WO2020245932A1 - スクリュー圧縮機及び冷凍サイクル装置 - Google Patents

スクリュー圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020245932A1
WO2020245932A1 PCT/JP2019/022282 JP2019022282W WO2020245932A1 WO 2020245932 A1 WO2020245932 A1 WO 2020245932A1 JP 2019022282 W JP2019022282 W JP 2019022282W WO 2020245932 A1 WO2020245932 A1 WO 2020245932A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow path
refrigerant
slide valve
space
Prior art date
Application number
PCT/JP2019/022282
Other languages
English (en)
French (fr)
Inventor
優 木庭
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/022282 priority Critical patent/WO2020245932A1/ja
Priority to EP19931683.7A priority patent/EP3981987A4/en
Publication of WO2020245932A1 publication Critical patent/WO2020245932A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a screw compressor and a refrigeration cycle device including a slide valve and a pressure drive mechanism for moving the slide valve by pressure.
  • a screw compressor is known as one type of positive displacement compressor.
  • the screw compressor is used as a component of a refrigerant circuit built in, for example, a refrigerator.
  • screw compressor for example, one screw rotor having a spiral tooth groove and two gate rotors having a plurality of gate rotor teeth that fit into the tooth grooves of the screw rotor are housed inside the casing.
  • Single screw compressors are known.
  • the tooth groove of the screw rotor and the gate rotor tooth portion of the gate rotor are meshed with each other and engaged with each other to form a plurality of compression chambers.
  • One end of the screw rotor in the rotation axis direction is the refrigerant suction side, and the other end in the rotation axis direction is the refrigerant discharge side.
  • the inside of the casing is divided into a space for the low-pressure refrigerant provided on the suction side of the compression chamber and a space for the high-pressure refrigerant provided on the discharge side of the compression chamber.
  • the screw rotor is fixed to the screw shaft that rotates by the drive unit provided inside the casing.
  • One shaft end of the screw shaft is rotatably supported by a bearing housing having a bearing inside.
  • the other shaft end of the screw shaft is connected to the drive unit.
  • the screw compressor when the screw rotor is rotationally driven via the screw shaft rotated by the drive unit, the refrigerant in the low pressure space is sucked into the compression chamber and compressed, and the refrigerant compressed in the compression chamber is discharged into the high pressure space.
  • a pair of slide valves that are arranged in a slide groove formed on the inner cylinder surface of the casing and are provided so as to be slidable in the direction of the rotation axis of the screw rotor may be provided.
  • the slide valve moves in the direction of the rotation axis of the screw rotor, and adjusts the suction timing of the refrigerant into the compression chamber, the discharge timing of the high-pressure refrigerant compressed in the compression chamber, and the opening of the discharge port for discharging the high-pressure refrigerant.
  • the internal volume ratio (Vi) which is the ratio of the suction volume to the discharge volume, is adjusted.
  • the slide valve is a connecting member that connects the cylinder portion provided in the casing, the piston that divides the inside of the cylinder portion into two front and rear spaces, and moves according to the change in the pressure difference between the two front and rear spaces, and the piston and the slide valve. And have. The position of the slide valve is adjusted by these configurations.
  • Patent Document 1 the pressures in the space of the low pressure refrigerant and the space of the high pressure refrigerant are detected by the pressure detection sensor, and the pressure in the space partitioned by the piston is adjusted so that the internal volume ratio corresponds to the high / low pressure ratio.
  • a structure in which the slide valve moves has been proposed.
  • Patent Document 2 proposes a structure in which a cylinder portion is formed in a bearing holder that holds one end of a screw rotor, and the bearing holder and the cylinder portion are integrated to achieve a compact and lightweight screw compressor. There is.
  • the present invention is intended to solve the above problems, and an object of the present invention is to provide a screw compressor and a refrigeration cycle device that can reduce the number of parts and the installation space with a simple configuration to reduce the size and weight.
  • the screw compressor according to the present invention includes a casing having a tubular inner cylinder surface portion, a screw rotor rotatably housed in the inner cylinder surface portion of the casing and having a plurality of spiral grooves on the outer periphery, and the screw rotor.
  • a gate rotor having teeth that mesh with the spiral groove and a slide valve that adjusts the opening degree of the discharge port of the high-pressure refrigerant compressed by the screw rotor are provided, and the low-pressure refrigerant before suction is circulated through the screw rotor.
  • a flow path, a high-pressure flow path for flowing the high-pressure refrigerant discharged from the discharge port, and a merging flow path for merging the low-pressure flow path and the high-pressure flow path are provided, and the low-pressure flow path and the high-pressure flow path are provided.
  • a pressure switching mechanism for switching the pressure of the refrigerant is arranged in at least one of the flow path or the merging flow path, and the merging flow path is a pressure-applied refrigerant whose pressure is switched by the pressure switching mechanism from the downstream end. Is applied to one end of the slide valve.
  • the refrigeration cycle apparatus includes the above-mentioned screw compressor.
  • the merging flow path applies a pressure-applying refrigerant whose pressure has been switched by a pressure switching mechanism from the downstream end to one end surface of the slide valve.
  • FIG. 1 is an explanatory view showing a screw compressor 100 according to the first embodiment in a vertical cross section.
  • the screw compressor 100 is a single-stage single screw compressor.
  • the screw compressor 100 is composed of a casing 1 having a cylindrical inner cylindrical surface portion constituting an outer shell, a compression portion 2 provided inside the casing 1, and a drive portion 3. There is.
  • the inside of the casing 1 is divided into a low-pressure space 40 in which the low-pressure refrigerant exists and a high-pressure space 41 in which the high-pressure refrigerant exists.
  • the compression unit 2 includes a screw shaft 4, a screw rotor 5 fixed to the screw shaft 4, a pair of gate rotors 6, a pair of slide valves 7, and a bearing 8 that rotatably supports the ends of the screw shaft 4.
  • the bearing housing 9 is provided inside.
  • the screw shaft 4 extends in the pipe axis direction of the casing 1.
  • One shaft end of the screw shaft 4 is rotatably supported by a bearing 8 arranged so as to face the discharge side of the screw rotor 5.
  • the other shaft end of the screw shaft 4 is connected to the drive unit 3.
  • the screw shaft 4 is rotated by the drive unit 3.
  • the screw rotor 5 is rotatably housed in the inner cylinder surface portion of the casing 1.
  • the screw rotor 5 has a spiral tooth groove 5a as a plurality of spiral grooves on the outer periphery of the cylindrical body.
  • the screw rotor 5 is fixed to the screw shaft 4.
  • the screw rotor 5 rotates together with the screw shaft 4 that is rotated by the drive unit 3.
  • the low pressure space 40 side in the rotation axis direction of the screw rotor 5 is the refrigerant suction side.
  • the high pressure space 41 side in the rotation axis direction of the screw rotor 5 is the discharge side.
  • the gate rotor 6 has a plurality of gate rotor tooth portions 6a (see FIG. 2) that mesh with the tooth grooves 5a of the screw rotor 5 on the outer periphery.
  • the pair of gate rotors 6 are arranged so as to sandwich the screw rotor 5 in the radial direction.
  • the tooth groove 5a of the screw rotor 5 and the gate rotor tooth portion 6a of the gate rotor 6 are meshed with each other and engaged with each other to form a compression chamber 20 (see FIG. 2).
  • the screw compressor 100 has a configuration in which two gate rotors 6 are arranged so as to face one screw rotor 5 with a 180 degree shift around the axis of the screw shaft 4. Therefore, two compression chambers 20 are shown on the upper side of the screw shaft 4 and the lower side of the screw shaft 4 on FIG.
  • the slide valve 7 is provided in a slide groove formed on the inner cylinder surface of the casing 1.
  • the slide valve 7 is configured to be slidable in the direction of the rotation axis of the screw rotor 5.
  • the slide valve 7 is, for example, an internal volume ratio adjusting valve.
  • the slide valve 7 includes a valve body portion 70 facing the screw rotor 5 and a guide portion 71 having a sliding surface facing the outer peripheral surface of the bearing housing 9.
  • the valve body portion 70 and the guide portion 71 are connected by a connecting portion 72.
  • the space between the valve body portion 70 and the guide portion 71 is a discharge port 7a for the refrigerant compressed in the compression chamber 20.
  • the refrigerant discharged from the discharge port 7a is discharged into the high-pressure space 41 through the discharge gas passage formed on the back surface side of the guide portion 71.
  • the slide valve 7 is arranged between the low pressure space 40 and the high pressure space 41.
  • the valve body portion 70 of the slide valve 7 has a suction side end portion 70a that is closer to the low pressure space 40 than the high pressure space 41.
  • the guide portion 71 of the slide valve 7 has a discharge side end portion 71a that is closer to the high pressure space 41 than the low pressure space 40.
  • the valve body 70 of the slide valve 7 moves in parallel with the screw shaft 4. As a result, the discharge timing of the refrigerant discharged from the compression chamber 20 of the screw rotor 5 is adjusted.
  • the discharge timing As a specific adjustment of the discharge timing, when the slide valve 7 is moved to the suction side and the opening area of the discharge port 7a is widened, the discharge timing is accelerated. On the other hand, when the slide valve 7 is moved to the discharge side and the opening area of the discharge port 7a is narrowed, the discharge timing is delayed. That is, the screw compressor 100 operates at a low internal volume ratio (low Vi) when the discharge timing is advanced, and operates at a high internal volume ratio (high Vi) when the discharge timing is delayed.
  • low Vi low internal volume ratio
  • high Vi high internal volume ratio
  • the drive unit 3 is composed of an electric motor 30.
  • the electric motor 30 is composed of a stator 31 that is inscribed and fixed inside the casing 1 and a motor rotor 32 that is rotatably arranged inside the stator 31.
  • the motor rotor 32 is connected to the shaft end of the screw shaft 4.
  • the motor rotor 32 is arranged on the same axis as the screw rotor 5.
  • the screw compressor 100 rotates the screw rotor 5 when the electric motor 30 is driven and the screw shaft 4 rotates.
  • the electric motor 30 is driven by an inverter (not shown) so that the rotation speed can be changed, and the rotation speed of the screw shaft 4 is accelerated or decelerated.
  • FIG. 2 is an explanatory diagram showing a suction stroke of the compression unit 2 of the screw compressor 100 according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing a compression stroke of the compression unit 2 of the screw compressor 100 according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing a discharge process of the compression unit 2 of the screw compressor 100 according to the first embodiment. In the following, each process is described with a focus on the compression chamber 20 indicated by the hatching of dots shown in FIGS. 2, 3 and 4.
  • the screw compressor 100 when the electric motor 30 is driven, the screw rotor 5 rotates via the screw shaft 4.
  • the gate rotor tooth portion 6a of the gate rotor 6 rotates relatively in the compression chamber 20.
  • the suction stroke shown in FIG. 2 the compression stroke shown in FIG. 3, and the discharge stroke shown in FIG. 4 are repeated as one cycle in this order.
  • the compression chamber 20 with dots communicates with the low pressure space 40.
  • the spiral tooth groove 5a is meshed with the gate rotor tooth portion 6a of the gate rotor 6 located on the lower side in the drawing.
  • the gate rotor tooth portion 6a moves relatively toward the end of the tooth groove 5a, and the volume of the compression chamber 20 increases accordingly.
  • the low-pressure refrigerant gas in the low-pressure space 40 is sucked into the compression chamber 20 through the suction port.
  • the screw rotor 5 further rotates, the process shifts to the compression stroke shown in FIG.
  • the compression chamber 20 with dots is in a closed state.
  • the spiral tooth groove 5a is meshed with the gate rotor tooth portion 6a of the gate rotor 6 located on the lower side in the drawing, and is partitioned from the low pressure space 40 by the gate rotor tooth portion 6a.
  • the volume of the compression chamber 20 gradually decreases as the gate rotor tooth portion 6a moves toward the end of the tooth groove 5a as the screw rotor 5 rotates.
  • the refrigerant gas in the compression chamber 20 is compressed.
  • the screw rotor 5 further rotates, the process shifts to the discharge stroke shown in FIG.
  • the compression chamber 20 with dots communicates with the high pressure space 41 via the discharge port 7a. Then, when the gate rotor tooth portion 6a moves toward the end of the tooth groove 5a with the rotation of the screw rotor 5, the compressed refrigerant gas is pushed out from the compression chamber 20 into the high-pressure space 41.
  • the screw compressor 100 includes a pressure drive mechanism 50 having a low pressure flow path 51, a high pressure flow path 52, a merging flow path 53, a pressure switching mechanism 12a, and a pressure switching mechanism 12b. ..
  • the pressure drive mechanism 50 applies a pressure-applying refrigerant of either a low-pressure refrigerant or a high-pressure refrigerant whose pressure has been switched by the pressure switching mechanism 12a and the pressure switching mechanism 12b from the downstream end of the merging flow path 53 to one of the slide valves 7. It is applied to the pressure receiving surface of the discharge side end portion 71a of the guide portion 71, which is the end portion of the guide portion 71.
  • the low pressure flow path 51 allows the low pressure refrigerant in the low pressure space 40 before suction to flow through the screw rotor 5.
  • the high-pressure flow path 52 circulates the high-pressure refrigerant in the high-pressure space 41 discharged from the discharge port 7a.
  • the merging flow path 53 merges the low pressure flow path 51 and the high pressure flow path 52.
  • the pressure switching mechanism 12a and the pressure switching mechanism 12b switch the pressure of the refrigerant flowing through the merging flow path 53.
  • the merging flow path 53 branches in the middle of flowing to the downstream side, and applies the circulating pressure-applying refrigerant to each of the pressure-receiving surfaces of the discharge-side end 71a of the pair of slide valves 7.
  • a pressure applying space 13 is provided in which the pressure applying refrigerant is applied to the pressure receiving surface of the discharge side end 71a of the slide valve 7 from the downstream end of the merging flow path 53.
  • the pressure applying space 13 is provided for each of the pair of slide valves 7.
  • the pressure applying space 13 is a closed space surrounded by at least the pressure receiving surface of the discharge side end portion 71a of the slide valve 7 and the casing 1.
  • the pressure applying space 13 is formed on the pressure receiving surface of the discharge side end portion 71a of the slide valve 7, the outer peripheral surface of the bearing housing 9, the end surface of the connection flange 10, and the inner cylinder surface of the casing 1. It is surrounded by the inner wall surface of the cylinder of the slide groove 1a.
  • a stopper 10a is provided on the end surface of the connection flange 10 which is the wall surface of the pressure applying space 13 to prevent the slide valve 7 from coming into contact with the pressure receiving surface of the discharge side end 71a.
  • the stopper 10a is formed so as to project toward the slide valve 7 side in a part of the end surface of the connection flange 10 which is the wall surface portion of the pressure applying space 13 which is in contact with the pressure receiving surface of the discharge side end portion 71a of the slide valve 7. There is. With the stopper 10a, the pressure application space 13 can be secured even when the slide valve 7 is located on the high Vi side.
  • the screw compressor 100 includes a repulsion member 11 that assists the movement of the slide valve 7 by the pressure-applying refrigerant.
  • the repulsion member 11 is provided at the suction side end 70a of the slide valve 7 on the side opposite to the pressure receiving surface of the discharge side end 71a of the slide valve 7 for applying the pressure applying refrigerant.
  • the repulsive member 11 applies a force for positioning the slide valve 7 on the high Vi side.
  • the repulsive member 11 is composed of an urging spring or the like and generates a reaction force.
  • a shaft-shaped guide structure 19 is formed at the suction side end 70a of the slide valve 7.
  • the guide structure 19 is integrated with the slide valve 7.
  • the repulsive member 11 is inserted into the guide structure 19 and fixed in position.
  • the pressure switching mechanism 12a and the pressure switching mechanism 12b are on-off valves provided in the low-pressure flow path 51 and the high-pressure flow path 52, respectively.
  • Each of the on-off valve, which is the pressure switching mechanism 12a and the pressure switching mechanism 12b, is a solenoid valve.
  • FIG. 5 is an explanatory view showing a compression portion 2 of the screw compressor 100 according to the first embodiment in a vertical cross section with the slide valve 7 located on the high Vi side.
  • the high pressure flow path 52 that communicates the pressure applying space 13 and the high pressure space 41 is blocked by the pressure switching mechanism 12b, and the pressure applying space 13 Only the low pressure flow path 51 that communicates with the low pressure space 40 is communicated by opening the pressure switching mechanism 12a. Therefore, the low-pressure refrigerant in the low-pressure space 40 flows through the merging flow path 53 as the pressure-applying refrigerant.
  • the low pressure (LP) acts uniformly on the pressure receiving surface of the discharge side end 71a and the pressure receiving surface of the suction side end 70a of the slide valve 7. Therefore, the position of the slide valve 7 is not uniquely determined.
  • the reaction force of the repulsive member 11 assists the slide valve 7 in moving in the high Vi direction. As a result, the slide valve 7 moves to the high Vi side.
  • FIG. 6 is an explanatory view showing a compression portion 2 of the screw compressor 100 according to the first embodiment in a vertical cross section with the slide valve 7 located on the low Vi side.
  • the low pressure flow path 51 that communicates the pressure applying space 13 and the low pressure space 40 is blocked by the pressure switching mechanism 12a, and the pressure applying space 13 Only the high pressure flow path 52 that communicates with the high pressure space 41 is communicated by opening the pressure switching mechanism 12b. Therefore, the high-pressure refrigerant in the high-pressure space 41 flows through the merging flow path 53 as the pressure-applying refrigerant.
  • a high pressure (HP) acts on the pressure receiving surface of the discharge side end 71a of the slide valve 7 and a low pressure (LP) acts on the pressure receiving surface of the suction side end 70a. Therefore, when the high pressure (HP) pressure acting on the pressure receiving surface of the discharge side end portion 71a of the slide valve 7 becomes larger than the resultant force with the reaction force of the repulsive member 11 and the low pressure (LP) pressure, the slide valve 7 is moved. Move to the low Vi side.
  • the repulsive member 11 always generates a reaction force in the direction of moving the slide valve 7 to the high Vi side. Therefore, in order to position the slide valve 7 on the low Vi side, the pressure acting on the pressure receiving surface of the discharge side end 71a of the slide valve 7 acts on the pressure receiving surface of the suction side end 70a of the slide valve 7.
  • the reaction force of the repulsion member 11 needs to be set so as to be larger than the resultant force of the pressure of the repulsion member 11 and the reaction force of the repulsion member 11.
  • a repulsive member 11 for urging a force for positioning the slide valve 7 on the high Vi side is provided at the suction side end 70a of the slide valve 7.
  • the repulsive member 11 utilizes the reaction force that tries to return to the natural length from the compressed state.
  • the auxiliary force provided by the repulsive member 11 is not limited to this.
  • the repulsion member 11 may be provided at the discharge side end portion 71a of the guide portion 71 of the slide valve 7, which is the end portion for applying the pressure-applying refrigerant.
  • the repulsive member 11 utilizes a force that tries to return to its natural length from the stretched state.
  • the member used for the repulsion member 11 is not limited as long as it has an action similar to that of a spring.
  • the axial guide structure 19 formed at the suction side end 70a of the slide valve 7 is used to fix the position of the repulsion member 11.
  • the guide structure 19 may be integrated with the slide valve 7, or may be assembled as a separate component on the wall surface of the slide valve 7 or the casing 1.
  • the guide structure 19 is not limited to the shaft shape.
  • the guide structure 19 may be provided with a recess in the end portion of the slide valve 7 and the wall surface portion of the casing 1 so as to accommodate the repulsion member 11, and the repulsion member 11 may be accommodated in the recess.
  • various structures capable of fixing the position of the repulsive member 11 can be applied.
  • the stopper 10a for securing the pressure applying space 13 when the slide valve 7 is located on the high Vi side is integrated with the inner wall surface of the pressure applying space 13.
  • the stopper 10a may be provided as a separate component and may be assembled to the discharge side end portion 71a of the connection flange 10 or the slide valve 7. Further, the stopper 10a may be integrally configured with the slide valve 7.
  • the pressure switching mechanism 12a and the pressure switching mechanism 12b are on-off valves provided in the low-pressure flow path 51 and the high-pressure flow path 52, respectively.
  • the pressure switching mechanism may be a three-way valve provided at a position where the low pressure flow path 51, the high pressure flow path 52, and the merging flow path 53 meet. The three-way valve may switch between the low pressure flow path 51 and the high pressure flow path 52.
  • the low-pressure flow path 51, the high-pressure flow path 52, and the confluence flow path 53 are conceptually described by black lines.
  • the low-pressure flow path 51, the high-pressure flow path 52, and the merging flow path 53 may be configured by piping provided outside the casing 1.
  • the low pressure flow path 51, the high pressure flow path 52, and the merging flow path 53 may be composed of internal components of the casing 1.
  • the passage is formed by processing the parts.
  • the screw compressor 100 includes a casing 1 having a cylindrical inner cylinder surface portion.
  • the screw compressor 100 includes a screw rotor 5 rotatably housed in an inner cylinder surface portion of the casing 1 and having a spiral tooth groove 5a as a plurality of spiral grooves on the outer periphery.
  • the screw compressor 100 includes a gate rotor 6 having a gate rotor tooth portion 6a as a tooth that meshes with the tooth groove 5a of the screw rotor 5.
  • the screw compressor 100 includes a slide valve 7 that adjusts the discharge timing from the screw rotor 5 and the opening degree of the discharge port 7a of the high-pressure refrigerant compressed by the screw rotor 5.
  • the screw compressor 100 is provided with a low-pressure flow path 51 that allows the low-pressure refrigerant before suction to flow through the screw rotor 5.
  • the screw compressor 100 is provided with a high-pressure flow path 52 through which the high-pressure refrigerant discharged from the discharge port 7a flows.
  • the screw compressor 100 is provided with a merging flow path 53 for merging the low pressure flow path 51 and the high pressure flow path 52.
  • a pressure switching mechanism 12a and a pressure switching mechanism 12b for switching the pressure of the refrigerant are arranged in at least one of the low pressure flow path 51, the high pressure flow path 52, and the merging flow path 53.
  • the merging flow path 53 is one end of the slide valve 7 for a pressure-applying refrigerant of either a low-pressure refrigerant or a high-pressure refrigerant whose pressure is switched by the pressure switching mechanism 12a and the pressure switching mechanism 12b from the downstream end. It is applied to the pressure receiving surface of the discharge side end portion 71a of the guide portion 71 of the slide valve 7.
  • the drive parts that drive the slide valve 7 from the direction of the rotation axis by the piston based on the pressure difference can be eliminated, the drive parts and the parts related to the drive parts can be reduced, and the drive parts are mounted.
  • the installation space is reduced and the length of the compressor is shortened. Therefore, the number of parts and the installation space can be reduced with a simple configuration to reduce the size and weight and the cost.
  • the drive component is a cylinder portion, a piston, a connecting member, or the like provided on the connecting flange 10.
  • the parts group related to the driving parts are bolts, nuts, and the like.
  • the merging flow path 53 branches in the middle and applies pressure-applying refrigerant to each of the pressure receiving surfaces of the discharge-side end 71a of the guide portion 71, which is one end of the two slide valves 7.
  • the merging flow path 53 is composed of one halfway, and the number of parts and the installation space can be reduced with a simple configuration.
  • a pressure applying space 13 for applying a pressure applying refrigerant from the downstream end of the merging flow path 53 to the pressure receiving surface side of the discharge side end 71a, which is one end of the slide valve 7. is provided.
  • the pressure applying refrigerant can be evenly applied to the entire pressure receiving surface of the discharge side end 71a of the slide valve 7 in the pressure applying space 13, and the slide valve 7 can be easily operated by the pressure applying refrigerant.
  • two slide valves 7 are provided.
  • the pressure applying space 13 is provided for each of the two slide valves 7.
  • the pressure-applying refrigerant can be evenly applied to the entire pressure receiving surface of the discharge side end 71a of the two slide valves 7 in the two pressure-applying spaces 13, and the two slide valves 7 are provided by the pressure-applying refrigerant. Easy to operate.
  • connection flange 10 which is the wall surface portion of the pressure applying space 13 is prevented from coming into contact with the pressure receiving surface of the discharge side end portion 71a which is one end portion of the slide valve 7.
  • a stopper 10a is provided.
  • the pressure receiving surface of the discharge side end portion 71a of the slide valve 7 can be prevented from sticking to the end surface of the connection flange 10 in the pressure applying space 13 in opposite contact with each other.
  • the slide valve 7 is arranged between the low pressure space 40 and the high pressure space 41.
  • the slide valve 7 has a discharge side end portion 71a that is closer to the high pressure space 41 than the low pressure space 40.
  • the end of the slide valve 7 that applies the pressure-applying refrigerant whose pressure has been switched by the pressure switching mechanism 12a and the pressure switching mechanism 12b from the downstream end of the merging flow path 53 is the discharge-side end 71a.
  • the pressure applying space 13 is a closed space surrounded by at least the pressure receiving surface of the discharge side end portion 71a of the slide valve 7 and the casing 1.
  • the pressure applying refrigerant flows into the pressure applying space 13 formed in the closed space, and the pressure of the pressure applying refrigerant can be completely applied to the pressure receiving surface of the discharge side end portion 71a of the slide valve 7.
  • the screw compressor 100 includes a repulsive member 11 that assists the movement of the slide valve 7 by the pressure-applying refrigerant.
  • the reaction force of the repulsive member 11 can assist the movement of the slide valve 7 by the pressure-applying refrigerant, and the slide valve 7 can be driven by the reaction force of the pressure-applying refrigerant and the repulsive member 11.
  • the repulsive member 11 is provided on the suction side end 70a side opposite to the discharge side end 71a for applying the pressure-applying refrigerant.
  • the repulsion member 11 is provided on the discharge side end portion 71a side to which the pressure-applying refrigerant is applied.
  • the low pressure flow path 51, the high pressure flow path 52, and the merging flow path 53 are composed of pipes provided outside the casing 1.
  • the low pressure flow path 51, the high pressure flow path 52, and the confluence flow path 53 can be configured by piping outside the casing 1, and the layout of the flow path configuration in the compressor main body can be simplified.
  • the low pressure flow path 51, the high pressure flow path 52, and the merging flow path 53 are composed of internal components of the casing 1.
  • the drive parts group can be processed in advance inside the compressor body, the compressor body can be easily assembled, and the number of parts can be reduced.
  • the pressure switching mechanism 12a and the pressure switching mechanism 12b are on-off valves provided in the low pressure flow path 51 and the high pressure flow path 52, respectively.
  • the flow of the low pressure refrigerant in the low pressure flow path 51, the flow of the low pressure refrigerant can be controlled by the pressure switching mechanism 12a, and in the high pressure flow path 52, the flow of the high pressure refrigerant can be controlled by the pressure switching mechanism 12b, and the low pressure refrigerant or the high pressure can be controlled.
  • the pressure-applying refrigerant which is one of the pressures switched to the refrigerant, can flow in the merging flow path 53.
  • the pressure switching mechanism 12a and the pressure switching mechanism 12b are solenoid valves.
  • the flow of various refrigerants can be controlled to open and close with high accuracy using a solenoid valve.
  • FIG. 7 is an explanatory view showing a compression portion 2 of the screw compressor 100 according to the second embodiment in a vertical cross section with the slide valve 7 located on the high Vi side.
  • FIG. 8 is an explanatory view showing a compression portion 2 of the screw compressor 100 according to the second embodiment in a vertical cross section with the slide valve 7 located on the low Vi side.
  • the description of the same items as in the first embodiment is omitted, and only the characteristic portion thereof is described.
  • a pressure-applying refrigerant of either a low-pressure refrigerant or a high-pressure refrigerant whose pressure is switched by the pressure switching mechanism 12a and the pressure switching mechanism 12b is applied from the downstream end of the merging flow path 53.
  • the end portion of the slide valve 7 is a suction side end portion 70a of the valve body portion 70.
  • the pressure applying space 13 is a closed space surrounded by at least the pressure receiving surface of the suction side end 70a of the slide valve 7 and the casing 1. Specifically, the pressure applying space 13 is composed of a part of the suction side end 70a of the slide valve 7 and a cylindrical inner wall surface of the slide groove 1a formed on the inner cylinder surface of the casing 1. The downstream end of the merging flow path 53 communicates with the pressure applying space 13.
  • the pressure applying space 13 is provided with a repulsion member 11 arranged on the suction side end 70a side of the slide valve 7.
  • the high-pressure space 14 corresponding to the position of the pressure-applying space 13 in the first embodiment is always in communication with the high-pressure space 41 through the hole 10b provided in the connection flange 10. Therefore, a high pressure (HP) always acts on the pressure receiving surface of the discharge side end portion 71a of the guide portion 71 of the slide valve 7. A stopper 10a is provided in the high pressure space 14.
  • the high pressure flow path 51 that communicates the pressure applying space 13 and the low pressure space 40 is blocked by the pressure switching mechanism 12a, and the pressure applying space 13 Only the high pressure flow path 52 that communicates with the high pressure space 41 is communicated by opening the pressure switching mechanism 12b. Therefore, the high-pressure refrigerant in the high-pressure space 41 flows through the merging flow path 53 as the pressure-applying refrigerant. At this time, the high pressure (HP) acts uniformly on the pressure receiving surface of the discharge side end portion 71a of the slide valve 7.
  • high pressure acts only on the pressure receiving surface of the suction side end 70a forming the pressure applying space 13, and the suction side not forming the pressure applying space 13 is formed.
  • Low pressure acts on the side end portion 70a. Therefore, the suction side end 70a of the slide valve 7 is provided with a repulsion member 11 that assists the movement in the high Vi direction. The slide valve 7 moves to the high Vi side due to the reaction force of the repulsive member 11.
  • the high pressure flow path 52 communicating the pressure applying space 13 and the high pressure space 41 is blocked by the pressure switching mechanism 12b, and the pressure applying space 13 Only the low pressure flow path 51 that communicates with the low pressure space 40 is communicated by opening the pressure switching mechanism 12a. Therefore, the low-pressure refrigerant in the low-pressure space 40 flows through the merging flow path 53 as the pressure-applying refrigerant.
  • the high pressure (HP) acts uniformly on the pressure receiving surface of the discharge side end 71a of the slide valve 7, and the low pressure (LP) uniformly acts on the pressure receiving surface of the suction side end 70a in the pressure applying space 13. Acts on.
  • the repulsive member 11 is always urged in the direction in which the slide valve 7 moves toward the high Vi side. Therefore, when the high pressure (HP) pressure acting on the pressure receiving surface of the discharge side end portion 71a of the slide valve 7 becomes larger than the resultant force with the reaction force of the repulsive member 11 and the low pressure (LP) pressure, the slide valve 7 is moved. Move to the low Vi side.
  • HP high pressure
  • LP low pressure
  • the repulsive member 11 always generates a reaction force in the direction of moving the slide valve 7 to the high Vi side. Therefore, in order to position the slide valve 7 on the low Vi side, the pressure acting on the pressure receiving surface of the discharge side end portion 71a of the slide valve 7 acts on the entire suction side end portion 70a of the slide valve 7 at a low pressure.
  • the reaction force of the repulsion member 11 needs to be designed so as to be larger than the resultant force of the pressure and the reaction force of the repulsion member 11.
  • the slide valve 7 is arranged between the low pressure space 40 and the high pressure space 41.
  • the slide valve 7 has a suction side end 70a that is closer to the low pressure space 40 than the high pressure space 41.
  • the end of the slide valve 7 that applies the pressure-applying refrigerant whose pressure has been switched by the pressure switching mechanism 12a and the pressure switching mechanism 12b from the downstream end of the merging flow path 53 is the suction side of the valve body 70 of the slide valve 7.
  • the end 70a is the suction side of the valve body 70 of the slide valve 7.
  • the pressure applying space 13 is a closed space surrounded by at least the pressure receiving surface of the suction side end 70a of the slide valve 7 and the casing 1.
  • the pressure-applying refrigerant flows into the pressure-applying space 13 formed in the closed space, and the pressure of the pressure-applying refrigerant is completely applied to the pressure receiving surface of the suction side end 70a of the valve body 70 of the slide valve 7. Can be granted.
  • FIG. 9 is an explanatory view showing a compression portion 2 of the screw compressor 200 having a conventional structure in a vertical cross section.
  • the conventional slide valve driving method shown in FIG. 9 in order to transmit the driving force due to the pressure difference between the front and rear spaces of the piston 215 installed in the cylinder space 213 to the slide valve 7, the ends of the piston 215 and the piston 215
  • One connecting member 216 connected to the above, two connecting rods 217 connecting the connecting member 216 and the slide valve 7, and fastening parts such as bolts and nuts connecting them are required.
  • a cylinder lid 218 for sealing the cylindrical portion for forming the cylinder space 213 provided in the connection flange 10 is also required.
  • the piston 215, the connecting member 216, the connecting rod 217, the cylinder lid 218, and fastening parts such as bolts and nuts connecting them are not required. Further, in the first embodiment, these parts are abolished, and the pressure applying space 13 corresponding to the cylinder space 213 is a space adjacent to the pressure receiving surface of the discharge side end portion 71a of the guide portion 71 of the slide valve 7 in the casing 1. It is configured in. Further, in the second embodiment, the pressure applying space 13 corresponding to the cylinder space 213 is configured in the space adjacent to the pressure receiving surface of the suction side end portion 70a of the valve body portion 70 of the slide valve 7 in the casing 1. As a result, the total length of the screw compressor 100 can be significantly shortened.
  • the slide valve 7 can be moved to a position where the internal volume ratio corresponds to the high / low pressure ratio by using relatively simple and few components, and the screw compressor.
  • the size and weight of 100 can be reduced and the cost can be reduced.
  • FIG. 10 is a refrigerant circuit diagram showing a refrigeration cycle device 101 to which the screw compressor 100 according to the third embodiment is applied.
  • the refrigeration cycle device 101 includes a screw compressor 100, a condenser 102, an expansion valve 103, and an evaporator 104.
  • These screw compressor 100, condenser 102, expansion valve 103 and evaporator 104 are connected by a refrigerant pipe to form a refrigerant circuit. Then, the refrigerant flowing out of the evaporator 104 is sucked into the screw compressor 100 and becomes high temperature and high pressure. The high temperature and high pressure refrigerant is condensed in the condenser 102 to become a liquid. The liquid refrigerant is decompressed and expanded by the expansion valve 103 to become a low-temperature low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant heat exchanges in the evaporator 104.
  • the screw compressor 100 of the first embodiment and the second embodiment can be applied to such a refrigeration cycle device 101.
  • the refrigeration cycle device 101 include an air conditioner, a refrigeration device, a water heater, and the like.
  • the refrigeration cycle device 101 includes the screw compressor 100 described above.
  • the refrigeration cycle device 101 is provided with the screw compressor 100 described above, the number of parts and the installation space can be reduced with a simple configuration, and the size and weight can be reduced and the cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

スクリュー圧縮機は、ケーシングと、スクリューロータと、ゲートロータと、スライドバルブと、を備え、スクリューロータに吸入前の低圧冷媒を流通させる低圧流路と、吐出口から吐出された高圧冷媒を流通させる高圧流路と、低圧流路と高圧流路とを合流させる合流流路と、が設けられ、低圧流路、高圧流路又は合流流路の少なくとも1つには、冷媒の圧力を切り替える圧力切替機構が配置され、合流流路は、下流側端部から圧力切替機構で圧力が切り替えられた圧力付与冷媒をスライドバルブの一方の端部に付与する。

Description

スクリュー圧縮機及び冷凍サイクル装置
 本発明は、スライドバルブとスライドバルブを圧力で移動させる圧力駆動機構とを備えるスクリュー圧縮機及び冷凍サイクル装置に関する。
 従来、容積型圧縮機の1つの形式としてスクリュー圧縮機が知られている。スクリュー圧縮機は、たとえば冷凍機などに内蔵された冷媒回路の構成部材として使用されている。
 スクリュー圧縮機としては、たとえば螺旋状の歯溝を有する1つのスクリューロータと、スクリューロータの歯溝に嵌り合う複数のゲートロータ歯部を有する2つのゲートロータと、がケーシングの内部に収納されたシングルスクリュー圧縮機が知られている。
 シングルスクリュー圧縮機は、スクリューロータの歯溝とゲートロータのゲートロータ歯部とが相互に噛み合い係合されて複数の圧縮室が形成されている。スクリューロータは、回転軸方向における一端が冷媒の吸入側であり、回転軸方向における他端が冷媒の吐出側である。ケーシングの内部は、圧縮室の吸入側に設けられた低圧冷媒の空間と、圧縮室の吐出側に設けられた高圧冷媒の空間と、に区画されている。
 スクリューロータは、ケーシングの内部に設けられた駆動部によって回転するスクリュー軸に固定されている。スクリュー軸の一方の軸端部は、内部に軸受を有する軸受ハウジングによって回転自在に支持されている。スクリュー軸の他方の軸端部は、駆動部に連結されている。
 スクリュー圧縮機は、駆動部によって回転するスクリュー軸を介してスクリューロータが回転駆動すると、低圧空間内の冷媒が圧縮室へ吸入されて圧縮され、圧縮室で圧縮された冷媒が高圧空間に吐出される。
 スクリュー圧縮機において、ケーシングの内筒面に形成されたスライド溝内に配置され、スクリューロータの回転軸方向にスライド移動自在に設けられた1対のスライドバルブが設けられている場合がある。スライドバルブは、スクリューロータの回転軸方向に移動し、圧縮室への冷媒の吸入タイミングと圧縮室で圧縮された高圧冷媒の吐出タイミングと高圧冷媒を吐出する吐出口の開度とを調整し、吸入容積と吐出容積との比である内部容積比(Vi)を調整させる。
 スライドバルブは、ケーシング内に設けられたシリンダ部と、シリンダ部内を前後2つの空間に仕切り、前後2つの空間の圧力差の変化に応じて移動するピストンと、ピストンとスライドバルブを連結する連結部材と、を有する。これらの構成によってスライドバルブの位置が調整される。
 特許文献1には、低圧冷媒の空間及び高圧冷媒の空間の圧力が圧力検出センサによって検出され、高低圧力比に応じた内部容積比になるように、ピストンによって区切られた空間の圧力が調整され、スライドバルブが移動する構造が提案されている。
 特許文献2には、スクリューロータの一端を保持する軸受ホルダにシリンダ部を構成し、軸受ホルダとシリンダ部とを一体化することにより、スクリュー圧縮機の小型軽量化を達成する構造が提案されている。
特開2013-36403号公報 特許第5943101号公報
 しかし、特許文献2の技術では、ピストン前後の空間の圧力差による駆動力をスライドバルブに伝達するために、ピストン端部に連結された1つの連結部材と、連結部材とスライドバルブを連結する2つの連結棒と、が必要である。このような構成による駆動部品は、特許文献1の技術と同等の構成部品数及び部品配置のための設置空間が必要である。このため、更なる小型軽量に加えて部品点数及び設置空間の削減が望まれている。
 本発明は、上記課題を解決するためのものであり、簡素な構成で部品点数及び設置空間を削減して小型軽量化が図られるスクリュー圧縮機及び冷凍サイクル装置を提供することを目的とする。
 本発明に係るスクリュー圧縮機は、筒状の内筒面部を有するケーシングと、前記ケーシングの内筒面部内に回転可能に収容され、外周に複数の螺旋溝を有するスクリューロータと、前記スクリューロータの螺旋溝に噛み合う歯を有するゲートロータと、前記スクリューロータで圧縮された高圧冷媒の吐出口の開度とを調整するスライドバルブと、を備え、前記スクリューロータに吸入前の低圧冷媒を流通させる低圧流路と、前記吐出口から吐出された高圧冷媒を流通させる高圧流路と、前記低圧流路と前記高圧流路とを合流させる合流流路と、が設けられ、前記低圧流路、前記高圧流路又は前記合流流路の少なくとも1つには、冷媒の圧力を切り替える圧力切替機構が配置され、前記合流流路は、下流側端部から前記圧力切替機構で圧力が切り替えられた圧力付与冷媒を前記スライドバルブの一方の端部に付与するものである。
 本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機を備えるものである。
 本発明に係るスクリュー圧縮機及び冷凍サイクル装置によれば、合流流路は、下流側端部から圧力切替機構で圧力が切り替えられた圧力付与冷媒をスライドバルブの一方の端面に付与する。これにより、スライドバルブを圧力差に基づくピストンによって回転軸方向から駆動する駆動部品が廃止でき、駆動部品及び駆動部品に関連する部品群が削減でき、かつ、駆動部品を搭載していた設置空間を削減して圧縮機長さが短くなる。したがって、簡素な構成で部品点数及び設置空間を削減して小型軽量化が図られる。
実施の形態1に係るスクリュー圧縮機を縦断面にて示す説明図である。 実施の形態1に係るスクリュー圧縮機の圧縮部の吸込行程を示す説明図である。 実施の形態1に係るスクリュー圧縮機の圧縮部の圧縮行程を示す説明図である。 実施の形態1に係るスクリュー圧縮機の圧縮部の吐出行程を示す説明図である。 実施の形態1に係るスクリュー圧縮機の圧縮部をスライドバルブが高Vi側に位置した状態で縦断面にて示す説明図である。 実施の形態1に係るスクリュー圧縮機の圧縮部をスライドバルブが低Vi側に位置した状態で縦断面にて示す説明図である。 実施の形態2に係るスクリュー圧縮機の圧縮部をスライドバルブが高Vi側に位置した状態で縦断面にて示す説明図である。 実施の形態2に係るスクリュー圧縮機の圧縮部をスライドバルブが低Vi側に位置した状態で縦断面にて示す説明図である。 従来構造のスクリュー圧縮機の圧縮部を縦断面にて示す説明図である。 実施の形態3に係るスクリュー圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。
 以下には、図面に基づいて実施の形態が説明されている。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングが省略されている。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<スクリュー圧縮機100の構成>
 図1は、実施の形態1に係るスクリュー圧縮機100を縦断面にて示す説明図である。実施の形態1では、スクリュー圧縮機100は、単段シングルスクリュー圧縮機である。
 図1に示すように、スクリュー圧縮機100は、外郭を構成する円筒状の内筒面部を有するケーシング1と、ケーシング1の内部に設けられた圧縮部2及び駆動部3と、で構成されている。ケーシング1の内部は、低圧冷媒の存在する低圧空間40と、高圧冷媒の存在する高圧空間41と、に区画されている。
 圧縮部2は、スクリュー軸4と、スクリュー軸4に固定されたスクリューロータ5と、一対のゲートロータ6と、一対のスライドバルブ7と、スクリュー軸4の端部を回転自在に支持する軸受8を内部に有する軸受ハウジング9と、を備える。
 スクリュー軸4は、ケーシング1の管軸方向に延びている。スクリュー軸4の一方の軸端部は、スクリューロータ5の吐出側に対向して配置された軸受8によって回転自在に支持されている。スクリュー軸4の他方の軸端部は、駆動部3に連結されている。スクリュー軸4は、駆動部3によって回転させられる。
 スクリューロータ5は、ケーシング1の内筒面部に回転可能に収容されている。スクリューロータ5は、円柱体の外周に複数の螺旋溝として螺旋状の歯溝5aを有する。スクリューロータ5は、スクリュー軸4に固定されている。スクリューロータ5は、駆動部3によって回転するスクリュー軸4と共に回転する。スクリューロータ5の回転軸方向における低圧空間40側が冷媒の吸入側である。スクリューロータ5の回転軸方向における高圧空間41側が吐出側である。
 ゲートロータ6は、外周にスクリューロータ5の歯溝5aに噛み合う複数のゲートロータ歯部6a(図2参照)を有する。一対のゲートロータ6は、スクリューロータ5を径方向に挟むように配置されている。圧縮部2では、スクリューロータ5の歯溝5aと、ゲートロータ6のゲートロータ歯部6aが相互に噛み合い係合されて圧縮室20(図2参照)が形成されている。スクリュー圧縮機100は、1つのスクリューロータ5に対し、2つのゲートロータ6をスクリュー軸4の軸周りに180度ずらして対向させて配置した構成である。そのため、圧縮室20は、図1上ではスクリュー軸4の上側とスクリュー軸4の下側とで2つ示されている。
 スライドバルブ7は、ケーシング1の内筒面に形成されたスライド溝内に設けられている。スライドバルブ7は、スクリューロータ5の回転軸方向にスライド移動自在に構成されている。スライドバルブ7は、たとえば内部容積比調整弁である。スライドバルブ7は、スクリューロータ5に対向する弁体部70と、軸受ハウジング9の外周面に対向する摺動面を有するガイド部71と、を備える。弁体部70とガイド部71とは、連結部72によって連結されている。スライドバルブ7では、弁体部70とガイド部71との間が圧縮室20で圧縮された冷媒の吐出口7aになっている。吐出口7aから吐出された冷媒は、ガイド部71の背面側に形成された吐出ガス通路を通じて高圧空間41に吐出される。
 スライドバルブ7は、低圧空間40と高圧空間41との間にわたって配置されている。スライドバルブ7の弁体部70は、高圧空間41よりも低圧空間40に近い吸込側端部70aを有する。スライドバルブ7のガイド部71は、低圧空間40よりも高圧空間41に近い吐出側端部71aを有する。
 スクリュー圧縮機100は、スライドバルブ7の弁体部70がスクリュー軸4と並行に移動する。これにより、スクリューロータ5の圧縮室20から吐出される冷媒の吐出タイミングが調整される。
 具体的な吐出タイミングの調整として、スライドバルブ7は、吸込側に移動させて吐出口7aの開口面積が広がると、吐出タイミングが早められる。一方、スライドバルブ7は、吐出側に移動させて吐出口7aの開口面積が狭まると、吐出タイミングが遅らせられる。つまり、スクリュー圧縮機100は、吐出タイミングを早めると低内部容積比(低Vi)の運転になり、吐出タイミングを遅らせると高内部容積比(高Vi)の運転になる。
 駆動部3は、電動機30によって構成されている。電動機30は、ケーシング1の内部に内接して固定されたステータ31と、ステータ31の内側に回転自在に配置されたモータロータ32と、で構成されている。モータロータ32は、スクリュー軸4の軸端部に接続されている。モータロータ32は、スクリューロータ5と同一軸線上に配置されている。
 スクリュー圧縮機100は、電動機30が駆動されてスクリュー軸4が回転すると、スクリューロータ5を回転させる。なお、電動機30は、図示しないインバータによって回転速度を変更可能に駆動され、スクリュー軸4の回転速度が加減速されて運転される。
<スクリュー圧縮機100の圧縮原理及び動作>
 図2は、実施の形態1に係るスクリュー圧縮機100の圧縮部2の吸込行程を示す説明図である。図3は、実施の形態1に係るスクリュー圧縮機100の圧縮部2の圧縮行程を示す説明図である。図4は、実施の形態1に係るスクリュー圧縮機100の圧縮部2の吐出行程を示す説明図である。以下では、図2、図3及び図4に示すドットのハッチングで示した圧縮室20に着目して各行程が説明されている。
 スクリュー圧縮機100は、電動機30が駆動すると、スクリュー軸4を介してスクリューロータ5が回転する。スクリューロータ5が回転すると、ゲートロータ6のゲートロータ歯部6aが圧縮室20内を相対的に回転する。これにより、圧縮室20内では、図2に示す吸込行程、図3に示す圧縮行程及び図4に示す吐出行程がこの順に1つのサイクルとして繰り返される。
 先ず、図2に示す吸込行程では、ドットを付した圧縮室20は、低圧空間40に連通している。また、螺旋状の歯溝5aは、図中の下側に位置するゲートロータ6のゲートロータ歯部6aと噛み合わされている。スクリューロータ5が回転すると、ゲートロータ歯部6aが歯溝5aの終端へ向かって相対的に移動し、それに伴って圧縮室20の容積が拡大する。その結果、低圧空間40の低圧冷媒ガスが吸入口を通じて圧縮室20へ吸い込まれる。スクリューロータ5が更に回転すると、図3に示す圧縮行程に移行する。
 次に、図3に示す圧縮行程では、ドットを付した圧縮室20は、閉じ切り状態になっている。螺旋状の歯溝5aは、図中の下側に位置するゲートロータ6のゲートロータ歯部6aと噛み合わされ、ゲートロータ歯部6aによって低圧空間40から仕切られている。そして、圧縮室20は、スクリューロータ5の回転に伴ってゲートロータ歯部6aが歯溝5aの終端へ向かって移動すると圧縮室20の容積が次第に縮小する。その結果、圧縮室20の冷媒ガスは、圧縮される。そして、スクリューロータ5が更に回転すると、図4に示す吐出行程に移行する。
 最後に、図4に示す吐出行程では、ドットを付した圧縮室20は、吐出口7aを介して高圧空間41に連通している。そして、スクリューロータ5の回転に伴ってゲートロータ歯部6aが歯溝5aの終端へ向かって移動すると、圧縮された冷媒ガスが圧縮室20から高圧空間41に押し出されて行く。
<実施の形態1の特徴>
 図1に示すように、スクリュー圧縮機100は、低圧流路51と、高圧流路52と、合流流路53と、圧力切替機構12a及び圧力切替機構12bと、を有する圧力駆動機構50を備える。圧力駆動機構50は、合流流路53の下流側端部から圧力切替機構12a及び圧力切替機構12bで圧力が切り替えられた低圧冷媒又は高圧冷媒のいずれか一方の圧力付与冷媒をスライドバルブ7の一方の端部であるガイド部71の吐出側端部71aの受圧面に付与する。
 低圧流路51は、スクリューロータ5に吸入前の低圧空間40の低圧冷媒を流通させる。高圧流路52は、吐出口7aから吐出された高圧空間41の高圧冷媒を流通させる。合流流路53は、低圧流路51と高圧流路52とを合流させる。圧力切替機構12a及び圧力切替機構12bは、合流流路53を流れる冷媒の圧力を切り替える。
 合流流路53は、下流側に流れる途中で分岐し、流通している圧力付与冷媒を一対のスライドバルブ7の吐出側端部71aの受圧面それぞれに付与する。
 ケーシング1内には、合流流路53の下流側端部から圧力付与冷媒をスライドバルブ7の吐出側端部71aの受圧面に付与する圧力付与空間13が設けられている。圧力付与空間13は、一対のスライドバルブ7それぞれに対して設けられている。圧力付与空間13は、スライドバルブ7の吐出側端部71aの受圧面と、ケーシング1と、を少なくとも含んで囲まれた閉塞空間である。具体的には、圧力付与空間13は、スライドバルブ7の吐出側端部71aの受圧面と、軸受ハウジング9の外周面と、接続フランジ10の端面と、ケーシング1の内筒面に形成されたスライド溝1aの円筒内壁面と、で囲まれて構成されている。
 圧力付与空間13の壁面部である接続フランジ10の端面には、スライドバルブ7の吐出側端部71aの受圧面との対向接触を防止するストッパ10aが設けられている。ストッパ10aは、スライドバルブ7の吐出側端部71aの受圧面との対向接触する圧力付与空間13の壁面部である接続フランジ10の端面のうち一部にスライドバルブ7側に突出して形成されている。ストッパ10aにより、スライドバルブ7が高Vi側に位置した場合でも、圧力付与空間13が確保できる。
 スクリュー圧縮機100は、圧力付与冷媒によるスライドバルブ7の移動を補助する反発部材11を備える。反発部材11は、圧力付与冷媒を付与するスライドバルブ7の吐出側端部71aの受圧面とは反対側のスライドバルブ7の吸込側端部70aに設けられている。反発部材11は、スライドバルブ7を高Vi側に位置させるための力を付与する。反発部材11は、付勢バネなどで構成され、反力を発生させる。スライドバルブ7の吸込側端部70aには、軸状のガイド構造19が形成されている。ガイド構造19は、スライドバルブ7に一体化されている。反発部材11は、ガイド構造19に挿入され、位置固定されている。
 圧力切替機構12a及び圧力切替機構12bは、低圧流路51と高圧流路52とにそれぞれ設けられた開閉弁である。圧力切替機構12a及び圧力切替機構12bである開閉弁のそれぞれは、電磁弁である。
 図5は、実施の形態1に係るスクリュー圧縮機100の圧縮部2をスライドバルブ7が高Vi側に位置した状態で縦断面にて示す説明図である。図5に示すように、スライドバルブ7を高Vi側に位置するためには、圧力付与空間13と高圧空間41とを連通する高圧流路52が圧力切替機構12bによって遮断され、圧力付与空間13と低圧空間40とを連通する低圧流路51のみが圧力切替機構12aの開弁によって連通されている。このため、合流流路53には、圧力付与冷媒として低圧空間40の低圧冷媒が流通する。このとき、スライドバルブ7の吐出側端部71aの受圧面と吸込側端部70aの受圧面とには一様に低圧(LP)が作用する。このため、スライドバルブ7の位置は、一意に決まらない。ここで、反発部材11の反力により、スライドバルブ7の高Vi方向への移動が補助される。これにより、スライドバルブ7は、高Vi側へ移動する。
 図6は、実施の形態1に係るスクリュー圧縮機100の圧縮部2をスライドバルブ7が低Vi側に位置した状態で縦断面にて示す説明図である。図6に示すように、スライドバルブ7を低Vi側に位置するためには、圧力付与空間13と低圧空間40とを連通する低圧流路51が圧力切替機構12aによって遮断され、圧力付与空間13と高圧空間41とを連通する高圧流路52のみが圧力切替機構12bの開弁によって連通されている。このため、合流流路53には、圧力付与冷媒として高圧空間41の高圧冷媒が流通する。このとき、スライドバルブ7の吐出側端部71aの受圧面には高圧(HP)が作用し、吸込側端部70aの受圧面には低圧(LP)が作用する。このため、スライドバルブ7の吐出側端部71aの受圧面に作用する高圧(HP)の圧力が反発部材11の反力及び低圧(LP)の圧力との合力よりも大きくなると、スライドバルブ7が低Vi側へ移動する。
 上記のように、反発部材11は、スライドバルブ7を高Vi側に移動させる方向に反力を常に発生させる。このため、スライドバルブ7を低Vi側に位置するためには、スライドバルブ7の吐出側端部71aの受圧面に作用する圧力がスライドバルブ7の吸込側端部70aの受圧面に作用する低圧の圧力と反発部材11の反力との合力よりも大きくなるように、反発部材11の反力が設定される必要がある。
<その他>
 上記実施の形態1では、スライドバルブ7を高Vi側に位置させるための力を付勢する反発部材11がスライドバルブ7の吸込側端部70aに設けられている。この場合には、反発部材11は、圧縮された状態から自然長に戻ろうとする反力を利用している。しかし、反発部材11が付与する補助力はこれに限られない。反発部材11は、圧力付与冷媒を付与する端部であるスライドバルブ7のガイド部71の吐出側端部71aに設けられても良い。この場合には、反発部材11は、伸ばされた状態から自然長に戻ろうとする力を利用する。また、反発部材11に用いる部材は、バネに類する作用を生じるものであれば部材の限定はない。
 上記実施の形態1では、反発部材11の位置固定には、スライドバルブ7の吸込側端部70aに形成された軸状のガイド構造19が用いられている。ここで、ガイド構造19は、スライドバルブ7に一体化されても良いし、別部品としてスライドバルブ7又はケーシング1の壁面に組み付けても良い。また、ガイド構造19は、軸形状に限定されるものではない。たとえば、ガイド構造19は、スライドバルブ7の端部及びケーシング1の壁面部に反発部材11が収まる大きさの凹みを設け、反発部材11が凹みに収められても良い。また、これに限られず、反発部材11が位置固定できる種々の構造が適用できる。
 上記実施の形態1では、スライドバルブ7が高Vi側に位置した場合に圧力付与空間13を確保するためのストッパ10aが圧力付与空間13の内壁面に一体化して構成されている。しかし、これに限られない。ストッパ10aは、別部品に設けられ、接続フランジ10又はスライドバルブ7の吐出側端部71aに組み付けても良い。また、ストッパ10aは、スライドバルブ7と一体化して構成しても良い。
 上記実施の形態1では、圧力切替機構12a及び圧力切替機構12bは、低圧流路51と高圧流路52とにそれぞれ設けられた開閉弁である。しかし、これに限られない。圧力切替機構としては、低圧流路51と高圧流路52と合流流路53とが合流する箇所に1つ設けられた三方弁でも良い。三方弁は、低圧流路51と高圧流路52とを切り替えても良い。
 なお、図1、図5及び図6では、低圧流路51と高圧流路52と合流流路53とが黒線で概念的に記載されている。ここで、低圧流路51と高圧流路52と合流流路53とは、ケーシング1の外部に設けられた配管で構成されても良い。また、低圧流路51と高圧流路52と合流流路53とは、ケーシング1の内部の構成部品で構成されても良い。構成部品で流路を構成する場合には、部品を加工して通路が形成されている。
<実施の形態1の効果>
 実施の形態1によれば、スクリュー圧縮機100は、円筒状の内筒面部を有するケーシング1を備える。スクリュー圧縮機100は、ケーシング1の内筒面部内に回転可能に収容され、外周に複数の螺旋溝として螺旋状の歯溝5aを有するスクリューロータ5を備える。スクリュー圧縮機100は、スクリューロータ5の歯溝5aに噛み合う歯としてのゲートロータ歯部6aを有するゲートロータ6を備える。スクリュー圧縮機100は、スクリューロータ5からの吐出タイミングとスクリューロータ5で圧縮された高圧冷媒の吐出口7aの開度とを調整するスライドバルブ7を備える。スクリュー圧縮機100には、スクリューロータ5に吸入前の低圧冷媒を流通させる低圧流路51が設けられている。スクリュー圧縮機100には、吐出口7aから吐出された高圧冷媒を流通させる高圧流路52が設けられている。スクリュー圧縮機100には、低圧流路51と高圧流路52とを合流させる合流流路53が設けられている。低圧流路51、高圧流路52又は合流流路53の少なくとも1つには、冷媒の圧力を切り替える圧力切替機構12a及び圧力切替機構12bが配置されている。合流流路53は、下流側端部から圧力切替機構12a及び圧力切替機構12bで圧力が切り替えられた低圧冷媒又は高圧冷媒のいずれか一方の圧力付与冷媒をスライドバルブ7の一方の端部であるスライドバルブ7のガイド部71の吐出側端部71aの受圧面に付与する。
 この構成によれば、スライドバルブ7を圧力差に基づくピストンによって回転軸方向から駆動する駆動部品が廃止でき、駆動部品及び駆動部品に関連する部品群が削減でき、かつ、駆動部品を搭載していた設置空間を削減して圧縮機長さが短くなる。したがって、簡素な構成で部品点数及び設置空間を削減して小型軽量化及びコスト低減が図られる。ここで、駆動部品とは、接続フランジ10に設けられたシリンダ部、ピストン及び連結部材などである。また、駆動部品に関連する部品群とは、ボルト及びナットなどである。
 実施の形態1によれば、スライドバルブ7は、2つ設けられている。合流流路53は、途中で分岐し、圧力付与冷媒を2つのスライドバルブ7の一方の端部であるガイド部71の吐出側端部71aの受圧面それぞれに付与する。
 この構成によれば、合流流路53は、途中まで1つで構成され、簡素な構成で部品点数及び設置空間が削減できる。
 実施の形態1によれば、スライドバルブ7の一方の端部である吐出側端部71aの受圧面側には、合流流路53の下流側端部から圧力付与冷媒を付与する圧力付与空間13が設けられている。
 この構成によれば、圧力付与冷媒が圧力付与空間13にてスライドバルブ7の吐出側端部71aの受圧面全体に均等に付与でき、スライドバルブ7が圧力付与冷媒によって容易に作動し易い。
 実施の形態1によれば、スライドバルブ7は、2つ設けられている。圧力付与空間13は、2つのスライドバルブ7それぞれに対して設けられている。
 この構成によれば、圧力付与冷媒が2つの圧力付与空間13にて2つのスライドバルブ7の吐出側端部71aの受圧面全体にそれぞれ均等に付与でき、2つのスライドバルブ7が圧力付与冷媒によって容易に作動し易い。
 実施の形態1によれば、圧力付与空間13の壁面部である接続フランジ10の端面には、スライドバルブ7の一方の端部である吐出側端部71aの受圧面との対向接触を防止するストッパ10aが設けられている。
 この構成によれば、スライドバルブ7の吐出側端部71aの受圧面は、圧力付与空間13における接続フランジ10の端面に対向接触しての張り付きが防止できる。
 実施の形態1によれば、スライドバルブ7は、低圧空間40と高圧空間41との間にわたって配置されている。スライドバルブ7は、低圧空間40よりも高圧空間41に近い吐出側端部71aを有する。合流流路53の下流側端部から圧力切替機構12a及び圧力切替機構12bで圧力が切り替えられた圧力付与冷媒を付与するスライドバルブ7の端部は、吐出側端部71aである。
 実施の形態1によれば、圧力付与空間13は、スライドバルブ7の吐出側端部71aの受圧面と、ケーシング1と、を少なくとも含んで囲まれた閉塞空間である。
 この構成によれば、圧力付与冷媒が閉塞空間に構成された圧力付与空間13に流入し、圧力付与冷媒の圧力がスライドバルブ7の吐出側端部71aの受圧面に完全に付与できる。
 実施の形態1によれば、スクリュー圧縮機100は、圧力付与冷媒によるスライドバルブ7の移動を補助する反発部材11を備える。
 この構成によれば、反発部材11の反力が圧力付与冷媒によるスライドバルブ7の移動を補助でき、圧力付与冷媒と反発部材11の反力とによってスライドバルブ7が駆動できる。
 実施の形態1によれば、反発部材11は、圧力付与冷媒を付与する吐出側端部71aとは反対側の吸込側端部70a側に設けられている。
 実施の形態1によれば、反発部材11は、圧力付与冷媒を付与する吐出側端部71a側に設けられている。
 実施の形態1によれば、低圧流路51と高圧流路52と合流流路53とは、ケーシング1の外部に設けられた配管で構成されている。
 この構成によれば、低圧流路51と高圧流路52と合流流路53とがケーシング1の外部にて配管で構成でき、圧縮機本体での流路構成のレイアウトの単純化が図られる。
 実施の形態1によれば、低圧流路51と高圧流路52と合流流路53とは、ケーシング1の内部の構成部品で構成されている。
 この構成によれば、駆動部品群が圧縮機本体の内部に予め加工して構成でき、圧縮機本体の組み立てが容易になり、部品点数が削減できる。
 実施の形態1によれば、圧力切替機構12a及び圧力切替機構12bは、低圧流路51と高圧流路52とにそれぞれ設けられた開閉弁である。
 この構成によれば、低圧流路51では、低圧冷媒の流通が圧力切替機構12aによって開閉制御でき、高圧流路52では、高圧冷媒の流通が圧力切替機構12bによって開閉制御でき、低圧冷媒又は高圧冷媒に切り替えられた一方の圧力である圧力付与冷媒が合流流路53にて流通できる。
 実施の形態1によれば、圧力切替機構12a及び圧力切替機構12bは、電磁弁である。
 この構成によれば、電磁弁を用いて各種冷媒の流通が高精度に開閉制御できる。
実施の形態2.
<実施の形態2の特徴>
 図7は、実施の形態2に係るスクリュー圧縮機100の圧縮部2をスライドバルブ7が高Vi側に位置した状態で縦断面にて示す説明図である。図8は、実施の形態2に係るスクリュー圧縮機100の圧縮部2をスライドバルブ7が低Vi側に位置した状態で縦断面にて示す説明図である。実施の形態2では、実施の形態1と同事項の説明が省略され、その特徴部分のみが説明されている。
 図7及び図8に示すように、合流流路53の下流側端部から圧力切替機構12a及び圧力切替機構12bで圧力が切り替えられた低圧冷媒又は高圧冷媒のいずれか一方の圧力付与冷媒を付与するスライドバルブ7の端部は、弁体部70の吸込側端部70aである。
 圧力付与空間13は、スライドバルブ7の吸込側端部70aの受圧面と、ケーシング1と、を少なくとも含んで囲まれた閉塞空間である。具体的には、圧力付与空間13は、スライドバルブ7の吸込側端部70aの一部と、ケーシング1の内筒面に形成されたスライド溝1aの円筒内壁面と、で構成されている。圧力付与空間13には、合流流路53の下流側端部が連通されている。圧力付与空間13には、スライドバルブ7の吸込側端部70a側に配置された反発部材11が設けられている。
 実施の形態1での圧力付与空間13の位置に相当する高圧空間14は、接続フランジ10に設けられた孔10bを介して高圧空間41と常に連通している。このため、スライドバルブ7のガイド部71の吐出側端部71aの受圧面には、高圧(HP)が常に作用している。高圧空間14には、ストッパ10aが設けられている。
 図7に示すように、スライドバルブ7を高Vi側に位置するためには、圧力付与空間13と低圧空間40とを連通する低圧流路51が圧力切替機構12aで遮断され、圧力付与空間13と高圧空間41とを連通する高圧流路52のみが圧力切替機構12bの開弁によって連通されている。このため、合流流路53には、圧力付与冷媒として高圧空間41の高圧冷媒が流通する。このとき、スライドバルブ7の吐出側端部71aの受圧面には高圧(HP)が一様に作用する。一方、スライドバルブ7の吸込側端部70aでは、圧力付与空間13を構成している吸込側端部70aの受圧面にのみ高圧(HP)が作用し、圧力付与空間13を構成していない吸込側端部70aには、低圧(LP)が作用する。そこで、スライドバルブ7の吸込側端部70aには、高Vi方向への移動を補助する反発部材11が設けられている。反発部材11の反力により、スライドバルブ7は、高Vi側へ移動する。
 図8に示すように、スライドバルブ7を低Vi側に位置するためには、圧力付与空間13と高圧空間41とを連通する高圧流路52が圧力切替機構12bで遮断され、圧力付与空間13と低圧空間40とを連通する低圧流路51のみが圧力切替機構12aの開弁によって連通されている。このため、合流流路53には、圧力付与冷媒として低圧空間40の低圧冷媒が流通する。このとき、スライドバルブ7の吐出側端部71aの受圧面には高圧(HP)が一様に作用し、圧力付与空間13における吸込側端部70aの受圧面には低圧(LP)が一様に作用する。反発部材11は、スライドバルブ7が高Vi側に移動する方向に常に付勢する。このため、スライドバルブ7の吐出側端部71aの受圧面に作用する高圧(HP)の圧力が反発部材11の反力及び低圧(LP)の圧力との合力よりも大きくなると、スライドバルブ7が低Vi側へ移動する。
 上記のように、反発部材11は、スライドバルブ7を高Vi側に移動させる方向に反力を常に発生させる。このため、スライドバルブ7を低Vi側に位置するためには、スライドバルブ7の吐出側端部71aの受圧面に作用する圧力がスライドバルブ7の吸込側端部70aの全体に作用する低圧の圧力と反発部材11の反力との合力よりも大きくなるように、反発部材11の反力が設計される必要がある。
<実施の形態2の効果>
 実施の形態2によれば、スライドバルブ7は、低圧空間40と高圧空間41との間にわたって配置されている。スライドバルブ7は、高圧空間41よりも低圧空間40に近い吸込側端部70aを有する。合流流路53の下流側端部から圧力切替機構12a及び圧力切替機構12bで圧力が切り替えられた圧力付与冷媒を付与するスライドバルブ7の端部は、スライドバルブ7の弁体部70の吸込側端部70aである。
 実施の形態2によれば、圧力付与空間13は、スライドバルブ7の吸込側端部70aの受圧面と、ケーシング1と、を少なくとも含んで囲まれた閉塞空間である。
 この構成によれば、圧力付与冷媒が閉塞空間に構成された圧力付与空間13に流入し、圧力付与冷媒の圧力がスライドバルブ7の弁体部70の吸込側端部70aの受圧面に完全に付与できる。
<実施の形態1及び実施の形態2の従来構造に対しての効果>
 図9は、従来構造のスクリュー圧縮機200の圧縮部2を縦断面にて示す説明図である。図9に示す従来のスライドバルブ駆動方法では、シリンダ空間213に設置されたピストン215の前後の空間の圧力差による駆動力をスライドバルブ7に伝達するためには、ピストン215、ピストン215の端部に連結された1つの連結部材216、連結部材216とスライドバルブ7とを連結する2つの連結棒217、並びに、それらを連結するボルト及びナットなどの締結部品が必要である。また、接続フランジ10に設けられたシリンダ空間213を構成するための円筒部を密閉するためのシリンダ蓋218も必要である。
 これに対し、実施の形態1及び実施の形態2の構造では、ピストン215、連結部材216、連結棒217、シリンダ蓋218、並びに、それらを連結するボルト及びナットなどの締結部品が不要になる。さらに、実施の形態1では、これらの部品を廃止し、シリンダ空間213に相当する圧力付与空間13は、ケーシング1内のスライドバルブ7のガイド部71の吐出側端部71aの受圧面の隣接空間に構成している。また、実施の形態2では、シリンダ空間213に相当する圧力付与空間13は、ケーシング1内のスライドバルブ7の弁体部70の吸込側端部70aの受圧面の隣接空間に構成している。これにより、スクリュー圧縮機100の全長が大幅に短縮できる。
 以上説明したように、実施の形態1及び実施の形態2は、比較的簡単かつ少ない構成部品を用い、高低圧力比に応じた内部容積比になる位置にスライドバルブ7が移動でき、スクリュー圧縮機100の小型軽量化及びコスト低減が図られる。
実施の形態3.
<冷凍サイクル装置101>
 図10は、実施の形態3に係るスクリュー圧縮機100を適用した冷凍サイクル装置101を示す冷媒回路図である。
 図10に示すように、冷凍サイクル装置101は、スクリュー圧縮機100、凝縮器102、膨張弁103及び蒸発器104を備える。これらスクリュー圧縮機100、凝縮器102、膨張弁103及び蒸発器104が冷媒配管で接続されて冷媒回路を形成している。そして、蒸発器104から流出した冷媒は、スクリュー圧縮機100に吸入されて高温高圧になる。高温高圧になった冷媒は、凝縮器102において凝縮されて液体になる。液体になった冷媒は、膨張弁103で減圧膨張されて低温低圧の気液二相になり、気液二相の冷媒が蒸発器104において熱交換される。
 実施の形態1及び実施の形態2のスクリュー圧縮機100は、このような冷凍サイクル装置101に適用できる。なお、冷凍サイクル装置101としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。
<実施の形態3の効果>
 実施の形態3によれば、冷凍サイクル装置101は、上記のスクリュー圧縮機100を備える。
 この構成によれば、冷凍サイクル装置101が上記のスクリュー圧縮機100を備えるので、簡素な構成で部品点数及び設置空間を削減して小型軽量化及びコスト低減が図られる。
 1 ケーシング、1a スライド溝、2 圧縮部、3 駆動部、4 スクリュー軸、5 スクリューロータ、5a 歯溝、6 ゲートロータ、6a ゲートロータ歯部、7 スライドバルブ、7a 吐出口、8 軸受、9 軸受ハウジング、10 接続フランジ、10a ストッパ、10b 孔、11 反発部材、12a 圧力切替機構、12b 圧力切替機構、13 圧力付与空間、14 高圧空間、19 ガイド構造、20 圧縮室、30 電動機、31 ステータ、32 モータロータ、40 低圧空間、41 高圧空間、50 圧力駆動機構、51 低圧流路、52 高圧流路、53 合流流路、70 弁体部、70a 吸込側端部、71 ガイド部、71a 吐出側端部、72 連結部、100 スクリュー圧縮機、101 冷凍サイクル装置、102 凝縮器、103 膨張弁、104 蒸発器、200 スクリュー圧縮機、213 シリンダ空間、215 ピストン、216 連結部材、217 連結棒、218 シリンダ蓋。

Claims (17)

  1.  筒状の内筒面部を有するケーシングと、
     前記ケーシングの内筒面部内に回転可能に収容され、外周に複数の螺旋溝を有するスクリューロータと、
     前記スクリューロータの螺旋溝に噛み合う歯を有するゲートロータと、
     前記スクリューロータで圧縮された高圧冷媒の吐出口の開度を調整するスライドバルブと、
    を備え、
     前記スクリューロータに吸入前の低圧冷媒を流通させる低圧流路と、前記吐出口から吐出された高圧冷媒を流通させる高圧流路と、前記低圧流路と前記高圧流路とを合流させる合流流路と、が設けられ、
     前記低圧流路、前記高圧流路又は前記合流流路の少なくとも1つには、冷媒の圧力を切り替える圧力切替機構が配置され、
     前記合流流路は、下流側端部から前記圧力切替機構で圧力が切り替えられた圧力付与冷媒を前記スライドバルブの一方の端部に付与するスクリュー圧縮機。
  2.  前記スライドバルブは、2つ設けられ、
     前記合流流路は、途中で分岐し、前記圧力付与冷媒を2つの前記スライドバルブの一方の端部それぞれに付与する請求項1に記載のスクリュー圧縮機。
  3.  前記スライドバルブの一方の端部には、前記合流流路の下流側端部から前記圧力付与冷媒を付与する圧力付与空間が設けられている請求項1又は請求項2に記載のスクリュー圧縮機。
  4.  前記スライドバルブは、2つ設けられ、
     前記圧力付与空間は、2つの前記スライドバルブそれぞれに対して設けられている請求項3に記載のスクリュー圧縮機。
  5.  前記圧力付与空間の壁面部には、前記スライドバルブの一方の端部との対向接触を防止するストッパが設けられている請求項3又は請求項4に記載のスクリュー圧縮機。
  6.  前記スライドバルブは、前記低圧冷媒が存在する低圧空間と前記高圧冷媒が存在する高圧空間との間にわたって配置され、前記低圧空間よりも前記高圧空間に近い吐出側端部を有し、
     前記合流流路の下流側端部から前記圧力切替機構で圧力が切り替えられた圧力付与冷媒を付与する前記スライドバルブの端部は、前記スライドバルブの吐出側端部である請求項1~請求項5のいずれか1項に記載のスクリュー圧縮機。
  7.  前記圧力付与空間は、前記スライドバルブの吐出側端部と、前記ケーシングと、を少なくとも含んで囲まれた閉塞空間である請求項3~請求項5のいずれか1項に従属する請求項6に記載のスクリュー圧縮機。
  8.  前記スライドバルブは、前記低圧冷媒が存在する低圧空間と前記高圧冷媒が存在する高圧空間との間にわたって配置され、前記高圧空間よりも前記低圧空間に近い吸込側端部を有し、
     前記合流流路の下流側端部から前記圧力切替機構で圧力が切り替えられた圧力付与冷媒を付与する前記スライドバルブの端部は、前記スライドバルブの吸込側端部である請求項1~請求項5のいずれか1項に記載のスクリュー圧縮機。
  9.  前記圧力付与空間は、前記スライドバルブの吸込側端部と、前記ケーシングと、を少なくとも含んで囲まれた閉塞空間である請求項3~請求項5のいずれか1項に従属する請求項8に記載のスクリュー圧縮機。
  10.  前記圧力付与冷媒による前記スライドバルブの移動を補助する反発部材を備える請求項1~請求項9のいずれか1項に記載のスクリュー圧縮機。
  11.  前記反発部材は、前記圧力付与冷媒を付与する端部とは反対側の端部側に設けられている請求項10に記載のスクリュー圧縮機。
  12.  前記反発部材は、前記圧力付与冷媒を付与する端部側に設けられている請求項10に記載のスクリュー圧縮機。
  13.  前記低圧流路と前記高圧流路と前記合流流路とは、前記ケーシングの外部に設けられた配管で構成されている請求項1~請求項12のいずれか1項に記載のスクリュー圧縮機。
  14.  前記低圧流路と前記高圧流路と前記合流流路とは、前記ケーシングの内部の構成部品で構成されている請求項1~請求項12のいずれか1項に記載のスクリュー圧縮機。
  15.  前記圧力切替機構は、前記低圧流路と前記高圧流路とにそれぞれ設けられた開閉弁である請求項1~請求項14のいずれか1項に記載のスクリュー圧縮機。
  16.  前記圧力切替機構は、電磁弁である請求項1~請求項15のいずれか1項に記載のスクリュー圧縮機。
  17.  請求項1~請求項16のいずれか1項に記載のスクリュー圧縮機を備える冷凍サイクル装置。
PCT/JP2019/022282 2019-06-05 2019-06-05 スクリュー圧縮機及び冷凍サイクル装置 WO2020245932A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/022282 WO2020245932A1 (ja) 2019-06-05 2019-06-05 スクリュー圧縮機及び冷凍サイクル装置
EP19931683.7A EP3981987A4 (en) 2019-06-05 2019-06-05 Screw compressor, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022282 WO2020245932A1 (ja) 2019-06-05 2019-06-05 スクリュー圧縮機及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020245932A1 true WO2020245932A1 (ja) 2020-12-10

Family

ID=73652582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022282 WO2020245932A1 (ja) 2019-06-05 2019-06-05 スクリュー圧縮機及び冷凍サイクル装置

Country Status (2)

Country Link
EP (1) EP3981987A4 (ja)
WO (1) WO2020245932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244219A1 (ja) * 2021-05-21 2022-11-24 三菱電機株式会社 スクリュー圧縮機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729639A (zh) * 2019-11-26 2022-07-08 三菱电机株式会社 螺杆式压缩机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932689A (ja) * 1982-05-13 1984-02-22 ベルナ−ド ツイメルン スクリユ−・ピニオン式容積形機械
JPS5943101B2 (ja) 1979-11-13 1984-10-19 富士電機株式会社 非晶質半導体太陽電池
JPS60164693A (ja) * 1984-02-06 1985-08-27 Daikin Ind Ltd スクリユ−圧縮機の容量制御装置
JPS6456592U (ja) * 1987-10-02 1989-04-07
JPH04228893A (ja) * 1990-04-30 1992-08-18 Bernard Zimmern スクリュー圧縮機
JP2012509436A (ja) * 2008-11-20 2012-04-19 エーエーエフ マックウェイ インコーポレイテッド ねじ圧縮機
JP2012102967A (ja) * 2010-11-12 2012-05-31 Mitsubishi Electric Corp スクリュー冷凍機
JP2013036403A (ja) 2011-08-09 2013-02-21 Daikin Industries Ltd スクリュー圧縮機
JP2013124600A (ja) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp スクリュー圧縮機
WO2017145251A1 (ja) * 2016-02-23 2017-08-31 三菱電機株式会社 スクリュー圧縮機および冷凍サイクル装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610613A (en) * 1985-06-03 1986-09-09 Vilter Manufacturing Corporation Control means for gas compressor having dual slide valves
JP2636579B2 (ja) * 1991-08-22 1997-07-30 ダイキン工業株式会社 スクリュー形2段圧縮機の容量制御装置
US5509273A (en) * 1995-02-24 1996-04-23 American Standard Inc. Gas actuated slide valve in a screw compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943101B2 (ja) 1979-11-13 1984-10-19 富士電機株式会社 非晶質半導体太陽電池
JPS5932689A (ja) * 1982-05-13 1984-02-22 ベルナ−ド ツイメルン スクリユ−・ピニオン式容積形機械
JPS60164693A (ja) * 1984-02-06 1985-08-27 Daikin Ind Ltd スクリユ−圧縮機の容量制御装置
JPS6456592U (ja) * 1987-10-02 1989-04-07
JPH04228893A (ja) * 1990-04-30 1992-08-18 Bernard Zimmern スクリュー圧縮機
JP2012509436A (ja) * 2008-11-20 2012-04-19 エーエーエフ マックウェイ インコーポレイテッド ねじ圧縮機
JP2012102967A (ja) * 2010-11-12 2012-05-31 Mitsubishi Electric Corp スクリュー冷凍機
JP2013036403A (ja) 2011-08-09 2013-02-21 Daikin Industries Ltd スクリュー圧縮機
JP2013124600A (ja) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp スクリュー圧縮機
WO2017145251A1 (ja) * 2016-02-23 2017-08-31 三菱電機株式会社 スクリュー圧縮機および冷凍サイクル装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244219A1 (ja) * 2021-05-21 2022-11-24 三菱電機株式会社 スクリュー圧縮機

Also Published As

Publication number Publication date
EP3981987A4 (en) 2022-06-29
EP3981987A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
EP1953338B1 (en) Expander and heat pump using the expander
EP2505841B1 (en) Screw compressor and chiller unit using same
JP2004301114A (ja) ロータリ式密閉形圧縮機および冷凍サイクル装置
JPH09151867A (ja) スクロールコンプレッサの容量制御バルブ
JP6685379B2 (ja) スクリュー圧縮機および冷凍サイクル装置
AU2005224499A1 (en) Refrigeration system
WO2020245932A1 (ja) スクリュー圧縮機及び冷凍サイクル装置
KR100520847B1 (ko) 압력 균등화 장치 및 방법
JP2010156488A (ja) 冷凍装置
US20050066673A1 (en) Pressure equalization system
EP3225848A1 (en) Screw compressor and refrigeration cycle device
JPH09105386A (ja) 圧縮機およびインジェクションサイクル
JP2012127565A (ja) 冷凍サイクル装置
JP4765587B2 (ja) 冷凍装置
WO2012160832A1 (ja) 冷凍サイクル装置
JP2002062020A (ja) 冷蔵庫
WO2020026333A1 (ja) スクリュー圧縮機及び冷凍サイクル装置
WO2015114846A1 (ja) スクリュー圧縮機
JP2010156246A (ja) 圧縮機
WO2014073176A1 (ja) 冷凍サイクル装置
WO2023162744A1 (ja) スクリュー圧縮機及び冷凍装置
JP7158603B2 (ja) スクリュー圧縮機
KR101053600B1 (ko) 공기조화기
JP5233690B2 (ja) 膨張機
JP2011185238A (ja) 可変容量式スクロール型圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931683

Country of ref document: EP

Effective date: 20220105

NENP Non-entry into the national phase

Ref country code: JP