WO2020251009A1 - 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材 - Google Patents

皮膜付きガラスおよびその製造方法並びに改質されたガラス基材 Download PDF

Info

Publication number
WO2020251009A1
WO2020251009A1 PCT/JP2020/023185 JP2020023185W WO2020251009A1 WO 2020251009 A1 WO2020251009 A1 WO 2020251009A1 JP 2020023185 W JP2020023185 W JP 2020023185W WO 2020251009 A1 WO2020251009 A1 WO 2020251009A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
glass
glass substrate
modified layer
mass
Prior art date
Application number
PCT/JP2020/023185
Other languages
English (en)
French (fr)
Inventor
正道 和田
石川 篤
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to CN202080051993.9A priority Critical patent/CN114174236B/zh
Priority to MX2021015471A priority patent/MX2021015471A/es
Priority to CA3143316A priority patent/CA3143316C/en
Priority to KR1020227000609A priority patent/KR20220020341A/ko
Priority to EP20821740.6A priority patent/EP3984972A4/en
Priority to US17/618,618 priority patent/US20220250970A1/en
Publication of WO2020251009A1 publication Critical patent/WO2020251009A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/004Coating the inside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/06Ampoules or carpules
    • A61J1/065Rigid ampoules, e.g. glass ampoules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/153Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/345Surface crystallisation

Definitions

  • the present invention relates to a coated glass and a method for producing the same, and particularly to a coated glass on which a chemically, thermodynamically and physically stable film is formed and a method for producing the same.
  • Glass substrates of coated glass include, for example, plate-shaped or tubular glass, glass containers, glass medical devices, and the like.
  • the glass tube In the process of molding a glass container, the glass tube is processed into a container shape having a bottom and a mouth. In this process, the glass tube is heated and deformed into a bottom and a mouth. When the glass tube is heated, the alkaline components contained in the glass volatilize, and the alkaline components volatilized in the process of cooling the glass container condense and adhere to the inner wall of the glass container.
  • the alkali-containing substances exuded or volatilized from these glasses form a large number of small droplets on the inner wall of the glass container and are condensed and fixed, so that a processing deterioration region is formed on the inner wall near the bottom in a belt shape.
  • the liquid becomes basic due to alkali or the like eluted from the processing deterioration region. This is serious, especially in medical glass containers, as it leads to impairing the stability of the drug contained.
  • the hydrolysis of the glass progresses due to the contact of water molecules contained in the contents, so that the glass itself becomes fragile and the silica component of the glass is peeled off (delamination) to the contents. It is also widely known that the glass-derived components (silicon, boron, sodium, potassium, aluminum) are eluted.
  • Patent Document 1 It is known that a processing deterioration region is removed by a fire blast treatment (see, for example, Patent Document 1). Further, as a method of suppressing the hydrolyzability of the inner wall of the glass container, it is known that while rotating the glass container formed from the glass tube, the inner wall is treated with a CO 2 laser or the like to remove the processed deterioration region. (See, for example, Patent Document 2 or Patent Document 3).
  • a film on the glass surface of an inorganic or organic material such as silicon without reducing the absolute amount of alkaline components such as a method of forming a low-reactivity film on the glass surface (see, for example, Patent Document 4).
  • a method of isolating the glass surface from the contents is also known.
  • the composition of the film by appropriately selecting the composition of the film, it is possible to add value to the treated glass container. For example, by forming a hydrophobic film, the adhesion of polar contents to the inner wall can be reduced, so that the residual property in the container can be reduced. This is an excellent advantage especially when accommodating rare and expensive drugs such as protein preparations, which have been in increasing demand in recent years.
  • Patent Documents 1 to 3 Although the methods of Patent Documents 1 to 3 are effective in reducing the elution of the amount of the alkaline compound, it has been required to add value such as reducing the adhesion of the contents to the glass container after the processing. Therefore, it is conceivable to apply the method of forming a film on the glass surface as in Patent Document 4.
  • the method of forming a film on the glass surface as in Patent Document 4 has the following problems. Since the surface of ordinary glass has an inorganic phase, it is generally known that the adhesiveness to the film, which is an organic phase in many cases, is low and the film is difficult to form. In particular, it is difficult to form a film having low friction or hydrophobicity on the glass surface.
  • a method of forming a film after applying a primer such as a silane coupling agent having an affinity for both the glass layer and the film on the glass surface is generally performed. It has been. However, not only the processing man-hours increase, but also the low thermal stability of the silane coupling agent makes it unsuitable for application to medical containers exposed to high temperature conditions such as dry heat sterilization and steam sterilization. There is.
  • an object of the present disclosure is that the contact angle with the water-based contents is large, the transparency is high, the lubricity (sliding property) is excellent, the silica component of the glass is less likely to be peeled off (delamination), and the contents are treated. There is little elution of glass-derived components (silicon, boron, sodium, potassium, aluminum), and when applied to medical glass containers, aggregation (adsorption) of protein, which is the active component of pharmaceuticals, is unlikely to occur, and it has heat resistance.
  • the coated glass according to the present invention is a coated glass having a glass base material and a film provided on at least a part of the surface of the glass base material, and the surface of the glass base material on the film side.
  • the region from to a predetermined depth is a modified layer, and the modified layer is characterized by having a microcrystalline structure at least in part.
  • the filmed glass according to the present invention is a filmed glass having a glass base material and a film provided on at least a part of the surface of the glass base material, and is predetermined from the surface of the glass base material on the film side. area to a depth of a modified layer, the content of B 2 O 3 of the modifying layer, by mass percent on the oxide basis, less than that of the region deeper than the reforming layer, and, The Na 2 O content of the modified layer is at least by mass% of oxide equivalent, which is less than that of the region deeper than the modified layer, and the modified layer is at least by mass% of oxide equivalent.
  • B 2 O 3 is 1 to 8% by mass
  • Na 2 O is 1 to 6% by mass
  • SiO 2 is 80% by mass or more
  • the region deeper than the modified layer is by mass% in terms of oxide. It is characterized by containing at least 9 to 15% by mass of B 2 O 3 , 3 to 9% by mass of Na 2 O, and 70% by mass or more of SiO 2 .
  • the microcrystal structure contains carbon. Adhesion with a film, particularly a film containing a carbon element in the composition, can be further improved.
  • the modified layer contains carbon. Adhesion with a film, particularly a film containing a carbon element in the composition, can be further improved.
  • the film is a silicon-free diamond-like carbon film, a silicon-containing diamond-like carbon film, a silicon oxide-based film, or a non-crystalline fluororesin film.
  • the lubricity is excellent, the contact angle with the water-based contents is large, and the suppression of aggregation (adsorption) of proteins and the like, which are the active ingredients of pharmaceuticals, is improved.
  • a silicon oxide-based film a film having better transparency can be obtained.
  • the filmed glass according to the present invention includes a form in which the film thickness is 1 to 70 nm.
  • the glass substrate is borosilicate glass having an expansion coefficient of 3.2 ⁇ 10-6 / K or more and 3.3 ⁇ 10-6 / K or less, or an expansion coefficient of borosilicate glass. It includes a form of borosilicate glass of 4.8 ⁇ 10-6 / K or more and 5.6 ⁇ 10-6 / K or less.
  • the glass base material includes a form of a vial, an injection tube, a syringe with a needle, an ampoule or a cartridge type syringe (also simply referred to as a cartridge).
  • the method for producing a coated glass according to the present invention is a method for producing a coated glass that forms a film on at least a part of the surface of a glass substrate, and is predetermined from the surface of the glass substrate on the side where the film is provided.
  • the modification step includes a modification step of forming a region up to a depth as a modification layer and a film formation step of forming the film on the surface of the glass substrate on which the modification layer is formed.
  • a flame generated by burning a lower hydrocarbon gas in the presence of oxygen gas is ejected from a burner on the surface of the glass substrate on the side where the film is provided, and the flame ejected from the burner is rich in plasma.
  • a step of applying a portion (ii) a step of applying a laser treatment to the surface of the glass substrate on the side where the film is provided, and (iii) a step of applying a high temperature gas treatment to the surface of the glass substrate on the side where the film is provided. It is characterized by including at least one of (i) to (iii) of the step of applying.
  • the film forming step at least a raw material gas containing a hydrocarbon gas is converted into plasma, and at least as the film on the surface of the glass substrate on the side where the film is provided.
  • the step of forming an amorphous film containing carbon is preferable.
  • the film contains a carbon element in the composition, it has excellent lubricity (sliding property), a large contact angle with water-based contents, and improvement in suppression of aggregation (adsorption) of proteins and the like, which are active ingredients of pharmaceuticals. ..
  • the temperature of the surface of the glass substrate opposite to the surface on the side where the film is provided is measured by a non-contact thermometer. It is preferable to include that the measured temperature is within a specific temperature range. Temperature control can be made more reliable, and reforming can be performed more reliably.
  • the modified glass substrate according to the present invention is a modified glass substrate having a modified layer on the surface of at least a part of the glass substrate, and the modified layer is the glass substrate. It is characterized in that it is in a region from the surface to a predetermined depth and has a microcrystal structure at least partially.
  • the contact angle with the water-based contents is large, the transparency is high, the lubricity (sliding property) is excellent, the silica component of the glass is less likely to peel off (delamination), and the glass on the contents Derived components (silicon, boron, sodium, potassium, aluminum) are less eluted, and when applied to medical glass containers, aggregation (adsorption) of protein, which is the active component of pharmaceuticals, is unlikely to occur, and it has heat resistance.
  • FIG. 4 (a) is a partially enlarged image. It is a TEM image of the cross section of the glass with a film after the film formation step of Example 1.
  • FIG. 1 is a schematic cross-sectional view of the coated glass according to the present embodiment.
  • the coated glass 1 according to the present embodiment is a coated glass having a glass base material 2 and a film 3 provided on at least a part of the surface 2a of the glass base material 2, and the film 3 of the glass base material 2 is provided.
  • the region from the side surface 2a to the predetermined depth d1 is the modified layer 4, and the modified layer 4 has a microcrystal structure at least in a part thereof.
  • the filmed glass 1 is a filmed glass having a glass base material 2 and a film 3 provided on at least a part of the surface 2a of the glass base material 2.
  • the region from the surface 2a on the film 3 side to the predetermined depth d1 is the modified layer 4, and the content of B 2 O 3 in the modified layer 4 is mass% in terms of oxide, which is higher than that of the modified layer 4.
  • the Na 2 O content of the modified layer 4 is less than that of the deep region 5 and is less than that of the region 5 deeper than the modified layer 4 in terms of oxide mass%.
  • the layer 4 contains at least 1 to 8% by mass of B 2 O 3 , 1 to 6% by mass of Na 2 O, and 80% by mass or more of SiO 2 in terms of oxide mass%, and is more than the modified layer 4. even deep region 5, in mass percent on the oxide basis, at least, B 2 O 3 9-15 weight%, a Na 2 O 3 ⁇ 9 wt%, and SiO 2 70% by mass or more.
  • the modified layer 4 preferably includes a case where it has a microcrystalline structure at least in part.
  • the glass base material 2 is preferably borosilicate glass having an expansion coefficient of 3.2 ⁇ 10 -6 / K or more and 5.6 ⁇ 10 -6 / K or less.
  • the glass base material 2 is borosilicate glass having an expansion coefficient of 3.2 ⁇ 10 -6 / K or more and 3.3 ⁇ 10 -6 / K or less, or expands. It includes a form of borosilicate glass having a coefficient of 4.8 ⁇ 10-6 / K or more and 5.6 ⁇ 10-6 / K or less.
  • Such a glass base material 2 is preferable because it has a small expansion coefficient and low alkali elution.
  • NSV51 manufactured by Nipro Pharma Packaging Americas Corp.
  • W33 manufactured by Nipro Pharma Packaging Americas Corp.
  • BS manufactured by Nippon Electric Glass Co., Ltd.
  • Fiorax registered trademark
  • Shot AG Manufactured by SCHOTT AG
  • Duran registered trademark
  • Table 1 shows the catalog values of the composition (mass%) of each glass.
  • the contents of Na 2 O and K 2 O for NSV51 are the total contents of Na 2 O and K 2 O. The same applies to W33 or Durand. Further, in Table 1, "-" indicates that the composition is not contained.
  • the glass base material 2 is borosilicate glass having an expansion coefficient of 3.2 ⁇ 10 -6 / K or more and 3.3 ⁇ 10 -6 / K or less, and the surface 2a of the glass base material 2 which is an interface with the film 3 is , At least B 2 O 3 is contained in an amount of 1 to 6% by mass, Na 2 O is contained in an amount of 1 to 6% by mass, Al 2 O 3 is contained in an amount of 1 to 2% by mass, and SiO 2 is preferably contained in an amount of 80% by mass or more.
  • the glass base material 2 is borosilicate glass having an expansion coefficient of 4.8 ⁇ 10 -6 / K or more and 5.5 ⁇ 10 -6 / K or less, and is the surface of the glass base material 2 which is an interface with the film 3.
  • 2a may contain at least 1 to 6% by mass of B 2 O 3 , 1 to 6% by mass of Na 2 O, 5 to 6.5% by mass of Al 2 O 3 , and 80% by mass or more of SiO 2. preferable.
  • the glass substrate 2 is a transparent color or an amber color, and preferably has a translucent property.
  • the transmittance at a wavelength of 590 to 610 nm or 290 to 450 nm is preferably 45% or more, 60. More preferably, it is% or more.
  • the evaluation method of the transparency test conforms to "Japanese Pharmacopoeia (17th revision) 7.
  • the glass base material 2 includes, for example, plate-shaped or tubular glass, a glass container, a medical device made of glass, and the like.
  • the glass base material 2 includes a vial, a syringe, a syringe with a needle, an ampoule, or a cartridge type syringe (also simply referred to as a cartridge).
  • the glass base material 2 is a tubular glass, a glass container, or a medical instrument made of glass
  • Surface) 2a is preferably the inner wall of tubular glass, the inner wall of a glass container, or the inner surface of a glass medical device.
  • a vial is a container having a generally cylindrical outer shape with a sealed bottom, and has a bottom, side surfaces, neck, mouth, inner wall, and outer wall.
  • the vial has an internal space and opens at one end of the mouth.
  • the bottom has a flat disk-like shape and is continuous with the side surface at the edge of the bottom.
  • the side surface portion has a cylindrical shape. The side surface portion is formed so that the outer diameter and the inner diameter are constant in the axial direction.
  • the neck portion is continuous with the side surface portion and narrows in a tapered shape from the side surface portion.
  • the inner and outer diameters of the neck are formed narrower than the side surfaces.
  • the mouth has an opening that is continuous with the neck and is partitioned by the edges.
  • the inner and outer diameters of the mouth portion are formed narrower than the side surface portion.
  • the outer diameter of the mouth is formed wider than the narrowest part of the outer diameter of the neck.
  • the inner wall is a glass surface on the inner space side at the bottom, side surfaces, neck and mouth, while the outer wall is an outer surface facing the glass surface on the inner space side.
  • a vial is molded by heating a glass tube that is held vertically and rotates using a general vertical molding machine.
  • the glass tube is softened by being heated by the flame of the burner.
  • the bottom and mouth of the vial are formed from the glass tube by softening and deforming a part of the glass tube.
  • alkaline borate and the like volatilize from the borosilicate glass, which is the raw material for the glass tube. Volatilized alkaline components such as alkaline borate adhere to the vicinity of the bottom of the inner wall of the vial and cause a processing deterioration region.
  • the modified glass base material 2 is a modified glass base material having a modified layer 4 on the surface of at least a part of the glass base material 2, and the modified layer 4 is a glass. It is in the region from the surface 2a of the base material 2 to a predetermined depth d1 and has a microcrystal structure at least in a part thereof.
  • the glass substrate 2 includes a modified layer 4 and a region 5 deeper than the modified layer 4.
  • the modified layer 4 is a region from the outermost surface to a predetermined depth d1 in addition to the outermost surface (surface 2a on the film side of FIG. 1) of the glass base material 2.
  • the predetermined depth d1 from the outermost surface is preferably a depth of 100 nm from the surface 2a of the glass base material 2 in the depth direction D, and a depth of 50 nm from the surface 2a of the glass base material 2 in the depth direction D.
  • the depth is 20 nm from the surface 2a of the glass base material 2 in the depth direction D, and the depth is 10 nm from the surface 2a of the glass base material 2 in the depth direction D.
  • the depth direction D is a direction from the surface 2a on the coating side of the glass substrate 2 toward the surface (not shown) on the side opposite to the coating side.
  • the glass base material 2 is a vial
  • the depth direction D is the direction from the inner wall surface to the outer wall surface.
  • the modified layer 4 contains at least 1 to 8% by mass of B 2 O 3 and 1 to 6% by mass of Na 2 O, and further contains 80% by mass or more of SiO 2 in terms of oxide mass%. It is preferable to have.
  • the modified layer 4 contains at least 2 to 6% by mass of B 2 O 3 and 2 to 4% by mass of Na 2 O, and further contains 90% by mass or more of SiO 2 in terms of oxide mass%. More preferably.
  • the composition of the modified layer 4 is, for example, mass% of the surface composition (atomic composition percentage) analyzed by XPS (X-ray photoelectron spectroscopy) in terms of each oxide.
  • the modified layer 4 contains carbon. Adhesion to the film 3, particularly a film containing a carbon element in the composition, can be further improved.
  • the carbon content of the modified layer 4 is preferably 1 to 15 atomic% (atomic%), more preferably 1 to 11 atomic%, still more preferably 2 to 10 atomic%, and 3 It is even more preferably ⁇ 8 atomic%, and particularly preferably 4-8 atomic%.
  • microcrystal structure For the microcrystal structure, for example, a cross section of a glass substrate is observed by TEM (transmission electron microscope). The microcrystalline structure is a sub-nanometer-sized, evenly spaced array structure.
  • the portion having a microcrystal structure is a portion in which crystal grains having a smaller particle size are arranged as compared with the portion surrounding the portion.
  • the glass component is crystallized.
  • NaBCO 3 , KBCO 3 , (Na, K) AlBCO 3 which mainly contains Na and K, C, B, etc. as components, It is presumed that (Na, K) CO 3 , Na 2 CO 3 , Na 2 O, etc. are crystallized.
  • the average particle size of the crystal grains in the microcrystal structure is preferably 1 to 10 nm, more preferably 1 to 5 nm. The average particle size was determined by TEM observation, but it may also be determined by XRD (X-ray diffraction, X-ray diffraction), SAXS (X-ray small-angle scattering, small angle X-ray scattering).
  • the microcrystal structure contains carbon. Adhesion with a film, particularly a film containing a carbon element in the composition, can be further improved.
  • the region 5 deeper than the modified layer 4 is a region continuous with the modified layer 4 in the depth direction D.
  • the region 5 deeper than the modified layer 4 may include a surface (not shown) of the glass substrate 2 opposite to the film 3 side. There may be no boundary between the modified layer 4 and the region 5 deeper than the modified layer 4, for example, the composition of the glass is inclined between the modified layer 4 and the region 5 deeper than the modified layer 4. It may have a composition.
  • the film 3 includes a form containing a carbon element in the composition.
  • the film 3 is a silicon-free diamond-like carbon film.
  • the diamond-like carbon film is also referred to as a diamond-like carbon film, a DLC film, or an amorphous carbon film, and is a hydrogenated amorphous carbon film containing at least a carbon atom and a hydrogen atom.
  • the film thickness is preferably 1 to 70 nm, more preferably 2 to 60 nm. If the film thickness is less than 1 nm, it may be difficult to form the film uniformly without defects, and if it exceeds 70 nm, peeling may occur or coloring may exceed the permissible range.
  • the film which is a silicon-free diamond-like carbon film is a silicon-free and fluorine-containing diamond-like carbon film (hereinafter, may be referred to as "F-DLC film”), or silicon. It includes a form of a diamond-like carbon film (hereinafter, may be simply referred to as “DLC film”) which is non-containing and does not contain fluorine.
  • the fluorine-containing diamond-like carbon film is also referred to as a fluorinated amorphous carbon film.
  • the film 3 may be a silicon-containing diamond-like carbon film.
  • the film 3 may be a silicon oxide-based film made from organic silane or siloxane as a raw material.
  • the organic silane and siloxane are not particularly limited, and include hexamethyldisiloxane, hexamethylsilazane, tetraethoxysilane, tetramethoxysilane, and tetramethylsilane.
  • the film 3 may be a non-crystalline fluororesin film.
  • the fluororesin is not particularly limited, but includes polytetrafluoroethylene and perfluoroalkoxyalkane. More preferably, the fluororesin is a non-crystalline fluororesin having transparency in a wide wavelength range of ultraviolet, visible, and near infrared. Specifically, the non-crystalline fluororesin is Cytop (registered trademark) in which perfluoro (4-vinyloxy-1-butene) is cyclized and polymerized.
  • the lubricity is excellent, the contact angle with the water-based contents is large, and the suppression of aggregation (adsorption) of proteins and the like, which are active ingredients of pharmaceuticals, is improved.
  • the method for producing the coated glass 1 according to the present embodiment is the method for producing the coated glass in which the film 3 is formed on at least a part of the surface 2a of the glass substrate 2 as shown in FIG.
  • a modification step in which a region from the surface 2a on the side where the film 3 is provided to a predetermined depth d1 is used as the modified layer 4, and a film 3 is formed on the surface 2a of the glass substrate 2 on which the modified layer 4 is formed.
  • the reforming step includes (i) burning a flame generated by burning a lower hydrocarbon gas in the presence of oxygen gas on the surface 2a on the side where the film 3 of the glass substrate 2 is provided from the burner.
  • the step of applying the high temperature gas treatment to the surface 2a on the side where the film 3 of No. 2 is provided includes at least one step of (i) to (iii).
  • the surface treatment in the reforming step includes plasma treatment or heat treatment. Further, in the plasma treatment, (i) a flame generated by burning a lower hydrocarbon gas in the presence of oxygen gas is ejected from the burner on the surface 2a on the side where the film 3 of the glass substrate 2 is provided, and is ejected from the burner.
  • the process of applying a plasma-rich portion of the flame (hereinafter, may be referred to as the reforming step (i)) is included.
  • the heat treatment includes a laser treatment (hereinafter, may be referred to as a modification step of (ii)) applied to the surface 2a on the side where the film 3 of the glass base material 2 is provided (iii) and the glass base material 2 (iii).
  • High-temperature gas treatment hereinafter, may be referred to as a modification step of (iii)) applied to the surface 2a on the side where the film 3 is provided is included.
  • the reforming step (i) is a step of ejecting a flame generated by burning a lower hydrocarbon gas in the presence of oxygen gas from a burner and applying the flame to the glass surface of the glass base material 2.
  • the lower hydrocarbon gas is, for example, city gas, propane, butane, natural gas.
  • the plasma-rich portion of the flame applied to the surface 2a of the glass substrate 2 is preferably a combustion flame rich in hydronium ions generated as a result of combustion.
  • the flame is applied to the inner wall of the vial, and preferably the flame is applied to the inner wall of the vial near the bottom (processing deterioration region exists). It is preferable to hit the place to be used.
  • the temperature of the surface of the glass substrate 2 opposite to the surface 2a on the side where the film 3 is provided is measured by a non-contact thermometer.
  • a non-contact thermometer is preferably a thermography type thermometer.
  • the specific temperature range is preferably in the range of, for example, 650 ° C to 800 ° C, preferably 670 to 780. It is more preferably in the range of ° C.
  • the laser treatment is performed by using a CO 2 (carbon dioxide) laser, a YAG (Yttrium aluminum garnet) laser, or a UF (Ultra Fast) laser laser beam as the glass base material 2. It hits the surface.
  • CO 2 carbon dioxide
  • YAG Yttrium aluminum garnet
  • UF Ultra Fast
  • the superheated steam of the superheated steam generator is applied to the surface of the glass base material 2.
  • the reforming step may be performed by only one of the reforming step of (i), the reforming step of (ii) and the reforming step of (iii), or two or more of them. You may.
  • the combination of two or more types is, for example, a combination of (i) and (ii), a combination of (i) and (iii), a combination of (ii) and (iii), or a combination of (i) and (ii). It is a combination with (iii).
  • the raw material gas containing at least a hydrocarbon gas is converted into plasma, and the film 3 is formed on the surface 2a on the side where the film 3 of the glass base material 2 is provided. It is preferable that the step is to form an amorphous film containing at least carbon. Since the film 3 contains a carbon element in the composition, it has excellent lubricity (sliding property), a large contact angle with water-based contents, and improvement in suppression of aggregation (adsorption) of proteins and the like, which are active ingredients of pharmaceuticals. To do.
  • the film forming step for example, it is preferable to form an amorphous film containing carbon using a high-frequency film forming apparatus.
  • the carbon-containing amorphous film is, for example, the silicon-free diamond-like carbon film or the silicon-containing diamond-like carbon film described above.
  • the source gas is, for example, acetylene, methane, ethylene, propane, benzene, ethane hexafluoride, C 6 F 10 (CF 3 ) 2 , C 6 F 6 , CF 4 (methane tetrafluoride) and C 3 F 8 (propane octafluoride).
  • the raw material gas is, for example, C 3 H 10 Si (trimethylsilane) or C 4 H 12 Si (tetramethylsilane) an organosilicon gas such as.
  • the raw material gas only one kind may be used alone, or two or more kinds may be used in combination.
  • FIG. 3 shows a schematic view of a high-frequency inner surface film forming apparatus for a vial.
  • the high-frequency inner surface film forming apparatus 100 for a vial shown in FIG. 3 has raw material gas input systems 31, 32, 33.
  • Each raw material gas input system has a stop valve 34 and a gas flow meter 35, and is connected to a pipe 36 for one mixed gas.
  • FIG. 3 shows a form in which there are three raw material gas input systems, more may be provided.
  • the pipe 36 is connected to a conductive pipe 43a which is arranged in the vacuum chamber 38 and also serves as an internal electrode and a gas introduction pipe.
  • the vacuum chamber 38 is grounded and the vacuum gauge 37 is connected. Further, in the vacuum chamber 38, the vial bottle (glass base material) 2, the external electrode 45 arranged so as to surround the side surface and the bottom surface of the vial bottle 2, and the dielectric material arranged so as to surround the external electrode 45. An outer case 48 made of a conductive material that surrounds the member 46 and the dielectric member 46 and stabilizes the plasma conversion of the raw material gas is arranged.
  • the vacuum chamber 38 is connected to the exhaust pipe 49. Further, the external electrode 45 is connected to the auto-matching device 40 so as not to conduct with the vacuum chamber 38.
  • the auto matching device 40 is connected to the high frequency power supply 41.
  • the high frequency is, for example, 1 to 100 MHz, preferably 13.56 MHz.
  • the raw material gas blown out from the conductive pipe 43a flows inside the vial bottle 2, is discharged from the tip port thereof, passes through the space 48a provided on the upper side inside the outer case 48, and then passes through the space 48a provided on the upper side of the outer case 48, and then the vacuum chamber 38. Reach within the interior space of. After that, it is exhausted by the exhaust pipe 49.
  • Glass surface composition analysis The composition of the glass surface (around 3 to 5 mm from the bottom) of the inner wall of the vial before and after the plasma treatment was analyzed by XPS (AXIS-NOVA, manufactured by KRATOS). Table 2 shows the analysis results of the compound composition on the surface of the vial before and after the plasma treatment.
  • FIG. 4A is a TEM image of a cross section of the modified glass substrate after the modification step and before the film formation step of Example 1, and FIG. 4B is a partially enlarged image of (a). is there.
  • the upper part of the modified layer is a protective film applied for TEM analysis.
  • FIGS. 4 (a) and 4 (b) it was confirmed that the modified layer had a microcrystal structure at least in part.
  • FIG. 4B a process of adding a dotted line to a portion that seems to be a boundary between the modified layer and a region deeper than the modified layer was performed.
  • FIG. 5 is a TEM image of a cross section of the coated glass after the film forming step of Example 1. As shown in FIG. 5, it was confirmed that the coated glass had a modified layer in a region from the surface of the glass substrate on the film side to a predetermined depth. The thickness of the modified layer was about 20 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

本開示の目的は、水系内容物との接触角が大きく、透明性が高く、潤滑性(摺動性)が優れ、ガラスのシリカ成分の剥離(デラミネーション)が生じにくく、内容物へのガラス由来の成分(ケイ素、ホウ素、ナトリウム、カリウム、アルミニウム)の溶出が少なく、医療用のガラス容器に適応する場合、医薬品の有効成分であるタンパク質の凝集(吸着)が生じにくく、耐熱性があり、かつ、皮膜の剥離が抑制されることを実現した皮膜付きガラス及びその製造方法並びに改質されたガラス基材を提供することである。本開示に係る皮膜付きガラス(1)は、ガラス基材(2)と、ガラス基材(2)の少なくとも一部の表面(2a)に設けられた皮膜(3)と、を有する皮膜付きガラスにおいて、ガラス基材(2)の皮膜(3)側の表面(2a)から所定の深さ(d1)までの領域は改質層(4)であり、改質層(4)は、少なくとも一部に微結晶構造を有する。

Description

皮膜付きガラスおよびその製造方法並びに改質されたガラス基材
 本発明は、皮膜付きガラスおよびその製造方法並びに改質されたガラス基材に関し、特に化学的、熱力学的および物理的に安定な皮膜が形成された皮膜付きガラスおよびその製造方法に関する。皮膜付きガラスのガラス基材には、例えば板状または管状のガラス、ガラス容器、ガラス製の医療器具などが含まれる。
 ガラス容器の成形工程において、ガラス管が加工されて、底部と口部とを有する容器形状とされる。この加工において、ガラス管が加熱されて底部と口部とに変形される。ガラス管が加熱されると、ガラス中に含まれるアルカリ成分などが揮発し、ガラス容器が冷却される過程において揮発したアルカリ成分などがガラス容器の内壁に凝縮して付着する。
 これらのガラスより滲出または揮発したアルカリ含有物がガラス容器の内壁に多数の小滴となって凝縮固着することで、底部に近い内壁に加工劣化領域がベルト状に生じることが知られている。特に液体の保存に用いられるガラス容器においては、加工劣化領域から溶出するアルカリ等によって、液性が塩基性となることが知られている。このことは、特に医療用のガラス容器においては、収容される薬剤の安定性を損ねることにつながるため深刻である。
 また、加工劣化領域においては、内容物に含まれる水分子の接触によりガラスの加水分解が進行することで、ガラス自体が脆弱となり、ガラスのシリカ成分の剥離(デラミネーション)が生じ、内容物へのガラス由来の成分(ケイ素、ホウ素、ナトリウム、カリウム、アルミニウム)の溶出することも広く知られている。
 そこで、従来から内容物と接触するガラス表面からアルカリ化合物量の溶出を低減させるための試みがなされてきた。これは、ガラス容器の成形後の処理によって行われることが通常であり、例としてガラス容器の内壁に存在するアルカリ成分と硫酸塩等とを反応させて硫酸ソーダ(NaSO)とし、その硫酸ソーダを水洗により除去するサルファー処理法や、ガラス容器の内壁からアルカリ成分の溶出を抑制する方法として、ガラス管から形成されたガラス容器を回転させながら、その内壁をポイントバーナーの酸素‐ガス炎でファイアブラスト処理して加工劣化領域を除去することが知られている(例えば、特許文献1を参照。)。また、ガラス容器の内壁の加水分解性を抑制する方法として、ガラス管から形成されたガラス容器を回転させながら、その内壁をCOレーザなどによる処理して加工劣化領域を除去することが知られている(例えば、特許文献2又は特許文献3を参照。)。
 また他方では、ガラス表面に低反応性の皮膜を形成する方法(例えば、特許文献4を参照。)などアルカリ成分の絶対量を低減することなく、シリコンなどの無機または有機素材のガラス表面の皮膜によって、ガラス表面を内容物から隔絶する方法も知られている。この方法では、皮膜の組成を適宜選択することで、処理後のガラス容器にさらなる付加価値を持たせることができる。例えば、疎水性の皮膜を形成することで、極性内容物の内壁への付着性を低減させることができるため、容器への残留性を低下させることが可能となる。これは、特に近年需要が高まっている、タンパク質製剤などの希少で高価な薬剤を収容する際に優れた利点となる。
国際公開第2006/123621号公報 DE 10 2014 214 083 B4公報 特開2019-55896号公報 特開2007-076940号公報
 特許文献1~3の方法はアルカリ化合物量の溶出を低減させるのに有効であるが、加工処理後のガラス容器に内容物の付着性低減などの付加価値を持たせることが求められてきた。そこで、特許文献4のようにガラス表面に皮膜を形成する方法を適用することが考えられる。しかしながら、特許文献4のようにガラス表面に皮膜を形成する方法では、次の問題がある。通常のガラス表面は無機相であるため、多くの場合有機相である皮膜との接着性が低く、皮膜が形成されにくいという問題が一般的に知られている。特に低摩擦性あるいは疎水性を有する皮膜のガラス表面上での形成は困難である。
 そこで、安定した皮膜の形成を得るために、一般的にはガラス表面上にガラス層と皮膜の双方に親和性を持つシランカップリング剤などのプライマーを塗布した上で皮膜を形成する方法が行われている。しかし、処理工数が増加するだけでなく、シランカップリング剤の熱安定性の低さ故に、乾熱滅菌、蒸気滅菌などの高温条件に曝される医療用容器への応用には適さないという欠点がある。
 また、ガラス表面上に皮膜が形成された場合でも、皮膜としての安定性が低いと、皮膜に小さな孔(ピンホール)が生じやすいという問題がある。皮膜にピンホールが生じると、その部分から皮膜が徐々に剥離し皮膜が失われるだけでなく、容器内容物への異物混入の原因となる。
 そこで本開示の目的は、水系内容物との接触角が大きく、透明性が高く、潤滑性(摺動性)が優れ、ガラスのシリカ成分の剥離(デラミネーション)が生じにくく、内容物へのガラス由来の成分(ケイ素、ホウ素、ナトリウム、カリウム、アルミニウム)の溶出が少なく、医療用のガラス容器に適応する場合、医薬品の有効成分であるタンパク質の凝集(吸着)が生じにくく、耐熱性があり、かつ、皮膜の剥離が抑制されることを実現した皮膜付きガラス及びその製造方法並びに改質されたガラス基材を提供することである。
 本発明者らはこれらの課題を鑑みて鋭意検討したところ、あらかじめガラス基材のガラス表面を改質することで上記課題が解決されることを見出し、本発明を完成させた。すなわち、本発明に係る皮膜付きガラスは、ガラス基材と、該ガラス基材の少なくとも一部の表面に設けられた皮膜と、を有する皮膜付きガラスにおいて、前記ガラス基材の前記皮膜側の表面から所定の深さまでの領域は改質層であり、該改質層は、少なくとも一部に微結晶構造を有することを特徴とする。
 本発明に係る皮膜付きガラスは、ガラス基材と、該ガラス基材の少なくとも一部の表面に設けられた皮膜と、を有する皮膜付きガラスにおいて、前記ガラス基材の前記皮膜側の表面から所定の深さまでの領域は改質層であり、該改質層のBの含有量は、酸化物換算の質量%で、前記改質層よりも深い領域のそれよりも少なく、かつ、前記改質層のNaOの含有量は、酸化物換算の質量%で、前記改質層よりも深い領域のそれよりも少なく、前記改質層は、酸化物換算の質量%で、少なくとも、Bを1~8質量%、NaOを1~6質量%、及びSiOを80質量%以上含み、前記改質層よりも深い領域は、酸化物換算の質量%で、少なくとも、Bを9~15質量%、NaOを3~9質量%、及びSiOを70質量%以上含むことを特徴とする。
 本発明に係る皮膜付きガラスでは、前記微結晶構造が炭素を含むことが好ましい。皮膜、特に炭素元素を組成中に含む皮膜との密着性をより向上させることができる。
 本発明に係る皮膜付きガラスでは、前記改質層が炭素を含むことが好ましい。皮膜、特に炭素元素を組成中に含む皮膜との密着性をより向上させることができる。
 本発明に係る皮膜付きガラスでは、前記皮膜が、ケイ素非含有ダイヤモンド様炭素膜、ケイ素含有ダイヤモンド様炭素膜、酸化ケイ素系膜、又は非結晶性フッ素樹脂膜であることが好ましい。これらの皮膜とすることで、潤滑性(摺動性)が優れ、水系内容物との接触角が大きく、医薬品の有効成分であるタンパク質等の凝集(吸着)の抑制が向上する。また、酸化ケイ素系膜とすることで、透明性により優れた皮膜とすることができる。
 本発明に係る皮膜付きガラスでは、前記皮膜の膜厚は、1~70nmである形態を包含する。
 本発明に係る皮膜付きガラスでは、前記ガラス基材は、膨張係数が3.2×10-6/K以上3.3×10-6/K以下のホウケイ酸ガラスであるか、又は膨張係数が4.8×10-6/K以上5.6×10-6/K以下のホウケイ酸ガラスである形態を包含する。
 本発明に係る皮膜付きガラスでは、前記ガラス基材は、バイアル瓶、注射筒、針付きシリンジ、アンプル又はカートリッジタイプシリンジ(単にカートリッジともいう)である形態を包含する。
 本発明に係る皮膜付きガラスの製造方法は、ガラス基材の少なくとも一部の表面に皮膜を形成する皮膜付きガラスの製造方法において、前記ガラス基材の前記皮膜が設けられる側の表面から所定の深さまでの領域を改質層とする改質工程と、前記改質層を形成した前記ガラス基材の前記表面上に前記皮膜を形成する成膜工程と、を含み、前記改質工程は、(i)前記ガラス基材の前記皮膜が設けられる側の表面に酸素ガス存在下で低級炭化水素ガスを燃焼して生じる炎をバーナーから噴出させ、該バーナーから噴出される炎のうちプラズマに富む部分を当てる工程、(ii)前記ガラス基材の前記皮膜が設けられる側の表面にレーザ処理を施す工程、及び(iii)前記ガラス基材の前記皮膜が設けられる側の表面に高温ガス処理を施す工程、の(i)~(iii)の少なくともいずれか一つの工程を含むことを特徴とする。
 本発明に係る皮膜付きガラスの製造方法では、前記成膜工程は、少なくとも炭化水素系ガスを含む原料ガスをプラズマ化して、前記ガラス基材の前記皮膜が設けられる側の表面に前記皮膜として少なくとも炭素を含む非晶質皮膜を形成する工程であることが好ましい。皮膜が炭素元素を組成中に含むことで、潤滑性(摺動性)が優れ、水系内容物との接触角が大きく、医薬品の有効成分であるタンパク質等の凝集(吸着)の抑制が向上する。
 本発明に係る皮膜付きガラスの製造方法では、前記改質工程では、前記ガラス基材の前記皮膜が設けられる側の表面とは反対側の表面の温度を非接触型の温度計によって測定し、その測定される温度が特定の温度範囲内とすることを含むことが好ましい。温度管理をより確実にすることができ、改質をより確実に行うことができる。
 本発明に係る改質されたガラス基材は、ガラス基材の少なくとも一部の表面に改質層を有する改質されたガラス基材であって、前記改質層は、前記ガラス基材の前記表面から所定の深さまでの領域にあり、かつ、少なくとも一部に微結晶構造を有することを特徴とする。
 本開示によれば、水系内容物との接触角が大きく、透明性が高く、潤滑性(摺動性)が優れ、ガラスのシリカ成分の剥離(デラミネーション)が生じにくく、内容物へのガラス由来の成分(ケイ素、ホウ素、ナトリウム、カリウム、アルミニウム)の溶出が少なく、医療用のガラス容器に適応する場合、医薬品の有効成分であるタンパク質の凝集(吸着)が生じにくく、耐熱性があり、かつ、皮膜の剥離が抑制されることを実現した皮膜付きガラス及びその製造方法並びに改質されたガラス基材を提供することができる。
本実施形態に係る皮膜付きガラスの概略断面図である。 本実施形態に係る改質されたガラス基材の概略断面図である。 バイアル瓶用の高周波式内面成膜装置の概略図である。 実施例1の改質工程後成膜工程前の改質されたガラス基材の断面のTEM画像である。 図4(a)を部分拡大した画像である。 実施例1の成膜工程後の皮膜付きガラスの断面のTEM画像である。
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
 図1は、本実施形態に係る皮膜付きガラスの概略断面図である。本実施形態に係る皮膜付きガラス1は、ガラス基材2と、ガラス基材2の少なくとも一部の表面2aに設けられた皮膜3と、を有する皮膜付きガラスにおいて、ガラス基材2の皮膜3側の表面2aから所定の深さd1までの領域は改質層4であり、改質層4は、少なくとも一部に微結晶構造を有する。
 また、本実施形態に係る皮膜付きガラス1は、ガラス基材2と、ガラス基材2の少なくとも一部の表面2aに設けられた皮膜3と、を有する皮膜付きガラスにおいて、ガラス基材2の皮膜3側の表面2aから所定の深さd1までの領域は改質層4であり、改質層4のBの含有量は、酸化物換算の質量%で、改質層4よりも深い領域5のそれよりも少なく、かつ、改質層4のNaOの含有量は、酸化物換算の質量%で、改質層4よりも深い領域5のそれよりも少なく、改質層4は、酸化物換算の質量%で、少なくとも、Bを1~8質量%、NaOを1~6質量%、及びSiOを80質量%以上含み、改質層4よりも深い領域5は、酸化物換算の質量%で、少なくとも、Bを9~15質量%、NaOを3~9質量%、及びSiOを70質量%以上含む。改質層4は、少なくとも一部に微結晶構造を有する場合を含むことが好ましい。
(ガラス基材)
 本実施形態に係る皮膜付きガラス1では、ガラス基材2は、膨張係数が3.2×10-6/K以上5.6×10-6/K以下のホウケイ酸ガラスであることが好ましい。本実施形態に係る皮膜付きガラス1では、ガラス基材2は、膨張係数が3.2×10-6/K以上3.3×10-6/K以下のホウケイ酸ガラスであるか、又は膨張係数が4.8×10-6/K以上5.6×10-6/K以下のホウケイ酸ガラスである形態を包含する。このようなガラス基材2は、膨張係数が小さく、アルカリ溶出性が低いため好ましい。具体的には、NSV51(ニプロファーマパッケージングアメリカスCorp.社製)、W33(ニプロファーマパッケージングアメリカスCorp.社製)、BS(日本電気硝子株式会社製)、フィオラックス(登録商標)(ショットAG社製)、デュラン(登録商標)(ショットAG社製)などである。それぞれのガラスの組成(質量%)のカタログ値を表1に示す。表1において、NSV51についてNaO,KOの含有量は、NaO及びKOの合計含有量が示されている。W33又はデュランについても同様である。また、表1において「-」は当該組成物を含有しないことを示す。
Figure JPOXMLDOC01-appb-T000001
 ガラス基材2は、膨張係数3.2×10-6/K以上3.3×10-6/K以下のホウケイ酸ガラスであり、皮膜3との界面であるガラス基材2の表面2aが、少なくともBを1~6質量%、NaOを1~6質量%、Alを1~2質量%を含み、さらにSiOを80質量%以上含むことが好ましい。
 また、ガラス基材2は、膨張係数4.8×10-6/K以上5.5×10-6/K以下のホウケイ酸ガラスであり、皮膜3との界面であるガラス基材2の表面2aが、少なくともBを1~6質量%、NaOを1~6質量%、Alを5~6.5質量%含み、さらにSiOを80質量%以上含むことが好ましい。
 ガラス基材2は、透明色またはアンバー色であり、透光性を有することが好ましく、具体的には、波長590~610nmまたは290~450nmにおける透過率が45%以上であることが好ましく、60%以上であることがより好ましい。透明性試験の評価方法は、「日本薬局方(第17改訂)7.容器・包装材料試験法 7.01注射剤用ガラス容器試験法(5)着色容器の遮光性試験」に準ずる。
 ガラス基材2は、例えば板状または管状のガラス、ガラス容器、ガラス製の医療器具などが含まれる。本実施形態に係る皮膜付きガラス1では、ガラス基材2は、バイアル瓶、注射筒(シリンジ)、針付きシリンジ、アンプル又はカートリッジタイプシリンジ(単にカートリッジともいう)である形態を包含する。
 ガラス基材2が管状のガラス、ガラス容器又はガラス製の医療器具であるとき、皮膜3が形成される面であるガラス基材2の少なくとも一部の表面(ガラス基材2の皮膜3側の表面)2aは、管状のガラスの内壁、ガラス容器の内壁又はガラス製医療器具の内表面であることが好ましい。これによって、極性内容物の内壁への付着性を低減させることができるため、容器への残留性を低下させることが可能となる。
(バイアル)
 バイアルは、底が封止された概ね円筒形状の外形の容器であり、底部、側面部、首部、口部、内壁および外壁を有する。バイアルは、内部空間を有し、口部の一端において開口する。底部は、平らな円盤状の形状であり、底部の縁において側面部と連続する。側面部は、円筒形状である。側面部は、軸線方向において、外径及び内径が一定に成形されている。首部は、側面部に連続し、側面部からテーパー状に狭まる。首部の内径及び外径は、側面部より狭く成形されている。口部は、首部に連続し、縁部で区画される開口を有する。口部の内径及び外径は、側面部より狭く成形されている。口部の外径は、首部の外径において最も狭く形成された箇所より広く成形されている。内壁は、底部、側面部、首部及び口部における内部空間側のガラス表面であり、一方、外壁は、内部空間側のガラス表面に対向する外表面である。
(バイアルの製造方法)
 一例として、一般的な縦型成型機を用いて、垂直に保持されて回転するガラス管を加熱することによりバイアルが成形される。ガラス管は、バーナーの炎で加熱されることにより軟化する。ガラス管の一部が軟化変形することにより、バイアルの底部及び口部がガラス管から成形される。底部が成形される際に、ガラス管の原料であるホウケイ酸ガラスからアルカリホウ酸塩等が揮発する。揮発したアルカリホウ酸塩等のアルカリ成分は、バイアルの内壁における底部近傍に付着して加工劣化領域を生じさせる。
(改質されたガラス基材)
 本実施形態に係る改質されたガラス基材2は、ガラス基材2の少なくとも一部の表面に改質層4を有する改質されたガラス基材であって、改質層4は、ガラス基材2の表面2aから所定の深さd1までの領域にあり、かつ、少なくとも一部に微結晶構造を有する。
(改質層)
 ガラス基材2は、改質層4と改質層4よりも深い領域5とを包含する。改質層4は、ガラス基材2の最表面(図1の皮膜側の表面2a)上に加えて、最表面から所定の深さd1までの領域である。最外面から所定の深さd1は、ガラス基材2の表面2aから深さ方向Dに100nmの深さであることが好ましく、ガラス基材2の表面2aから深さ方向Dに50nmの深さであることがより好ましく、ガラス基材2の表面2aから深さ方向Dに20nmの深さであることがさらに好ましく、ガラス基材2の表面2aから深さ方向Dに10nmの深さであることがよりさらに好ましい。ここで、深さ方向Dとは、ガラス基材2の皮膜側の表面2aから皮膜側とは反対側の表面(不図示)へ向かう方向である。例えば、ガラス基材2がバイアル瓶である場合、深さ方向Dは、内壁面から外壁面へ向かう方向である。改質層4は、酸化物換算の質量%で、少なくとも、Bを1~8質量%、NaOを1~6質量%を含み、さらにSiOを80質量%以上含む範囲であることが好ましい。改質層4は、酸化物換算の質量%で、少なくとも、Bを2~6質量%、NaOを2~4質量%を含み、さらにSiOを90質量%以上含む範囲であることがより好ましい。改質層4の組成は、例えば、XPS(X線光電子分光法)によって分析され、その分析される表面組成(原子組成百分率)の各原子酸化物に換算した質量%である。
 本実施形態に係る皮膜つきガラス1では、改質層4が炭素を含むことが好ましい。皮膜3、特に炭素元素を組成中に含む皮膜との密着性をより向上させることができる。改質層4の炭素含有量は、1~15原子%(atomic%)であることが好ましく、1~11原子%であることがより好ましく、2~10原子%であることが更に好ましく、3~8原子%であることがより更に好ましく、4~8原子%であることが特に好ましい。
(微結晶構造)
 微結晶構造は、例えば、ガラス基材の断面をTEM(transmission electron microscope)で観察される。微結晶構造は、サブナノメートルサイズの均等な間隔の配列構造である。
 微結晶構造を有する部分は、当該部分の周囲の部分と比較して粒径のより小さな結晶粒が配列した部分である。微結晶構造では、少なくともガラス成分が結晶化しているものと推測され、具体的にはNaを主体とK,C,B等を成分として含むNaBCO,KBCO,(Na,K)AlBCO、(Na,K)CO,NaCO,NaO等が結晶化しているものと推測される。微結晶構造における結晶粒の平均粒径は、1~10nmであることが好ましく、1~5nmであることがより好ましい。平均粒径は、TEMの観察によって求めたが、XRD(X線回折、X‐ray diffraction)、SAXS(X線小角散乱、small angle X-ray scattering)によって求めてもよい。
 本実施形態に係る皮膜付きガラス1では、微結晶構造が炭素を含むことが好ましい。皮膜、特に炭素元素を組成中に含む皮膜との密着性をより向上させることができる。
(改質層4よりも深い領域5)
 改質層4よりも深い領域5は、深さ方向Dにおいて改質層4に連続する領域である。改質層4よりも深い領域5は、ガラス基材2の皮膜3側とは反対側の表面(不図示)を含んでいてもよい。改質層4と改質層4よりも深い領域5との間には境界がなくてもよく、例えばガラスの組成が改質層4と改質層4よりの深い領域5との間で傾斜組成をなしていてもよい。
(皮膜)
 皮膜3は、炭素元素を組成中に含む形態を包含する。一例として、皮膜3は、ケイ素非含有のダイヤモンド様炭素膜である。ここで、ダイヤモンド様炭素膜とは、ダイヤモンドライクカーボン膜、DLC膜、非晶質炭素膜とも称され、炭素原子と水素原子とを少なくとも含む水素化非晶質炭素膜である。
 皮膜は、その膜厚が1~70nmであることが好ましく、2~60nmであることがより好ましい。膜厚が1nm未満であると皮膜を欠陥なく均一に成膜することが困難となるおそれがあり、70nmを超えると剥離を生じたり、着色が許容範囲を超えたりするおそれがある。
 ここでケイ素非含有のダイヤモンド様炭素膜である皮膜は、ケイ素非含有かつフッ素含有のダイヤモンド様炭素膜(以降、「F‐DLC膜」と表記する場合がある。)であるか、または、ケイ素非含有かつフッ素非含有のダイヤモンド様炭素膜(以降、単に「DLC膜」と表記する場合がある。)である形態を包含する。なお、フッ素含有のダイヤモンド様炭素膜はフッ素化非晶質炭素膜ともいう。
 一例として、皮膜3は、ケイ素含有ダイヤモンド様炭素膜であってもよい。
 一例として、皮膜3は、有機シランまたはシロキサンを原料とする酸化ケイ素系膜であってもよい。有機シラン、シロキサンは、特に限定されないが、ヘキサメチルジシロキサン、ヘキサメチルシラザン、テトラエトキシシラン、テトラメトキシシラン、およびテトラメチルシランを包含する。
 一例として、皮膜3は、非結晶性フッ素樹脂膜であってもよい。フッ素樹脂は、特に限定されないが、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカンを包含する。より好ましくは、当該フッ素樹脂は、紫外、可視、近赤外の幅広い波長範囲において透明性を有する非結晶性のフッ素樹脂が好ましい。具体的には、非結晶性のフッ素樹脂は、ペルフルオロ(4-ビニルオキシ-1-ブテン)を環化重合させたサイトップ(登録商標)である。
 前記の例示した皮膜3を設けることで、潤滑性(摺動性)が優れ、水系内容物との接触角が大きく、医薬品の有効成分であるタンパク質等の凝集(吸着)の抑制が向上する。
(皮膜付きガラスの製造方法)
 本実施形態に係る皮膜付きガラス1の製造方法は、図1に示すようにガラス基材2の少なくとも一部の表面2aに皮膜3を形成する皮膜付きガラスの製造方法において、ガラス基材2の皮膜3が設けられる側の表面2aから所定の深さd1までの領域を改質層4とする改質工程と、改質層4を形成したガラス基材2の表面2a上に皮膜3を形成する成膜工程と、を含み、改質工程は、(i)ガラス基材2の皮膜3が設けられる側の表面2aに酸素ガス存在下で低級炭化水素ガスを燃焼して生じる炎をバーナーから噴出させ、バーナーから噴出される炎のうちプラズマに富む部分を当てる工程、(ii)ガラス基材2の皮膜3が設けられる側の表面2aにレーザ処理を施す工程、及び(iii)ガラス基材2の皮膜3が設けられる側の表面2aに高温ガス処理を施す工程、の(i)~(iii)の少なくともいずれか一つの工程を含む。
(改質工程)
 改質工程における表面処理は、プラズマ処理または加熱処理が包含される。さらに当該プラズマ処理は、(i)ガラス基材2の皮膜3が設けられる側の表面2aに酸素ガス存在下で低級炭化水素ガスを燃焼して生じる炎をバーナーから噴出させ、バーナーから噴出される炎のうちプラズマに富む部分を当てる処理(以降、(i)の改質工程ということもある。)が包含される。当該加熱処理は、(ii)ガラス基材2の皮膜3が設けられる側の表面2aに施すレーザ処理(以降、(ii)の改質工程ということもある。)と(iii)ガラス基材2の皮膜3が設けられる側の表面2aに施す高温ガス処理(以降、(iii)の改質工程ということもある。)とが包含される。
 一例として、(i)の改質工程は、酸素ガス存在下で低級炭化水素ガスを燃焼して生じる炎をバーナーから噴出し、炎をガラス基材2のガラス表面に当てる工程である。低級炭化水素ガスは、例えば都市ガス、プロパン、ブタン、天然ガスである。また、ガラス基材2の表面2aに当てる炎のうちプラズマに富む部分は、燃焼の結果生じる、ハイドロニウムイオンに富む燃焼火炎であることが好ましい。
 (i)の改質工程は、ガラス基材2がガラス容器のバイアルである場合には、当該炎をバイアルの内壁に当て、好ましくは、炎をバイアルの内壁における底部近傍(加工劣化領域が存在する箇所)に当てることが好ましい。
 本実施形態に係る皮膜付きガラス1の製造方法では、改質工程では、ガラス基材2の皮膜3が設けられる側の表面2aとは反対側の表面の温度を非接触型の温度計によって測定し、その測定される温度が特定の温度範囲内とすることを含むことが好ましい。温度管理をより確実にすることができ、改質をより確実に行うことができる。非接触型の温度計は、サーモグラフィー型の温度計であることが好ましい。また、ガラス基材2がバイアル瓶である場合、当該反対側の表面は、バイアル瓶の外表面である特定の温度範囲は、例えば650℃~800℃の範囲であることが好ましく、670~780℃の範囲であることがより好ましい。
 さらに一例として、当該(ii)の改質工程において、レーザ処理は、CO(炭酸ガス)レーザ、YAG(Yttrium Aluminium Gernet)レーザ又はUF(Ultra Fast)レーザのレーザ光がガラス基材2のガラス表面に当てられる。
 さらに一例として、当該(iii)の改質工程において、高温ガス処理は、過熱蒸気生成装置の過熱蒸気がガラス基材2の表面に当てられる。
 本実施形態では、改質工程は(i)の改質工程、(ii)の改質工程及び(iii)の改質工程のうちいずれか一種だけを行ってもよいし、二種以上を行ってもよい。二種以上の組合せは、例えば(i)と(ii)との組合せ、(i)と(iii)との組合せ、(ii)と(iii)との組合せ、又は(i)と(ii)と(iii)との組合せである。
(成膜工程)
 本実施形態に係る皮膜付きガラス1の製造方法では、成膜工程は、少なくとも炭化水素系ガスを含む原料ガスをプラズマ化して、ガラス基材2の皮膜3が設けられる側の表面2aに皮膜3として少なくとも炭素を含む非晶質皮膜を形成する工程であることが好ましい。皮膜3が炭素元素を組成中に含むことで、潤滑性(摺動性)が優れ、水系内容物との接触角が大きく、医薬品の有効成分であるタンパク質等の凝集(吸着)の抑制が向上する。
 成膜工程では、例えば、高周波式成膜装置を用いて炭素を含む非晶質皮膜を形成することが好ましい。炭素を含む非晶質皮膜は、例えば、前記したケイ素非含有ダイヤモンド様炭素膜又はケイ素含有ダイヤモンド様炭素膜である。皮膜3がケイ素非含有ダイヤモンド様炭素膜であるとき、原料ガスは、例えば、アセチレン、メタン、エチレン、プロパン、ベンゼン、6フッ化エタン、C10(CF、C、CF(四フッ化メタン)、C(八フッ化プロパン)である。また、皮膜3がケイ素含有ダイヤモンド様炭素膜であるとき、原料ガスは、例えば、C10Si(トリメチルシラン)又はC12Si(テトラメチルシラン)などの有機ケイ素ガスである。原料ガスは、一種だけを単独で使用するか、又は二種以上を併用してもよい。
 次に、ガラス基材2がバイアル瓶である例において、成膜工程で使用可能な成膜装置の一例について説明する。図3にバイアル瓶用の高周波式内面成膜装置の概略図を示した。図3に示したバイアル瓶用の高周波式内面成膜装置100は、原料ガス入力系統31,32,33を有する。それぞれの原料ガス入力系統は、ストップバルブ34及びガスフローメーター35を有し、一つの混合ガス用の配管36につながれている。図3では原料ガス入力系統が3つある形態を示したが、さらに多く設けてもよい。配管36は、真空チャンバ38の中に配置されている内部電極とガス導入管を兼ねた導電性パイプ43aにつなげられている。真空チャンバ38は、接地されており、真空ゲージ37が接続されている。また、真空チャンバ38内には、バイアル瓶(ガラス基材)2と、バイアル瓶2の側面と底面を囲むように配置された外部電極45と、外部電極45を取り囲むように配置された誘電体部材46と、誘電体部材46を取り囲み、かつ原料ガスのプラズマ化を安定化させるための導電材からなる外部ケース48が配置されている。真空チャンバ38は、排気用配管49と接続されている。また、外部電極45は、真空チャンバ38と導通しないようにオートマッチング装置40と接続されている。オートマッチング装置40は、高周波電源41に接続されている。高周波の周波数は、例えば、1~100MHzであり、13.56MHzが好ましい。導電性パイプ43aから吹き出された原料ガスは、バイアル瓶2の内部を流れたのち、その先端口から排出され、外部ケース48内の上側に設けられた空間48a内を通過したのち、真空チャンバ38の内部空間内に到達する。その後、排気用配管49によって排気される。
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明は、かかる実施例に何ら限定されるものではない。
(バイアルの作成)
 外径15mm、肉厚1.5mmのホウケイ酸ガラス管BS日本電気硝子社製)から、縦型成型機により底部を成形することで、外径15mm、高さ33mm、口内径7.0mmであって、容量が2.0mLのバイアルX1およびY1を作成した。
 外径15mm、肉厚1.5mmのホウケイ酸ガラス管W33(ニプロファーマパッケージングアメリカスCorp.製)から、縦型成型機により底部を成形することで、外径15mm、高さ33mm、口内径7.0mmであって、容量が2.0mLのバイアルX2およびY2を作成した。
(改質工程)
 上記作成したバイアルX1およびX2の内壁に対して、(i)の改質工程を用いたプラズマ処理を施した。
((i)の改質工程の条件)
 バイアルX1およびX2を保持して回転させながらバイアルの内部空間へポイントバーナーの炎を噴出させて、炎におけるプラズマに富む部分をバイアル内壁に当てながら、炎をバイアルの内壁に走査させ、処理を施した。この処理には、タウンガス(メタン)と酸素の完全燃焼比で構成される混合ガス炎(長さ約10cm)を吹き出す口内径1.4mmのポイントバーナーを用いた。
(ガラス表面の組成分析)
 プラズマ処理前および処理後のバイアルの内壁のガラス表面(底部から3~5mm付近)の組成をXPS(AXIS‐NOVA、KRATOS社製)によって分析した。プラズマ処理前後における、バイアル表面上の化合物組成の分析結果を表2に表す。
Figure JPOXMLDOC01-appb-T000002
(成膜工程)
 バイアル(X1、X2、Y1、Y2)の内表面に成膜を行ったときの条件は、次の通りである。
装置:図3に示す低圧プラズマCVD装置
高周波出力:100W、13.56MHz
初期減圧:0.02torr
成膜時圧力:2torr
成膜時間:表3のとおり
混合ガス:表3のとおり。ただし、比率は体積流量混合比率を示す。
前処理:なし
Figure JPOXMLDOC01-appb-T000003
[蒸気滅菌処理]
 満容量の90%の水を各バイアルへ充填して、121℃、1hで処理した高圧蒸気滅菌処理を行った。実施例1および2は、最外層のF―DLCの剥離は確認できなかったが、比較例1および2は、最外層のF―DLCの剥離が確認された。
[微結晶構造]
 図4(a)は、実施例1の改質工程後成膜工程前の改質されたガラス基材の断面のTEM画像であり、図4(b)は(a)を部分拡大した画像である。図4(a)、図4(b)において、改質層の上の部分は、TEM分析のために施した保護膜である。図4(a)、図4(b)に示すように、改質層が、少なくとも一部に微結晶構造を有することが確認できた。図4(b)において、改質層と改質層よりも深い領域との境界と思われる部分に点線を付す加工を施した。
 図5は、実施例1の成膜工程後の皮膜付きガラスの断面のTEM画像である。図5に示すように、皮膜付きガラスは、ガラス基材の皮膜側の表面から所定の深さまでの領域に改質層を有することが確認できた。改質層の厚さは、およそ20nmであった。
 実施例1の成膜工程後の皮膜付きガラスの断面のEDX分析を行い、Si分布像、O分布像、C分布像、F分布像、Na分布像、K分布の確認を行った結果、改質層に少なくともNaおよびKを確認することができた。

Claims (12)

  1.  ガラス基材と、該ガラス基材の少なくとも一部の表面に設けられた皮膜と、を有する皮膜付きガラスにおいて、
     前記ガラス基材の前記皮膜側の表面から所定の深さまでの領域は改質層であり、
     該改質層は、少なくとも一部に微結晶構造を有することを特徴とする皮膜付きガラス。
  2.  ガラス基材と、該ガラス基材の少なくとも一部の表面に設けられた皮膜と、を有する皮膜付きガラスにおいて、
     前記ガラス基材の前記皮膜側の表面から所定の深さまでの領域は改質層であり、
     該改質層のBの含有量は、酸化物換算の質量%で、前記改質層よりも深い領域のそれよりも少なく、かつ、前記改質層のNaOの含有量は、酸化物換算の質量%で、前記改質層よりも深い領域のそれよりも少なく、
     前記改質層は、酸化物換算の質量%で、少なくとも、Bを1~8質量%、NaOを1~6質量%、及びSiOを80質量%以上含み、
     前記改質層よりも深い領域は、酸化物換算の質量%で、少なくとも、Bを9~15質量%、NaOを3~9質量%、及びSiOを70質量%以上含むことを特徴とする皮膜付きガラス。
  3.  前記微結晶構造が炭素を含むことを特徴とする請求項1に記載の皮膜付きガラス。
  4.  前記改質層が炭素を含むことを特徴とする請求項1又は2に記載の皮膜付きガラス。
  5.  前記皮膜が、ケイ素非含有ダイヤモンド様炭素膜、ケイ素含有ダイヤモンド様炭素膜、酸化ケイ素系膜、又は非結晶性フッ素樹脂膜であることを特徴とする請求項1~4のいずれか一つに記載の皮膜付きガラス。
  6.  前記皮膜の膜厚は、1~70nmであることを特徴とする請求項1~5のいずれか一つに記載の皮膜付きガラス。
  7.  前記ガラス基材は、膨張係数が3.2×10-6/K以上3.3×10-6/K以下のホウケイ酸ガラスであるか、又は膨張係数が4.8×10-6/K以上5.6×10-6/K以下のホウケイ酸ガラスであることを特徴とする請求項1~6のいずれか一つに記載の皮膜付きガラス。
  8.  前記ガラス基材は、バイアル瓶、注射筒、針付きシリンジ、アンプル又はカートリッジタイプシリンジであることを特徴とする請求項1~7のいずれか一つに記載の皮膜付きガラス。
  9.  ガラス基材の少なくとも一部の表面に皮膜を形成する皮膜付きガラスの製造方法において、
     前記ガラス基材の前記皮膜が設けられる側の表面から所定の深さまでの領域を改質層とする改質工程と、
     前記改質層を形成した前記ガラス基材の前記表面上に前記皮膜を形成する成膜工程と、を含み、
     前記改質工程は、(i)前記ガラス基材の前記皮膜が設けられる側の表面に酸素ガス存在下で低級炭化水素ガスを燃焼して生じる炎をバーナーから噴出させ、該バーナーから噴出される炎のうちプラズマに富む部分を当てる工程、(ii)前記ガラス基材の前記皮膜が設けられる側の表面にレーザ処理を施す工程、及び(iii)前記ガラス基材の前記皮膜が設けられる側の表面に高温ガス処理を施す工程、の(i)~(iii)の少なくともいずれか一つの工程を含むことを特徴とする皮膜付きガラスの製造方法。
  10.  前記成膜工程は、少なくとも炭化水素系ガスを含む原料ガスをプラズマ化して、前記ガラス基材の前記皮膜が設けられる側の表面に前記皮膜として少なくとも炭素を含む非晶質皮膜を形成する工程であることを特徴とする請求項9に記載の皮膜付きガラスの製造方法。
  11.  前記改質工程では、前記ガラス基材の前記皮膜が設けられる側の表面とは反対側の表面の温度を非接触型の温度計によって測定し、その測定される温度が特定の温度範囲内とすることを含むことを特徴とする請求項9又は10に記載の皮膜付きガラスの製造方法。
  12.  ガラス基材の少なくとも一部の表面に改質層を有する改質されたガラス基材であって、
     前記改質層は、前記ガラス基材の前記表面から所定の深さまでの領域にあり、かつ、少なくとも一部に微結晶構造を有することを特徴とする改質されたガラス基材。
PCT/JP2020/023185 2019-06-14 2020-06-12 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材 WO2020251009A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080051993.9A CN114174236B (zh) 2019-06-14 2020-06-12 附有皮膜的玻璃及其制造方法以及经改质的玻璃基材
MX2021015471A MX2021015471A (es) 2019-06-14 2020-06-12 Vidrio con una película adherida de revestimiento, método de producción del mismo y sustrato de vidrio modificado.
CA3143316A CA3143316C (en) 2019-06-14 2020-06-12 Coating film-attached glass, production method therefor, and modified glass substrate
KR1020227000609A KR20220020341A (ko) 2019-06-14 2020-06-12 피막 부착 유리 및 그 제조 방법 그리고 개질된 유리 기재
EP20821740.6A EP3984972A4 (en) 2019-06-14 2020-06-12 FIXED COATING FILM GLASS, METHOD OF PRODUCING THEREOF, AND MODIFIED GLASS SUBSTRATE
US17/618,618 US20220250970A1 (en) 2019-06-14 2020-06-12 Coating film-attached glass, production method therefor, and modified glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-110916 2019-06-14
JP2019110916A JP7423914B2 (ja) 2019-06-14 2019-06-14 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材

Publications (1)

Publication Number Publication Date
WO2020251009A1 true WO2020251009A1 (ja) 2020-12-17

Family

ID=73781257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023185 WO2020251009A1 (ja) 2019-06-14 2020-06-12 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材

Country Status (8)

Country Link
US (1) US20220250970A1 (ja)
EP (1) EP3984972A4 (ja)
JP (1) JP7423914B2 (ja)
KR (1) KR20220020341A (ja)
CN (1) CN114174236B (ja)
CA (1) CA3143316C (ja)
MX (1) MX2021015471A (ja)
WO (1) WO2020251009A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3287421T3 (pl) * 2015-04-24 2021-05-17 Nipro Corporation Sposób wytwarzania medycznego pojemnika szklanego, oraz urządzenie do piaskowania ogniowego wyposażone w mechanizm obrotowy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123621A1 (ja) 2005-05-16 2006-11-23 Nipro Corporation バイアルおよびその製造方法
JP2007076940A (ja) 2005-09-13 2007-03-29 Ishizuka Glass Co Ltd 撥水性ガラス材料及びその製造方法
JP2016510288A (ja) * 2012-11-30 2016-04-07 コーニング インコーポレイテッド 層剥離耐性および向上した強度を有するガラス製容器
WO2016163426A1 (ja) * 2015-04-09 2016-10-13 ニプロ株式会社 医療用バイアルの製造方法
DE102014214083B4 (de) 2014-07-18 2018-03-15 Schott Ag Vorrichtung und Verfahren zum thermischen Behandeln eines ringförmigen Bereichs einer inneren Oberfläche eines aus einem Borosilikat-Rohrglas hergestellten Glasbehälters
JP2019055896A (ja) 2017-09-21 2019-04-11 大和特殊硝子株式会社 ガラス容器の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475573B1 (en) * 1999-05-03 2002-11-05 Guardian Industries Corp. Method of depositing DLC inclusive coating on substrate
JP3962897B2 (ja) 2001-03-12 2007-08-22 日本電気硝子株式会社 光ファイバ融着部補強部材の製造方法
US20040003627A1 (en) * 2002-07-03 2004-01-08 Nihon Yamamura Glass Co., Ltd. Locally crystallized glass
JP4677742B2 (ja) * 2004-08-05 2011-04-27 日本電気硝子株式会社 燃焼装置窓用Li2O−Al2O3−SiO2系結晶性ガラスおよびそれを熱処理してなる燃焼装置窓用Li2O−Al2O3−SiO2系結晶化ガラス
JP4566865B2 (ja) * 2005-09-06 2010-10-20 興亜硝子株式会社 ステンレス蒸着化粧品用ガラス容器及びその製造方法
DE102006009822B4 (de) * 2006-03-01 2013-04-18 Schott Ag Verfahren zur Plasmabehandlung von Glasoberflächen, dessen Verwendung sowie Glassubstrat und dessen Verwendung
JP6677245B2 (ja) * 2015-04-24 2020-04-08 ニプロ株式会社 ガラス容器の製造方法
US20180346368A1 (en) * 2017-05-31 2018-12-06 Nipro Corporation Method of manufacturing glass vessel, and apparatus for manufacturing glass vessel
DE102017128413A1 (de) * 2017-11-30 2019-06-06 Schott Ag Verfahren zur Herstellung eines Glasartikels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123621A1 (ja) 2005-05-16 2006-11-23 Nipro Corporation バイアルおよびその製造方法
JP2007076940A (ja) 2005-09-13 2007-03-29 Ishizuka Glass Co Ltd 撥水性ガラス材料及びその製造方法
JP2016510288A (ja) * 2012-11-30 2016-04-07 コーニング インコーポレイテッド 層剥離耐性および向上した強度を有するガラス製容器
DE102014214083B4 (de) 2014-07-18 2018-03-15 Schott Ag Vorrichtung und Verfahren zum thermischen Behandeln eines ringförmigen Bereichs einer inneren Oberfläche eines aus einem Borosilikat-Rohrglas hergestellten Glasbehälters
WO2016163426A1 (ja) * 2015-04-09 2016-10-13 ニプロ株式会社 医療用バイアルの製造方法
JP2019055896A (ja) 2017-09-21 2019-04-11 大和特殊硝子株式会社 ガラス容器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Japanese Pharmacopoeia", vol. 7

Also Published As

Publication number Publication date
JP2020203803A (ja) 2020-12-24
EP3984972A4 (en) 2023-07-26
KR20220020341A (ko) 2022-02-18
MX2021015471A (es) 2022-04-12
CA3143316C (en) 2024-04-23
JP7423914B2 (ja) 2024-01-30
CA3143316A1 (en) 2020-12-17
EP3984972A1 (en) 2022-04-20
CN114174236A (zh) 2022-03-11
CN114174236B (zh) 2024-02-20
US20220250970A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
US6200658B1 (en) Method of making a hollow, interiorly coated glass body and a glass tube as a semi-finished product for forming the glass body
TW201434624A (zh) 具經改善之強度與經改善之損壞容忍度的玻璃容器
WO2020251009A1 (ja) 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材
EP2556036B1 (en) Improving adhesion of organic coatings on glass
JP2000127290A (ja) バリア被覆および高出力プラズマ化学気相成長法によってプラスチック物体上にバリア被覆を堆積する方法
MX2013009645A (es) Recipientes de vidrio revestidos con sol-gel hibrido.
TW201402494A (zh) 強化玻璃容器
JP2006160268A (ja) 炭素膜コーティングプラスチック容器の製造方法、プラズマcvd成膜装置及びそのプラスチック容器
US9932266B2 (en) Strengthening glass containers
JP2019107445A (ja) 医療用ガラス容器及びその製造方法
EP3052254B1 (en) Preparing a sealing surface of a container
RU2797888C1 (ru) Стекло с присоединенной пленкой покрытия, способ его производства и модифицированная стеклянная подложка
CN112839912A (zh) 用于制造诸如经涂覆的玻璃容器之类的经涂覆的玻璃制品的方法
CN110406771B (zh) 用于制造具有玻璃层的官能化中空体的方法
WO2019117267A1 (ja) 医療用ガラス容器及びその製造方法
JP2019089691A (ja) ガラス容器
EP0992609A1 (en) Process for depositing a barrier coating on plastic objects
JPH11263860A (ja) 撥水性酸化珪素皮膜
CN110845154A (zh) 具有带包含Si和N的表面区域的玻璃壁的中空体
CN110466858B (zh) 具有带玻璃层和至少一个升高区域的壁的中空体
CN115244017A (zh) 医药品容器、医药品容器的制造方法以及涂布剂
KR20200050403A (ko) 복수 입자에 의해 중첩된 유리 벽을 갖는 용기 전구체
EP1831123B1 (fr) Procede de depot sur un verre sodocalcique comprenant une etape de fluoration prealable
JP2018161813A (ja) シリコーン部材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3143316

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227000609

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020821740

Country of ref document: EP