WO2020246490A1 - レーザ加工機およびレーザ加工方法 - Google Patents

レーザ加工機およびレーザ加工方法 Download PDF

Info

Publication number
WO2020246490A1
WO2020246490A1 PCT/JP2020/021862 JP2020021862W WO2020246490A1 WO 2020246490 A1 WO2020246490 A1 WO 2020246490A1 JP 2020021862 W JP2020021862 W JP 2020021862W WO 2020246490 A1 WO2020246490 A1 WO 2020246490A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
laser
laser beam
focusing lens
focusing
Prior art date
Application number
PCT/JP2020/021862
Other languages
English (en)
French (fr)
Inventor
喜之 織部
準一 齋藤
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Priority to US17/615,711 priority Critical patent/US20220241894A1/en
Priority to EP20818070.3A priority patent/EP3981539A4/en
Priority to CN202080041648.7A priority patent/CN114007801B/zh
Publication of WO2020246490A1 publication Critical patent/WO2020246490A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding

Definitions

  • the present disclosure relates to a laser processing machine and a laser processing method for welding sheet metal with a laser beam.
  • Laser processing machines that weld sheet metal with a laser beam emitted from a laser oscillator are widespread.
  • a fiber laser oscillator is often used as the laser oscillator.
  • Patent Document 1 describes a laser processing machine capable of processing a sheet metal by selecting one of a plurality of beam profiles. This laser machine changes the beam profile by changing the incident angle of the laser beam incident on the process fiber.
  • the laser beam irradiated by the laser processing machine described in Patent Document 1 described above has a relatively small beam diameter, and the laser beam may not be irradiated on both sides of the gap to be processed.
  • the focusing position focus position
  • the intensity of the laser beam at the processing target portion becomes low and good gap welding cannot be performed.
  • An object of the present disclosure is to provide a laser processing machine and a laser processing method capable of changing the beam profile of a laser beam according to processing conditions to focus on a sheet metal to be processed.
  • an optical device capable of changing the beam profile of a laser beam emitted from a fiber laser oscillator and a first lens region having a first focal length on the inner peripheral side.
  • a laser processing machine including a moving mechanism for moving in the optical axis direction is provided.
  • the focusing is performed.
  • a laser processing method is provided in which the focusing lens is moved in the optical axis direction by the moving mechanism so that the distance between the lens and the object to be processed is between the first focal length and the second focal length.
  • the optical device of the laser processing machine causes the ring-shaped laser beam to be incident on the second lens region of the focusing lens.
  • a laser processing method in which the focusing lens is moved in the optical axis direction by the moving mechanism so that the distance between the focusing lens and the object to be processed is the second focal length.
  • various machining conditions are supported by changing the beam profile of the laser beam according to the machining conditions and focusing on the sheet metal to be machined. Can be welded.
  • FIG. 1 is an overall view showing the configuration of the laser processing machine of the first embodiment.
  • FIG. 2 is a schematic view showing the configuration of a focusing lens used in the laser processing machine of the first embodiment.
  • FIG. 3A is a diagram showing an example of energy intensity for each position of the laser beam irradiated by the laser processing machines of the first to fourth embodiments.
  • FIG. 3B is a diagram showing an example of energy intensity for each position of the laser beam irradiated by the laser processing machines of the first to fourth embodiments.
  • FIG. 3C is a diagram showing an example of energy intensity for each position of the laser beam irradiated by the laser processing machines of the first to fourth embodiments.
  • FIG. 3A is a diagram showing an example of energy intensity for each position of the laser beam irradiated by the laser processing machines of the first to fourth embodiments.
  • FIG. 3B is a diagram showing an example of energy intensity for each position of the laser beam irradiated by the laser processing machines of the first to fourth embodiments
  • 3D is a diagram showing an example of energy intensity for each position of the laser beam irradiated by the laser processing machines of the first to fourth embodiments. It is an overall view which shows the structure of the laser processing machine of 2nd Embodiment. It is a figure which shows the structure of the process fiber used in the laser processing machine of 2nd Embodiment, and the laser beam which is emitted from the optical device into the process fiber. It is an overall view which shows the structure of the laser processing machine of 3rd Embodiment. It is an overall view which shows the structure of the laser processing machine of 4th Embodiment.
  • the laser processing machines of the first to fourth embodiments will be described with reference to the attached drawings.
  • the same reference numerals are given to the portions having the same function, and the description thereof may be omitted.
  • the laser processing machine 100A includes a fiber laser oscillator 10 that generates and emits a laser beam, a coupler 20 that is an optical device that changes the beam profile of the laser beam emitted from the fiber laser oscillator 10, and a coupler 20. It is provided with a processing head 30 for focusing a laser beam whose beam profile has been changed in The laser beam emitted from the fiber laser oscillator 10 is transmitted to the coupler 20 by the feeding fiber 11, and the laser beam whose beam profile is changed by the coupler 20 is transmitted to the processing head 30 by the process fiber 12.
  • the fiber laser oscillator 10 emits a laser beam having a wavelength of 1060 nm to 1080 nm, for example, with a laser output of 2 kW.
  • the coupler 20 is installed at a predetermined distance in the optical axis direction from the end cap 11e provided at the injection end of the laser beam of the feeding fiber 11.
  • the coupler 20 includes a first collimator lens 211, a first focusing lens 212, a movable lens 213, and a fiber incident lens 214.
  • the movable lens 213 is a so-called biconvex lens.
  • the movable lens 213 is arranged between the first collimator lens 211 and the first focusing lens 212 in a state of being movable in a plurality of stages in the D1 direction or the D2 direction perpendicular to the optical axis.
  • the fiber incident lens 214 is connected to the process fiber 12 and installed at a predetermined distance in the optical axis direction from the first focusing lens 212.
  • the first collimator lens 211 incidents a laser beam of divergent light emitted from the end cap 11e and converts it into collimated light (parallel light).
  • the movable lens 213 changes the spreading angle of the laser beam converted into collimated light by the first collimator lens 211 according to its position.
  • the first focusing lens 212 focuses the laser beam whose divergence angle has been changed by the movable lens 213 on the fiber incident lens 214.
  • the fiber incident lens 214 incidents the laser beam focused by the first focusing lens 212 on the process fiber 12 at an angle corresponding to the spreading angle. With this configuration, a laser beam having a beam profile according to the spread angle is incident on the process fiber 12 from the coupler 20.
  • the beam profile can be changed by changing the BPP (beam parameter product) with an optical device.
  • BPP beam parameter product
  • BPP represents the relationship between the incident beam diameter to the focusing lens, the focusing diameter, and the divergence angle (spreading angle), and also represents the relationship with the Rayleigh length.
  • the irradiation diameter when the sheet metal W is irradiated is simply referred to as a beam diameter, and is distinguished from the incident beam diameter and the condensing diameter on the focusing lens.
  • the focusing diameter and Rayleigh length are determined according to the incident beam diameter.
  • the optical device is operated to change the BPP, the focusing diameter and the Rayleigh length change, and the beam diameter changes according to the distance between the focusing lens and the sheet metal W. That is, by changing the beam parameter product, the spreading angle and the beam diameter can be changed.
  • the beam profile change optical device When the beam profile change optical device is operated and the incident beam diameter to the focusing lens becomes large, the focused diameter and Rayleigh length become small.
  • the beam profile is Gaussian type, and the power density in the central part is high. As the incident beam diameter becomes smaller, the focused diameter and Rayleigh length become larger.
  • the beam profile is ring-shaped and has a higher peripheral power density than the central part.
  • the process fiber 12 propagates the laser beam incident from the fiber incident lens 214 and emits it from the end cap 12e provided at the injection end.
  • the processing head 30 includes a second collimator lens 31 and a second focusing lens 32.
  • the second collimator lens 31 is installed at a predetermined distance in the optical axis direction from the end cap 12e.
  • the second collimator lens 31 incidents the laser beam emitted from the end cap 12e and converts it into collimated light.
  • the second focusing lens 32 is installed in a state of being movable in the optical axis direction.
  • the second focusing lens 32 focuses the laser beam converted into collimated light by the second collimator lens 31 and irradiates the sheet metal W to be processed.
  • the detailed configuration of the second focusing lens 32 will be described with reference to FIG.
  • FIG. 2 is a diagram showing a second focusing lens 32 and a focusing position by the second focusing lens 32.
  • the second focusing lens 32 has a first lens region 321 located on the inner peripheral side and a second lens region 322 located on the outer peripheral side of the first lens region 321 to focus the incident collimated light. ..
  • the first lens region 321 is composed of a spherical lens, and the second lens region 322 is composed of an aspherical lens. In FIG. 2, for simplification of the description, only the focusing position of the region above the first lens region 321 of the second lens region 322 is shown.
  • the second focusing lens 32 has a first lens region 321 having a focal length of FL1 and a second lens region 322 having a focal length of FL2. Further, the focusing position of the first lens region 321 is on the laser optical axis, whereas the focusing position of the second lens region 322 is not on the laser optical axis. That is, the laser beam focused in the second lens region 322 is focused by a ring-shaped profile at a position deviated from the optical axis, which is different from the focusing position of the laser beam focused in the first lens region 321.
  • the laser machine 100A includes a first moving mechanism 41 for moving the movable lens 213 in the coupler 20 in the D1 direction or the D2 direction, and a first driving unit 42 for driving the first moving mechanism 41.
  • the laser processing machine 100A includes a second moving mechanism 43 for moving the second focusing lens 32 in the optical axis direction, and a second driving unit 44 for driving the second moving mechanism 43.
  • the laser machining machine 100A includes an operation unit 50 for the operator to perform an operation for setting machining conditions.
  • the laser machining machine 100A includes an NC device 60A that controls the operation of the first moving mechanism 41 by the first driving unit 42 and the operation of the second moving mechanism 43 by the second driving unit 44.
  • the NC device 60A is an example of a control device.
  • the NC device 60A controls the first drive unit 42 so as to change the beam profile of the laser beam emitted from the coupler 20 based on the setting contents in the operation unit 50, and changes the focusing position of the laser beam after the change.
  • the second drive unit 44 is controlled so as to match the sheet metal W to be processed.
  • the NC device 60A the first focusing position where the incident light is focused in a Gaussian shape by the first lens region 321 and the second focusing position where the incident light is focused in a ring shape by the second lens region 322 (
  • the first drive unit 42 and the second drive unit 44 are controlled by using the relationship (position different from the in-focus position of the first lens region 321).
  • the NC device 60A can freely change the beam profile from the Gaussian type to a ring type and a Gaussian type composite type or a ring type formed between the first focusing position and the second focusing position. ..
  • the operator uses the operation unit 50 to set the beam profile of the laser beam to be irradiated by Gaussian. Perform an operation to instruct to make a mold.
  • the Gaussian type is a beam profile as shown in FIG. 3A, in which the beam diameter is small and the intensity increases sharply from the peripheral portion to the central portion.
  • the information of the operation is transmitted to the NC device 60A.
  • the movable lens 213 in the coupler 20 is moved in the D1 direction (for example, the end in the D1 direction) by the first moving mechanism 41.
  • the first drive unit 42 is controlled so as to move to.
  • the movable lens 213 is moved in the D1 direction, the incident laser beam does not pass through the movable lens 213. Therefore, a Gaussian type laser beam having a small incident beam diameter is incident on the second collimator lens 31 of the processing head 30 via the process fiber 12. Since the laser beam has a small incident beam diameter, for example, d0 or less in FIG. 2, it is incident on the first lens region 321 of the second focusing lens 32.
  • the NC device 60A is arranged so that the distance between the second focusing lens 32 and the upper surface of the sheet metal W is separated from the first focal length FL1.
  • 2 Controls the drive unit 44. By controlling in this way, a Gaussian type laser beam having a small beam diameter is focused on the sheet metal W.
  • the sheet metal W is irradiated with a beam having an energy amount of at least 86% of the laser beam emitted from the fiber laser oscillator 10, and a deep penetration process at high speed can be suitably executed.
  • the two-step intensity type is a beam profile with the characteristics of the inner Gaussian type, which is a composite type of ring type and Gaussian type, as shown in Fig. 3B, where the beam diameter is large, the intensity near the periphery is low, and only the central part is high. is there.
  • the information of the operation is transmitted to the NC device 60A.
  • the movable lens 213 in the coupler 20 is changed to the gauncia type by the first moving mechanism 41. Also controls the first drive unit 42 so that it is moved toward the D2 direction.
  • the movable lens 213 is moved in the D2 direction, a part of the incident laser beam passes through the movable lens 213 and the spreading angle becomes larger than in the case where the movable lens 213 is closer to the D1 direction. Therefore, a laser beam having a large incident beam diameter is incident on the second collimator lens 31 of the processing head 30 via the process fiber 12.
  • the incident laser beam is incident on the first lens region 321 and the second lens region 322 of the second focusing lens 32.
  • the distance between the second focusing lens 32 and the upper surface of the sheet metal W is between the first focal length FL1 and the second focal length FL2, and is at the focusing position of the first focal length FL1.
  • the second drive unit 44 is controlled so that the upper surface of the sheet metal W is arranged at a close position.
  • the sheet metal W is irradiated with a two-step intensity type laser beam, and the welding process of the surface-treated steel plate or aluminum can be suitably executed.
  • the upper surface of the sheet metal W and the second focusing lens 32 if the upper surface of the sheet metal W is arranged at a position close to the focusing position of the first focal length FL1, the characteristics of the Gaussian type become stronger.
  • the upper surface of the W on the plate is placed near the in-focus position of the second focal length FL2, a composite profile with ring-shaped characteristics is formed and a two-step intensity distribution can be obtained.
  • the composite profile (Gaussian type beam strength) can be freely selected according to the environment such as the laser reflectance, the plate thickness, and the material of the plate material.
  • the operator when performing gap welding using the laser processing machine 100A, the operator performs an operation in the operation unit 50 to instruct the beam profile of the laser beam to be irradiated to be a sharp ring type.
  • the sharp ring type is a beam profile having a diameter (for example, about 2 mm to 4 mm) according to the distance between the gaps to be processed, as shown in FIG. 3C.
  • the information of the operation is transmitted to the NC device 60A.
  • the diameter according to the distance between the gaps to be processed can be changed within an appropriate range.
  • the movable lens 213 in the coupler 20 is subjected to a two-step intensity by the first moving mechanism 41.
  • the first drive unit 42 is controlled so as to be moved closer to the D2 direction (for example, the end portion in the D2 direction) than when the mold is formed.
  • the movable lens 213 is moved in the D2 direction, a ring-shaped laser beam having a large incident beam diameter is incident on the second collimator lens 31 of the processing head 30 via the coupler 20. Since the ring-shaped laser beam has a large incident beam diameter, for example, about dEN in FIG. 2, it is incident on the second lens region 322 of the second focusing lens 32.
  • the second lens region 322 has the second focal length FL2
  • the focus is not achieved when the distance between the second focusing lens 32 and the upper surface of the sheet metal W is separated from the first focal length FL1
  • FIG. 3D shows.
  • the sheet metal W is irradiated with a ring-shaped laser beam having a small ring diameter and a gentle peak portion. Therefore, the NC device 60A controls the second drive unit 44 so that the distance between the second focusing lens 32 and the upper surface of the sheet metal W is separated by the second focal length FL2, and the aspherical lens of the second focusing lens 32. This concentrates the light intensity on the peak portion of the ring-shaped beam profile.
  • the process fiber 12B has a dual structure of an inner core 121 provided in the central portion and a ring-shaped outer core 122 provided on the outer peripheral side of the inner core 121. Has a core. Further, the beam regulator 70 causes the laser beam emitted from the fiber laser oscillator 10 to be incident on at least one of the inner core 121 and the outer core 122.
  • the NC device 60B receives the instruction from the beam regulator 70 to the process fiber 12B. It is controlled so that the laser beam is incident on the inner core 121.
  • the laser beam incident on the inner core 121 is incident on the second collimator lens 31 of the processing head 30, and is incident on the first lens region 321 of the second focusing lens 32.
  • the NC device 60B controls the second drive unit 44 so that the distance between the second focusing lens 32 and the upper surface of the sheet metal W is separated from the first focal length FL1.
  • a Gaussian-type laser beam having a small beam diameter is focused on the sheet metal W.
  • the NC device 60B receives the process fiber from the beam regulator 70.
  • the laser beam is controlled to be incident on the inner core 121 and the outer core 122 of the 12B.
  • the laser beam incident on the inner core 121 is incident on the first lens region 321 of the second focusing lens 32 from the second collimator lens 31 of the processing head 30.
  • the laser beam incident on the outer core 122 is incident on the second lens region 322 of the second focusing lens 32 from the second collimator lens 31.
  • the distance between the second focusing lens 32 and the upper surface of the sheet metal W is between the first focal length FL1 and the second focal length FL2, and the first focal length is set.
  • the two-step intensity type laser beam is focused on the sheet metal W.
  • the NC device 60B receives the instruction from the beam regulator 70 to the process fiber 12B.
  • the outer core 122 is controlled so that the laser beam is incident on the outer core 122.
  • the laser beam incident on the outer core 122 is incident on the second lens region 322 of the second focusing lens 32 from the second collimator lens 31.
  • the NC device 60B controls the second drive unit 44 so that the distance between the second focusing lens 32 and the upper surface of the sheet metal W is the second focal length FL2. , A sharp ring-shaped laser beam is focused on the sheet metal W.
  • the laser processing machine 100C of the third embodiment includes a fiber laser oscillator 10 and a processing head 30C that focuses a laser beam emitted from the fiber laser oscillator 10 on the sheet metal W.
  • the laser beam emitted from the fiber laser oscillator 10 is transmitted to the processing head 30C by the process fiber 12.
  • the processing head 30C has a second collimator lens 31, a second focusing lens 32, and an axicon lens 33.
  • the axicon lens 33 is, for example, a conical optical component installed by using the technique described in Patent Document 3.
  • the axicon lens 33 is arranged in a movable state between a position on the optical axis between the second collimator lens 31 and the second focusing lens 32 and a position deviating from the position on the optical axis.
  • the axicon lens 33 is located between the second collimator lens 31 and the second focusing lens 32, the conical surface faces the second collimator lens 31 on the incident side and the plane faces the second focusing lens on the emitting side. It is arranged so as to face the 32 side.
  • the laser processing machine 100C includes a third moving mechanism 45 for moving the axicon lens 33 to a predetermined position, and a third driving unit 46 for driving the third moving mechanism 45.
  • the NC device 60C is subjected to the axicon lens by the third moving mechanism 45.
  • the third drive unit 46 is controlled so that the 33 is moved to a position off the optical axis between the second collimator lens 31 and the second focusing lens 32.
  • the axicon lens 33 is moved to the position, the laser beam emitted from the fiber laser oscillator 10 is incident on the second collimator lens 31 of the processing head 30C while the incident beam diameter is small, and the second focusing lens 32 It is incident on the first lens region 321.
  • the NC device 60C controls the distance between the second focusing lens 32 and the upper surface of the sheet metal W so as to be separated from the first focal length FL1 so that the beam diameter of the sheet metal W is increased.
  • a Gaussian-type laser beam with a small diameter is focused.
  • the NC device 60C changes the axicon lens 33 into a second collimator lens. It is arranged on the optical axis between 31 and the second focusing lens 32.
  • the axicon lens 33 is arranged at that position, the laser beam emitted from the fiber laser oscillator 10 is incident on the second collimeter lens 31 of the processing head 30C because the spreading angle is changed and the incident beam diameter is increased. It is incident on the second lens region 322 of the second focusing lens 32.
  • the NC device 60C controls the distance between the second focusing lens 32 and the upper surface of the sheet metal W so as to be separated from the second focal length FL2, so that the ring is sharp on the sheet metal W.
  • the laser beam of the mold is focused.
  • the laser processing machine 100D of the fourth embodiment includes a fiber laser oscillator 10 and a processing head 30 that focuses a laser beam emitted from the fiber laser oscillator 10 on the sheet metal W.
  • the laser beam emitted from the fiber laser oscillator 10 is transmitted to the processing head 30 by a process fiber 12D capable of being curved at a predetermined angle, for example, as described in Patent Document 4.
  • the laser machining machine 100D includes a bending mechanism 47 for bending the process fiber 12D at a predetermined angle, and a fourth driving unit 48 for driving the bending mechanism 47.
  • the NC device 60D When the operation unit 50 receives an instruction to make the beam profile of the laser beam to be irradiated into a Gaussian type by using the laser processing machine 100D configured as described above, the NC device 60D has a bending mechanism 47 that makes the process fiber 12D straight.
  • the fourth drive unit 48 is controlled so as to be in the state.
  • the process fiber 12D is in a linear state, the laser beam emitted from the fiber laser oscillator 10 is incident on the second collimator lens 31 of the processing head 30 while the incident beam diameter is small, and the first lens region of the second focusing lens 32 It is incident on 321.
  • the NC device 60D controls the distance between the second focusing lens 32 and the upper surface of the sheet metal W so as to be separated from the first focal length FL1 so that the beam diameter of the sheet metal W is increased.
  • a Gaussian-type laser beam with a small diameter is focused.
  • the NC device 60D receives the process fiber 12D by the bending mechanism 47. Controls the fourth drive unit 48 so that is curved by a predetermined angle.
  • the process fiber 12D is curved by a predetermined angle
  • the laser beam emitted from the fiber laser oscillator 10 has a larger incident beam diameter than in the linear state, and is incident on the second collimator lens 31 of the processing head 30. It is incident on the first lens region 321 and the second lens region 322 of the two focusing lens 32.
  • the distance between the second focusing lens 32 and the upper surface of the sheet metal W is between the first focal length FL1 and the second focal length FL2, and the first focal length
  • the two-step intensity type laser beam is focused on the sheet metal W.
  • the NC device 60D uses the bending mechanism 47 to form the process fiber 12D. Controls the fourth drive unit 48 so that is curved by a predetermined angle. Then, the laser beam emitted from the fiber laser oscillator 10 is incident on the second collimator lens 31 of the processing head 30, and is incident on the second lens region 322 of the second focusing lens 32.
  • the NC device 60D controls the second focusing lens 32 so as to be arranged at a position separated from the sheet metal W by the second focal length FL2, so that the sheet metal W has a sharp ring shape.
  • the laser beam is in focus.
  • the beam profile of the laser beam can be changed to focus on the sheet metal W according to the processing conditions.
  • the sheet metal W can be irradiated with a sharp ring-shaped laser beam having a size beam diameter corresponding to the gap between the gaps to be processed, and suitable processing can be performed.
  • a camera device for photographing the processing target portion of the sheet metal W is installed in the laser processing machines 100A to 100D, and the NC devices 60A to 60D perform the camera before performing gap welding.
  • the imaging information captured by the apparatus may be analyzed to measure the gap between the processing targets, and a ring-shaped laser beam having a beam diameter corresponding to the measured value may be irradiated.

Abstract

レーザ加工機は、ファイバレーザ発振器から射出するレーザビームのビームプロファイルを変更可能な光学デバイスであるカプラ20と、内周側に第1焦点距離を有する第1レンズ領域が設けられ、外周側に前記第1焦点距離と異なる第2焦点距離を有する第2レンズ領域が設けられ、カプラ20から射出されたレーザビームを合焦させる集束レンズ32と、集束レンズ32を光軸方向に移動させるための移動機構43とを備える。

Description

レーザ加工機およびレーザ加工方法
 本開示は、レーザビームによって板金を溶接加工するレーザ加工機およびレーザ加工方法に関する。
 レーザ発振器より射出されたレーザビームによって板金を溶接するレーザ加工機が普及している。レーザ発振器としては、ファイバレーザ発振器がよく用いられる。
 レーザ加工機は、板金に照射されるレーザビームのビームプロファイルを板金の溶接条件、例えば溶接対象の板金の隙間の大きさに応じて適切に設定する必要がある。特許文献1には、複数のビームプロファイルのうちからいずれかのビームプロファイルを選択して板金を加工することができるレーザ加工機が記載されている。このレーザ加工機は、プロセスファイバに入射されるレーザビームの入射角度を変化させることによってビームプロファイルを変化させる。
特表2015-500571号公報 米国特許第9482821(B2)号明細書 特許第5832412号公報 国際公開第2018/217284号
 板金の溶接処理において、対象の板金間に隙間(ギャップ)がある際には、隙間の両脇の板金を溶かすために比較的ビーム径が大きくエネルギー強度が高いリング型のレーザビームを照射することがある(以後ギャップ溶接という)。しかし、上述した特許文献1に記載のレーザ加工機で照射されるレーザビームはビーム径が比較的小さく、加工対象の隙間の両脇にレーザビームが照射されない場合がある。また、ビーム径を大きくするために板金の位置をレーザ加工機から遠ざけるように、合焦位置(フォーカス位置)を板上面からずらす所謂デフォーカスさせることがある。しかし、当該加工対象箇所におけるレーザビームの強度が低くなり良好なギャップ溶接が実施できない場合がある。
 本開示は、加工条件に応じてレーザビームのビームプロファイルを変化させて加工対象の板金に合焦させることができるレーザ加工機およびレーザ加工方法を提供することを目的とする。
 1又はそれ以上の実施形態の第1の態様によれば、ファイバレーザ発振器から射出するレーザビームのビームプロファイルを変更可能な光学デバイスと、内周側に第1焦点距離を有する第1レンズ領域が設けられ、外周側に前記第1焦点距離よりも長い第2焦点距離を有する第2レンズ領域が設けられた、前記光学デバイスから射出されたレーザビームを合焦させる集束レンズと、前記集束レンズを光軸方向に移動させる移動機構とを備えるレーザ加工機が提供される。
 1又はそれ以上の実施形態の第2の態様によれば、上記のレーザ加工機の光学デバイスにより、前記集束レンズの第1レンズ領域および第2レンズ領域にレーザビームが入射されると、前記集束レンズと加工対象物との距離が前記第1焦点距離と前記第2焦点距離との間になるように前記集束レンズを前記移動機構により光軸方向に移動させるレーザ加工方法が提供される。
 1又はそれ以上の実施形態の第3の態様によれば、上記のレーザ加工機の光学デバイスにより、前記光学デバイスにより、リング型のレーザビームが前記集束レンズの第2レンズ領域に入射されると、前記集束レンズと加工対象物との距離が、前記第2焦点距離になるように前記集束レンズを前記移動機構により光軸方向に移動させるレーザ加工方法が提供される。
 1又はそれ以上の実施形態のレーザ加工機およびレーザ加工方法によれば、加工条件に応じてレーザビームのビームプロファイルを変化させて加工対象の板金に合焦させることにより、様々な加工条件に対応した溶接ができる。
図1は、第1実施形態のレーザ加工機の構成を示す全体図である。 図2は、第1実施形態のレーザ加工機で用いる集束レンズの構成を示す概略図である。 図3Aは、第1~第4実施形態のレーザ加工機で照射されるレーザビームの位置ごとのエネルギー強度の一例を示す図である。 図3Bは、第1~第4実施形態のレーザ加工機で照射されるレーザビームの位置ごとのエネルギー強度の一例を示す図である。 図3Cは、第1~第4実施形態のレーザ加工機で照射されるレーザビームの位置ごとのエネルギー強度の一例を示す図である。 図3Dは、第1~第4実施形態のレーザ加工機で照射されるレーザビームの位置ごとのエネルギー強度の一例を示す図である。 第2実施形態のレーザ加工機の構成を示す全体図である。 第2実施形態のレーザ加工機で用いるプロセスファイバの構成と、光学デバイスから当該プロセスファイバに射出するレーザビームを示す図である。 第3実施形態のレーザ加工機の構成を示す全体図である。 第4実施形態のレーザ加工機の構成を示す全体図である。
 以下、第1~第4実施形態のレーザ加工機について、添付図面を参照して説明する。第1~第4実施形態のレーザ加工機において、同一の機能を有する部分には同一の符号を付し、その説明を省略することがある。
<第1実施形態>
 以下、第1実施形態のレーザ加工機について、添付図面を参照して説明する。図1において、レーザ加工機100Aは、レーザビームを生成して射出するファイバレーザ発振器10と、ファイバレーザ発振器10から射出されたレーザビームのビームプロファイルを変更する光学デバイスであるカプラ20と、カプラ20でビームプロファイルが変更されたレーザビームを加工対象の板金Wに合焦させる加工ヘッド30とを備える。ファイバレーザ発振器10から射出されたレーザビームはフィーディングファイバ11でカプラ20に伝送され、カプラ20でビームプロファイルが変更されたレーザビームはプロセスファイバ12で加工ヘッド30に伝送される。
 ファイバレーザ発振器10は、例えば、レーザ出力2kWで、波長1060nm~1080nmのレーザビームを射出する。
 カプラ20は、フィーディングファイバ11のレーザビームの射出端に設けられたエンドキャップ11eから光軸方向に所定距離の位置に設置される。カプラ20は、第1コリメータレンズ211と、第1集束レンズ212と、可動レンズ213と、ファイバ入射用レンズ214とを有する。可動レンズ213は、いわゆる両凸レンズである。可動レンズ213は、第1コリメータレンズ211と第1集束レンズ212との間で、光軸に垂直なD1方向又はD2方向に複数段階に移動可能な状態で配置される。ファイバ入射用レンズ214は、プロセスファイバ12に接続されて第1集束レンズ212から光軸方向に所定距離の位置に設置される。
 第1コリメータレンズ211は、エンドキャップ11eから射出された発散光のレーザビームを入射してコリメート光(平行光)に変換する。可動レンズ213は、その位置に応じて、第1コリメータレンズ211でコリメート光に変換されたレーザビームの拡がり角を変更させる。第1集束レンズ212は、可動レンズ213で拡がり角が変更されたレーザビームをファイバ入射用レンズ214に集束させる。ファイバ入射用レンズ214は、第1集束レンズ212で集束されたレーザビームを、拡がり角に応じた角度でプロセスファイバ12に入射する。この構成により、カプラ20からプロセスファイバ12には、拡がり角に応じたビームプロファイルを有するレーザビームが入射される。
 なお、ビームプロファイルの変更について詳しく説明する。
 ビームプロファイルの変更は、光学デバイスによりBPP(ビームパラメータ積)を変化させることで、為すことができる。BPPはISO11145に規定されている通り、集束レンズへの入射ビーム径と集光径と発散角(拡がり角度)との関係を表し、更にレイリー長との関係も表している。また、本発明では板金Wに照射されるときの照射径を単にビーム径と称し、集束レンズへの入射ビーム径および集光径と区別する。
 ビームプロファイル変更光学デバイスを動作させずにBPPを変化させない場合は、集光径及びレイリー長は入射ビーム径に応じて決まる。前記光学デバイスを動作させてBPPを変化させると、集光径及びレイリー長が変化し、更に集束レンズと板金Wとの距離に応じてビーム径が変化する。つまり、ビームパラメータ積を変化させると、拡がり角度とビーム径を変化させることができる。
 ビームプロファイル変更光学デバイスを動作させて、集束レンズへの入射ビーム径が大きくなると集光径及びレイリー長が小さくなる。ビームプロファイルはガウシアン型となり、中央部のパワー密度が高くなる。入射ビーム径が小さくなると集光径及びレイリー長が大きくなる。ビームプロファイルはリング型となり、中央部よりも周囲のパワー密度が高くなる。
 プロセスファイバ12は、ファイバ入射用レンズ214から入射されたレーザビームを伝播させ、射出端に設けられたエンドキャップ12eから射出する。
 加工ヘッド30は、第2コリメータレンズ31および第2集束レンズ32を備える。第2コリメータレンズ31は、エンドキャップ12eから光軸方向に所定距離の位置に設置される。第2コリメータレンズ31は、エンドキャップ12eから射出されたレーザビームを入射し、コリメート光に変換する。
 第2集束レンズ32は、光軸方向に可動な状態で設置される。第2集束レンズ32は、第2コリメータレンズ31でコリメート光に変換されたレーザビームを集束して加工対象の板金Wに照射する。第2集束レンズ32の詳細な構成について、図2を参照して説明する。図2は、第2集束レンズ32と、第2集束レンズ32による合焦位置とを示す図である。第2集束レンズ32は、内周側に位置する第1レンズ領域321と、第1レンズ領域321の外周側に位置する第2レンズ領域322とを有し、入射されたコリメート光を合焦させる。第1レンズ領域321は正の第1焦点距離FL1(例えば、FL1=300mm)を有し、第2レンズ領域322は第1焦点距離FLよりも長い正の第2焦点距離FL2(例えば、FL2=340mm)を有する。第1レンズ領域321は球面レンズで構成され、第2レンズ領域322は非球面レンズで構成される。図2では説明を簡略化するため、第2レンズ領域322のうち、第1レンズ領域321上部の領域の合焦位置のみを示している。
 即ち、第2集束レンズ32には、焦点距離がFL1の第1レンズ領域321と、焦点距離がFL2の第2レンズ領域322とが存在する。また、第1レンズ領域321の合焦位置はレーザ光軸上にあるのに対して、第2レンズ領域322の合焦位置はレーザ光軸上に無い。つまり第2レンズ領域322で集束されるレーザ光は、第1レンズ領域321で集束されるレーザ光の合焦位置と異なる、光軸からずれた位置に、リング型のプロファイルで合焦される。
 図1に戻り、レーザ加工機100Aは、カプラ20内の可動レンズ213をD1方向またはD2方向に移動させるための第1移動機構41と、第1移動機構41を駆動する第1駆動部42とを備える。またレーザ加工機100Aは、第2集束レンズ32を光軸方向に移動させるための第2移動機構43と、第2移動機構43を駆動する第2駆動部44とを備える。さらにレーザ加工機100Aは、オペレータが加工条件を設定する操作を行うための操作部50を備える。レーザ加工機100Aは、第1駆動部42による第1移動機構41の動作および第2駆動部44による第2移動機構43の動作を制御するNC装置60Aを備える。NC装置60Aは、制御装置の一例である。
 NC装置60Aは、操作部50における設定内容に基づいてカプラ20から射出されるレーザビームのビームプロファイルを変更させるように第1駆動部42を制御するとともに、変更後のレーザビームの合焦位置を加工対象の板金Wに合わせるように第2駆動部44を制御する。
 つまり、NC装置60Aは、第1レンズ領域321により入射光がガウシアン型に集束される第1合焦位置と、第2レンズ領域322により入射光がリング型に集束される第2合焦位置(第1レンズ領域321の合焦位置と異なる位置)との関係を用いて、第1駆動部42と第2駆動部44とを制御する。これにより、NC装置60Aは、ガウシアン型から、第1合焦位置と第2合焦位置との間にできるリング型とガウシアン型の複合型又はリング型などビームプロファイルを自在に変更できるものである。
 上述したように構成されたレーザ加工機100Aを用いて、厚板の溶接のために高速で深溶け込み処理を行う際には、オペレータが操作部50で、照射するレーザビームのビームプロファイルを、ガウシアン型にすることを指示する操作を行う。ガウシアン型は、図3Aに示すような、ビーム径が小さく周辺部から中央部に向かって強度が急峻に高くなるビームプロファイルである。当該操作の情報は、NC装置60Aに送信される。
 NC装置60Aは、操作部50から、照射するレーザビームのビームプロファイルをガウシアン型にする指示を受信すると、第1移動機構41によりカプラ20内の可動レンズ213がD1方向(例えばD1方向端部)に移動するように、第1駆動部42を制御する。可動レンズ213がD1方向に移動されると、入射されるレーザビームが可動レンズ213を通らない。このため、入射ビーム径の小さいガウシアン型のレーザビームがプロセスファイバ12を介して加工ヘッド30の第2コリメータレンズ31に入射される。レーザビームは入射ビーム径が小さく、例えば図2のd0以下であるため、第2集束レンズ32の第1レンズ領域321に入射される。
 ここで、第1レンズ領域321は第1焦点距離FL1を有するため、NC装置60Aは、第2集束レンズ32と板金W上面との距離が第1焦点距離FL1離れた配置になるように、第2駆動部44を制御する。このように制御することで、板金Wにビーム径が小さいガウシアン型のレーザビームが合焦される。このとき、板金Wには、ファイバレーザ発振器10から射出されたレーザビームの少なくとも86%のエネルギー量のビームが照射され、高速での深溶け込み処理を好適に実行させることができる。
 また、レーザ加工機100Aを用いて、表面処理鋼板やアルミニウムの溶接を行う際には、オペレータが操作部50で、照射するレーザビームのビームプロファイルを、二段階強度型にすることを指示する操作を行う。二段階強度型は、図3Bに示すような、ビーム径が大きく周辺に近い部分の強度が低く中央部のみが高いリング型とガウシアン型の複合型の内ガウシアン型の特徴を持ったビームプロファイルである。当該操作の情報は、NC装置60Aに送信される。
 NC装置60Aは、操作部50から、照射するレーザビームのビームプロファイルを二段階強度型にする指示を受信すると、第1移動機構41によりカプラ20内の可動レンズ213が、ガウンシア型にする場合よりもD2方向寄りに移動されるように、第1駆動部42を制御する。可動レンズ213がD2方向に移動されると、入射されるレーザビームの一部が可動レンズ213を通り、D1方向寄りにある場合よりも拡がり角が大きくなる。このため、入射ビーム径が大きいレーザビームがプロセスファイバ12を介して加工ヘッド30の第2コリメータレンズ31に入射される。入射されたレーザビームは、第2集束レンズ32の第1レンズ領域321および第2レンズ領域322に入射される。
 ここで、NC装置60Aは、第2集束レンズ32と板金W上面との距離が、第1焦点距離FL1と第2焦点距離FL2との間であって、第1焦点距離FL1の合焦位置に近い位置に板金W上面を配置するように、第2駆動部44を制御する。このように制御することで、第1レンズ領域321に入射されたレーザビーム部分が、中央部の強度が高い状態で板金Wに照射され、その周辺に、第2レンズ領域322に入射されたレーザビーム部分が、強度が低い状態で照射される。このようにして、板金Wに二段階強度型のレーザビームが照射され、表面処理鋼板やアルミニウムの溶接処理を好適に実行させることができる。なお、板金W上面と第2集束レンズ32との配置において、第1焦点距離FL1の合焦位置に近い位置に板金W上面を配置するとガウシアン型の特徴が強くなる。逆に第2焦点距離FL2の合焦位置に近い位置に板上W上面を配置するとリング型の特徴を持った複合プロファイルが形成されて二段階強度分布ができる。更に、板材のレーザ反射率や板厚、材質などの環境に則して、複合プロファイル(ガウシアン型のビーム強弱)を自由に選択できる。
 また、レーザ加工機100Aを用いて、ギャップ溶接を行う際には、オペレータが操作部50で、照射するレーザビームのビームプロファイルを、鋭いリング型にすることを指示する操作を行う。鋭いリング型は、図3Cに示すような、処理対象の隙間の間隔に応じた径(例えば2mm~4mm程度)を有するビームプロファイルである。当該操作の情報は、NC装置60Aに送信される。なお、図2で示したdoff=1mmと、第2集束レンズ32と板金W上面との距離の制御によって、処理対象の隙間の間隔に応じた径を適正範囲で可変させることができる。
 NC装置60Aは、操作部50から、照射するレーザビームのビームプロファイルを所定の径を有するリング型にする指示を受信すると、第1移動機構41によりカプラ20内の可動レンズ213が、二段階強度型にする場合よりもさらにD2方向寄り(例えば、D2方向端部)に移動されるように、第1駆動部42を制御する。可動レンズ213がD2方向に移動されると、入射ビーム径が大きいリング型のレーザビームがカプラ20を介して加工ヘッド30の第2コリメータレンズ31に入射される。リング型のレーザビームは入射ビーム径が大きく、例えば図2のdEN程度であるため、第2集束レンズ32の第2レンズ領域322に入射される。
 ここで、第2レンズ領域322は第2焦点距離FL2を有するため、第2集束レンズ32と板金W上面との距離が第1焦点距離FL1離れた状態のままでは焦点が合わず、図3Dに示すような、リング径が小さくピーク部分がなだらかなリング型のレーザビームが板金Wに照射されることになる。そこで、NC装置60Aは、第2集束レンズ32と板金W上面との距離が第2焦点距離FL2離れた配置になるように第2駆動部44を制御し、第2集束レンズ32の非球面レンズにより、リング型ビームプロファイルのピーク部分に光強度を集中させる。このように制御することで、板金Wに所望のビーム径を有する急峻なリング型(例えば、図2のdoff=1mmを半径とするリング型)のレーザビームが照射され、ギャップ溶接を好適に実行させることができる。
<第2実施形態>
 第2実施形態のレーザ加工機100Bは、図1内のカプラ20を図4のビーム調整器70に置き換え、プロセスファイバ12を二重構造のコアを有するプロセスファイバ12Bに置き換えたものである。ビーム調整器70およびプロセスファイバ12Bは、例えば、特許文献2に記載された技術が利用される。
 本実施形態においてプロセスファイバ12Bは、図5に示すように、中心部に設けられたインナーコア121と、インナーコア121よりも外周側に設けられたリング型のアウターコア122との二重構造のコアを有する。また、ビーム調整器70は、ファイバレーザ発振器10から射出されたレーザビームを、インナーコア121およびアウターコア122の少なくとも一方に、入射させる。
 このように構成されるレーザ加工機100Bを用いて、操作部50から、照射するレーザビームのビームプロファイルをガウシアン型にする指示を受信すると、NC装置60Bは、ビーム調整器70からプロセスファイバ12Bのインナーコア121にレーザビームが入射されるように制御する。インナーコア121に入射されたレーザビームは加工ヘッド30の第2コリメータレンズ31に入射され、第2集束レンズ32の第1レンズ領域321に入射される。
 そして、第1実施形態と同様に、NC装置60Bは、第2集束レンズ32と板金W上面との距離が第1焦点距離FL1離れた配置になるように第2駆動部44を制御することで、板金Wにビーム径が小さいガウシアン型のレーザビームが合焦される。
 また、本実施形態によるレーザ加工機100Bを用いて、操作部50から、照射するレーザビームのビームプロファイルを二段階強度型にする指示を受信すると、NC装置60Bは、ビーム調整器70からプロセスファイバ12Bのインナーコア121およびアウターコア122にレーザビームが入射されるように制御する。インナーコア121に入射されたレーザビームは加工ヘッド30の第2コリメータレンズ31から第2集束レンズ32の第1レンズ領域321に入射される。また、アウターコア122に入射されたレーザビームは、第2コリメータレンズ31から第2集束レンズ32の第2レンズ領域322に入射される。
 そして、第1実施形態と同様に、NC装置60Bが、第2集束レンズ32と板金W上面との距離が、第1焦点距離FL1と第2焦点距離FL2との間であって、第1焦点距離FL1の合焦位置に近い位置に板金W上面を配置するように制御することで、板金Wに二段階強度型のレーザビームが合焦される。
 また、本実施形態によるレーザ加工機100Bを用いて、操作部50から、照射するレーザビームのビームプロファイルをリング型にする指示を受信すると、NC装置60Bは、ビーム調整器70からプロセスファイバ12Bのアウターコア122にレーザビームが入射されるように制御する。アウターコア122に入射されたレーザビームは、第2コリメータレンズ31から第2集束レンズ32の第2レンズ領域322に入射される。
 そして、第1実施形態と同様に、NC装置60Bが、第2集束レンズ32と板金W上面との距離が第2焦点距離FL2離れた配置になるように第2駆動部44を制御することで、板金Wに鋭いリング型のレーザビームが合焦される。
<第3実施形態>
 第3実施形態のレーザ加工機100Cは、図6に示すように、ファイバレーザ発振器10と、ファイバレーザ発振器10から射出されたレーザビームを板金Wに合焦させる加工ヘッド30Cとを備える。ファイバレーザ発振器10から射出されたレーザビームはプロセスファイバ12で加工ヘッド30Cに伝送される。
 加工ヘッド30Cは、第2コリメータレンズ31と、第2集束レンズ32と、アキシコンレンズ33とを有する。アキシコンレンズ33は、例えば特許文献3に記載された技術を用いて設置される円錐形状の光学部品である。アキシコンレンズ33は、第2コリメータレンズ31と第2集束レンズ32との間の光軸上の位置と、当該光軸上の位置から外れる位置とを移動可能な状態で配置される。アキシコンレンズ33は、第2コリメータレンズ31と第2集束レンズ32との間に位置するときに、円錐面が入射側の第2コリメータレンズ31側を向き、平面が出射側の第2集束レンズ32側を向くように配置される。また、レーザ加工機100Cは、アキシコンレンズ33を所定位置に移動させるための第3移動機構45と、第3移動機構45を駆動する第3駆動部46とを備える。
 このように構成されたレーザ加工機100Cを用いて、操作部50から、照射するレーザビームのビームプロファイルをガウシアン型にする指示を受信すると、NC装置60Cは、第3移動機構45によりアキシコンレンズ33が、第2コリメータレンズ31と第2集束レンズ32との間の光軸上から外れる位置に移動されるように、第3駆動部46を制御する。アキシコンレンズ33が当該位置に移動されると、ファイバレーザ発振器10から射出されたレーザビームは、入射ビーム径が小さいまま加工ヘッド30Cの第2コリメータレンズ31に入射され、第2集束レンズ32の第1レンズ領域321に入射される。
 そして、第1実施形態と同様に、NC装置60Cが、第2集束レンズ32と板金W上面との距離が第1焦点距離FL1離れた配置になるように制御することで、板金Wにビーム径が小さいガウシアン型のレーザビームが合焦される。
 また、本実施形態によるレーザ加工機100Cを用いて、操作部50から、照射するレーザビームのビームプロファイルをリング型にする指示を受信すると、NC装置60Cは、アキシコンレンズ33を第2コリメータレンズ31と第2集束レンズ32との間の光軸上に配置させる。当該位置にアキシコンレンズ33が配置されると、ファイバレーザ発振器10から射出されたレーザビームは、拡がり角度が変更されて入射ビーム径が大きくなり、加工ヘッド30Cの第2コリメータレンズ31に入射されて第2集束レンズ32の第2レンズ領域322に入射される。
 そして、第1実施形態と同様に、NC装置60Cが、第2集束レンズ32と板金W上面との距離が第2焦点距離FL2離れた配置になるように制御することで、板金Wに鋭いリング型のレーザビームが合焦される。
<第4実施形態>
 第4実施形態のレーザ加工機100Dは、図7に示すように、ファイバレーザ発振器10と、ファイバレーザ発振器10から射出されたレーザビームを板金Wに合焦させる加工ヘッド30とを備える。ファイバレーザ発振器10から射出されたレーザビームは、例えば特許文献4に記載されたように、所定の角度に湾曲させることが可能なプロセスファイバ12Dで加工ヘッド30に伝送される。また、レーザ加工機100Dは、プロセスファイバ12Dを所定の角度で湾曲させるための湾曲機構47と、湾曲機構47を駆動する第4駆動部48とを備える。
 このように構成されるレーザ加工機100Dを用いて、操作部50から、照射するレーザビームのビームプロファイルをガウシアン型にする指示を受信すると、NC装置60Dは、湾曲機構47によりプロセスファイバ12Dが直線状態になるように、第4駆動部48を制御する。プロセスファイバ12Dが直線状態になると、ファイバレーザ発振器10から射出されたレーザビームは、入射ビーム径が小さいまま加工ヘッド30の第2コリメータレンズ31に入射され、第2集束レンズ32の第1レンズ領域321に入射される。
 そして、第1実施形態と同様に、NC装置60Dが、第2集束レンズ32と板金W上面との距離が第1焦点距離FL1離れた配置になるように制御することで、板金Wにビーム径が小さいガウシアン型のレーザビームが合焦される。
 また、本実施形態によるレーザ加工機100Dを用いて、操作部50から、照射するレーザビームのビームプロファイルを二段階強度型にする指示を受信すると、NC装置60Dは、湾曲機構47によりプロセスファイバ12Dが所定角度湾曲されるように、第4駆動部48を制御する。プロセスファイバ12Dが所定角度湾曲されると、ファイバレーザ発振器10から射出されたレーザビームは、直線状態の場合よりも入射ビーム径が大きくなって加工ヘッド30の第2コリメータレンズ31に入射され、第2集束レンズ32の第1レンズ領域321および第2レンズ領域322に入射される。
 そして、第1実施形態と同様に、NC装置60Dが、第2集束レンズ32と板金W上面との距離が第1焦点距離FL1と第2焦点距離FL2との間であって、第1焦点距離FL1の合焦位置に近い位置に板金W上面を配置させるように制御することで、板金Wに二段階強度型のレーザビームが合焦される。
 また、本実施形態によるレーザ加工機100Dを用いて、操作部50から、照射するレーザビームのビームプロファイルをリング型にする指示を受信した場合も、NC装置60Dは、湾曲機構47によりプロセスファイバ12Dが所定角度湾曲されるように、第4駆動部48を制御する。そして、ファイバレーザ発振器10から射出されたレーザビームは、加工ヘッド30の第2コリメータレンズ31に入射され、第2集束レンズ32の第2レンズ領域322に入射される。
 そして、第1実施形態と同様に、NC装置60Dが、第2集束レンズ32を板金Wから第2焦点距離FL2だけ離れた位置に配置させるように制御することで、板金Wに鋭いリング型のレーザビームが合焦される。
 第1~第4実施形態によれば、加工条件に応じてレーザビームのビームプロファイルを変化させて板金W上に合焦させることができる。これにより、ギャップ溶接を行う場合に、処理対象の隙間の間隔に応じた大きさビーム径で鋭いリング型のレーザビームを板金Wに照射することができ、好適な処理を行うことができる。
 また、上述した第1~第4実施形態において、レーザ加工機100A~100Dに板金Wの加工対象部分を撮影するカメラ装置を設置し、NC装置60A~60Dが、ギャップ溶接を行う前に当該カメラ装置で撮影された撮像情報を解析して処理対象の隙間の間隔を計測し、計測値に応じたビーム径のリング型のレーザビームを照射するようにしてもよい。
 本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
 本願の開示は、2019年6月6日に出願された特願2019-106118号に記載の主題と関連しており、それらの全ての開示内容は引用によりここに援用される。

Claims (8)

  1.  ファイバレーザ発振器から射出するレーザビームのビームプロファイルを変更可能な光学デバイスと、
     内周側に第1焦点距離を有する第1レンズ領域が設けられ、外周側に前記第1焦点距離よりも長い第2焦点距離を有する第2レンズ領域が設けられ、前記光学デバイスから射出されたレーザビームを合焦させる集束レンズと、
     前記集束レンズを光軸方向に移動させる移動機構とを備える、
     ことを特徴とするレーザ加工機。
  2.  前記集束レンズの第1レンズ領域の合焦位置は前記レーザビームの光軸上にあり、前記第2レンズ領域の合焦位置は前記光軸からずれた位置にあることを特徴とする請求項1に記載のレーザ加工機。
  3.  前記光学デバイスは、ファイバレーザ発振器から射出するレーザビームのビームパラメータ積を変化させ、拡がり角度とビーム径を変更させることを特徴とする請求項1または2に記載のレーザ加工機。
  4.  前記光学デバイスと前記集束レンズとの間は、内周側に設けられたインナーコアおよび外周側に設けられたアウターコアを有するプロセスファイバで接続され、
     前記光学デバイスは、前記インナーコアと前記アウターコアとの少なくともいずれかにレーザビームを入射することで、射出するレーザビームのビームプロファイルを変更することを特徴とする請求項1または2に記載のレーザ加工機。
  5.  前記光学デバイスは、ファイバレーザ発振器から射出するレーザビームの拡がり角度を変更させるアキシコンレンズの有無により、ビームプロファイルを変更することを特徴とする請求項1または2に記載のレーザ加工機。
  6.  前記光学デバイスは、前記光学デバイスと前記集束レンズとの間を接続するプロセスファイバを所定角度湾曲させることで、射出するレーザビームのビームプロファイルを変更することを特徴とする請求項1または2に記載のレーザ加工機。
  7.  請求項1に記載のレーザ加工機によって行うレーザ加工方法であって、
     前記光学デバイスにより、前記集束レンズの第1レンズ領域および第2レンズ領域にレーザビームが入射されると、前記集束レンズと加工対象物との距離が、前記第1焦点距離と前記第2焦点距離との間になるように前記集束レンズを前記移動機構により光軸方向に移動させる、
     ことを特徴とするレーザ加工方法。
  8.  請求項1に記載のレーザ加工機によって行うレーザ加工方法であって、
     前記光学デバイスにより、リング型のレーザビームが前記集束レンズの第2レンズ領域に入射されると、前記集束レンズと加工対象物との距離が、前記第2焦点距離になるように前記集束レンズを前記移動機構により光軸方向に移動させる、
     ことを特徴とするレーザ加工方法。
PCT/JP2020/021862 2019-06-06 2020-06-03 レーザ加工機およびレーザ加工方法 WO2020246490A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/615,711 US20220241894A1 (en) 2019-06-06 2020-06-03 Laser processing machine and laser processing method
EP20818070.3A EP3981539A4 (en) 2019-06-06 2020-06-03 LASER PROCESSING DEVICE AND LASER PROCESSING METHOD
CN202080041648.7A CN114007801B (zh) 2019-06-06 2020-06-03 激光加工机以及激光加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-106118 2019-06-06
JP2019106118A JP6764976B1 (ja) 2019-06-06 2019-06-06 レーザ加工機およびレーザ加工方法

Publications (1)

Publication Number Publication Date
WO2020246490A1 true WO2020246490A1 (ja) 2020-12-10

Family

ID=72706662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021862 WO2020246490A1 (ja) 2019-06-06 2020-06-03 レーザ加工機およびレーザ加工方法

Country Status (5)

Country Link
US (1) US20220241894A1 (ja)
EP (1) EP3981539A4 (ja)
JP (1) JP6764976B1 (ja)
CN (1) CN114007801B (ja)
WO (1) WO2020246490A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832412B2 (ja) 1976-05-28 1983-07-13 日本ビクター株式会社 回転制御系における位相同期用基準信号形成方式
JPH02263590A (ja) * 1989-04-04 1990-10-26 Matsushita Electric Ind Co Ltd レーザ加工機
WO1992011971A1 (en) * 1990-12-28 1992-07-23 Fanuc Ltd Method and device for laser welding of galvanized steel sheets
JPH11138896A (ja) * 1997-11-07 1999-05-25 Sumitomo Heavy Ind Ltd レーザを用いたマーキング方法、マーキング装置、及びマークの観察方法、観察装置
JP2003340582A (ja) * 2002-05-23 2003-12-02 Mitsubishi Heavy Ind Ltd レーザ溶接装置およびレーザ溶接方法
US9482821B2 (en) 2010-04-08 2016-11-01 Trumpf Laser- Und Systemtechnik Gmbh Method and arrangement for generating a laser beam having a differing beam profile characteristic by a multi-clad fiber
JP2019018233A (ja) * 2017-07-19 2019-02-07 株式会社アマダホールディングス レーザ加工機
JP2019106118A (ja) 2017-12-14 2019-06-27 キヤノンマーケティングジャパン株式会社 情報処理装置、及びその制御方法、プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350558B2 (ja) * 2004-03-09 2009-10-21 三菱電機株式会社 レーザビーム光学系およびレーザ加工装置
JP2012064697A (ja) * 2010-09-15 2012-03-29 Sharp Corp レーザ加工方法およびレーザ加工装置
JP5808267B2 (ja) * 2012-02-20 2015-11-10 住友重機械工業株式会社 レーザ加工装置及びレーザ加工方法
DE102014116957A1 (de) * 2014-11-19 2016-05-19 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung
JP6204964B2 (ja) * 2015-12-08 2017-09-27 株式会社アマダホールディングス レーザ加工機
US10682726B2 (en) * 2016-09-29 2020-06-16 Nlight, Inc. Beam modification structures and methods of modifying optical beam characteristics using the beam modification structures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832412B2 (ja) 1976-05-28 1983-07-13 日本ビクター株式会社 回転制御系における位相同期用基準信号形成方式
JPH02263590A (ja) * 1989-04-04 1990-10-26 Matsushita Electric Ind Co Ltd レーザ加工機
WO1992011971A1 (en) * 1990-12-28 1992-07-23 Fanuc Ltd Method and device for laser welding of galvanized steel sheets
JPH11138896A (ja) * 1997-11-07 1999-05-25 Sumitomo Heavy Ind Ltd レーザを用いたマーキング方法、マーキング装置、及びマークの観察方法、観察装置
JP2003340582A (ja) * 2002-05-23 2003-12-02 Mitsubishi Heavy Ind Ltd レーザ溶接装置およびレーザ溶接方法
US9482821B2 (en) 2010-04-08 2016-11-01 Trumpf Laser- Und Systemtechnik Gmbh Method and arrangement for generating a laser beam having a differing beam profile characteristic by a multi-clad fiber
JP2019018233A (ja) * 2017-07-19 2019-02-07 株式会社アマダホールディングス レーザ加工機
JP2019106118A (ja) 2017-12-14 2019-06-27 キヤノンマーケティングジャパン株式会社 情報処理装置、及びその制御方法、プログラム

Also Published As

Publication number Publication date
CN114007801B (zh) 2023-10-31
EP3981539A1 (en) 2022-04-13
EP3981539A4 (en) 2022-08-03
CN114007801A (zh) 2022-02-01
JP2020199507A (ja) 2020-12-17
JP6764976B1 (ja) 2020-10-07
US20220241894A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP6602860B2 (ja) レーザ加工装置及びレーザ加工方法
US8404994B2 (en) Laser beam welding device and method
CN107584205B (zh) 金属材料的激光加工方法以及相关的机器和计算机程序
US10898970B2 (en) Laser processing machine
KR102641783B1 (ko) 재료를 레이저 가공하기 위한 장치 및 방법
US10583525B2 (en) Laser processing machine
CN109982808B (zh) 激光加工装置以及激光加工方法
WO2020246490A1 (ja) レーザ加工機およびレーザ加工方法
JP6895621B2 (ja) レーザ加工ヘッドおよびレーザ加工装置
US20230226640A1 (en) Laser processing head having wide range zoom
JP2020199513A (ja) レーザ加工機及びレーザ加工機の制御方法
JP6832198B2 (ja) レーザ溶接装置、レーザ溶接方法及びレーザ加工用レンズ
WO2021107043A1 (ja) レーザ加工装置
JP7301939B2 (ja) 高周波レーザ光学装置、及び高周波レーザ光学装置の動作方法
WO2023149449A1 (ja) レーザ加工方法
JP7133425B2 (ja) レーザ加工機
WO2023149451A1 (ja) レーザ加工方法
JP2023107301A (ja) レーザ加工ヘッド
CN115464257A (zh) 用于激光加工工件的方法和相关的激光加工系统
JP2023112733A (ja) レーザ加工方法
CN113649689A (zh) 一种光学系统
JPH03234389A (ja) レーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020818070

Country of ref document: EP