WO2020248462A1 - 一种高质量石墨烯材料的制备方法 - Google Patents

一种高质量石墨烯材料的制备方法 Download PDF

Info

Publication number
WO2020248462A1
WO2020248462A1 PCT/CN2019/112571 CN2019112571W WO2020248462A1 WO 2020248462 A1 WO2020248462 A1 WO 2020248462A1 CN 2019112571 W CN2019112571 W CN 2019112571W WO 2020248462 A1 WO2020248462 A1 WO 2020248462A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
electrode
electrolyte solution
preparation
quality graphene
Prior art date
Application number
PCT/CN2019/112571
Other languages
English (en)
French (fr)
Inventor
何朋
丁古巧
张鹏磊
谢晓明
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to JP2021569982A priority Critical patent/JP2022534090A/ja
Priority to KR1020217038729A priority patent/KR20220002522A/ko
Publication of WO2020248462A1 publication Critical patent/WO2020248462A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/135Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation

Definitions

  • the present invention relates to graphene materials, and more specifically to a method for preparing high-quality graphene materials.
  • Graphene is a two-dimensional carbon material with a single atomic layer thickness ( ⁇ 0.34nm) formed by a large number of carbon atoms in an sp 2 hybrid manner and extending in the plane. It has a unique electronic structure and excellent optics. , Electrical, thermal and mechanical properties, have shown great application potential and commercial value in many application fields such as electronic information, energy, biomedicine, environment, etc. For graphene applications and commercial development, graphene materials are the foundation and cornerstone. Although the research on the preparation of graphene materials has continuously made breakthroughs in recent years, the sample survey study by Antonio H. Castro Neto et al.
  • the electrochemical cleavage method firstly forms intercalated graphite by applying an electric field to drive the intercalation material into the graphite layers, and at the same time, the bubbles generated by the electrochemical reaction are used to expand and cleavage the layered structure of the graphite at the edge and between the interlayer graphite.
  • graphene sheets have the advantages of simple process, energy saving and environmental protection, and easy scale.
  • the graphite particles or powder are placed in the container and contacted with the electrode.
  • similar Bulk graphite is used as the electrochemical intercalation and cleavage process of the electrode, so as to realize the electrochemical preparation of graphene materials with graphite particles or powder as the raw material.
  • graphite particles or powder as the raw material can achieve greater Large-scale electrochemical production process.
  • Patent CN108602678A proposes an electrochemical method using graphite particles as electrodes.
  • the electrode is located in the electrolyte to contact at least a part of the graphite particles. Due to the oxidizing environment near the anode, the graphite particles are oxidized while electrochemically peeling off. , The product is graphene oxide with severely damaged lattice structure, which is not conducive to the preparation of high-quality graphene.
  • Patent CN106904602B uses the rolling of the roller to make graphite particles contact with the anode to achieve intercalation and cleavage. The roller can isolate the graphite particles and the cathode, which is beneficial to improve the efficiency of cleavage. Oxidation damage cannot be avoided, so high-quality graphene cannot be prepared.
  • Patent CN106865533A proposes "a device and method for preparing graphene using platinum wire".
  • the cathode and anode are placed up and down, with the cathode on the top and the anode on the bottom, which can realize the cleavage of graphite, but because this method does not combine the raw materials with the cathode Isolated from the anode, the efficiency of electrochemical cleavage is affected, so this method clearly requires expanded graphite particles as raw materials.
  • Expanded graphite is a product obtained by chemical oxidation and cleavage of graphite to a certain extent. The thickness is thinner than that of graphite raw materials, which can make up for the low efficiency of the electrochemical cleavage method.
  • the preparation process of expanded graphite is cumbersome and cumbersome, and chemical oxidation causes damage to the lattice quality of expanded graphite itself, which is not conducive to the subsequent preparation of high-quality graphene.
  • the existing technology for preparing graphene by electrochemical cleavage whether bulk graphite is directly used as an electrochemical anode or graphite particles is used as an indirect anode, the graphite raw materials will undergo oxidation reactions, and the quality of the prepared graphene lattice The damage is severe and the graphene quality is low.
  • the effective electrode area is constantly changing, which is not conducive to electrochemical process monitoring, graphene quality control and large-scale production; when graphite particles are used as raw materials, The contact between the graphite particles and the electrode requires a more complicated stirring device and prolongs the cleavage time, resulting in low efficiency.
  • the present invention aims to provide a method for preparing high-quality graphene material, which is suitable for high-efficiency cleavage of graphite particles in an electrochemical system while maintaining the graphite sp 2 lattice structure to prepare high-quality graphene.
  • the preparation method of a high-quality graphene material specifically includes the following steps: S1, adding electrolyte solution, graphite raw material and electrode to an electrolytic vessel, contacting the electrode with the electrolyte solution, and forming a gap between the electrode and the graphite raw material Physical isolation; S2, applying an electric field to the electrode, intercalation and cleavage occur when the graphite raw material is not in contact with the electrode, wherein the solute of the electrolyte solution is one of inorganic acid electrolyte, inorganic salt electrolyte and organic electrolyte or Combination; the solvent of the electrolyte solution is one or a combination of water and alcohol; the inorganic acid electrolyte is one or a combination of sulfuric acid, nitric acid, phosphoric acid, and boric acid; the inorganic salt electrolyte is sulfate, nitrate, One or a combination of phosphate, borate, carbonate, and bicarbonate; the organic electroly
  • the invention uses inorganic acid electrolytes, inorganic salt electrolytes, and/or organic electrolytes to generate peroxides during electrochemical reactions to intercalate graphite.
  • the peroxides generate bubbles during the intercalation process to cleave the graphite structure.
  • the high-efficiency cleavage of graphite and the electrochemical preparation of high-quality graphene without touching the electrodes (cathode and anode) are realized.
  • the graphite raw materials and the electrodes can be The physical separation can effectively suppress the adverse effects of the direct contact between the graphite raw material and the electrode on the graphite cleavage process, avoid the dependence of the traditional electrochemical cleavage process on the electrical connection, thereby solving the graphene lattice existing in the existing electrochemical method Problems such as low quality and low production efficiency.
  • the concentration of the electrolyte solution is 0.01-50 mol/L. It should be understood that the concentration range of the electrolyte solution may be between 0.001-100 mol/L. In a preferred embodiment, the electrolyte solution is 1-20 mol/L inorganic acid aqueous solution, or 0.02-20 mol/L inorganic salt aqueous solution, or 10-50 mol/L organic aqueous solution.
  • the insulating porous material is arranged around the electrode so that the electrode in the insulating porous material is physically separated from the graphite material outside the insulating porous material, or the insulating porous material is arranged around the graphite material so that the graphite material in the insulating porous material is insulated from the graphite material.
  • the electrodes outside the porous material form a physical separation.
  • the present invention realizes the physical isolation between the graphite raw material and the electrode by covering the electrode or the graphite raw material with an insulating porous material.
  • the graphite raw material itself does not serve as an electrode and does not contact the electrode.
  • the intercalating agent and bubbles generated in situ by the electrochemical reaction are used. Cleavage the graphite structure and prepare graphene materials without contact with electrodes.
  • the insulating porous material is a nylon mesh bag. In a preferred embodiment, the insulating porous material is a 2000 mesh nylon mesh bag.
  • the graphite raw material is natural graphite, artificial graphite, expanded graphite, expandable graphite, and/or highly oriented pyrolytic graphite. It should be understood that the graphite raw material may be other graphite materials with a layered structure. In a preferred embodiment, the graphite raw material is natural graphite powder.
  • the electrode is a metal electrode, an oxide electrode, a glassy carbon electrode, and/or a graphite electrode. It should be understood that the electrode may be an electrode formed of other conductive materials. In a preferred embodiment, the electrode is a platinum electrode sheet or a titanium mesh sheet.
  • the method of applying an electric field in the step S2 is to apply a DC constant voltage, a DC constant current, a pulse voltage, and/or a pulse current to the electrodes.
  • the purpose of applying an electric field is to create a potential difference between the anode and the cathode.
  • the method of cleaning the cleavage product in step S3 is filtration, centrifugation, and/or dialysis. It should be understood that the purpose of cleaning the cleavage product is to remove impurities such as electrolyte solution.
  • the drying method in step S3 is natural drying, drying, microwave, spray drying, and/or freeze drying.
  • the preparation method further includes: S4, putting the high-quality graphene powder into a dispersant, and dispersing to obtain a high-quality graphene dispersion.
  • the dispersant is water, alcohol, N-2-methylpyrrolidone, N,N-dimethylformamide, and/or dimethyl sulfoxide.
  • the method of dispersion in step S4 includes ultrasound, shearing, stirring, grinding, and/or shaking. It should be understood that the dispersion method can also be performed under other mechanical actions.
  • the non-contact electrochemical cleavage proposed by the present invention can realize the physical isolation of the graphite raw material in the electrolyte solution from the electrode, and has three advantages: One is to avoid excessive oxidation and structural defects when the graphite raw material is in contact with the anode, the other is to effectively inhibit the deintercalation and inefficient cleavage process when the graphite raw material is in contact with the cathode, and the third is that the cleavage process does not rely on graphite and the electrode.
  • the connection can greatly improve the uniformity and thoroughness of graphite cleavage.
  • the present invention not only has the advantages of simple equipment, simple process and low cost of the existing electrochemical method, but also avoids the problems of many defects and low efficiency in the existing electrochemical method.
  • the obtained graphene lattice has high quality and conductivity. The highest rate can reach 10 6 S/m, and the yield can reach 95% or even 100%. It is a technology suitable for large-scale preparation of high-quality graphene.
  • Figure 1 is a schematic diagram of an electrochemical cleavage device for preparing high-quality graphene according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of an electrochemical cleavage device for preparing high-quality graphene according to another preferred embodiment of the present invention
  • Figure 3 is a process flow diagram for preparing high-quality graphene according to the present invention.
  • 4A is a transmission electron microscope picture of high-quality graphene prepared according to Example 3 of the present invention.
  • 4B is a selected area electron diffraction pattern of high-quality graphene prepared according to Example 3 of the present invention.
  • 5A is a transmission electron microscope picture of high-quality graphene prepared according to Example 4 of the present invention.
  • 5B is a selected area electron diffraction pattern of high-quality graphene prepared according to Example 4 of the present invention.
  • FIG. 1 An electrochemical cleavage device for preparing high-quality graphene according to a preferred embodiment of the present invention is shown in Figure 1, which includes an electrolytic cell 1, an electrode 2 and graphite raw material particles 3, wherein the electrolytic cell 1 contains Electrolyte solution 11, the electrode 2 inserted into the electrolyte solution 11 at the bottom includes a cathode 21 and an anode 22 spaced apart from each other. The tops of the cathode 21 and the anode 22 are connected to the power source 24 through a wire 23. The graphite raw material particles 3 are located between the cathode 21 and the anode 22. It is immersed in the electrolyte solution 11 and kept in non-physical contact with the electrode 2 through the isolation mesh 4.
  • the isolation net 4 is arranged around the electrode 2, that is, it includes a first isolation net 41 arranged around the cathode 21 and a second isolation net 42 arranged around the anode 22.
  • the graphite raw material particles 3 are due to the first and second isolation nets.
  • the two isolation nets 41, 42 cannot physically contact the electrode 2.
  • the electrolyte solution 11 undergoes an electrochemical reaction to produce the intercalation material peroxide, and the electric field generated by the electrode 2 drives the intercalation material into the graphite layers of the graphite raw particles 3 to form intercalation graphite first, and the bubbles generated by the peroxide are intercalated.
  • FIG. 2 An electrochemical cleavage device for preparing high-quality graphene according to another preferred embodiment of the present invention is shown in FIG. 2, which includes an electrolytic cell 1', an electrode 2', and graphite raw material particles 3', wherein the electrolytic cell 1'contains an electrolyte solution 11', and the electrode 2'inserted into the electrolyte solution 11' at the bottom includes a cathode 21' and an anode 22' spaced apart from each other.
  • the tops of the cathode 21' and the anode 22' are connected to a power source 24 through a wire 23''Connect, the graphite raw material particles 3'are immersed in the electrolyte solution 11' between the cathode 21' and the anode 22' and maintain non-physical contact with the electrode 2'through the separation mesh 4'.
  • the isolation mesh 4' is arranged around the graphite raw material particles 3', that is, the isolation mesh 4'wraps all the graphite raw material particles 3'in it, and the graphite raw material particles 3'cannot interact with the electrode due to the isolation mesh 4'. 2'physical contact.
  • the electrolyte solution 11' undergoes an electrochemical reaction to produce the intercalation material peroxide, and the electric field generated by the electrode 2'drives the intercalation material into the graphite layer of the graphite raw material particles 3'to form intercalation graphite first. Bubbles expand and cleave the layered structure of graphite at the edges and between layers of intercalated graphite, thereby obtaining graphene sheets.
  • the oxidizing environment of the anode 22' will not destroy the sp 2 lattice structure of the graphite raw material particles 3'(that is, the graphite raw material), and at the same time, the reduction of the cathode 21' The environment will not hinder the graphite cleavage process, so that high-efficiency preparation of high-quality graphene materials can be achieved.
  • the preparation method of the high-quality graphene material of the present invention is further described below with reference to FIG. 3 and specific examples, which specifically include the steps: S1, adding electrolyte solution, graphite raw materials and electrodes into an electrolytic vessel, and bringing the electrodes into contact with the electrolyte solution, Physical isolation is formed between the electrode and the graphite raw material; S2, an electric field is applied to the electrode, intercalation and cleavage occur when the graphite raw material is not in contact with the electrode; S3, the cleavage product is cleaned, the electrolyte solution is removed, and the high-quality graphene is obtained by drying Powder; S4, put high-quality graphene powder into a solvent, and disperse to obtain a high-quality graphene dispersion.
  • the powder is added to N-2-methylpyrrolidone in a 200W water bath Ultrasound for 2h to obtain a dispersion of high-quality graphene.
  • a typical transmission electron microscope picture of the obtained high-quality graphene is shown in Figure 4A, and the selected area electron diffraction pattern is shown in Figure 4B.
  • Figure 4A shows that the number of sheets in the product is small, and Figure 4B shows that the sheets have good
  • the hexagonal lattice structure shows that the product is a high-quality graphene sheet.
  • the solid particles are filtered and cleaned with water several times, and then the final filter cake is placed in an oven to fully dry to obtain high-quality graphene powder with a yield of about 45.5%.
  • the particles are filtered and cleaned with water several times, and then the final filter cake is placed in an oven to fully dry to obtain high-quality graphene powder with a yield of about 66.5%.

Abstract

一种高质量石墨烯材料的制备方法,包括:将电解质溶液、石墨原料和电极加入到电解容器中,使电极与电解质溶液接触,电极与石墨原料之间形成物理隔离;对电极施加电场,在石墨原料没有和电极接触的情况下发生插层和解理,电解质为硫酸、硝酸、磷酸、硼酸、硫酸盐、硝酸盐、磷酸盐、硼酸盐、碳酸盐、碳酸氢盐、尿素、甲酸、苯甲酸、乙酸和乙酸盐中的一种或其组合;清洗解理产物,除去电解质溶液,干燥得到高质量石墨烯粉体。本方法利用电解质在发生电化学反应时产生的过氧化物对石墨进行插层,过氧化物在插层过程中产生气泡对石墨结构进行解理,在无需接触电极的情况下实现石墨的高效解理和高质量石墨烯的电化学制备。

Description

一种高质量石墨烯材料的制备方法 技术领域
本发明涉及石墨烯材料,更具体地涉及一种高质量石墨烯材料的制备方法。
背景技术
石墨烯是由大量碳原子以sp 2杂化方式成键并在平面内延伸形成的单原子层厚度(~0.34nm)的二维碳材料,具有独特的电子结构以及由此带来的优异光学、电学、热学和机械性能,在电子信息、能源、生物医药、环境等诸多应用领域都显示出巨大的应用潜能和商业价值。对于石墨烯的应用和商业开发,石墨烯材料是基础和基石。尽管近年来石墨烯材料的制备研究不断取得突破性进展,但2018年Antonio H.Castro Neto等人[Advanced Materials,2018,30(44):1803784]的抽样调查研究表明,全球现有较大规模的石墨烯材料供应商产品存在严重的质量问题,特别是在结构缺陷含量等方面的指标远远超出2017年ISO[ISO/TS 80004-13:2017[E]]关于石墨烯材料标准所定义的范围。因此,尽管石墨烯的潜在应用价值在实验室得到充分证明,但可控的规模化制备高质量石墨烯技术仍然是制约石墨烯走出实验室、走向市场的瓶颈,仍然需要积极研究和探索创新方法和工艺以突破现有技术的局限。
石墨烯的制备方法非常多,包括化学气相沉积法、液相剥离法、氧化还原法和电化学解理法等。其中,电化学解理法通过施加电场驱动插层物质进入石墨层间首先形成插层石墨,同时利用电化学反应产生的气泡在插层石墨边缘和层间膨胀解理石墨的层状结构,从而获得石墨烯片层,相较于其他方法具有工艺简单、节能环保和易于规模化等优势。然而,目前主流的电化学方法多是以块状石墨作为制备石墨烯的原料同时作为电极,包括石墨棒、石墨箔和高定向热解石墨(HOPG)等,通过电场实现石墨电极的插层和解理,由于气泡膨胀解理插层石墨的同时也会造成电极骨架结构的破坏,致使大量插层石墨片层来不及充分解理便从电极脱落,脱落的插层石墨与对电极接触后发生脱插层,恢复到石墨状态,这是目前电化学制备产率无法进一步提升的主要原因,同时随着块状石墨原料的消耗,有效工作电极不断变化,不利 于生产过程监控、产品品质控制和大规模生产。
为了解决常规电化学解理法以块状石墨原料为电极而难以进一步提升产率的问题,将石墨颗粒或粉体装在容器内,与电极接触进行,当石墨颗粒与电极接触时可以发生类似于块状石墨作为电极的电化学插层和解理过程,从而实现以石墨颗粒或粉体为原料电化学制备石墨烯材料,相比于块体石墨电极,石墨颗粒或粉体作为原料可以实现更大规模的电化学生产工艺。专利CN108602678A提出了一种以石墨颗粒为电极的电化学方法,明确要求“电极位于电解质内以接触石墨颗粒的至少一部分”,由于阳极附近的氧化环境,石墨颗粒在发生电化学剥离的同时被氧化,产物为晶格结构严重破坏的氧化石墨烯,不利于高晶格质量石墨烯的制备。专利CN106904602B利用滚筒的滚动使石墨颗粒与阳极接触而实现插层和解理,滚筒可以隔离石墨颗粒和阴极,有利于提升解理效率,解理过程依赖石墨颗粒与阳极的接触,对石墨烯结构的氧化破坏无法避免,因此也无法制备高质量石墨烯。专利CN106865533A提出的“一种利用铂丝制备石墨烯的装置及方法”,将阴、阳极上下相对放置,阴极在上而阳极在下,可以实现石墨的解理,但由于该方法未将原料与阴极和阳极隔离,电化学解理效率受到影响,因此该方法明确要求以膨胀石墨颗粒为原料。膨胀石墨是石墨经过化学氧化和一定程度解理所得的产物,厚度较石墨原料薄,可以弥补该电化学解理方法效率低的缺陷。但是,膨胀石墨的制备过程冗杂繁琐,且化学氧化导致膨胀石墨本身的晶格质量受到破坏,不利于后续制备高质量石墨烯。
总体而言,现有电化学解理制备石墨烯的技术,不论是块体石墨直接作为电化学阳极,还是石墨颗粒作间接作为阳极,石墨原料都将发生氧化反应,所制备石墨烯晶格质量破坏严重,石墨烯品质较低。其外,当以块体石墨作为电极时,随着电化学的进行,有效电极面积不断变化,不利于电化学过程监控、石墨烯品质控制和大规模生产;当以石墨颗粒为原料时,为了石墨颗粒与电极的接触,需要增加较为复杂的搅拌装置并延长解理时间,导致效率低下。
发明内容
本发明旨在提供一种高质量石墨烯材料的制备方法,其适合在电化学体 系中高效率解理石墨颗粒,同时保持石墨sp 2晶格结构以制备高质量石墨烯。
本发明所述的一种高质量石墨烯材料的制备方法,具体包括步骤:S1,将电解质溶液、石墨原料和电极加入到电解容器中,使电极与电解质溶液接触,电极与石墨原料之间形成物理隔离;S2,对电极施加电场,在石墨原料没有和电极接触的情况下发生插层和解理,其中,该电解质溶液的溶质为无机酸电解质、无机盐电解质和有机物电解质中的一种或其组合;该电解质溶液的溶剂为水和醇中的一种或其组合;该无机酸电解质为硫酸、硝酸、磷酸和硼酸中的一种或其组合;该无机盐电解质为硫酸盐、硝酸盐、磷酸盐、硼酸盐、碳酸盐和碳酸氢盐中的一种或其组合;该有机物电解质为尿素、甲酸、苯甲酸、乙酸和乙酸盐(例如乙酸钠、乙酸铵、或乙酸钾)中的一种或其组合;该电解质溶液发生电化学反应产生插层物质过氧化物,电极产生的电场驱动插层物质进入石墨原料的石墨层间形成插层石墨,过氧化物产生的气泡在插层石墨边缘和层间膨胀解理石墨;S3,清洗解理产物,除去电解质溶液,干燥得到高质量石墨烯粉体。
本发明利用无机酸电解质、无机盐电解质、和/或有机物电解质在发生电化学反应时产生的过氧化物对石墨进行插层,过氧化物在插层过程中产生气泡对石墨结构进行解理,在无需接触电极(阴级和阳极)的情况下实现石墨的高效解理和高质量石墨烯的电化学制备,由于解理过程不依赖石墨原料与电极的接触,因而可通过将石墨原料和电极隔物理离开来,进而可有效抑制石墨原料与电极直接接触对石墨解理过程的不利影响,避免传统电化学解理过程对电连接的依赖,从而解决现有电化学方法存在的石墨烯晶格质量低和制备效率低等问题。
优选地,该电解质溶液的浓度为0.01~50mol/L。应该理解,该电解质溶液的浓度范围可以介于0.001~100mol/L之间。在优选的实施例中,该电解质溶液为1~20mol/L的无机酸水溶液,或0.02~20mol/L的无机盐水溶液,或10~50mol/L的有机物水溶液。
优选地,绝缘多孔材料围绕着电极设置以使得绝缘多孔材料内的电极与绝缘多孔材料外的石墨原料形成物理隔离,或者绝缘多孔材料围绕着石墨原料设置以使得绝缘多孔材料内的石墨原料与绝缘多孔材料外的电极形成物理隔离。本发明通过绝缘多孔材料包覆电极或石墨原料来实现石墨原料与电极 的物理隔离,其中,石墨原料本身不作为电极,也不与电极接触,利用电化学反应原位产生的插层剂和气泡解理石墨结构,在不与电极接触情形下制备石墨烯材料。在优选的实施例中,该绝缘多孔材料为尼龙网袋。在一个优选的实施例中,该绝缘多孔材料为2000目的尼龙网袋。
优选地,该石墨原料为天然石墨、人造石墨、膨胀石墨、可膨胀石墨、和/或高定向热解石墨。应该理解,该石墨原料可以是其他具有层状结构的石墨材料。在优选的实施例中,该石墨原料为天然石墨粉体。
优选地,该电极为金属电极、氧化物电极、玻碳电极、和/或石墨电极。应该理解,该电极可以是其他导电材料形成的电极。在优选的实施例中,该电极为铂电极片、或钛网片。
优选地,所述步骤S2中的施加电场的方式为在电极加载直流恒压、直流恒流、脉冲电压、和/或脉冲电流。应该理解,该施加电场的目的是用于在阳极和阴极之间形成电势差。
优选地,所述步骤S3中的清洗解理产物的方式为过滤、离心、和/或透析。应该理解,该清洗解理产物的目的是除去电解质溶液等杂质。
优选地,所述步骤S3中的干燥方式为自然晾干、烘干、微波、喷雾干燥、和/或冷冻干燥。
优选地,该制备方法还包括:S4,将高质量石墨烯粉体放入分散剂中,分散得到高质量石墨烯分散液。
优选地,该分散剂为水、醇、N-2-甲基吡咯烷酮、N,N-二甲基甲酰胺、和/或二甲基亚矾。
优选地,所述步骤S4中的分散的方式包括超声、剪切、搅拌、研磨、和/或震荡。应该理解,该分散的方式还可以在其他机械作用下进行。
根据本发明的高质量石墨烯材料的制备方法,与现有技术相比,本发明提出的非接触式电化学解理可实现电解质溶液中的石墨原料与电极的物理隔离,具有三种优势,一是可避免石墨原料与阳极接触时的过度氧化和结构缺陷,二是可有效抑制石墨原料与阴极接触时的脱插层和低效解理过程,三是由于解理过程不依赖石墨与电极的连接,可大幅提高石墨解理的均匀性和彻底性。总之,本发明不仅具有现有电化学方法设备简单、工艺简便、成本较低的优势,同时避免了现有电化学方法存在的缺陷多和效率低等问题,所得 石墨烯晶格质量高,电导率最高可达10 6S/m,产率可达95%,甚至可达100%,是一种适合规模化制备高质量石墨烯的技术。
附图说明
图1是根据本发明的一个优选实施方式的用于制备高质量石墨烯的电化学解理装置的示意图;
图2是根据本发明的另一个优选实施方式的用于制备高质量石墨烯的电化学解理装置的示意图;
图3是根据本发明的用于制备高质量石墨烯的工艺流程图;
图4A是根据本发明的实施例3制备所得的高质量石墨烯的透射电子显微镜图片;
图4B是根据本发明的实施例3制备所得的高质量石墨烯的选区电子衍射图案;
图5A是根据本发明的实施例4制备所得的高质量石墨烯的透射电子显微镜图片;
图5B是根据本发明的实施例4制备所得的高质量石墨烯的选区电子衍射图案。
具体实施方式
下面结合附图详细描述本发明。
根据本发明的一个优选实施方式的用于制备高质量石墨烯的电化学解理装置如图1所示,其包括电解槽1、电极2和石墨原料颗粒3,其中,电解槽1中盛有电解质溶液11,底部插入电解质溶液11中的电极2包括彼此间隔开的阴极21和阳极22,阴极21和阳极22的顶部通过导线23与电源24连接,石墨原料颗粒3在阴极21和阳极22之间浸没在电解质溶液11中并通过隔离网4与电极2保持非物理接触。具体地,该隔离网4围绕着电极2设置,即包括分别围绕着阴极21设置的第一隔离网41和围绕着阳极22设置的第二隔离网42,石墨原料颗粒3由于该第一和第二隔离网41,42而无法与电极2物理接触。由此,电解质溶液11发生电化学反应产生插层物质过氧化物,电极2产生的电场驱动插层物质进入石墨原料颗粒3的石墨层间首先形成插层石 墨,过氧化物产生的气泡在插层石墨边缘和层间膨胀解理石墨的层状结构,从而获得石墨烯片层。特别地,由于石墨原料颗粒3与电极2物理隔离,阳极22的氧化环境就不会破坏石墨原料(即石墨原料颗粒3)的sp 2晶格结构,同时,阴极21的还原环境也不会阻碍石墨解理过程,从而可以实现高效率制备高质量石墨烯材料。
根据本发明的另一个优选实施方式的用于制备高质量石墨烯的电化学解理装置如图2所示,其包括电解槽1’、电极2’和石墨原料颗粒3’,其中,电解槽1’中盛有电解质溶液11’,底部插入电解质溶液11’中的电极2’包括彼此间隔开的阴极21’和阳极22’,阴极21’和阳极22’的顶部通过导线23’与电源24’连接,石墨原料颗粒3’在阴极21’和阳极22’之间浸没在电解质溶液11’中并通过隔离网4’与电极2’保持非物理接触。具体地,该隔离网4’围绕着石墨原料颗粒3’设置,即隔离网4’将所有的石墨原料颗粒3’包裹于其内,石墨原料颗粒3’由于该隔离网4’而无法与电极2’物理接触。由此,电解质溶液11’发生电化学反应产生插层物质过氧化物,电极2’产生的电场驱动插层物质进入石墨原料颗粒3’的石墨层间首先形成插层石墨,过氧化物产生的气泡在插层石墨边缘和层间膨胀解理石墨的层状结构,从而获得石墨烯片层。特别地,由于石墨原料颗粒3’与电极2’物理隔离,阳极22’的氧化环境就不会破坏石墨原料颗粒3’(即石墨原料)的sp 2晶格结构,同时,阴极21’的还原环境也不会阻碍石墨解理过程,从而可以实现高效率制备高质量石墨烯材料。
下面结合图3并通过具体实施例进一步阐述本发明的高质量石墨烯材料的制备方法,具体包括步骤:S1,将电解质溶液、石墨原料和电极加入到电解容器中,使电极与电解质溶液接触,电极与石墨原料之间形成物理隔离;S2,对电极施加电场,在石墨原料没有和电极接触的情况下发生插层和解理;S3,清洗解理产物,除去电解质溶液,干燥得到高质量石墨烯粉体;S4,将高质量石墨烯粉体放入溶剂中,分散得到高质量石墨烯分散液。
实施例1
将100mL硫酸水溶液(1mol/L)和10g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待硫酸溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体 系,并通过电源和导线在两电极上加载+20V恒电压,1h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为96.5%,将该粉体加入N-2-甲基吡咯烷酮中,200W水浴超声2h得到高质量石墨烯的分散液。所得高质量石墨烯的典型透射电子显微镜图片如图4A所示,选区电子衍射图案如图4B所示,其中,图4A表明产物中片层的层数较少,图4B表明片层具有很好的六方晶格结构,这说明产物为高质量石墨烯片层。
实施例2
将200mL磷酸水溶液(12mol/L)加入如图2所示的电解槽中,放置两片钛网作为电极,然后将装有10g天然石墨粉体的尼龙网袋(2000目)置于两电极之间,待磷酸溶液浸入网袋后,超声振动网袋中电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,5h后关闭电源,停止超声,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于冷冻干燥机中充分干燥,得到高质量石墨烯粉体,产率约为89.1%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声1h得到高质量石墨烯的分散液。
实施例3
将100mL硼酸水溶液(4mol/L)和5g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待硼酸溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载+10V恒电压,5h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为80.5%,将该粉体加入二甲基亚矾中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例4
将100mL硝酸水溶液(14mol/L)和5g人造墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待硼酸溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载幅值为5.5V的脉冲电压,脉冲频率为1500Hz,占空比为50%,20h后关闭电源,停止磁力搅拌,收集电解质溶液 中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为72.5%,将该粉体加入二甲基亚矾中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例5
将500mL硝酸钠水溶液(0.5mol/L)加入如图2所示的电解槽中,放置两片钛网作为电极,然后将装有5g天然石墨粉体的尼龙网袋(2000目)置于两电极之间,待电解质溶液浸入网袋后,超声振动网袋中电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,8h后关闭电源,停止超声,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼在乙醇中超声分散后导入喷雾干燥机中干燥,得到高质量石墨烯粉体,产率约为93.6%,将该粉体加入N,N-二甲基甲酰胺中,在行星磨中研磨1h(公转转速200rpm,自转转速500rpm)得到高质量石墨烯的分散液。
实施例6
将100mL硝酸铵水溶液(20mol/L)和10g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待电解质溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,1h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为96.4%,将该粉体加入N-2-甲基吡咯烷酮中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例7
将100mL磷酸钠溶液(1mol/L)加入如图2所示的电解槽中,放置两片钛网作为电极,然后将装有5g天然石墨粉体的尼龙网袋(2000目)置于两电极之间,待磷酸溶液浸入网袋后,超声振动网袋中电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载交电流(±10V,0.1Hz),4h后关闭电源,停止超声,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼在微波炉中充分干燥,得到高质量石墨烯粉体,产率约为95.6%,将该粉体加入二甲基亚矾中,机械剪切(5000rpm)1h得到高质量石 墨烯的分散液。所得高质量石墨烯的典型透射电子显微镜图片如图5A所示,选区电子衍射图案如图5B所示,其中,图5A表明产物中片层的层数较少,图5B表明片层具有很好的六方晶格结构,这说明产物为高质量石墨烯片层。
实施例8
将100mL磷酸二氢钾水溶液(0.5mol/L)和10g人造石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待电解质溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,10h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为73.1%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例9
将100mL碳酸钠水溶液(1mol/L)和5g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待碳酸钠溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载+20V恒电压,10h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为45.5%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例10
将100mL碳酸铵水溶液(1mol/L)和10g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待电解质溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,18h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为65.5%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例11
将100mL硼酸钠水溶液(0.02mol/L)和1g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待电解质溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,20h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为55.7%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例12
将100mL硼酸铵水溶液(0.02mol/L)和1g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待电解质溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载100mA/cm 2恒电流,20h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为33.3%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例13
将100mL乙酸水溶液(45mol/L)和20g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待乙酸溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载+20V恒电压,15h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为98.5%,将该粉体加入二甲基亚矾中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例14
将100mL乙酸钠水溶液(8mol/L)和5g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待电解质溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合 体系,并通过电源和导线在两电极上加载+10V恒电压,10h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为66.5%,将该粉体加入N,N-二甲基甲酰胺中,200W水浴超声2h得到高质量石墨烯的分散液。
实施例15
将100mL尿素水溶液(10mol/L)和10g天然石墨粉体加入如图1所示的电解槽中,然后在电解槽中放置两个铂电极片,电极片表面包覆有2000目尼龙网袋,待硫酸溶液浸入网袋后,磁力搅拌电解质溶液和石墨颗粒的混合体系,并通过电源和导线在两电极上加载+20V恒电压,10h后关闭电源,停止磁力搅拌,收集电解质溶液中的固体颗粒并多次加水过滤清洗,然后最终的滤饼置于烘箱中充分干燥,得到高质量石墨烯粉体,产率约为86.8%,将该粉体加入N,N-二甲基甲酰胺,200W水浴超声2h得到高质量石墨烯的分散液。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种高质量石墨烯材料的制备方法,其特征在于,该制备方法具体包括步骤:
    S1,将电解质溶液、石墨原料和电极加入到电解容器中,使电极与电解质溶液接触,电极与石墨原料之间形成物理隔离;
    S2,对电极施加电场,在石墨原料没有和电极接触的情况下发生插层和解理,其中,该电解质溶液的溶质为无机酸电解质、无机盐电解质和有机物电解质中的一种或其组合;该电解质溶液的溶剂为水和醇中的一种或其组合;该无机酸电解质为硫酸、硝酸、磷酸和硼酸中的一种或其组合;该无机盐电解质为硫酸盐、硝酸盐、磷酸盐、硼酸盐、碳酸盐和碳酸氢盐中的一种或其组合;该有机物电解质为尿素、甲酸、苯甲酸、乙酸和乙酸盐中的一种或其组合;该电解质溶液发生电化学反应产生插层物质过氧化物,电极产生的电场驱动插层物质进入石墨原料的石墨层间形成插层石墨,过氧化物产生的气泡在插层石墨边缘和层间膨胀解理石墨;
    S3,清洗解理产物,除去电解质溶液,干燥得到高质量石墨烯粉体。
  2. 根据权利要求1所述的制备方法,其特征在于,该电解质溶液的浓度为0.01~50mol/L。
  3. 根据权利要求1所述的制备方法,其特征在于,绝缘多孔材料围绕着电极设置以使得绝缘多孔材料内的电极与绝缘多孔材料外的石墨原料形成物理隔离,或者绝缘多孔材料围绕着石墨原料设置以使得绝缘多孔材料内的石墨原料与绝缘多孔材料外的电极形成物理隔离。
  4. 根据权利要求1所述的制备方法,其特征在于,该石墨原料为天然石墨、人造石墨、膨胀石墨、可膨胀石墨、和/或高定向热解石墨。
  5. 根据权利要求1所述的制备方法,其特征在于,该电极为金属电极、氧化物电极、玻碳电极、和/或石墨电极。
  6. 根据权利要求1所述的制备方法,其特征在于,所述步骤S2中的施加电场的方式为在电极加载直流恒压、直流恒流、脉冲电压、和/或脉冲电流。
  7. 根据权利要求1所述的制备方法,其特征在于,所述步骤S3中的清洗解理产物的方式为过滤、离心、和/或透析。
  8. 根据权利要求1所述的制备方法,其特征在于,所述步骤S3中的干燥方式为自然晾干、烘干、微波、喷雾干燥、和/或冷冻干燥。
  9. 根据权利要求1所述的制备方法,其特征在于,该制备方法还包括:S4,将高质量石墨烯粉体放入分散剂中,分散得到高质量石墨烯分散液。
  10. 根据权利要求9所述的制备方法,其特征在于,该分散剂为水、醇、N-2-甲基吡咯烷酮、N,N-二甲基甲酰胺、和/或二甲基亚矾。
PCT/CN2019/112571 2019-06-11 2019-10-22 一种高质量石墨烯材料的制备方法 WO2020248462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021569982A JP2022534090A (ja) 2019-06-11 2019-10-22 高品質のグラフェン材料の製造方法
KR1020217038729A KR20220002522A (ko) 2019-06-11 2019-10-22 고품질 그래핀 재료 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910501877.1A CN110217784A (zh) 2019-06-11 2019-06-11 一种高质量石墨烯材料的制备方法
CN201910501877.1 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020248462A1 true WO2020248462A1 (zh) 2020-12-17

Family

ID=67816343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112571 WO2020248462A1 (zh) 2019-06-11 2019-10-22 一种高质量石墨烯材料的制备方法

Country Status (4)

Country Link
JP (1) JP2022534090A (zh)
KR (1) KR20220002522A (zh)
CN (1) CN110217784A (zh)
WO (1) WO2020248462A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408909A (zh) * 2022-03-02 2022-04-29 广西师范大学 一种电化学剥离石墨制备石墨烯的方法
CN114590802A (zh) * 2021-12-08 2022-06-07 超威电源集团有限公司 一种电解制备石墨烯的方法及装置
CN115036510A (zh) * 2022-07-25 2022-09-09 常州大学 一种无添加石墨烯/炭黑复合导电剂及其制备方法和应用
CN115159514A (zh) * 2022-07-19 2022-10-11 中钢集团南京新材料研究院有限公司 电化学制备石墨烯的方法、高比表面积石墨烯及相关产品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217784A (zh) * 2019-06-11 2019-09-10 中国科学院上海微系统与信息技术研究所 一种高质量石墨烯材料的制备方法
CN110482536A (zh) * 2019-09-25 2019-11-22 维沃泰克仪器(扬州)有限公司 一种利用熔融碳酸盐一步电解制备石墨烯微片的方法
CN111320166B (zh) * 2020-01-19 2022-11-18 北京工业大学 一种一步电化学过程制备二维多孔氧化石墨烯的方法
CN111232964B (zh) * 2020-01-19 2022-05-27 北京石墨烯研究院 一种石墨烯晶圆的转移方法、石墨烯晶圆及鼓泡体系
CN111285360A (zh) * 2020-03-19 2020-06-16 德阳烯碳科技有限公司 一种电化学膨胀插层石墨制备石墨烯的方法
CN111453723A (zh) * 2020-05-28 2020-07-28 鹰领航空高端装备技术秦皇岛有限公司 一种可膨胀石墨制备装置及其电化学插层方法
CN112047330A (zh) * 2020-09-23 2020-12-08 广西师范大学 一种实现电化学法生产石墨烯的同步剥离收集方法
CN112645313B (zh) * 2021-01-16 2022-05-27 大连理工大学 一种电化学快速批量制备石墨烯基单原子催化剂的方法及其应用
CN113060722A (zh) * 2021-03-17 2021-07-02 中国科学院上海微系统与信息技术研究所 一种高质量石墨烯材料的电化学制备方法
CN113603084B (zh) * 2021-08-24 2024-01-02 清华大学 一种电化学制备氧化石墨烯的方法
CN115403036B (zh) * 2022-08-30 2023-07-25 中钢天源股份有限公司 一种连续电化学剥离的装置、方法及应用
CN115621463B (zh) * 2022-10-21 2023-06-09 厦门凯纳石墨烯技术股份有限公司 一种石墨烯复合导电剂、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001089A1 (en) * 2011-06-28 2013-01-03 Academia Sinica Preparation of graphene sheets
CN103204494A (zh) * 2012-01-16 2013-07-17 中央研究院 规模化量产制造石墨烯及石墨烯氧化物的设备及其方法
CN103991862A (zh) * 2013-12-27 2014-08-20 杭州金马能源科技有限公司 电化学高效剥离制备高质量石墨烯的方法
CN104773730A (zh) * 2015-04-29 2015-07-15 中国科学院深圳先进技术研究院 石墨烯的制备方法
CN106904602A (zh) * 2015-12-17 2017-06-30 姚培智 石墨烯量产化设备及其制造方法
CN107235485A (zh) * 2016-03-23 2017-10-10 上海新池能源科技有限公司 石墨烯的制备方法
CN110217784A (zh) * 2019-06-11 2019-09-10 中国科学院上海微系统与信息技术研究所 一种高质量石墨烯材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807213B (zh) * 2012-08-30 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 电化学制备石墨烯的方法
CN103693638B (zh) * 2013-12-09 2015-08-19 中国科学院山西煤炭化学研究所 一种电化学溶胀石墨制备石墨烯的方法
CN107215867B (zh) * 2016-03-22 2019-05-10 中国科学院金属研究所 一种连续化制备氧化石墨烯微片的方法
CN107235486B (zh) * 2016-03-23 2019-11-29 上海新池能源科技有限公司 水溶性石墨烯的制备方法
WO2020105646A1 (ja) * 2018-11-21 2020-05-28 学校法人工学院大学 グラフェンの製造方法及びグラフェン製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001089A1 (en) * 2011-06-28 2013-01-03 Academia Sinica Preparation of graphene sheets
CN103204494A (zh) * 2012-01-16 2013-07-17 中央研究院 规模化量产制造石墨烯及石墨烯氧化物的设备及其方法
CN103991862A (zh) * 2013-12-27 2014-08-20 杭州金马能源科技有限公司 电化学高效剥离制备高质量石墨烯的方法
CN104773730A (zh) * 2015-04-29 2015-07-15 中国科学院深圳先进技术研究院 石墨烯的制备方法
CN106904602A (zh) * 2015-12-17 2017-06-30 姚培智 石墨烯量产化设备及其制造方法
CN107235485A (zh) * 2016-03-23 2017-10-10 上海新池能源科技有限公司 石墨烯的制备方法
CN110217784A (zh) * 2019-06-11 2019-09-10 中国科学院上海微系统与信息技术研究所 一种高质量石墨烯材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, H. S. ET AL.: "Anode coverage for enhanced electrochemical oxidation: a green and efficient strategy towards water-dispersible graphene", GREEN CHEMISTRY, vol. 20, 8 February 2018 (2018-02-08), XP055763997, ISSN: 1463-9270, DOI: 20200427093412A *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590802A (zh) * 2021-12-08 2022-06-07 超威电源集团有限公司 一种电解制备石墨烯的方法及装置
CN114408909A (zh) * 2022-03-02 2022-04-29 广西师范大学 一种电化学剥离石墨制备石墨烯的方法
CN114408909B (zh) * 2022-03-02 2024-03-15 广西师范大学 一种电化学剥离石墨制备石墨烯的方法
CN115159514A (zh) * 2022-07-19 2022-10-11 中钢集团南京新材料研究院有限公司 电化学制备石墨烯的方法、高比表面积石墨烯及相关产品
CN115159514B (zh) * 2022-07-19 2023-10-13 中钢集团南京新材料研究院有限公司 电化学制备石墨烯的方法、高比表面积石墨烯及相关产品
CN115036510A (zh) * 2022-07-25 2022-09-09 常州大学 一种无添加石墨烯/炭黑复合导电剂及其制备方法和应用
CN115036510B (zh) * 2022-07-25 2023-09-29 常州大学 一种无添加石墨烯/炭黑复合导电剂及其制备方法和应用

Also Published As

Publication number Publication date
JP2022534090A (ja) 2022-07-27
CN110217784A (zh) 2019-09-10
KR20220002522A (ko) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020248462A1 (zh) 一种高质量石墨烯材料的制备方法
CN102534643B (zh) 一种废旧电池碳棒再生为石墨烯的方法
JP7357936B2 (ja) グラフェンの製造方法及びグラフェン製造装置
CN109306498B (zh) 一种二维超薄二硫化铌纳米片的制备方法及产品和应用
CN104591855B (zh) 制备用于肥料的纳米碳粉的方法
CN107628609B (zh) 层数可控石墨烯的制造方法及石墨烯
CN104362326B (zh) 一种柔性电极材料的制备方法
CN107235486B (zh) 水溶性石墨烯的制备方法
CN104529545B (zh) 一种具有良好电化学性能的解开的氮掺杂碳纳米管衍生物
CN110316729B (zh) 一种基于高浓度有机盐水溶液电化学插层制备石墨烯的方法
TW201326036A (zh) 石墨烯的形成方法
CN103276412B (zh) 一种制备铜粉或镍粉的方法及其电解装置
CN114604864B (zh) 一种限域电化学法剥离石墨类材料制备石墨烯的方法
US20230075308A1 (en) Black phosphorus nanosheet, preparation method therefor, and application thereof
CN109704314A (zh) 一种连续制备石墨烯的方法
CN111217361B (zh) 一种电化学阴极剥离制备石墨烯纳米片的方法
CN112607729A (zh) 一种利用交变电场剥离石墨烯的装置及其使用方法
CN109052495B (zh) 一种NiPS3纳米片及其制备方法
CN106809918B (zh) 一种碳纳米管修饰二氧化铅电极及其制备方法
CN112047330A (zh) 一种实现电化学法生产石墨烯的同步剥离收集方法
US20220336786A1 (en) Process for Producing Highly Activated Electrode Through Electro-Activation
CN112978721A (zh) 一种双脉冲电化学技术制备高质量石墨烯的方法
CN113479868A (zh) 一种有机酸铵熔盐双极电化学剥离制备石墨烯的方法
CN105489393B (zh) 四氧化三锰/炭黑复合电极材料及其制备方法以及超级电容器
CN209442654U (zh) 一种制备二维纳米材料的桶状惰性电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569982

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217038729

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932719

Country of ref document: EP

Kind code of ref document: A1