the filler (S) is more remarkably exhibited.
- the vibration fatigue characteristics are remarkably improved as compared with the case where a filler having a small aspect ratio is used.
- the acid of the modified propylene resin (P2) is generally consumed by the filler, but as described above, the aspect ratio of the filler (S) is within this specific range. Since the vibration fatigue characteristics are improved, it is possible to relatively reduce the amount of the filler compounded, and accordingly, the amount of acid consumed by the filler is reduced, and the matrix resin and carbon filaments (L) due to the consumption of acid It is also considered that the decrease in the interfacial bonding force of the resin is suppressed.
- the type of filler (S) is not particularly limited. Specific examples thereof include carbon short fibers, glass short fibers, carbon nanotubes, wollastonite, sepiolite, mica, basic magnesium sulfate, montmorillonite, basalt fiber, and total aromatic polyamide. In particular, from the viewpoint of improving strength, at least one fiber selected from the group consisting of carbon short fibers and glass short fibers is preferable.
- the length of the filler (S) is preferably 0.01 to 10 mm, more preferably 0.03 to 5 mm.
- the filler (S) tends to easily enter between the carbon filaments (L), and physical properties such as better vibration fatigue characteristics and elastic modulus tend to be exhibited. It is in. Further, when the length is equal to or more than the lower limit of these ranges, physical properties such as vibration fatigue characteristics and elastic modulus tend to be improved.
- the unidirectional fiber reinforced resin sheet of the present invention contains the carbon filaments (L), the thermoplastic resin, and the filler (S) described above, and the carbon filaments (L) are oriented in one direction. It is a sheet.
- the content of the filler (S) is preferably 0.1 to 40.0% by mass, more preferably 0.5 to 20.0% by mass, particularly, in 100% by mass of the total mass of the unidirectional fiber reinforced resin sheet. It is preferably 0.5 to 10.0% by mass, and most preferably 0.5 to 5.0% by mass.
- the matrix resin (M) tends to be modified to further improve the vibration fatigue characteristics while maintaining the impregnation property of the matrix resin (M) with respect to the carbon filaments (L). ..
- the method for measuring the content rate is as described in the column of Examples described later.
- the content of the long carbon fibers (L) is preferably 20 to 80% by mass, more preferably 30 to 75% by mass in the total mass of 100% by mass of the unidirectional fiber reinforced resin sheet.
- the content of the thermoplastic resin is preferably 35 to 70% by mass, more preferably 40 to 65% by mass.
- the fiber volume content (vf) of the long carbon fibers (L) in the unidirectional fiber reinforced resin sheet is preferably 10 to 70%, more preferably 15 to 60%.
- the thickness of the unidirectional fiber reinforced resin sheet is preferably 1 to 500 ⁇ m, more preferably 5 to 400 ⁇ m, and particularly preferably 5 to 300 ⁇ m.
- the method for producing the unidirectional fiber reinforced resin sheet of the present invention is not particularly limited.
- a mixture of a matrix resin (M) and a filler (S) is prepared in advance, and the opened carbon fiber bundles (bundles of long carbon fibers (L)) are aligned in one direction and melted. Can be obtained by contacting with.
- the unidirectional fiber reinforced resin sheet of the present invention may be used as a single sheet as it is, or may be used as a laminate containing a plurality of unidirectional fiber reinforced resin sheets. In particular, it is preferable to use it as a laminate containing a plurality of unidirectional fiber reinforced resin sheets of the present invention. Alternatively, it may be appropriately cut into a tape shape for use.
- the unidirectional fiber reinforced resin sheet of the present invention is preferably used even in the form of compounding or laminating with other materials. Above all, it is useful as a reinforcing material for other structural materials, and in particular, it is useful as a reinforcing material for members constituting vehicles and aircraft in which vibration is continuously generated.
- the use of the unidirectional fiber reinforced resin sheet of the present invention is not limited to the above-mentioned uses, and can be used for various uses.
- primary structural materials such as main wings, vertical and horizontal tail wings, secondary structural materials such as auxiliary wings, directional steering and elevating steering, interior materials such as seats and tables, power units, hydraulic cylinders, composite brakes and other aircraft.
- General air vehicle parts such as helicopters, rocket parts such as nozzle cones and motor cases, antennas, structures, solar cell panels, battery cases, artificial satellite parts such as telescopes, frames, shafts, rollers, Machine parts such as leaf springs, machine tools, robot arms, transport hands, synthetic fiber pots, high-speed rotating parts such as centrifuge rotors and uranium concentrators, parabolic antennas, battery parts, radars, acoustic speaker cones, etc.
- Computer parts, printer parts, electronic electrical parts such as PC housings and tablet housings, skeleton parts, semi-structural parts, outer panel parts, interior / exterior parts, power units, other equipment-hydraulic cylinders, brakes, battery cases, drives Shafts, engine parts, spoilers, racing car bodies, crash cones, chairs, tablets, telephone covers, undercovers, side covers, transmission covers, battery trays, rear steps, spare tire containers, bus body walls, truck body walls, etc.
- Bike parts interior materials, floorboard panels, ceiling panels, linear motor car bodies, Shinkansen / railway bodies, window cleaning wipers, trolleys, seats and other vehicle parts, yachts, cruisers, boats and other ship hulls, masts, rudder, Propellers, hard sails, screws, military hulls, submersible hulls, deep-sea exploration vessels, and other marine parts / aircraft, actuators, cylinders, bombs, hydrogen tanks, CNG tanks, oxygen tanks and other pressure vessel parts, stirring blades, pipes, Scientific equipment parts / members such as tanks, pit floors, plant piping, blades, skins, skeleton structures, wind power generation parts such as ice removal systems, X-ray diagnostic equipment parts, wheelchairs, artificial bones, artificial legs / hands, pine needles, nursing care Auxiliary equipment / robots (power assist suits), pedestrians, medical / nursing equipment parts / supplies such as nursing beds, CF composite cables, concrete reinforcement members, guard rails, bridges, tunnel walls, hoods, cables,
- the automobile member of the present invention includes the unidirectional fiber reinforced resin sheet of the present invention described above.
- automobile parts include, for example, skeleton parts, semi-structural parts, outer panel parts, interior / exterior parts, power units, other equipment-hydraulic cylinders, brakes, battery cases, drive shafts, engine parts, spoilers. , Racing car body, crash cone, chair, tablet, telephone cover, undercover, side cover, transmission cover, battery tray, rear step, spare tire container, bus body wall, truck body wall, etc.
- the aspect ratio, length and content of the filler (S), and the physical properties of the propylene-based resin are values measured by the following methods.
- the aspect ratio and length were determined (this aspect ratio and length are average values).
- the type of dispersion medium used is not particularly limited as long as it can perform dynamic image analysis, but in this example, a 0.05 mass% aqueous solution of a surfactant was used.
- Example 1 (Preparation of long carbon fiber (L)) A carbon fiber bundle (manufactured by Mitsubishi Rayon Co., Ltd., trade name Pyrofil TR50S12L, number of filaments 24,000, strand strength 5000 MPa, strand elastic modulus 242 GPa) is immersed in acetone, ultrasonic waves are applied for 10 minutes, and then the carbon fiber bundle is pulled up. The sizing agent was removed by washing with acetone three times and drying at room temperature for 8 hours.
- a 20% aqueous potassium hydroxide solution was continuously supplied at a rate of 90 g / hour and extruded continuously at a heating temperature of 210 ° C.
- the extruded resin mixture was cooled to 110 ° C. with a static mixer with a jacket installed at the mouth of the extruder, and further poured into warm water at 80 ° C. to obtain an emulsion.
- the solid content concentration of the obtained emulsion was 45%.
- the maleic anhydride-modified propylene resin has 96 parts by mass of a propylene / butene copolymer, 4 parts by mass of maleic anhydride, and 0.4 parts by mass of a polymerization initiator (manufactured by Nippon Oil & Fats Co., Ltd., trade name: Perhex 25B). It is a modified resin obtained by mixing the parts and modifying the mixture at a heating temperature of 160 ° C. for 2 hours.
- the emulsion obtained as described above was attached to long carbon fibers (the above-mentioned carbon fiber bundle manufactured by Mitsubishi Rayon Co., Ltd. from which the sizing agent was removed) by using a roller impregnation method. Then, it was dried online at 130 ° C. for 2 minutes to remove low boiling point components to obtain a carbon fiber bundle. The amount of the emulsion adhered was 0.87% by mass.
- the content of each component in this unidirectional fiber reinforced resin sheet was 56% by mass of carbon filament (L), 4.4% by mass of filler (S), and 39.6% by mass of thermoplastic resin.
- the fiber volume content (vf) of the long carbon fibers (L) was 39%, and the thickness of the unidirectional fiber reinforced resin sheet was 200 ⁇ m.
- the long carbon fiber (L) had a fiber length of 20 mm or more and an aspect ratio of more than 500.
- the content of the filler (S) and the thermoplastic resin can be adjusted by appropriately changing the degree of opening of the long carbon fibers (L) and the contact time with the impregnated roll. Further, the thickness of the unidirectional fiber reinforced resin sheet can be adjusted by appropriately changing the extrusion amount.
- a unidirectional fiber reinforced resin sheet was produced in the same manner as in Example 1 except that the content was changed to the described content. The thickness of the unidirectional fiber reinforced resin sheet was 200 ⁇ m. Further, the long carbon fiber (L) had a fiber length of 20 mm or more and an aspect ratio of more than 500.
- ⁇ Comparative example 1> A unidirectional fiber reinforced resin sheet was produced in the same manner as in Example 1 except that the filler (S) was not used and the content of each of the other components was changed to the content shown in Table 1.
- the obtained laminate was cut to obtain a test piece conforming to ASTM D671-TypeA. Then, a vibration fatigue test is performed using a repeated vibration fatigue tester (B50 type manufactured by Toyo Seiki Co., Ltd.) under the conditions of room temperature, frequency 30 Hz, and pressure 60 MPa, and vibration fatigue is determined by the number of repetitions when the displacement reaches 8 mm. The characteristics were evaluated.
- Comparative Example 1 since the filler (S) was not used, the vibration fatigue characteristics were inferior. Further, in Comparative Example 2, since talc (S-3) having a small aspect ratio was used as the filler (S), the vibration fatigue characteristics were inferior.
- the unidirectional fiber reinforced resin sheet of the present invention and its laminate are excellent in vibration fatigue characteristics, they can be used for various purposes, especially for reinforcing members of vehicle parts such as automobiles and trains, and flying bodies such as aircraft. Suitable for component applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
繊維長さが20mm以上の一方向に配向された炭素長繊維(L)と、熱可塑性樹脂(例えば、未変性プロピレン系樹脂(P1)及び変性プロピレン系樹脂(P2))と、アスペクト比が5.0~500の充填材(S)(例えば炭素短繊維又はガラス短繊維)とを含む、振動疲労特性に優れる一方向性繊維強化樹脂シート、並びに、この一方向性繊維強化樹脂シートを複数含む積層体、及び、この一方向性繊維強化樹脂シートを含む自動車用部材が開示される。
Description
本発明は、振動疲労特性に優れる一方向性繊維強化樹脂シート、並びにこのシートを複数含む積層体及びこのシートを含む自動車部材に関する。
従来、強化繊維を含む繊維強化樹脂として、例えば一方向繊維強化樹脂シートが知られている。この一方向繊維強化樹脂シートは、一方向に引き揃えられた繊維束(複数の繊維により構成される束)に樹脂が含浸されてなるシートである。これはシート状の金属よりも軽く、樹脂のみからなるシートよりも機械的強度に優れている。したがって、この一方向性繊維強化樹脂シートは、例えば、樹脂成形体を部分的に補強してその強度を向上する目的で用いられる場合がある。このように補強された樹脂成形体は、例えば、金属部材の代替品として有用である。
特許文献1には、マトリックス樹脂として酸変性プリプロピレンと酸変性されていないポリプロピレンを含む一方向性繊維強化樹脂シートが記載されている。またこのシートは、任意成分としては無機充填材を含んでいてもよいことが説明されている。
本発明者らは、従来の一方向性繊維強化樹脂シートには、機械的強度特性(特に振動疲労特性)において改善の余地があると考えた。
例えば、特許文献1に記載の一方向性繊維強化樹脂シートは、スタンピング成形に用いられるものであり、シート状態のままで補強材として用いることは記載されていない。そして、シート状態のままで補強材として用いる用途としては、例えば、軽量化と強度が求められる車両や航空機の構成部材が挙げられる。ただし、車両や航空機は動作時に振動が発生するので、振動疲労特性に優れることも求められる。
すなわち本発明の目的は、振動疲労特性に優れる一方向性繊維強化樹脂シート、並びにこのシートを複数含む積層体及びこのシートを含む自動車部材を提供することにある。
本発明者らは、一方向性繊維強化樹脂シートの振動疲労特性を向上する為に、まずアスペクト比が比較的小さいタルク等の一般的な充填材を添加してみた。この場合、振動疲労特性は若干向上したが、まだ十分なレベルではなかった。そこで今度は、アスペクト比が比較的大きな充填材(アスペクト比が特定範囲内の充填材)を添加してみたところ、振動疲労特性が著しく向上することを見出し、本発明を完成するに至った。即ち、本発明は以下の事項により特定される。
[1]繊維長さが20mm以上の一方向に配向された炭素長繊維(L)と、熱可塑性樹脂と、アスペクト比が5.0~500の充填材(S)とを含む一方向性繊維強化樹脂シート。
[2]充填材(S)の長さが0.01~10mmである[1]に記載の一方向性繊維強化
樹脂シート。
樹脂シート。
[3]充填材(S)が、炭素短繊維及びガラス短繊維からなる群より選ばれる少なくとも1種の繊維である[1]に記載の一方向性繊維強化樹脂シート。
[4]充填材(S)の含有率が、一方向性繊維強化樹脂シートの全質量100質量%中、0.1~40.0質量%である[1]に記載の一方向性繊維強化樹脂シート。
[5]熱可塑性樹脂が、ASTM D1238に準じて230℃、荷重2.16kgで測
定したメルトフローレイトが100g/10分以上である未変性プロピレン系樹脂(P1)を含む[1]に記載の一方向性繊維強化樹脂シート。
定したメルトフローレイトが100g/10分以上である未変性プロピレン系樹脂(P1)を含む[1]に記載の一方向性繊維強化樹脂シート。
[6] 熱可塑性樹脂が、重合体鎖に結合したカルボン酸塩を少なくとも含む変性プロピレン系樹脂(P2)を含む[1]に記載の一方向性繊維強化樹脂シート。
[7]熱可塑性樹脂が、80℃、5時間乾燥後ASTM D1238に準じて230℃、荷重2.16kgで測定したメルトフローレイトが40g/10分以上であるポリアミド
系樹脂を含む[1]に記載の一方向性繊維強化樹脂シート。
系樹脂を含む[1]に記載の一方向性繊維強化樹脂シート。
[8][1]に記載の一方向性繊維強化樹脂シートを複数含む積層体。
[9][1]に記載の一方向性繊維強化樹脂シートを含む自動車用部材。
本発明によれば、振動疲労特性に優れる一方向性繊維強化樹脂シート、並びにこのシートを複数含む積層体及びこのシートを含む自動車部材を提供できる。
一般に、振動疲労特性はシートの表面の材質に大きく依存しており、また従来の一方向性繊維強化樹脂シートの表面はマトリックス樹脂がほとんどを占めているのが通常である。したがって、従来のシートの振動疲労特性は、マトリックス樹脂の強度に大きく依存している。一方、本発明においては、マトリックス樹脂が充填材(S)を含むので、表面の強度が上がり、マトリックス樹脂その振動疲労特性が向上する。
また、本発明においてはアスペクト比が特定範囲内の充填材(S)を用いるので、アスペクト比が小さい充填材を用いた場合と比較して、振動疲労特性が著しく向上する。その理由は必ずしも明らかではないが、アスペクト比が大きい充填材は炭素長繊維(L)の繊維と同じ方向に沿うように配向する傾向があり、その結果として、アスペクト比が小さい充填材を用いた場合よりもシートの表面における充填材が占める面積が広くなり、充填材の強度向上効果がより顕著に発揮されるものと推測される。
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
<炭素長繊維(L)>
本発明に用いる炭素長繊維(L)は、繊維長さが20mm以上の炭素繊維である。繊維長さの上限は特に限定されず、一方向性繊維強化樹脂シートが用いられる用途において必要とされるサイズに応じた長さであれば良い。また、炭素長繊維(L)のアスペクト比は、通常は500を超える。
本発明に用いる炭素長繊維(L)は、繊維長さが20mm以上の炭素繊維である。繊維長さの上限は特に限定されず、一方向性繊維強化樹脂シートが用いられる用途において必要とされるサイズに応じた長さであれば良い。また、炭素長繊維(L)のアスペクト比は、通常は500を超える。
炭素長繊維(L)の平均繊維径は特に制限されないが、得られる成形品の力学特性と表面外観の点から、好ましくは1~20μm、より好ましく3~15μmである。
炭素長繊維(L)の種類は特に限定されず、公知の種々の炭素繊維を使用できる。中でも、力学特性の向上、成形品の軽量化効果の点から、PAN系、ピッチ系又はレーヨン系の炭素長繊維が好ましい。さらに、得られる成形品の強度と弾性率とのバランスの点から、PAN系炭素長繊維がより好ましい。
X線光電子分光法により測定される炭素繊維の表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度比[O/C]は、好ましくは0.05~0.5、より好ましくは0.08~0.4、特に好ましくは0.1~0.3である。表面酸素濃度比が0.05以上であると、炭素繊維表面の官能基量を十分確保でき、熱可塑性樹脂とより強固な接着を得ることができる。表面酸素濃度比の上限には特に制限されないが、炭素繊維の取扱い性、生産性のバランスの点から、0.5以下が一般的に好ましい。この炭素繊維の表面酸素濃度比[O/C]は、国際公開第2017/183672号に記載の方法により測定できる。炭素繊維の表面酸素濃度比[O/C]を制御する方法は、特に制限されない。例えば、電解酸化処理、薬液酸化処理、気相酸化処理等の方法により制御できる。中でも、電解酸化処理が好ましい。
炭素長繊維(L)は、集束剤(サイズ剤)を用いて束ねられた炭素繊維束が開繊されたものであることが好ましい。炭素繊維束の単糸数は特に制限されないが、通常は100~350,000本、好ましくは1,000~250,000本、より好ましくは5,000~220,000本である。炭素繊維束を構成する集束剤は、例えば、オレフィン系エマルション、ウレタン系エマルション、エポキシ系エマルション、ナイロン系エマルションであり、好ましくはオレフィン系エマルション、より好ましくはプロピレン系エマルションである。特に、強化繊維束とマトリックス樹脂との接着性を向上させる点から、未変性プロピレン系樹脂と変性プロピレン系樹脂を含むプロピレン系エマルションが好ましい。この集束剤に用いる未変性プロピレン系樹脂及び変性プロピレン系樹脂としては、後述するマトリックス樹脂(M)に用いる未変性プロピレン系樹脂(P1)と変性プロピレン系樹脂(P2)と同様のものを好適に使用できる。
<熱可塑性樹脂>
本発明に用いる熱可塑性樹脂は、主として一方向性繊維強化樹脂シートのマトリックス樹脂(M)である。
本発明に用いる熱可塑性樹脂は、主として一方向性繊維強化樹脂シートのマトリックス樹脂(M)である。
熱可塑性樹脂の具体例としては、ポリカーボネート樹脂、スチレン系樹脂、ポリアミド系樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂(PPS樹脂)、変性ポリフェニレンエーテル樹脂(変性PPE樹脂)、ポリアセタール樹脂(POM樹脂)、液晶ポリエステル、ポリアリーレート、ポリメチルメタクリレート樹脂(PMMA)等のアクリル樹脂、塩化ビニル、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン(PEEK)、ポリエチレン、ポリプロピレン等のポリオレフィン、変性ポリオレフィン、フェノール樹脂、フェノキシ樹脂が挙げられる。これらは2種以上を併用しても良い。中でも、極性を有する樹脂としては、ポリアミド系樹脂、ポリエステル樹脂が好ましく、極性の低い樹脂としては、ポリオレフィン系樹脂が好ましい。特にコストや成形品の軽量化の点から、熱可塑性樹脂はプロピレン系樹脂及び/又はポリアミド系樹脂を含むことが好ましい。
プロピレン系樹脂の種類は特に制限されず、プロピレン単独重合体、プロピレン系共重合体の何れであっても良く、それらを併用しても良い。その立体規則性はイソタクチックであっても、シンジオタクチックであっても、アタクチックであっても良い。特に、イソタクチック又はシンジオタクチックであることが好ましい。
また、未変性プロピレン系樹脂(P1)、重合体鎖に結合したカルボン酸塩を少なくとも含む変性プロピレン系樹脂(P2)の何れであっても良く、それらを併用しても良い。特に、未変性プロピレン系樹脂(P1)及び変性プロピレン系樹脂(P2)の両方を含むことが好ましい。この場合、両者の質量比[(P1)/(P2)]は、好ましくは99.9/0.1~80/20、より好ましくは99.5/0.5~85/15、特に好ましくは99/1~90/10である。
未変性プロピレン系樹脂(P1)のASTM D1238に準じて230℃、荷重2.16kgで測定したメルトフローレイト(MFR)は、好ましくは100g/10分以上、より好ましくは130~500g/10分である。MFRがこの範囲内であると、後述する充填材(S)を添加しても流動性があまり低下せず、マトリックス樹脂(M)が炭素長繊維(L)に十分含浸する傾向にある。
未変性プロピレン系樹脂(P1)の重量平均分子量(Mw)は、好ましくは5万~30万、より好ましくは5万~20万である。
未変性プロピレン系樹脂(P1)はプロピレン由来の構造単位を有する樹脂であり、プロピレン由来の構造単位の量は好ましくは50モル%以上である。プロピレン由来の構造単位と共に、α-オレフィン、共役ジエン及び非共役ジエンからなる群より選ばれる少なくとも一種のオレフィン(プロピレンを除く)やポリエン由来の構造単位が含まれる共重合体であっても良い。
未変性プロピレン系樹脂(P1)が共重合体である場合、共重合成分であるα-オレフィンの具体例としては、エチレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、1-ノネン、1-オクテン、1-ヘプテン、1-ヘキセン、1-デセン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等のプロピレンを除く炭素原子数2~20のα-オレフィンが挙げられる。中でも、1-ブテン、エチレン、4-メチル-1-ペンテン、1-ヘキセンが好ましく、1-ブテン、4-メチル-1-ペンテンがより好ましい。共重合成分である共役ジエン及び非共役ジエンの具体例としては、ブタジエン、エチリデンノルボルネン、ジシクロペンタジエン、1,5-ヘキサジエンが挙げられる。以上のα-オレフィン、共役ジエン及び非共役ジエンは2種以上を併用しても良い。
変性プロピレン系樹脂(P2)は、重合体鎖に結合したカルボン酸塩を少なくとも含むプロピレン系樹脂である。この変性プロピレン系樹脂(P2)のカルボン酸塩は、炭素長繊維(L)とマトリックス樹脂(M)の界面接着強度を高める作用を奏する。
変性プロピレン系樹脂(P2)の原料のうち、プロピレン系重合体としては、例えば、プロピレン単独重合体;エチレン・プロピレン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体で代表される、プロピレンとα-オレフィンの単独又は2種類以上との共重合体が挙げられる。原料のうち、カルボン酸構造を有する単量体としては、例えば、中和されている又は中和されていないカルボン酸基を有する単量体、ケン化されている又はケン化されていないカルボン酸エステルを有する単量体が挙げられる。このようなプロピレン系重合体とカルボン酸構造を有する単量体とをラジカルグラフト重合する方法が、変性プロピレン系樹脂(P2)を製造する代表的な方法である。プロピレン系重合体に用いられるオレフィンの具体例は、未変性プロピレン系樹脂(P1)に用いられるオレフィンと同様である。
変性プロピレン系樹脂(P2)は、特殊な触媒を用いることにより、プロピレンとカルボン酸エステルを有する単量体とを直接重合することにより得たり、エチレンが多く含まれる重合体であればエチレン及びプロピレンとカルボン酸構造を有する単量体とを高圧ラジカル重合することにより得ることが出来る可能性もある。
中和されている又は中和されていないカルボン酸基を有する単量体、及び、ケン化されている又はケン化されていないカルボン酸エステルを有する単量体としては、例えば、エチレン系不飽和カルボン酸、その無水物、そのエステル;オレフィン以外の不飽和ビニル基を有する化合物が挙げられる。
エチレン系不飽和カルボン酸の具体例としては、(メタ)アクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸が挙げられる。酸無水物の具体例としては、ナジック酸TM(エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸)、無水マレイン酸、無水シトラコン酸が挙げられる。
オレフィン以外の不飽和ビニル基を有する化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウロイル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等の(メタ)アクリル酸エステル類;ヒドロキシエチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート、ラクトン変性ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート等の水酸基含有ビニル類;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート等のエポキシ基含有ビニル類;ビニルイソシアナート、イソプロペニルイソシアナート等のイソシアナート基含有ビニル類;スチレン、α-メチルスチレン、ビニルトルエン、t-ブチルスチレン等の芳香族ビニル類;アクリルアミド、メタクリルアミド、N-メチロールメタクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド等のアミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;N、N-ジメチルアミノエチル(メタ)アクリレート、N、N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N、N-ジプロピルアミノエチル(メタ)アクリレート、N、N-ジブチルアミノエチル(メタ)アクリレート、N、N-ジヒドロキシエチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類;スチレンスルホン酸、スチレンスルホン酸ソーダ、2-アクリルアミド-2-メチルプロパンスルホン酸等の不飽和スルホン酸類;モノ(2-メタクリロイロキシエチル)アシッドホスフェート、モノ(2-アクリロイロキシエチル)アシッドホスフェート等の不飽和リン酸類;が挙げられる。
以上の単量体は2種類以上を併用しても良い。中でも、酸無水物が好ましく、無水マレイン酸がより好ましい。
変性プロピレン系樹脂(P2)は、先に述べたように種々の方法で得ることができる。より具体的には、例えば、有機溶剤中でプロピレン系重合体と不飽和ビニル基を有するエチレン系不飽和カルボン酸又はオレフィン以外の不飽和ビニル基を有する単量体とを重合開始剤の存在下で反応させ、その後脱溶剤する方法;プロピレン系重合体を加熱溶融して得た溶融物と不飽和ビニル基を有するカルボン酸と重合開始剤とを攪拌下で反応させる方法;プロピレン系重合体と不飽和ビニル基を有するカルボン酸と重合開始剤との混合物を押出機に供給して加熱混練しながら反応させ、その後中和やケン化等の方法でカルボン酸塩とする方法が挙げられる。
重合開始剤の具体例としては、ベンゾイルパーオキサイド、ジクロルベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(ペルオキシベンゾエート)ヘキシン-3、1,4-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン等の各種パーオキサイド化合物が挙げられる。また、アゾビスイソブチロニトリル等のアゾ化合物を用いても良い。重合開始剤は2種以上を併用しても良い。
有機溶剤の具体例としては、キシレン、トルエン、エチルベンゼン等の芳香族炭化水素;ヘキサン、ヘプタン、オクタン、デカン、イソオクタン、イソデカン等の脂肪族炭化水素;シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;酢酸エチル、n-酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシブチルアセテート等のエステル系溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;が挙げられる。2種以上の有機溶剤の混合物を用いても良い。中でも、芳香族炭化水素、脂肪族炭化水素、脂環式炭化水素が好ましく、脂肪族炭化水素、脂環式炭化水素がより好ましい。
変性プロピレン系樹脂(P2)を中和又はケン化工程を経て得る方法は、変性プロピレン系樹脂(P2)の原料を水分散体にして処理することが容易となるので、実用的で好ましい方法である。
水分散体の中和又はケン化に用いる塩基性物質の具体例としては、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム、亜鉛等のアルカリ金属又はアルカリ土類金属又はその他の金属類;ヒドロキシルアミン、水酸化アンモニウム等の無機アミン;アンモニア、(トリ)メチルアミン、(トリ)エタノールアミン、(トリ)エチルアミン、ジメチルエタノールアミン、モルフォリン等の有機アミン;酸化ナトリウム、過酸化ナトリウム等の亜鉛等のアルカリ金属又はアルカリ土類金属又はその他の金属類の酸化物、水酸化物又は水素化物;炭酸ナトリウム等のアルカリ金属又はアルカリ土類金属又はその他の金属類の弱酸塩;が挙られる。塩基物質により中和又はケン化されたカルボン酸塩又はカルボン酸エステルとしては、特に、カルボン酸ナトリウム、カルボン酸カリウム等のカルボン酸アルカリ金属塩;カルボン酸アンモニウムが好適である。
中和度又はケン化度、すなわち変性プロピレン系樹脂(P2)の原料が有するカルボン酸基の金属塩又はアンモニウム塩等のカルボン酸塩への転化率は、水分散体の安定性と繊維との接着性の点から、通常50~100%、好ましくは70~100%、より好ましくは85~100%である。変性プロピレン系樹脂(P2)におけるカルボン酸基は、塩基物質により全て中和又はケン化されていることが好ましいが、カルボン酸基の一部が中和又はケン化されず残存していても良い。
カルボン酸基の塩成分を分析する方法としては、例えば、ICP発光分析で塩を形成している金属種の検出を行う方法、IR、NMR、質量分析又は元素分析を用いて酸基の塩の構造を同定する方法がある。
変性プロピレン系樹脂(P2)の重量平均分子量(Mw)は、好ましくは0.1万~10万、より好ましくは0.2万~8万である。
熱可塑性樹脂がポリアミド系樹脂を含む場合は、特に金属に対する接着性が向上する傾向にある。ポリアミド系樹脂の種類は特に限定されず、公知の種々のポリアミド系樹脂を使用できる。具体例としては、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド11、芳香族系ポリアミドが挙げられる。中でも、ポリアミド6、ポリアミド12が好ましい。
ポリアミド系樹脂の80℃、5時間乾燥後ASTM D1238に準じて230℃、荷重2.16kgで測定したメルトフローレイト(MFR)は、好ましくは40g/10分以上、より好ましくは40~400g/10分である。MFRがこの範囲内であると、後述する充填材(S)を添加しても流動性があまり低下せず、マトリックス樹脂(M)が炭素長繊維(L)に十分含浸する傾向にある。
ポリアミド系樹脂の重量平均分子量(Mw)は、好ましくは0.5万~5万、より好ましくは0.5万~3万である。
<充填材(S)>
本発明に用いる充填材(S)のアスペクト比は5.0~500であり、好ましくは5.0~200、より好ましくは5.0~100である。アスペクト比がこの範囲内であると、振動疲労特性が著しく向上する傾向にある。
本発明に用いる充填材(S)のアスペクト比は5.0~500であり、好ましくは5.0~200、より好ましくは5.0~100である。アスペクト比がこの範囲内であると、振動疲労特性が著しく向上する傾向にある。
先に述べた通り、振動疲労特性が著しく向上する理由は必ずしも明らかではないが、充填材(S)のアスペクト比がこの特定範囲内であると、充填材(S)が炭素長繊維(L)の繊維と同じ方向に沿うように配向する傾向があり、その結果として、充填材(S)の強度向上効果がより顕著に発揮されるものと推測される。
また、熱可塑性樹脂が先に説明した変性プロピレン系樹脂(P2)を含む場合においても、アスペクト比が小さい充填材を用いた場合と比較して、振動疲労特性が著しく向上する。この場合のさらなる理由としては、一般に変性プロピレン系樹脂(P2)の酸は充填材によって消費される場合があるが、先に述べた通り充填材(S)のアスペクト比がこの特定範囲内であると振動疲労特性が向上するので充填材の配合量を比較的少なくすることが可能となり、それに伴い充填材による酸の消費量が少なくなり、酸の消費によるマトリックス樹脂と炭素長繊維(L)との界面結合力低下が抑制されるとも考えられる。
充填材(S)の種類は特に限定されない。その具体例としては、炭素短繊維、ガラス短繊維、カーボンナノチューブ、ウォラストナイト、セピオライト、マイカ、塩基性硫酸マグネシウム、モンモリロナイト、バサルトファイバー、全芳香ポリアミドが挙げられる。特に、強度向上の点から、炭素短繊維とガラス短繊維からなる群より選ばれる少なくとも1種の繊維が好ましい。
充填材(S)の長さは、好ましくは0.01~10mm、より好ましくは0.03~5mmである。長さがこれら範囲の上限値以下であると、例えば、充填材(S)が炭素長繊維(L)の間に入り込み易くなり、より良好な振動疲労特性や弾性率などの物性を発現する傾向にある。また、長さがこれら範囲の下限値以上であると、例えば、振動疲労特性や弾性率などの物性が向上する傾向にある。
<一方向性繊維強化樹脂シート>
本発明の一方向性繊維強化樹脂シートは、以上説明した炭素長繊維(L)と、熱可塑性樹脂と、充填材(S)とを含み、かつ炭素長繊維(L)が一方向に配向されているシートである。
本発明の一方向性繊維強化樹脂シートは、以上説明した炭素長繊維(L)と、熱可塑性樹脂と、充填材(S)とを含み、かつ炭素長繊維(L)が一方向に配向されているシートである。
一方向性繊維強化樹脂シートの全質量100質量%中、充填材(S)の含有率は好ましくは0.1~40.0質量%、より好ましくは0.5~20.0質量%、特に好ましくは0.5~10.0質量%、最も好ましくは0.5~5.0質量%である。含有率がこれら範囲内であると、炭素長繊維(L)に対するマトリックス樹脂(M)の含浸性を維持しつつ、マトリックス樹脂(M)を改質してより振動疲労特性を向上できる傾向にある。含有率の測定方法は、後述する実施例の欄に記載のとおりである。
一方向性繊維強化樹脂シートの全質量100質量%中、炭素長繊維(L)の含有率は、好ましくは20~80質量%、より好ましくは30~75質量%である。また、熱可塑性樹脂の含有率は、好ましくは35~70質量%、より好ましくは40~65質量%である。さらに、一方向性繊維強化樹脂シートにおける炭素長繊維(L)の繊維体積含有率(vf)は、好ましくは10~70%、より好ましくは15~60%である。
一方向性繊維強化樹脂シートの厚みは、好ましくは1~500μm、より好ましくは5~400μmであり、特に好ましくは5~300μmである。
本発明の一方向性繊維強化樹脂シートの製造方法は、特に限定されない。例えば、マトリックス樹脂(M)と充填材(S)の混合物をあらかじめ調製しておき、開繊された炭素繊維束(炭素長繊維(L)の束)を一方向に引き揃え、溶融した前記混合物と接触させることにより得ることができる。
本発明の一方向性繊維強化樹脂シートは、単独のシートをそのまま使用しても良いし、複数の一方向性繊維強化樹脂シートを含む積層体として使用しても良い。特に、本発明の一方向性繊維強化樹脂シートを複数含む積層体として使用することが好ましい。また、適宜切断してテープ形状にして使用しても良い。
本発明の一方向性繊維強化樹脂シートは、他の材料との複合や積層の態様であっても好ましく用いられる。中でも、他の構造材料の補強材として有用であり、特に、振動が継続的に発生する車両や航空機を構成する部材の補強材として有用である。
ただし、本発明の一方向性繊維強化樹脂シートの用途は上記の用途に限定されず、様々な用途に使用可能である。具体的には、主翼、垂直、水平尾翼等の一次構造材や補助翼、方向舵、昇降舵等の二次構造材、座席、テーブル等の内装材、動力装置、油圧シリンダー、コンポジットブレーキ等の航空機・ヘリコプター等の一般的な飛行体の部品部材、ノズルコーン、モーターケース等のロケット部品部材、アンテナ、構造体、太陽電池パネル、バッテリーケース、望遠鏡等の人工衛星部品部材、フレーム、シャフト、ローラー、板バネ、工作機械ヘッド、ロボットアーム、搬送ハンド、合成繊維ポット等の機械部品部材、遠心分離機ローター、ウラン濃縮筒等の高速回転体部品部材、パラボラアンテナ、電池部材、レーダー、音響スピーカーコーン、コンピューター部品、プリンター部品、パソコン筐体、タブレット筐体等の電子電機部品部材、骨格部品、準構造部品、外板部品、内外装部品、動力装置、他機器-油圧シリンダー、ブレーキ、バッテリーケース、ドライブシャフト、エンジンパーツ、スポイラー、レーシングカーボディー、クラッシュコーン、イス、タブレット、電話カバー、アンダーカバー、サイドカバー、トランスミッションカバー、バッテリートレイ、リアステップ、スペアタイア容器、バス車体壁、トラック車体壁等の自動車・バイク部品部材、内装材、床板パネル、天井パネル、リニアモーターカー車体、新幹線・鉄道車体、窓拭きワイパー、台車、座席等の車両部品部材、ヨット、クルーザー、ボート等の船舶船体、マスト、ラダー、プロペラ、硬帆、スクリュー、軍用艦胴体、潜水艦胴体、深海探査船など船舶部品部材・機体、アクチュエーター、シリンダー、ボンベ、水素タンク、CNGタンク、酸素タンク等の圧力容器部品部材、攪拌翼、パイプ、タンク、ピットフロアー、プラント配管等の科学装置部品・部材、ブレード、スキン、骨格構造、除氷システム等の風力発電部品部材、X線診断装置部品、車椅子、人工骨、義足・義手、松葉杖、介護補助器具・ロボット(パワーアシストスーツ)、歩行機、介護用ベッド等の医療・介護機器部品部材・用品、CFコンポジットケーブル、コンクリート補強部材、ガードレール、橋梁、トンネル壁、フード、ケーブル、テンションロッド、ストランドロッド、フレキシブルパイプ等の土木建築・インフラ部品部材、マリンライザー、フレキシブルジャンパー、フレキシブルライザー、ドリリングライザー等の海底油田採掘用部品部材、釣竿、リール、ゴルフクラブ、テニスラケット、バドミントンラケット、スキー板、ストック、スノーボード、アイスホッケースティック、スノーモービル、弓具、剣道竹刀、野球バット、水泳飛び込み台、障害者用スポーツ用品、スポーツヘルメットなどスポーツ・レジャー用品、フレーム、ディスクホイール、リム、ハンドル、サドル等の自転車部品、メガネ、鞄、洋傘、ボールペンなど生活用品、プラスチックパレット、コンテナ、物流資材、樹脂型、家具、ヘルメット、パイプ、足場板、安全靴、プロテクター、燃料電池カバー、ドローンブレード、ジグ、ジグフレームなどその他産業用途の部品部材・用品に使用できる。
本発明の自動車用部材は、以上説明した本発明の一方向性繊維強化樹脂シートを含む。自動車用部材としては、以上列挙したように、例えば、骨格部品、準構造部品、外板部品、内外装部品、動力装置、他機器-油圧シリンダー、ブレーキ、バッテリーケース、ドライブシャフト、エンジンパーツ、スポイラー、レーシングカーボディー、クラッシュコーン、イス、タブレット、電話カバー、アンダーカバー、サイドカバー、トランスミッションカバー、バッテリートレイ、リアステップ、スペアタイア容器、バス車体壁、トラック車体壁等が挙げられる。
以下、実施例により本発明をさらに詳細に説明する。
実施例において、充填材(S)のアスペクト比、長さ及び含有率、並びに、プロピレン系樹脂の各物性は、以下の方法により測定した値である。
(1)一方向性繊維強化樹脂シート中の充填材(S)のアスペクト比及び長さの測定
充填材(S)を電気炉内(500℃、大気雰囲気)で30分加熱し、その後目開き600μmのふるいに通して炭素長繊維(L)を除去し、ふるいを通ったものを分散媒に加え、超音波分散処理を5分間行った。そして、粒度・形状分布測定器(株式会社セイシン企業製、装置名PITA3)を用いて、観察粒子数5000個、流量500μl/sec、観察倍率4倍の条件で、動的画像解析を実施してアスペクト比及び長さを求めた(このアスペクト比及び長さは平均値である)。使用する分散媒の種類は動的画像解析できれば特に制限されないが、本実施例においては界面活性剤の0.05質量%水溶液を使用した。
充填材(S)を電気炉内(500℃、大気雰囲気)で30分加熱し、その後目開き600μmのふるいに通して炭素長繊維(L)を除去し、ふるいを通ったものを分散媒に加え、超音波分散処理を5分間行った。そして、粒度・形状分布測定器(株式会社セイシン企業製、装置名PITA3)を用いて、観察粒子数5000個、流量500μl/sec、観察倍率4倍の条件で、動的画像解析を実施してアスペクト比及び長さを求めた(このアスペクト比及び長さは平均値である)。使用する分散媒の種類は動的画像解析できれば特に制限されないが、本実施例においては界面活性剤の0.05質量%水溶液を使用した。
(2)一方向性繊維強化樹脂シート中の充填材(S)の含有率の測定
CT(Computed Tomography)により体積分率を算出して、充填材(S)の含有率を求めた。具体的には、高分解能3DX線顕微鏡(株式会社リガク製、装置名nano3DX)を使用し、以下の条件で測定した。
使用レンズ:0540
スキャン方法:ステップスキャン1000点
CT(Computed Tomography)により体積分率を算出して、充填材(S)の含有率を求めた。具体的には、高分解能3DX線顕微鏡(株式会社リガク製、装置名nano3DX)を使用し、以下の条件で測定した。
使用レンズ:0540
スキャン方法:ステップスキャン1000点
(3)プロピレン系樹脂の重量平均分子量、共重合組成、無水マレイン酸含有率、融点及び炭素繊維束への付着量は、国際公開第2017/183672号に記載の方法により測定した。
<実施例1>
(炭素長繊維(L)の準備)
炭素繊維束(三菱レイヨン株式会社製、商品名パイロフィルTR50S12L、フィラメント数24000本、ストランド強度5000MPa、ストランド弾性率242GPa)をアセトン中に浸漬し、10分間超音波を作用させ、その後炭素繊維束を引き上げさらに3回アセトンで洗浄し、室温で8時間乾燥することにより付着しているサイジング剤を除去した。
(炭素長繊維(L)の準備)
炭素繊維束(三菱レイヨン株式会社製、商品名パイロフィルTR50S12L、フィラメント数24000本、ストランド強度5000MPa、ストランド弾性率242GPa)をアセトン中に浸漬し、10分間超音波を作用させ、その後炭素繊維束を引き上げさらに3回アセトンで洗浄し、室温で8時間乾燥することにより付着しているサイジング剤を除去した。
(エマルションの製造)
ショアD硬度が52であり、GPCで測定した重量平均分子量Mwが35万であるプロピレン・ブテン共重合体100質量部、無水マレイン酸変性プロピレン系重合体(Mw20,000、酸価45mg-KOH/g、無水マレイン酸含有率4質量%、融点140℃)10質量部、界面活性剤としてオレイン酸カリウム3質量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、装置名PCM-30、L/D=40)のホッパーより3000g/時間の速度で供給し、押出機のベント部に設けた供給口より20%の水酸化カリウム水溶液を90g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入してエマルションを得た。得られたエマルションの固形分濃度は45%であった。
ショアD硬度が52であり、GPCで測定した重量平均分子量Mwが35万であるプロピレン・ブテン共重合体100質量部、無水マレイン酸変性プロピレン系重合体(Mw20,000、酸価45mg-KOH/g、無水マレイン酸含有率4質量%、融点140℃)10質量部、界面活性剤としてオレイン酸カリウム3質量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、装置名PCM-30、L/D=40)のホッパーより3000g/時間の速度で供給し、押出機のベント部に設けた供給口より20%の水酸化カリウム水溶液を90g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入してエマルションを得た。得られたエマルションの固形分濃度は45%であった。
なお、前記の無水マレイン酸変性プロピレン系樹脂は、プロピレン・ブテン共重合体96質量部、無水マレイン酸4質量部、及び重合開始剤(日本油脂株式会社製、商品名パーヘキシ25B)0.4質量部を混合し、加熱温度160℃、2時間で変性を行って得られ
た変性樹脂である。
た変性樹脂である。
(炭素繊維束の製造)
以上のようにして得たエマルションを、ローラー含浸法を用いて、炭素長繊維(前記の三菱レイヨン株式会社製炭素繊維束からサイジング剤を除去したもの)に付着させた。次いで、オンラインで130℃、2分乾燥して低沸点成分を除去し、炭素繊維束を得た。エマルションの付着量は0.87質量%であった。
以上のようにして得たエマルションを、ローラー含浸法を用いて、炭素長繊維(前記の三菱レイヨン株式会社製炭素繊維束からサイジング剤を除去したもの)に付着させた。次いで、オンラインで130℃、2分乾燥して低沸点成分を除去し、炭素繊維束を得た。エマルションの付着量は0.87質量%であった。
(充填材(S)-熱可塑性樹脂混合物の調製)
充填材(S)として、炭素短繊維(S-1)[アスペクト比=12.8、繊維長=56.5μm]10質量部と、プロピレン系樹脂(P1)として、未変性プロピレン樹脂[Lyondell basell社製、Moplen(登録商標)HP500W、MFR(ASTM D1238、230℃、2.16kg)=150g/10分]88.5質量部と、プロピレン系樹脂(P2)として、無水マレイン酸を0.5質量%グラフトした変性ポリプロピレン[MFR(230℃、2.16kg)=9.1g/10分]1.5質量部とを、180℃で溶融・混錬し、充填材(S)-熱可塑性樹脂混合物を得た。
充填材(S)として、炭素短繊維(S-1)[アスペクト比=12.8、繊維長=56.5μm]10質量部と、プロピレン系樹脂(P1)として、未変性プロピレン樹脂[Lyondell basell社製、Moplen(登録商標)HP500W、MFR(ASTM D1238、230℃、2.16kg)=150g/10分]88.5質量部と、プロピレン系樹脂(P2)として、無水マレイン酸を0.5質量%グラフトした変性ポリプロピレン[MFR(230℃、2.16kg)=9.1g/10分]1.5質量部とを、180℃で溶融・混錬し、充填材(S)-熱可塑性樹脂混合物を得た。
(一方向性繊維強化樹脂シートの製造)
次いで、開繊された前記炭素繊維束(炭素長繊維(L-1))を引き揃え、含浸ロールにコーティングされた溶融状態の前記充填材(S)-熱可塑性樹脂混合物混合物と接触させ、引き取ることにより、一方向性繊維強化樹脂シートを得た。その際の押出機及びTダイの温度は260℃とし、含浸ロールの温度も260℃とした。装置及び手順としては、特許第4522498号の図1に記載のものと同様の装置及び手順を用いた。
次いで、開繊された前記炭素繊維束(炭素長繊維(L-1))を引き揃え、含浸ロールにコーティングされた溶融状態の前記充填材(S)-熱可塑性樹脂混合物混合物と接触させ、引き取ることにより、一方向性繊維強化樹脂シートを得た。その際の押出機及びTダイの温度は260℃とし、含浸ロールの温度も260℃とした。装置及び手順としては、特許第4522498号の図1に記載のものと同様の装置及び手順を用いた。
この一方向性繊維強化樹脂シートにおける各成分の含有率は、炭素長繊維(L)56質量%、充填材(S)4.4質量%、熱可塑性樹脂39.6質量%であった。また、炭素長繊維(L)の繊維体積含有率(vf)は39%であり、一方向性繊維強化樹脂シート厚みは200μmであった。また、炭素長繊維(L)は、繊維長さが20mm以上であり、アスペクト比は500を超えていた。なお、充填材(S)及び熱可塑性樹脂の含有率は、炭素長繊維(L)の開繊の程度や含浸ロールで接触する時間を適宜変更することにより調整可能である。また、一方向性繊維強化樹脂シート厚みは、押出量を適宜変更することにより調整可能である。
<実施例2>
炭素短繊維(S-1)10質量部の代わりに、ガラス短繊維(S-2)[アスペクト比=9.4]を含有する樹脂組成物[株式会社プライムポリマー製、プライムポリプロ(登録商標)E7000、ガラス繊維含有率(ISO 3451-1)=30質量%、MFR(JIS K7210:99、230℃、2.16kg)=5g/10分]を使用し、各成分の含有率を表1に記載の含有率に変更したこと以外は、実施例1と同様にして一方向性繊維強化樹脂シートを製造した。一方向性繊維強化樹脂シート厚みは200μmであった。また、炭素長繊維(L)は、繊維長さが20mm以上であり、アスペクト比は500を超えていた。
炭素短繊維(S-1)10質量部の代わりに、ガラス短繊維(S-2)[アスペクト比=9.4]を含有する樹脂組成物[株式会社プライムポリマー製、プライムポリプロ(登録商標)E7000、ガラス繊維含有率(ISO 3451-1)=30質量%、MFR(JIS K7210:99、230℃、2.16kg)=5g/10分]を使用し、各成分の含有率を表1に記載の含有率に変更したこと以外は、実施例1と同様にして一方向性繊維強化樹脂シートを製造した。一方向性繊維強化樹脂シート厚みは200μmであった。また、炭素長繊維(L)は、繊維長さが20mm以上であり、アスペクト比は500を超えていた。
<比較例1>
充填材(S)は使用せず、その他の各成分の含有率を表1に記載の含有率に変更したこと以外は、実施例1と同様にして一方向性繊維強化樹脂シートを製造した。
充填材(S)は使用せず、その他の各成分の含有率を表1に記載の含有率に変更したこと以外は、実施例1と同様にして一方向性繊維強化樹脂シートを製造した。
<比較例2>
炭素短繊維(S-1)10質量部の代わりに、タルク(S-3)(松村産業株式会社製、ハイフィラー(登録商標)#5000PJ、アスペクト比=1.8)を使用し、各成分の含有率を表1に記載の含有率に変更したこと以外は、実施例1と同様にして一方向性繊維強化樹脂シートを製造した。
炭素短繊維(S-1)10質量部の代わりに、タルク(S-3)(松村産業株式会社製、ハイフィラー(登録商標)#5000PJ、アスペクト比=1.8)を使用し、各成分の含有率を表1に記載の含有率に変更したこと以外は、実施例1と同様にして一方向性繊維強化樹脂シートを製造した。
以上の実施例及び比較例で得た一方向性繊維強化樹脂シートに対して、以下の振動疲労試験を行った。結果を表1に示す。
<振動疲労試験>
一方向性繊維強化樹脂シート10枚を、炭素長繊維(L)の繊維方向が交互に±45°方向となるように重ね合わせた。次いで、これを2枚の真鍮板で挟み、温度180℃で4分間予熱し、温度180℃、圧力6MPaの条件で3分間加圧し、圧力6MPaのままで1分間冷却し、積層体を得た。
一方向性繊維強化樹脂シート10枚を、炭素長繊維(L)の繊維方向が交互に±45°方向となるように重ね合わせた。次いで、これを2枚の真鍮板で挟み、温度180℃で4分間予熱し、温度180℃、圧力6MPaの条件で3分間加圧し、圧力6MPaのままで1分間冷却し、積層体を得た。
得られた積層体を切削して、ASTM D671‐TypeAに準拠した試験片を得た。そして、繰り返し振動疲労試験機(東洋精機社製、B50型)を用いて、室温、周波数30Hz、圧力60MPaの条件で振動疲労試験を行い、変位量が8mmに達した際の繰り返し回数により振動疲労特性を評価した。
表1中、実施例1の炭素短繊維(S-1)及び実施例2のガラス短繊維(S-2)の含有率は、先の(2)欄で説明した方法により測定した一方向性繊維強化樹脂シート中の充填材(S)の含有率である。一方、比較例2のタルク(S-3)の含有率は(2)欄で説明した方法では測定が困難だったので、製造時にタルク(S-3)を添加した量から計算した。
<評価>
表1に示す結果から明らかなように、実施例1及び2においては充填材(S)として特定のアスペクト比を有する炭素短繊維(S-1)及びガラス短繊維(S-2)を使用したので、振動疲労特性が優れていた。
表1に示す結果から明らかなように、実施例1及び2においては充填材(S)として特定のアスペクト比を有する炭素短繊維(S-1)及びガラス短繊維(S-2)を使用したので、振動疲労特性が優れていた。
一方、比較例1においては充填材(S)を使用しなかったので、振動疲労特性が劣っていた。また、比較例2においては充填材(S)としてアスペクト比が小さなタルク(S-3)を使用したので、振動疲労特性が劣っていた。
本発明の一方向性繊維強化樹脂シート及びその積層体は、振動疲労特性に優れるので、種々の用途に利用可能であり、特に自動車や電車等の車両部品の補強部材、航空機等の飛行体の部品の用途に好適である。
Claims (9)
- 繊維長さが20mm以上の一方向に配向された炭素長繊維(L)と、熱可塑性樹脂と、アスペクト比が5.0~500の充填材(S)とを含む一方向性繊維強化樹脂シート。
- 充填材(S)の長さが0.01~10mmである請求項1に記載の一方向性繊維強化樹脂シート。
- 充填材(S)が、炭素短繊維及びガラス短繊維からなる群より選ばれる少なくとも1種の繊維である請求項1に記載の一方向性繊維強化樹脂シート。
- 充填材(S)の含有率が、一方向性繊維強化樹脂シートの全質量100質量%中、0.1~40.0質量%である請求項1に記載の一方向性繊維強化樹脂シート。
- 熱可塑性樹脂が、ASTM D1238に準じて230℃、荷重2.16kgで測定したメルトフローレイトが100g/10分以上である未変性プロピレン系樹脂(P1)を含む請求項1に記載の一方向性繊維強化樹脂シート。
- 熱可塑性樹脂が、重合体鎖に結合したカルボン酸塩を少なくとも含む変性プロピレン系樹脂(P2)を含む請求項1に記載の一方向性繊維強化樹脂シート。
- 熱可塑性樹脂が、80℃、5時間乾燥後ASTM D1238に準じて230℃、荷重2.16kgで測定したメルトフローレイトが40g/10分以上であるポリアミド系樹脂を含む請求項1に記載の一方向性繊維強化樹脂シート。
- 請求項1に記載の一方向性繊維強化樹脂シートを複数含む積層体。
- 請求項1に記載の一方向性繊維強化樹脂シートを含む自動車用部材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021528103A JPWO2020255786A1 (ja) | 2019-06-18 | 2020-06-09 | |
EP20826153.7A EP3988603A4 (en) | 2019-06-18 | 2020-06-09 | RESIN SHEET REINFORCED BY UNIDIRECTIONAL FIBERS, AND LAMINATED BODY AND AUTOMOBILE PART COMPRISING THE SAME |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019112457 | 2019-06-18 | ||
JP2019-112457 | 2019-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020255786A1 true WO2020255786A1 (ja) | 2020-12-24 |
Family
ID=74037256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022613 WO2020255786A1 (ja) | 2019-06-18 | 2020-06-09 | 一方向性繊維強化樹脂シート並びにそれを含む積層体及び自動車部材 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3988603A4 (ja) |
JP (1) | JPWO2020255786A1 (ja) |
TW (1) | TW202110967A (ja) |
WO (1) | WO2020255786A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02160511A (ja) * | 1988-12-15 | 1990-06-20 | Sekisui Chem Co Ltd | 繊維強化複合材の製造方法 |
JPH0741564A (ja) * | 1993-05-21 | 1995-02-10 | Nikkiso Co Ltd | 気相成長炭素繊維の複合材料 |
JP2010150371A (ja) * | 2008-12-25 | 2010-07-08 | Toyobo Co Ltd | 炭素長繊維強化ポリプロピレン系複合材料 |
JP2010168526A (ja) * | 2008-12-25 | 2010-08-05 | Toyobo Co Ltd | 炭素長繊維強化複合材料 |
JP4522498B2 (ja) | 1997-05-21 | 2010-08-11 | ベイラー・ベヘール・ベスローテン・フェンノートシャップ | 横方向ウェブの製造方法 |
WO2011030544A1 (ja) * | 2009-09-09 | 2011-03-17 | 株式会社プライムポリマー | 炭素繊維強化樹脂組成物 |
JP2013072042A (ja) * | 2011-09-28 | 2013-04-22 | Toray Ind Inc | 炭素繊維強化熱可塑性樹脂シート |
JP2013189634A (ja) * | 2012-02-16 | 2013-09-26 | Hiroshima Prefecture | 繊維強化複合材料およびその製造方法 |
JP2017190379A (ja) * | 2016-04-12 | 2017-10-19 | 東邦テナックス株式会社 | プリプレグ、強化繊維、繊維強化複合材料、およびプリプレグの製造方法 |
WO2017183672A1 (ja) | 2016-04-20 | 2017-10-26 | 三井化学株式会社 | 強化繊維束および成形材料 |
JP2018154773A (ja) | 2017-03-21 | 2018-10-04 | 三菱ケミカル株式会社 | 繊維強化複合樹脂シートおよび成形品 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009088033A1 (ja) * | 2008-01-11 | 2009-07-16 | Mitsui Chemicals, Inc. | 変性プロピレン樹脂 |
-
2020
- 2020-06-09 EP EP20826153.7A patent/EP3988603A4/en not_active Withdrawn
- 2020-06-09 JP JP2021528103A patent/JPWO2020255786A1/ja active Pending
- 2020-06-09 WO PCT/JP2020/022613 patent/WO2020255786A1/ja unknown
- 2020-06-16 TW TW109120118A patent/TW202110967A/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02160511A (ja) * | 1988-12-15 | 1990-06-20 | Sekisui Chem Co Ltd | 繊維強化複合材の製造方法 |
JPH0741564A (ja) * | 1993-05-21 | 1995-02-10 | Nikkiso Co Ltd | 気相成長炭素繊維の複合材料 |
JP4522498B2 (ja) | 1997-05-21 | 2010-08-11 | ベイラー・ベヘール・ベスローテン・フェンノートシャップ | 横方向ウェブの製造方法 |
JP2010150371A (ja) * | 2008-12-25 | 2010-07-08 | Toyobo Co Ltd | 炭素長繊維強化ポリプロピレン系複合材料 |
JP2010168526A (ja) * | 2008-12-25 | 2010-08-05 | Toyobo Co Ltd | 炭素長繊維強化複合材料 |
WO2011030544A1 (ja) * | 2009-09-09 | 2011-03-17 | 株式会社プライムポリマー | 炭素繊維強化樹脂組成物 |
JP2013072042A (ja) * | 2011-09-28 | 2013-04-22 | Toray Ind Inc | 炭素繊維強化熱可塑性樹脂シート |
JP2013189634A (ja) * | 2012-02-16 | 2013-09-26 | Hiroshima Prefecture | 繊維強化複合材料およびその製造方法 |
JP2017190379A (ja) * | 2016-04-12 | 2017-10-19 | 東邦テナックス株式会社 | プリプレグ、強化繊維、繊維強化複合材料、およびプリプレグの製造方法 |
WO2017183672A1 (ja) | 2016-04-20 | 2017-10-26 | 三井化学株式会社 | 強化繊維束および成形材料 |
JP2018154773A (ja) | 2017-03-21 | 2018-10-04 | 三菱ケミカル株式会社 | 繊維強化複合樹脂シートおよび成形品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3988603A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3988603A4 (en) | 2023-06-14 |
JPWO2020255786A1 (ja) | 2020-12-24 |
EP3988603A1 (en) | 2022-04-27 |
TW202110967A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102227247B1 (ko) | 강화 섬유속 및 성형 재료 | |
JP7109897B2 (ja) | 積層型外装材 | |
JP7487287B2 (ja) | 一方向性繊維強化熱可塑性樹脂シート及びその製造方法 | |
WO2020255786A1 (ja) | 一方向性繊維強化樹脂シート並びにそれを含む積層体及び自動車部材 | |
JP7461461B2 (ja) | 薄膜状の繊維強化樹脂、ならびに樹脂成形体およびその製造方法 | |
WO2023182409A1 (ja) | 繊維強化樹脂シートおよびその製造方法 | |
JP2024131547A (ja) | 繊維強化樹脂の製造方法および繊維強化樹脂 | |
US20240157661A1 (en) | Production apparatus for producing a fiber-reinforced resin and a production method for producing a fiber-reinforced resin | |
JP2024135738A (ja) | 繊維強化樹脂およびその製造方法 | |
JP2020158921A (ja) | 強化繊維束及び成形材料 | |
JP2022149209A (ja) | 複合部材およびその製造方法 | |
JP7076656B1 (ja) | 成形体およびその製造方法 | |
JP2022150681A (ja) | スクレーパーおよび一方向繊維強化樹脂シートの製造装置 | |
Shahbaz | Investigation of the effect of carbon nanotubes on hybrid glass/carbon fiber reinforced composites | |
EP4082787A1 (en) | Multilayer body and method for producing same | |
Bazli et al. | Pre-Proof | |
Yelamanchi | Development of Hybrid Laminated Structures via Additive Manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20826153 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021528103 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020826153 Country of ref document: EP Effective date: 20220118 |