WO2016163426A1 - 医療用バイアルの製造方法 - Google Patents

医療用バイアルの製造方法 Download PDF

Info

Publication number
WO2016163426A1
WO2016163426A1 PCT/JP2016/061309 JP2016061309W WO2016163426A1 WO 2016163426 A1 WO2016163426 A1 WO 2016163426A1 JP 2016061309 W JP2016061309 W JP 2016061309W WO 2016163426 A1 WO2016163426 A1 WO 2016163426A1
Authority
WO
WIPO (PCT)
Prior art keywords
vial
borosilicate glass
glass
silica
glass tube
Prior art date
Application number
PCT/JP2016/061309
Other languages
English (en)
French (fr)
Inventor
正道 和田
石川 篤
Original Assignee
ニプロ株式会社
正道 和田
石川 篤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社, 正道 和田, 石川 篤 filed Critical ニプロ株式会社
Priority to US15/564,784 priority Critical patent/US20180105449A1/en
Publication of WO2016163426A1 publication Critical patent/WO2016163426A1/ja
Priority to US16/597,164 priority patent/US10710921B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/06Ampoules or carpules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to a method for producing a medical vial with little elution of silica or the like from the inner surface of a glass wall.
  • Borosilicate glass As a raw material of a medical glass container such as a medical vial, borosilicate glass excellent in chemical durability is often used. Borosilicate glass is formed as a glass tube and used as a raw material for a medical glass container. In such a glass tube, the expansion coefficient ( ⁇ 10 ⁇ 7 / K) described in Non-Patent Document 1 is 48 to 56 Type I, Class B (hereinafter also referred to as Type IB), and the expansion coefficient ( ⁇ 10 ⁇ 7). / K) Type I and Class A (hereinafter also referred to as Type IA) of 32 to 33 (see Non-Patent Document 1). A medical vial manufactured using glass having a low expansion coefficient as a raw material is less likely to be damaged by a rapid temperature change. For this reason, Type IA borosilicate glass tubes having a low expansion coefficient are used as raw materials for medical vials that require durability against rapid temperature changes such as freezing and thawing.
  • the mouth and bottom of the vial are formed on the glass tube by heating with a high-temperature flame.
  • the alkali component volatilized from the glass tube by heating the glass tube is condensed particularly on the inner surface in the vicinity of the bottom to form a deteriorated layer.
  • Alkali components are eluted from such a deteriorated layer into pharmaceuticals and the like in the vial.
  • the standards for elution of alkali components are defined in the USP and ISO 4802-1 or ISO 4802-2.
  • an alkali component existing in the deteriorated layer and sulfate are reacted to form sodium sulfate (Na 2 SO 4 ), and the sodium sulfate is removed by washing with water.
  • CVD method chemical vapor deposition method
  • a silica (SiO 2 ) thin film is covered (see Patent Document 1).
  • the deteriorated layer generated on the inner surface of the vial is fire-blasted with an oxygen-gas flame by a point burner, so that the deteriorated layer is removed, so that the alkaline component is removed. It is known that the elution of is reduced (see Patent Documents 2 and 3).
  • a vial made from TypeIA borosilicate glass is excellent in water resistance and acid resistance.
  • the durability of a high ionic strength solution using an alkaline 0.9% KCl aqueous solution (pH 8.0) is evaluated, the amount of silica eluted from the vial is higher than that of Type IB borosilicate glass. It is extremely large and has a high risk of occurrence of silica (SiO 2 ) flakes. For this reason, the negative conclusion has been put out to use the borosilicate glass of TypeIA for the vial in which an alkaline high ionic strength solution is stored (refer nonpatent literature 3).
  • the present invention has been made in view of these circumstances.
  • the purpose of the present invention is to provide a high-performance medical vial made of TypeIA borosilicate glass having a low expansion coefficient and excellent thermal shock resistance.
  • An object of the present invention is to provide a means for reducing the amount of silica eluted in an ionic strength solution to the same level as that of Type IB borosilicate glass.
  • the method for producing a medical vial according to the present invention is a method for producing a medical vial including a fire blasting process in which a flame ejected from a point burner collides with a deteriorated layer generated on the inner surface of the vial.
  • Medical vials are manufactured by heating glass tubes.
  • the borosilicate glass that is the material of the glass tube is heated, the alkali borate contained in the borosilicate glass is volatilized.
  • the volatilized alkali borate condenses on the inner surface of the vial, a degraded layer is formed.
  • the fire blast process the deteriorated layer generated on the inner surface of the vial is discharged to the outside.
  • Type IA borosilicate glass has high durability against temperature changes. For this reason, the medical vial obtained using this as a raw material has durability against temperature changes.
  • Type IA borosilicate glass The structure and physical properties of Type IA borosilicate glass vary depending on the contents of oxides (Na 2 O, K 2 O, Al 2 O, and B 2 O 3 ) contained in borosilicate glass.
  • silica SiO 2
  • This deteriorated layer is easily removed by a fire blast (FB) process.
  • FB fire blast
  • the vial after the fire blasting step is heated at 121 ° C. for 2 hours while immersed in a high ionic strength solution having a KCl concentration of 0.9 wt / wt% and a pH of 8.
  • a high ionic strength solution having a KCl concentration of 0.9 wt / wt% and a pH of 8.
  • the high ionic strength solution is a solution containing an alkali salt of 0.1 mol / L or more.
  • the elution amount of silica with respect to a high ionic strength solution can be reduced to the same level as Type IB borosilicate glass.
  • FIG. 1 is a diagram for explaining a fire blast process.
  • FIG. 2 relates to the amount of silica (SiO 2 ) eluted from the glass tube, the vial before the fire blast treatment, and the vial after the fire blast treatment, and the composition of the oxide contained in the glass tube as the raw material. It is a graph showing the relationship with ⁇ .
  • the vial 10 is a container having a bottom part 11, a side part 12, and a mouth part 13 in order from a lower position in use, and having an internal space 14 on the inside.
  • the vial 10 is closed at the bottom 11.
  • the vial 10 opens at the end of the mouth 13.
  • the inner diameter of the mouth portion 13 is narrower than the inner diameter of the internal space 14.
  • the vial 10 is formed by heating the glass tube 20.
  • the vial 10 is an example of a medical vial.
  • the medical vial is a container that can store medicines, biological samples such as blood and cell suspensions, liquids, and the like in order to store them.
  • Medical vials include, for example, intermediate products obtained in the middle of the vial molding process, that is, intermediate products in which only the bottom is formed and the mouth portion is not formed, and those equivalent to medical vials such as ampoules. It is.
  • the main raw material of the glass tube 20 is TypeIA borosilicate glass.
  • Borosilicate glass is composed of five types of oxides: silica (SiO 2 ), boron oxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), sodium oxide (Na 2 O), and potassium oxide (K 2 O). Is mainly contained. Depending on the composition ratio of the oxide contained in the borosilicate glass, the structure and physical properties of the borosilicate glass change.
  • Silica (SiO 2 ) as a main component forms a network structure by combining silicon (Si) with four oxygens (O) in glass.
  • the oxygen [ ⁇ Si—O—Si ⁇ ] bonded to two Si is called bridging oxygen.
  • Na 2 O and K 2 O bonded to silica generate [ ⁇ Si—O—Na] and [ ⁇ Si—O—K] non-bridging oxygen.
  • Non-crosslinked oxygen causes bond breaks in the borosilicate glass.
  • the Na 2 O and K 2 O content is large, the expansion coefficient of the borosilicate glass is increased, decreases chemical durability.
  • the aluminum ion [AlO 3 ] bonded to three oxygen (O) in the glass becomes the aluminum ion [AlO 4 ] bonded to the four oxygen (O) by attracting non-bridging oxygen to the glass.
  • the mesh structure inside Built into the mesh structure inside.
  • the expansion coefficient of borosilicate glass is reduced and chemical durability is increased.
  • Boron ions [BO 3 ] bonded to three oxygens (O) in the glass are combined with the non-crosslinked oxygen remaining after the aluminum ions [AlO 3 ] are incorporated into the network structure and incorporated into the network structure. That is, in the bond with non-bridging oxygen, aluminum ions [AlO 3 ] have priority over boron ions [BO 3 ].
  • aluminum oxide (Al 2 O 3 ) is present in excess and combined with all non-bridging oxygen, the boron ions are not incorporated into the network structure and remain tricoordinated [BO 3 ]. As a result, the chemical durability to a high ionic strength solution of borosilicate glass is reduced.
  • a high ionic strength solution refers to a solution containing 0.1 mol / L or more alkali salt.
  • the alkali salt include KCl
  • examples of the high ionic strength solution include a KCl aqueous solution having a concentration of 0.9 wt / wt% (pH 8).
  • borosilicate glass having ⁇ of 7.0 or more and 8.0 or less is preferably used.
  • the durability of the borosilicate glass having such a ⁇ value with respect to the high ionic strength solution is high as in the case of Type IB borosilicate glass.
  • the deteriorated layer produced in the medical vial manufactured from this borosilicate glass is easily removed by the fire blast process.
  • the deteriorated layer is a layer in which alkali borate volatilized from borosilicate glass heated to a high temperature is modified by reacting with borosilicate glass.
  • the deteriorated layer causes elution of alkali components from the solution, silica particles and flakes.
  • the manufacturing method of the vial 10 includes a vial forming step and a fire blasting step.
  • the vial forming step is a step of processing the shape of the vial 10 from the glass tube 20 and forming it.
  • the fire blast process is a process in which the flame 31 ejected from the point burner 30 is applied to the inner surface 15 of the vial 10.
  • alkali borate such as NaBO 2 and / or HBO 2 is volatilized by heating from the borosilicate glass constituting the glass tube 20.
  • the volatilized alkali borate condenses near the bottom 11 on the inner surface 15 of the molded vial 10.
  • the condensed alkali borate reacts with the borosilicate glass near the bottom 11, and a deteriorated layer is generated near the bottom 11.
  • silica is easily eluted or peeled from the high ionic strength solution.
  • a high ionic strength solution refers to a solution containing 0.1 mol / L or more alkali salt. Examples of the high ionic strength solution include 0.9 wt / wt% (pH 8) KCl aqueous solution.
  • the inside of the vial 10 is filled with a 0.05 weight / weight% methylene blue solution and allowed to stand for 20 minutes.
  • the methylene blue solution is discharged from the inside of the vial 10 and the vial 10 is washed with distilled water.
  • the washed vial 10 is heated at 120 ° C. for 10 minutes and dried.
  • Methylene blue is adsorbed on the deteriorated layer, and the deteriorated layer on the inner surface of the vial is colored with methylene blue. Thereby, the location of the deteriorated layer to be removed is clarified. The deteriorated layer is likely to occur near the bottom 11.
  • the fire blasting process is a process of causing the flame ejected from the point burner 30 to collide with the inner surface 15 of the vial 10.
  • the vial 10 is rotated.
  • the point burner 30 has a burner body 33 and a nozzle 32, and is connected to a flow rate control device (not shown) for combustible gas and oxygen.
  • a flow rate control device a known device can be used.
  • the nozzle 32 is connected to the tip end side of the burner body 33.
  • the nozzle 32 has a straw shape, and the mixed gas flowing out from the burner body 33 can flow therethrough.
  • the outer diameter of the nozzle 32 can be inserted into the inner space 14 of the vial 10 and is sufficiently thinner than the inner diameter of the neck 18 of the vial 10.
  • the length of the nozzle 32 in the axial direction is sufficiently longer than the length along the axial direction of the vial 10.
  • a material having high heat resistance such as ceramic is preferable.
  • the nozzle 32 at the tip of the point burner 30 is inserted into the internal space 14 of the vial 10 through the mouth portion 13.
  • the gas drawn into the point burner 30 and oxygen are mixed.
  • the gas is a combustible gas such as methane gas.
  • the mixed gas is ejected from the nozzle 32.
  • the mixed gas is ejected as a flame 31 while burning.
  • the flame 31 ejected from the nozzle 32 is sprayed on the inner surface 15 of the vial 10.
  • the flame 31 is sprayed for about 10 seconds.
  • the spray of the flame 31 is irradiated to the bottom part 11 vicinity in which a degradation layer exists.
  • the tip of the nozzle 32 is adjusted to a certain distance such that the most appropriate portion of the flame 31 ejected from the nozzle 32 hits the inner surface 15 of the vial 10.
  • the most appropriate portion of the flame 31 is a portion containing the most plasma.
  • the plasma-rich part of the flame 31 is a part rich in oxonium ions (H 3 O + ) (POSITIVE ION PROBE OF METHANE-OXYGEN COMBUTION, JM GOODINGS and D. K. BOHME, International Symposium Symposium). , Volume 16, Issue 1, 1977, Pages 891-902).
  • the plasma contained in the flame 31 evaporates and removes the deteriorated layer generated on the inner surface 15 of the vial 10.
  • the material constituting the removed deteriorated layer is discharged out of the vial 10.
  • the rotation of the vial 10 is performed, for example, by rotating the support base 34 that supports the vial 10. Further, the support base 34 may be moved up and down so that the flame 31 is uniformly irradiated in the vertical direction of the bottom 11 from the mouth portion 13 of the vial 10. Thereby, since the flame 31 is irradiated to the entire inner surface 15 of the vial 10 while being scanned, the deteriorated layer generated on the inner surface 15 of the vial 10 is sufficiently removed.
  • the position where the deteriorated layer is present in the vial 10 is determined by the method of molding the vial 10, for example, the method of molding the vial 10 along the axis of the glass tube 20 along the vertical direction, or the axis of the glass tube 20 along the horizontal direction. Accordingly, the method differs depending on the method of forming the vial 10 and whether the bottom portion 11 or the mouth portion 13 of the vial 10 is formed first. Therefore, for example, when the deteriorated layer is widely distributed on the inner surface 15 of the vial 10, the support base 34 may be moved so that the flame 31 is uniformly irradiated on the entire inner surface 15 of the vial 10. .
  • a vial 10 is obtained in which a deteriorated layer generated on the inner surface 15 of the vial 10 is removed from the vial 10 formed from Type IA borosilicate glass used for storage of pharmaceuticals and the like. For this reason, since the amount of silica (SiO 2 ) eluted from the vial 10 with respect to the high ionic strength solution is reduced, the vial 10 formed using Type IA borosilicate glass as a raw material is frozen by a fire blast process. In addition to high durability against rapid temperature changes during drying, it has excellent durability comparable to vials molded from Type IB borosilicate glass, not only for high ionic strength solutions.
  • the manufacturing method of the vial 10 is described as the medical glass container.
  • an ampoule, a syringe, a chemical bottle, and the like can be manufactured as the medical glass container.
  • Examples 1 and 2 In Examples 1 and 2, a glass tube 20 formed from Type IA borosilicate glass was used. In addition, Table 1 shows the respective compositions (mol%) of the borosilicate glass of the glass tube 20 used in the examples.
  • Na 2 O in the formulas, K 2 O, Al 2 O 3 and B 2 O 3 is the molar ratio of each oxide contained in the borosilicate glass (mol%).
  • a vial having a volume of 3 mL was prepared from the glass tube 20.
  • the processing of the vial 10 was performed using a standard vertical molding machine.
  • the inside of the vial 10 was filled with a 0.05 wt / wt% methylene blue solution and allowed to stand for 20 minutes.
  • the methylene blue solution was discharged from the inside of the vial 10 and the inside of the vial 10 was washed with distilled water.
  • the washed vial 10 was dried at 120 ° C. for 10 minutes. As a result, the deteriorated layer on the inner surface of the vial was colored with methylene blue, and the region where the deteriorated layer was present became visible.
  • the fire blast process in the above-described embodiment was performed on the created vial 10.
  • the nozzle of the point burner 30 an alumina nozzle having an inner diameter of 1.0 mm was used.
  • a mixed gas in which methane gas and oxygen were mixed was used.
  • the mixed gas used was a mixture of methane gas at a flow rate of 0.5 L / min and oxygen of 1.1 L / min.
  • the flame ejected from the nozzle of the point burner 30 was irradiated to the area where the deteriorated layer on the inner surface 15 of the vial 10 was present.
  • the vial 10 is rotated by a rotating machine or the like. As the vial 10 was rotated, the entire inner surface 15 of the vial 10 was uniformly irradiated with flame. Thereby, the vial 10 of Examples 1 and 2 was obtained.
  • a glass tube 20 formed from Type IA borosilicate glass was used.
  • Table 1 shows the composition of the borosilicate glass in the glass tube 20 used in the comparative example.
  • the vial 10 of the comparative example was molded by the same vial molding process as the example.
  • the fire blasting process in the vial 10 of the comparative example was also performed in the same manner as in the example.
  • elution amount of silica (SiO 2 ) from the glass tube 20 The elution amount of silica was measured for each glass tube 20 used in Examples 1 and 2 and the comparative example.
  • a solvent for elution distilled water for injection or a KCl aqueous solution having a concentration of 0.9 wt / wt% (pH 8) was used.
  • the aqueous KCl solution is an aqueous solution adjusted to pH 8 by adding an aqueous NaOH solution so that the concentration of KCl is finally 0.9 wt / wt%.
  • a Teflon (registered trademark) beaker was filled with distilled water for injection as a solvent or an aqueous solution of KCl having a concentration of 0.9 wt / wt% (pH 8). Each glass tube was immersed in a Teflon (registered trademark) beaker filled with a solvent. Each immersed glass tube 20 was heated at 121 ° C. for 2 hours using an autoclave together with a Teflon (registered trademark) beaker. After cooling, the amount of silica eluted in the solvent in each Teflon beaker was measured. The silica was measured by ICP-AES method (inductively coupled plasma emission spectrometry).
  • Tables 1 and 2 show the amount of silica ( ⁇ g / cm 2 ) obtained for each glass tube 20 of Examples 1 and 2 and Comparative Example.
  • Table 1 shows the elution amount of silica when distilled water for injection is used as a solvent for elution
  • Table 2 shows a KCl aqueous solution having a concentration of 0.9 wt / wt% (pH 8) as a solvent for elution. It shows the elution amount of silica when is used.
  • the amount of silica eluted ( ⁇ g / cm 2 ) was expressed as a value per 1 cm 2 of the surface area of each glass tube 20.
  • the surface area of the glass tube 20 was calculated
  • the glass tube 20 formed from borosilicate glass having an expansion coefficient of Type IB ( ⁇ 10 ⁇ 7 / K) 51 was also tested for silica elution as in the example.
  • the elution amount of the silica was 4.1 (microgram / cm ⁇ 2 >).
  • Table 1 shows the elution amount of silica when distilled water for injection is used as a solvent for elution
  • Table 2 shows a concentration of 0.9 wt / wt% (pH 8) as a solvent for elution. This is the amount of silica eluted when an aqueous KCl solution is used.
  • the amount of silica eluted ( ⁇ g / cm 2 ) was expressed as the value per surface area of each vial 10.
  • the surface area of the vial 10 was calculated by CAD from the standard inner diameter, outer diameter, length, and the like.
  • the amount was suppressed to half or less and was 20.0 ⁇ g / cm 2 or less.
  • the amount of silica elution in the vials 10 of Examples 1 and 2 after the fire blast treatment is the value (11.3 ⁇ g / cm 2 ) of the vial 10 formed from the glass tube 20 made of TypeIB borosilicate glass. Is equal to or less than.
  • FIG. 2 shows silica (SiO 2) eluted by heating at 121 ° C. for 2 hours using a high ionic strength solution of ⁇ and 0.9 wt / wt% KCl aqueous solution (pH 8) related to the composition of borosilicate glass. It is a graph showing the relationship with the quantity of 2 ).
  • a ( ⁇ ) is the glass tube 20 that is the raw material of Examples 1 and 2 and the comparative example
  • B ( ⁇ ) is the vial 10 before the fire blasting of Examples 1 and 2 and the comparative example
  • C ( ⁇ ) is the result of the vial 10 after fire blasting in Examples 1 and 2 and Comparative Example.
  • FIG. 2 shows silica (SiO 2) eluted by heating at 121 ° C. for 2 hours using a high ionic strength solution of ⁇ and 0.9 wt / wt% KCl aqueous solution (pH 8) related to the composition of borosilicate glass. It is
  • the Y-axis is the amount of silica (SiO 2 ) eluted by heating at 121 ° C. for 2 hours using a high ionic strength solution of 0.9 wt / wt% KCl aqueous solution (pH 8).
  • the X axis indicates the value of ⁇ .
  • a glass tube 20 made from Type IB borosilicate glass and a standard vial 10 formed from Type IB borosilicate glass are made 0.9.
  • the elution of silica with respect to the weight / weight% KCl aqueous solution (pH 8) was confirmed.
  • the standard vial is a vial that has not been subjected to surface treatment such as ammonium sulfate treatment or fire blast treatment.
  • a straight line D shows the amount of silica eluted from a glass tube 20 made from TypeIB borosilicate glass
  • a straight line E shows a standard vial 10 formed from a glass tube 20 made from TypeIB borosilicate glass. The elution amount of silica from

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

【課題】TypeIAのホウケイ酸ガラスが原料であり、高イオン強度溶液に対するシリカの溶出量がTypeIBのホウケイ酸ガラスと同等に減少される医療用バイアルを製造する手段を提供する。 【解決手段】医療用バイアルの製造方法は、バイアルの内面に生じた劣化層に、ポイントバーナーから噴出された炎を衝突させるファイアブラスト工程を含む医療用バイアルの製造方法であって、上記バイアルは、TypeIAのホウケイ酸ガラスを原料とするガラス管から成形され、上記ホウケイ酸ガラスに含まれる酸化物のモル比率は、Ψ=[(NaO+KO)-Al]/Bにおいて、Ψ=0.23±0.02を満たし、かつβ=B/Alにおいて、β=7.5±0.5を満たす。

Description

医療用バイアルの製造方法
 本発明は、ガラス壁内面からのシリカ等の溶出が少ない医療用バイアルの製造方法に関する。
 医療用バイアルのような医療用ガラス容器の原料として、化学的耐久性に優れたホウケイ酸ガラスが多く用いられている。ホウケイ酸ガラスは、ガラス管として成形されて、医療用ガラス容器の原材料に供される。このようなガラス管には、非特許文献1に記載された膨張係数(×10-7/K)48以上56以下のTypeI、ClassB(以下、TypeIBともいう)、及び膨張係数(×10-7/K)32以上33以下のTypeI、ClassA(以下、TypeIAともいう)がある(非特許文献1参照)。低膨張係数を有するガラスを原料として製造された医療用バイアルは、急激な温度変化に対して破損が生じにくい。このため、凍結解凍等などの急激な温度変化に対して耐久性が必要とされる医療用バイアルの原料として、低膨張係数を有するTypeIAのホウケイ酸ガラス管が用いられている。
 ホウケイ酸ガラス管より医療用バイアルを製造するには、高温の炎による加熱によってガラス管にバイアルの口部及び底部が成形される。ガラス管から底部が成形される工程において、ガラス管が加熱されることによりガラス管から揮発したアルカリ成分が、特に底部近傍の内面に凝縮して劣化層を生じる。このような劣化層から、バイアル中の医薬品などにアルカリ成分が溶出する。これに対して、欧米局方及びISO4802-1又はISO4802-2では、アルカリ成分の溶出基準が定められている。
 アルカリ成分の溶出を低下させる方法として、劣化層に存在するアルカリ成分と硫酸塩とを反応させて硫酸ソーダ(NaSO)とし、その硫酸ソーダを水洗により除去する硫安処理法や、バイアル内面をシリカ(SiO)薄膜で覆う化学蒸着法(CVD法)が知られている(特許文献1参照)。また、ガラス管から成形されたバイアルを回転させながら、バイアルの内面に生じた劣化層に対して、ポイントバーナーによる酸素‐ガス炎をファイアブラストすることによって、劣化層が除去されるためにアルカリ成分の溶出が低下されることが知られている(特許文献2,3参照)。
特公平6-76233号公報 国際公開第2006/123621号公報 特開2010-269973号公報
ASTM INTERNATIONAL Designation:E438-92(Preapproved 2011) 「Evaluation of the Inner Surfa-ce Durability of Glass Containers」USP 1660 「Delamination Propensity of Ph-armaceutical Glass Containers by Accele-rated Testing with Different Extraction Media」 PDA J Pharm Sci and Tech 2012,66 116-125
 近年、アルカリ成分の溶出の問題に加えて、バイアルの内表面から剥離されたシリカ粒子やフレークスがバイアル内の医薬品に混入することが問題視されている。米国薬局方(USP)における<1660>「ガラス容器の内表面耐久性評価」の記載には、0.9%KCl水溶液(pH8.0)の高イオン強度溶液を用いて、2時間121℃で加熱することにより溶出されるシリカ(SiO)の量を評価するバイアルの選別方法が示されている(非特許文献2参照)。
 TypeIAのホウケイ酸ガラスを原料としたバイアルは、耐水性及び耐酸性に優れる。一方で、アルカリ性の0.9%KCl水溶液(pH8.0)を用いた高イオン強度溶液への耐久性の評価を行うと、TypeIBのホウケイ酸ガラスに比べて、バイアルからのシリカの溶出量が極めて大きく、シリカ(SiO)のフレークスが発生するリスクが高い。このため、TypeIAのホウケイ酸ガラスを、アルカリ性の高イオン強度溶液が貯留されるバイアルに使用することに否定的な結論が出されている(非特許文献3参照)。
 本発明は、これらの事情に鑑みてなされたものであり、その目的は、低膨張係数を有し、且つ耐熱衝撃性に優れるTypeIAのホウケイ酸ガラスを原料として成形された医療用バイアルにおいて、高イオン強度溶液に対するシリカの溶出量をTypeIBのホウケイ酸ガラスと同等に減少させる手段を提供することにある。
 (1) 本発明に係る医療用バイアルの製造方法は、バイアルの内面に生じた劣化層に、ポイントバーナーから噴出された炎を衝突させるファイアブラスト工程を含む医療用バイアルの製造方法であって、上記バイアルは、TypeIAのホウケイ酸ガラスを原料とするガラス管から成形され、上記ホウケイ酸ガラスに含まれる酸化物のモル比率は、Ψ=[(NaO+KO)-Al]/Bにおいて、Ψ=0.23±0.02を満たし、かつβ=B/Alにおいて、β=7.5±0.5を満たす。
 医療用バイアルは、ガラス管を加熱加工することにより製造される。ガラス管の材料であるホウケイ酸ガラスが加熱されると、ホウケイ酸ガラスに含まれるアルカリホウ酸塩が揮発する。揮発したアルカリホウ酸塩がバイアルの内面で凝縮すると、劣化層が生ずる。ファイアブラスト工程において、バイアルの内面に生じた劣化層は外部へ排出される。
 また、TypeIAのホウケイ酸ガラスは、温度変化に対する耐久性が高い。このため、これを原料として得られた医療用バイアルは、温度変化に対する耐久性を有する。
 また、TypeIAのホウケイ酸ガラスの構造や物性は、ホウケイ酸ガラスに含まれる酸化物(NaO、KO、AlO及びB)の含有量によって変化する。TypeIAのホウケイ酸ガラスに含まれる酸化物のモル比率は、Ψ=[(NaO+KO)-Al]/Bにおいて、Ψは概ね1/4である(M.B.Volf:Technical Approach to Glass.Elsevier,1990,p.161)。この中でも、代表的なTypeIAのホウケイ酸ガラスに含まれる酸化物のモル比率は、Ψ=0.23±0.02を満たす。
 TypeIAのホウケイ酸ガラスが上記組成条件であるのに加えて、β=B/Alにおいて、β=7.5±0.5を満たす場合、このホウケイ酸ガラスから製造された医療用バイアルの劣化層には、剥離しやすいシリカ(SiO)が存在する。この劣化層がファイアブラスト(FB)工程により容易に除去される。このため、高イオン強度溶液に対するシリカの溶出量がTypeIBのホウケイ酸ガラス管から加工された医薬用バイアルと同等のバイアルが得られる。
 (2) 好ましくは、上記ファイアブラスト工程後の上記バイアルを、KClの濃度が0.9重量/重量%であり、かつpH8の高イオン強度溶液中に浸漬した状態で2時間121℃で加熱することにより、上記バイアルの全表面積における1cm当たりから上記高イオン強度溶液中に溶出されるシリカをICP-AES法を用いて定量した値は、20.0μg/cm以下である。
 (3) 好ましくは、上記高イオン強度溶液は、0.1mol/L以上のアルカリ塩を含む溶液である。
 本発明によれば、TypeIAのホウケイ酸ガラスを原料として成形された医療用バイアルにおいて、高イオン強度溶液に対するシリカの溶出量をTypeIBのホウケイ酸ガラスと同等に減少させることができる。
図1は、ファイアブラスト工程を説明するための図である。 図2は、ガラス管、ファイアブラスト処理前のバイアル、及びファイアブラスト処理後のバイアルから溶出されたシリカ(SiO)の量と、それぞれの原料であるガラス管に含まれる酸化物の組成に係るβとの関係を表したグラフである。
 以下、本発明の好ましい実施形態を説明する。なお、本実施形態は本発明の一実施態様にすぎず、本発明の要旨を変更しない範囲で実施態様を変更できることは言うまでもない。
[バイアル10]
 図1に示されるように、バイアル10は、使用に際して下側となる位置から順に底部11、側面部12及び口部13を有し、内側に内部空間14を有する容器である。バイアル10は、底部11において閉塞されている。バイアル10は、口部13の端部において開口する。口部13の内径は、内部空間14の内径より狭い。バイアル10は、ガラス管20が加熱加工されることにより成形される。バイアル10が、医療用バイアルの一例である。医療用バイアルは、医薬や、血液や細胞懸濁液などの生体試料、液剤などを保管などするために、これらを内部に貯留することのできる容器である。医療用バイアルには、例えば、バイアルの成形工程の途中で得られる中間品、すなわち底のみが形成されており口部分が形成されていない中間品や、アンプルなど、医療用バイアルに準ずるものも含まれる。
 ガラス管20の主たる原料は、TypeIAのホウケイ酸ガラスである。ホウケイ酸ガラスは、シリカ(SiO)、酸化ホウ素(B)、酸化アルミニウム(Al)、酸化ナトリウム(NaO)、酸化カリウム(KO)の5種類の酸化物を主に含有する。ホウケイ酸ガラスに含まれる酸化物の組成比によって、ホウケイ酸ガラスの構造や物性が変化する。
 主成分のシリカ(SiO)は、ガラス中でケイ素(Si)が4個の酸素(O)と結合し網目構造を形成する。2個のSiと結合した酸素[≡Si-O-Si≡]は架橋酸素と呼ばれる。これに対し、シリカと結合したNaO及びKOは、[≡Si-O-Na]や、[≡Si-O-K]の非架橋酸素を生ずる。非架橋酸素は、ホウケイ酸ガラスにおける結合の切れ目を生じさせる。その結果、NaO及びKOの含有量が多いと、ホウケイ酸ガラスの膨張係数が大きくなり、化学的耐久性が低くなる。
 これに対し、ガラス中で3個の酸素(O)と結合するアルミニウムイオン[AlO]は、非架橋酸素を引きつけ4個の酸素(O)と結合するアルミニウムイオン[AlO]となってガラス中の網目構造に組み込まれる。その結果、ホウケイ酸ガラスの膨張係数が低下し、化学的耐久性が増大する。
 ガラス中で3個の酸素(O)と結合するホウ素イオン[BO]は、アルミニウムイオン[AlO]が網目構造に組み込まれた後に残存する非架橋酸素と結合して網目構造に組み込まれる。すなわち、非架橋酸素との結合は、アルミニウムイオン[AlO]がホウ素イオン[BO]よりも優先する。酸化アルミニウム(Al)が過剰に存在し、全ての非架橋酸素と結合すると、ホウ素イオンは、網目構造に組み込まれずに、3配位[BO]のまま残存する。その結果、ホウケイ酸ガラスの高イオン強度溶液に対する化学的な耐久性が低くなる。
 ガラス管20の原料としては、ホウケイ酸ガラスに含まれる酸化物のモル比率が、Ψ=[(NaO+KO)-Al]/Bにおいて、Ψ=0.23±0.02、すなわちΨが0.21以上0.25以下であるホウケイ酸ガラスが用いられることが好ましい。Ψは、ホウケイ酸ガラスにおいて、アルミニウムイオン[AlO]が網目構造に組み込まれた後に残存する非架橋酸素のモル数を、Bのモル数で割ったものである。Ψは、NaO、KO、Al及びBの組成比に関するパラメータである。このため、Ψは、ホウケイ酸ガラスの組成によって影響される構造や物性を示すパラメータとして扱われている。Ψが0.21未満であるTypeIAのガラス管20を用いた場合は、得られたバイアル10の高イオン強度溶液に対するシリカの溶出量が増大する。高イオン強度溶液とは、0.1mol/L以上のアルカリ塩を含む溶液をいう。アルカリ塩としては、例えば、KCl等が挙げられ、高イオン強度溶液としては、例えば、濃度0.9重量/重量%(pH8)のKCl水溶液等が挙げられる。また、Ψが0.25より大きいTypeIAのガラス管20を用いた場合は、3配位のホウ素イオン[BO]が増加し、高イオン強度溶液に対するバイアル10の化学耐久性が低くなる。
 ガラス管20の原料としては、上記のモル比率の条件に加えて、Bのモル比率をAlのモル比率で割ったβ=B/Alにおいて、β=7.5±0.5、すなわちβが7.0以上8.0以下であるホウケイ酸ガラスが用いられることが好ましい。このようなβ値を有するホウケイ酸ガラスの高イオン強度溶液に対する耐久性は、TypeIBのホウケイ酸ガラスと同様に高くなる。また、このホウケイ酸ガラスから製造された医療用バイアルに生じる劣化層は、ファイアブラスト工程により除去されやすい。劣化層とは、高温に加熱されたホウケイ酸ガラスから揮発したアルカリホウ酸塩が、ホウケイ酸ガラスと反応することによって変性したものである。劣化層は、溶液に対するアルカリ成分の溶出や、シリカ粒子やフレークスの原因となる。
 ホウケイ酸ガラス中の酸化ホウ素が酸化アルミニウムに対して過剰に存在する場合、例えばβが8.0より大きくなると、劣化層から高イオン強度溶液に対するシリカの溶出量が増大する。また、βが7.0より小さくなると、ホウケイ酸ガラスの粘度が増大し、ガラスの溶融が困難になる。
[バイアル10の製造方法]
 バイアル10の製造方法は、バイアル成形工程及びファイアブラスト工程を含む。バイアル成形工程は、バイアル10の形状をガラス管20から加工して成形する工程である。ファイアブラスト工程は、ポイントバーナー30から噴出された炎31をバイアル10の内面15に当てる工程である。
 バイアル成形工程において、ガラス管20を構成するホウケイ酸ガラスからNaBO及び/又はHBO等のアルカリホウ酸塩が加熱により揮発する。揮発したアルカリホウ酸塩は、成形されたバイアル10の内面15における底部11近傍で凝縮する。凝縮したアルカリホウ酸塩は、底部11近傍のホウケイ酸ガラスと反応し、底部11近傍に劣化層が生じる。劣化層において、シリカは、高イオン強度溶液に対して溶出又は剥離しやすい。高イオン強度溶液とは、0.1mol/L以上のアルカリ塩を含む溶液をいう。高イオン強度溶液としては、例えば、0.9重量/重量%(pH8)のKCl水溶液が挙げられる。
 バイアル成形工程後、バイアル10の内部に、0.05重量/重量%のメチレンブルー溶液を満たして20分間静置する。次いで、バイアル10の内部からメチレンブルー溶液を排出し、バイアル10を蒸留水で洗浄する。洗浄したバイアル10を、120℃で10分間加熱し、乾燥する。メチレンブルーは劣化層に吸着し、バイアル内表面の劣化層がメチレンブルーにより着色される。これにより、除去すべき劣化層の存在箇所が明らかとされる。劣化層は、底部11近傍に生じ易い。
[ファイアブラスト工程]
 成形されたバイアル10の内面15に生じた劣化層を除去するために、ファイアブラスト工程が行われる。ファイアブラスト工程は、バイアル10の内面15にポイントバーナ30から噴出される炎を衝突させる工程である。ファイアブラスト工程中、バイアル10は回転される。図1に示されるように、ポイントバーナ30は、バーナ本体33及びノズル32を有しており、可燃ガスと酸素の流量制御装置(不図示)と接続されている。流量制御装置は、公知のものが採用可能である。ノズル32は、バーナ本体33の先端側に接続されている。ノズル32は、ストロー状であり、バーナ本体33から流出する混合ガスが流通可能である。ノズル32の外径は、バイアル10の内部空間14へ挿入可能であって、バイアル10の首部18の内径より十分に細い。ノズル32の軸線方向における長さは、バイアル10の軸線方向に沿った長さより十分に長い。ノズル32の素材としては、例えばセラミックなどの耐熱性が高いものが好ましい。
 口部13を通じてバイアル10の内部空間14にポイントバーナー30の先端のノズル32が挿入される。ポイントバーナー30に引き込まれたガスと酸素が混合される。ガスは可燃性の気体であり、例えばメタンガスが挙げられる。混合されたガスがノズル32から噴出される。混合されたガスは燃焼しながら炎31として噴出される。ノズル32から噴出された炎31が、バイアル10の内面15に吹き付けられる。炎31の吹き付けは、例えば容量5mLのバイアルの場合、約10秒間行われる。また、炎31の吹き付けは、劣化層が存在する底部11近傍に照射されることが好ましい。
 ノズル32の先端は、ノズル32から噴出された炎31のうち最も適切な箇所が、バイアル10の内面15に当たるような一定の距離に調節される。炎31のうち最も適切な箇所とは、最もプラズマを多く含む部分である。炎31のプラズマに富む箇所とは、オキソニウムイオン(H)に富む箇所である(POSITIVE ION PROBE OF METHANE-OXYGEN COMBUTION,J.M.GOODINGS and D.K.BOHME,International Symposium on Combustion,Volume 16,Issue 1,1977,Pages 891-902)。
 炎31に含まれるプラズマが、バイアル10の内面15に生じた劣化層を蒸発除去する。除去された劣化層を構成する物質は、バイアル10から外へ排出される。
 また、バイアル10の回転は、例えば、バイアル10を支持する支持台34が回転されることによって行われる。また、バイアル10の口部13から底部11の上下方向に均一に炎31が照射されるように、支持台34が上下に移動されてもよい。これによりバイアル10の内面15全体に炎31が走査されながら照射されるため、バイアル10の内面15に生じた劣化層が十分に除去される。
 なお、バイアル10において劣化層が存在する位置は、バイアル10の成型方法、例えばガラス管20の軸線を鉛直方向に沿わせてバイアル10を成型する方法や、ガラス管20の軸線を水平方向に沿わせてバイアル10を成型する方法、バイアル10の底部11か口部13かのいずれを先に形成するかなどによって異なる。したがって、例えば、劣化層がバイアル10の内面15に広く分布している場合には、バイアル10の内面15の全体に均一に炎31が照射されるように、支持台34が移動されてもよい。
[本実施形態の作用効果]
 本実施形態によれば、医薬品の保存などに用いられるTypeIAのホウケイ酸ガラスを原料として成形されたバイアル10において、バイアル10の内面15に生じた劣化層が除去されたバイアル10が得られる。このため、高イオン強度溶液に対するバイアル10から溶出されるシリカ(SiO)の量が減少するため、TypeIAのホウケイ酸ガラスを原料として成形されたバイアル10は、ファイアブラスト工程を経ることにより、凍結乾燥時の急激な温度変化に対する高い耐久性のみならず、高イオン強度溶液に対しても、TypeIBのホウケイ酸ガラスを原料として成形されたバイアルと同程度の優れた耐久性を有する。
[変形例]
 なお、前述された実施形態においては、医療用ガラス容器としてバイアル10の製造方法が説明されたが、医療用ガラス容器としてアンプルや、シリンジ、薬品瓶等の製造も可能である。
 以下、本発明の実施例が示される。
[実施例1,2]
 実施例1,2においては、TypeIAのホウケイ酸ガラスから成形されたガラス管20を使用した。 また、実施例に用いたガラス管20のホウケイ酸ガラスのそれぞれの組成(モル%)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1,2に使用したガラス管20におけるホウケイ酸ガラスに含まれる酸化物のモル比率は、Ψ=[(NaO+KO)-Al]/Bにおいて、Ψ=0.23±0.02を満たし、かつβ=B/Alにおいて、β=7.5±0.5を満たした。なお、これらの式中のNaO、KO、Al及びBは、ホウケイ酸ガラスに含まれるそれぞれの酸化物のモル比率(モル%)である。
[バイアル10の製造]
 バイアル成形工程において、ガラス管20から、容量が3mLのバイアルを作成した。また、バイアル10の加工は、標準的な縦型成形機を用いて行った。バイアル成形工程後、バイアル10の内部に、0.05重量/重量%のメチレンブルー溶液を満たし、20分間静置した。次いで、バイアル10の内部からメチレンブルー溶液を排出し、バイアル10の内部を蒸留水で洗浄した。洗浄されたバイアル10は、120℃で10分間乾燥した。これにより、バイアル内表面の劣化層がメチレンブルーで着色され、劣化層が存在する領域が目視可能となった。
 作成されたバイアル10に対して、前述された実施形態におけるファイアブラスト工程が施された。ポイントバーナー30のノズルとして、内径1.0mmのアルミナ製ノズルを使用した。燃料として、メタンガス及び酸素が混合された混合ガスが用いられた。混合ガスは、メタンガス0.5L/min及び酸素1.1L/minの流量で混合されたものが用いられた。バイアル10の内面15の劣化層が存在する領域に対して、ポイントバーナー30のノズルから噴出された炎が照射された。また、回転機などによりバイアル10が回転される。バイアル10が回転されることにより、バイアル10の内面15の全体に均一に炎が照射された。これにより、実施例1,2のバイアル10を得た。
[比較例]
 比較例においては、TypeIAのホウケイ酸ガラスから成形されたガラス管20を使用した。比較例では、ホウケイ酸ガラスに含まれる酸化物のモル比率が、Ψ=[(NaO+KO)-Al]/Bにおいて、Ψ=0.23±0.02を満たすが、β=B/Alにおいて、β=7.5±0.5を満たさないガラス管20を使用した。比較例に使用したガラス管20におけるホウケイ酸ガラスの組成を表1に示す。
 比較例のバイアル10は、実施例と同様のバイアル成形工程により成形された。比較例のバイアル10におけるファイアブラスト工程も実施例と同様に行われた。
[ガラス管20からのシリカ(SiO)の溶出量]
 前述の実施例1,2及び比較例に用いられる各ガラス管20についてシリカの溶出量を測定した。溶出のための溶媒としては、注射用蒸留水又は濃度0.9重量/重量%(pH8)のKCl水溶液を用いた。KCl水溶液は、KClの濃度が最終的に0.9重量/重量%となるようにNaOH水溶液を加えてpH8に調整された水溶液である。溶媒としての注射用蒸留水又は濃度0.9重量/重量%(pH8)のKCl水溶液が、テフロン(登録商標)ビーカーに充填された。溶媒を充填したテフロン(登録商標)ビーカーに各ガラス管が浸漬された。浸漬した各ガラス管20をテフロン(登録商標)ビーカーごとオートクレーブを用いて121℃で2時間加熱した。冷却後に、各テフロン(登録商標)ビーカー中の溶媒に溶出したシリカの量を測定した。シリカの測定は、ICP-AES法(誘導結合プラズマ発光分析法)により行った。実施例1,2及び比較例の各ガラス管20について得られたシリカの量(μg/cm)を表1及び表2に示す。表1は、溶出のための溶媒として注射用蒸留水が用いられた場合のシリカの溶出量を、表2は、溶出のための溶媒として濃度0.9重量/重量%(pH8)のKCl水溶液が用いられた場合のシリカの溶出量を示したものである。溶出されたシリカの量(μg/cm)は、各ガラス管20の表面積1cm当たりの値として表した。なお、ガラス管20の表面積は、規格上の内径、外径及び実際の長さから計算により求めた。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、溶媒が注射用蒸留水の場合、実施例1,2及び比較例のガラス管20からのシリカの溶出量は、それぞれ0.2μg/cmであり、実施例及び比較例の間で同等であった。このため、Ψ=0.23±0.02を満たすTypeIAのホウケイ酸ガラスについては、耐水性に優れることが確認された。
 これに対して、表2に示されるように、溶媒が濃度0.9重量/重量%(pH8)のKCl水溶液の場合、実施例1,2及び比較例のガラス管20からのシリカの溶出量は、βの値の減少に伴って減少した。βの値が9.17である比較例に比べて、実施例1,2のシリカの溶出量は、TypeIBのホウケイ酸ガラスを原料とするガラス管20の値と近い数値が得られた。
 なお、TypeIBの 膨張係数(×10-7/K)51のホウケイ酸ガラスから成形されたガラス管20についても、実施例と同様にシリカの溶出について試験を行った。TypeIBのホウケイ酸ガラスから成形されたガラス管20については、シリカの溶出量は4.1(μg/cm)であった。
[バイアル10からのシリカ(SiO)の溶出量]
 前述された実施例1,2及び比較例の各バイアル10について、シリカの溶出量を測定した。上記実施例1,2及び比較例で得られたバイアル10において、シリカの溶出工程として溶媒をバイアル満容量の90%まで充填したこと以外は、ガラス管20からのシリカの溶出量の測定と同じ方法によって測定した。実施例1,2及び比較例の各バイアル10について得られたシリカの量(μg/cm)を表1及び表2に示す。表1は、溶出のための溶媒として注射用蒸留水が用いられた場合のシリカの溶出量であって、表2は、溶出のための溶媒として濃度0.9重量/重量%(pH8)のKCl水溶液が用いられた場合のシリカの溶出量である。溶出されたシリカの量(μg/cm)は、各バイアル10の表面積当たりの値として表した。なお、バイアル10の表面積は、規格上の内径、外径及び長さ等からCADにより算出した。
 表1に示されるように、溶媒が注射用蒸留水の場合、実施例1,2及び比較例のファイアブラスト処理後のバイアル10からのシリカの溶出量は、それぞれ0.1μg/cmであり、実施例及び比較例の間で同等であった。このため、Ψ=0.23±0.02を満たすTypeIAのホウケイ酸ガラスのガラス管20より成形されたバイアル10についても、耐水性に優れることが確認された。
 表2に示されるように、溶媒が濃度0.9重量/重量%(pH8)のKCl水溶液の場合、実施例1のファイアブラスト処理後のバイアル10からは17.6μg/cm、実施例2のファイアブラスト処理後のバイアル10からは7.3μg/cmのシリカの溶出が確認された。これに対して、比較例のファイアブラスト処理後のバイアル10からは50.0μg/cmのシリカの溶出が確認された。これから、β=7.5±0.5を満たすTypeIAのホウケイ酸ガラスのガラス管20より成形されたバイアル10は、β=7.5±0.5を満たさない場合に比べて、シリカの溶出量は半分以下に抑えられ、かつ、20.0μg/cm以下であることが確認された。また、ファイアブラスト処理後の実施例1,2のバイアル10のシリカの溶出量は、TypeIBのホウケイ酸ガラスを原料とするガラス管20から成形されたバイアル10の値(11.3μg/cm)と同等又はそれ以下の数値である。
 図2は、ホウケイ酸ガラスの組成に係るβと、0.9重量/重量%KCl水溶液(pH8)の高イオン強度溶液を用いて、121℃で2時間加熱することにより溶出されるシリカ(SiO)の量との関係を表したグラフである。図2において、A(◆)は実施例1,2及び比較例の原料であるガラス管20の、B(●)は実施例1,2及び比較例のファイアブラスト処理前のバイアル10の、及びC(○)は実施例1,2及び比較例のファイアブラスト処理後のバイアル10の結果である。図2において、Y軸は、0.9重量/重量%KCl水溶液(pH8)の高イオン強度溶液を用いて、121℃で2時間加熱することにより溶出されるシリカ(SiO)の量であり、X軸は、βの値を示す。
 また、比較のため、TypeIBのホウケイ酸ガラスを原料とするガラス管20、及びTypeIBのホウケイ酸ガラスを原料とするガラス管20から成形された標準バイアル10について、実施例と同様に、0.9重量/重量%KCl水溶液(pH8)に対するシリカの溶出を確認した。標準バイアルとは、硫安処理、ファイアブラスト処理等の表面処理が施されていないバイアルである。図2において、直線DはTypeIBのホウケイ酸ガラスを原料とするガラス管20からのシリカの溶出量を示し、直線EはTypeIBのホウケイ酸ガラスを原料とするガラス管20から成形された標準バイアル10からのシリカの溶出量を示す。
 溶出されたシリカの量と、β値とから、最小自乗法により図2に示すそれぞれの近似直線が得られた。これから、TypeIAのホウケイ酸ガラスにおいては、β値が小さくなるにつれ、ガラス管から高イオン強度溶液へのシリカの溶出が抑制されることが認められる。また、β=7.5±0.5の範囲において、TypeIAのガラス管から溶出されたシリカの量は、TypeIBのガラス管から溶出されたシリカの量に近づく。すなわち、TypeIAのホウケイ酸ガラスを原料とするガラス管20から成形されたバイアル10については、β=7.5±0.5の範囲において、TypeIBのホウケイ酸ガラスを原料とするガラス管20から成形されたバイアル10の値と同等又はそれ以下の高イオン強度溶液に対するシリカの溶出があることが確認された。
10・・・バイアル
15・・・内面
20・・・ガラス管
30・・・ポイントバーナー
31・・・炎

Claims (3)

  1.  医療用バイアルの内面に生じた劣化層に、ポイントバーナーから噴出された炎を衝突させるファイアブラスト工程を含む医療用バイアルの製造方法であって、
     上記バイアルは、TypeIAのホウケイ酸ガラスを原料とするガラス管から成形され、
     上記ホウケイ酸ガラスに含まれる酸化物のモル比率は、
     Ψ=[(NaO+KO)-Al]/Bにおいて、Ψ=0.23±0.02を満たし、かつ
     β=B/Alにおいて、β=7.5±0.5
    を満たす医療用バイアルの製造方法。
  2.  上記ファイアブラスト工程後の上記バイアルを、KClの濃度が0.9重量/重量%であり、かつpH8の高イオン強度溶液中に浸漬した状態で2時間121℃で加熱することにより、上記バイアルの全表面積における1cm当たりから上記高イオン強度溶液中に溶出されるシリカをICP-AES法を用いて定量した値は、20.0μg/cm以下である請求項1に記載の医療用バイアルの製造方法。
  3.  上記高イオン強度溶液は、0.1mol/L以上のアルカリ塩を含む溶液である請求項2に記載の医療用バイアルの製造方法。
PCT/JP2016/061309 2015-04-09 2016-04-06 医療用バイアルの製造方法 WO2016163426A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/564,784 US20180105449A1 (en) 2015-04-09 2016-04-06 Method for Manufacturing Medical Vial
US16/597,164 US10710921B2 (en) 2015-04-09 2019-10-09 Method for manufacturing medical vial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080466 2015-04-09
JP2015080466 2015-04-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/564,784 A-371-Of-International US20180105449A1 (en) 2015-04-09 2016-04-06 Method for Manufacturing Medical Vial
US16/597,164 Division US10710921B2 (en) 2015-04-09 2019-10-09 Method for manufacturing medical vial

Publications (1)

Publication Number Publication Date
WO2016163426A1 true WO2016163426A1 (ja) 2016-10-13

Family

ID=57072302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061309 WO2016163426A1 (ja) 2015-04-09 2016-04-06 医療用バイアルの製造方法

Country Status (2)

Country Link
US (2) US20180105449A1 (ja)
WO (1) WO2016163426A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221605A1 (en) 2017-05-31 2018-12-06 Nipro Corporation Method for evaluation of glass container
WO2020251009A1 (ja) * 2019-06-14 2020-12-17 ニプロ株式会社 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572300B2 (en) * 2015-04-24 2023-02-07 Nipro Corporation Method for manufacturing medical glass container and fire blast device provided with rotator
DE102016123865A1 (de) * 2016-12-08 2018-06-14 Schott Ag Verfahren zum Weiterverarbeiten eines Glasrohr-Halbzeugs einschließlich einer thermischen Umformung
DE102016124833A1 (de) 2016-12-19 2018-06-21 Schott Ag Verfahren zum Herstellen eines Hohlglasprodukts aus einem Glasrohr-Halbzeug mit Markierungen, sowie Verwendungen hiervon
US20180346368A1 (en) * 2017-05-31 2018-12-06 Nipro Corporation Method of manufacturing glass vessel, and apparatus for manufacturing glass vessel
DE102017128413A1 (de) * 2017-11-30 2019-06-06 Schott Ag Verfahren zur Herstellung eines Glasartikels
DE102018104163A1 (de) * 2018-02-23 2019-08-29 Schott Ag Glasfläschchen mit geringer Migrationslast

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123621A1 (ja) * 2005-05-16 2006-11-23 Nipro Corporation バイアルおよびその製造方法
JP2010269973A (ja) * 2009-05-21 2010-12-02 Nipro Corp 医療用ガラス容器の製造方法
WO2013185018A1 (en) * 2012-06-07 2013-12-12 Corning Incorporated Delamination resistant glass containers
WO2014085242A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Glass containers with delamination resistance and improved strength
JP2014214084A (ja) * 2013-04-26 2014-11-17 ショット アクチエンゲゼルシャフトSchott AG 医薬分野で使用するのに好ましい改善された耐加水分解性を有するホウケイ酸ガラス
JP2015013793A (ja) * 2013-06-06 2015-01-22 日本電気硝子株式会社 医薬品容器用ガラス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676233B2 (ja) 1990-05-30 1994-09-28 日本硝子産業株式会社 ガラスアンプルまたは管瓶、及びその製造方法
CN101857356B (zh) 2009-04-07 2014-03-26 尼普洛株式会社 用于生产医用玻璃容器的方法和用于医用玻璃容器的内表面处理的燃烧器
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123621A1 (ja) * 2005-05-16 2006-11-23 Nipro Corporation バイアルおよびその製造方法
JP2010269973A (ja) * 2009-05-21 2010-12-02 Nipro Corp 医療用ガラス容器の製造方法
WO2013185018A1 (en) * 2012-06-07 2013-12-12 Corning Incorporated Delamination resistant glass containers
WO2014085242A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Glass containers with delamination resistance and improved strength
JP2014214084A (ja) * 2013-04-26 2014-11-17 ショット アクチエンゲゼルシャフトSchott AG 医薬分野で使用するのに好ましい改善された耐加水分解性を有するホウケイ酸ガラス
JP2015013793A (ja) * 2013-06-06 2015-01-22 日本電気硝子株式会社 医薬品容器用ガラス

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221605A1 (en) 2017-05-31 2018-12-06 Nipro Corporation Method for evaluation of glass container
JP2020524123A (ja) * 2017-05-31 2020-08-13 ニプロ株式会社 ガラス容器の評価方法
US11650166B2 (en) 2017-05-31 2023-05-16 Nipro Corporation Method for evaluation of glass container
WO2020251009A1 (ja) * 2019-06-14 2020-12-17 ニプロ株式会社 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材
JP2020203803A (ja) * 2019-06-14 2020-12-24 ニプロ株式会社 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材
KR20220020341A (ko) * 2019-06-14 2022-02-18 니프로 가부시키가이샤 피막 부착 유리 및 그 제조 방법 그리고 개질된 유리 기재
JP7423914B2 (ja) 2019-06-14 2024-01-30 ニプロ株式会社 皮膜付きガラスおよびその製造方法並びに改質されたガラス基材
KR102682373B1 (ko) * 2019-06-14 2024-07-08 니프로 가부시키가이샤 피막 부착 유리 및 그 제조 방법 그리고 개질된 유리 기재
US12227447B2 (en) 2019-06-14 2025-02-18 Nipro Corporation Coating film-attached glass, production method therefor, and modified glass substrate

Also Published As

Publication number Publication date
US10710921B2 (en) 2020-07-14
US20180105449A1 (en) 2018-04-19
US20200039867A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2016163426A1 (ja) 医療用バイアルの製造方法
CN110128011B (zh) 优选用于医药领域的具有改良的抗水解性的硼硅玻璃
JP6455799B2 (ja) 医薬品容器用ガラス管及び医薬品容器
US11807575B2 (en) Glass for medicine container and glass tube for medicine container
JP6694167B2 (ja) 医薬容器用ホウケイ酸ガラス
JP6732589B2 (ja) アルカリ金属比が最適化された低ホウ素でかつジルコニウム不含のニュートラルガラス
CN110615612B (zh) 具有低硼含量钢化的硼硅酸盐玻璃制品
JP6810104B2 (ja) アルミニウム不含ホウケイ酸ガラス
CN107922236A (zh) 玻璃容器的制造方法
JP2016041650A (ja) ガラス管の製造法及びその使用
EP3102173B1 (en) Method for making a pharmaceutical packaging from fused quartz tubing
JP6653076B2 (ja) 医薬容器用ガラス管及びその製造方法
JP7530047B2 (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
CN113227008A (zh) 医药品容器用玻璃、使用其的医药品容器用玻璃管及医药品容器
CN116181974A (zh) 用于药物容器的玻璃管及生产玻璃管的方法
Zuccato et al. Glass for Pharmaceutical Use
CN110357421B (zh) 用于制造玻璃制品的方法
JP7404782B2 (ja) ガラス容器又はガラス容器中間品の製造方法
Bora et al. A review on glass: packing component
JP6653073B2 (ja) 医薬容器用ホウケイ酸ガラス
JP2017057096A (ja) 医薬容器用ガラス管
CN114507010A (zh) 中硼硅玻璃组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15564784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP