WO2017145251A1 - スクリュー圧縮機および冷凍サイクル装置 - Google Patents

スクリュー圧縮機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2017145251A1
WO2017145251A1 PCT/JP2016/055145 JP2016055145W WO2017145251A1 WO 2017145251 A1 WO2017145251 A1 WO 2017145251A1 JP 2016055145 W JP2016055145 W JP 2016055145W WO 2017145251 A1 WO2017145251 A1 WO 2017145251A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
screw
port valve
screw compressor
discharge
Prior art date
Application number
PCT/JP2016/055145
Other languages
English (en)
French (fr)
Inventor
雅浩 神田
雅章 上川
英彰 永田
下地 美保子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/055145 priority Critical patent/WO2017145251A1/ja
Priority to EP16891410.9A priority patent/EP3421800B1/en
Publication of WO2017145251A1 publication Critical patent/WO2017145251A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves

Definitions

  • the present invention relates to a screw compressor and a refrigeration cycle apparatus that do not require complicated control.
  • the screw compressor is equipped with a variable Vi valve that is a slide valve that adjusts the discharge start timing to adjust the internal volume ratio Vi, and opens the variable Vi valve by the driving force from the driving device according to the operating pressure ratio.
  • a technique for adjusting the degree is known (for example, see Patent Document 1).
  • variable Vi valve used for a screw compressor is controlled as shown in FIGS. Specifically, the variable Vi valve calculates the optimum Vi value from the discharge pressure HP and the suction pressure LP, obtains the current Vi value from the position detection means, and reduces the difference between the current Vi value and the optimum Vi value. Are controlled by a driving device connected to the variable Vi valve. Further, the variable Vi valve adjusts the opening degree of the variable Vi valve so that the motor drive power is minimized in order to approach the optimum Vi value during actual operation.
  • the internal volume ratio Vi in the screw compressor is a ratio between the tooth space space at the time of suction and the tooth space space just before the discharge as disclosed in Patent Document 2, for example. It represents the ratio between the volume when completed and the volume when the discharge port opens.
  • the discharge side edge of the discharge port valve facing the outer periphery of the screw rotor has a stepped corner shape in which the axial surface of the rotation axis of the screw rotor and its orthogonal surface are bent. Yes.
  • coolant actually flows in a discharge port becomes a magnitude
  • the minimum refrigerant flow area where the refrigerant actually flows through the discharge port automatically expands as time elapses with the rotation of the screw rotor. Determined.
  • the discharge port becomes the discharge pressure in high load operation with a high compression ratio and high flow rate. Open to the discharge port before reaching. Furthermore, since the refrigerant circulation minimum area at the discharge outlet after opening is large, the refrigerant gas flows back in a large amount into the compression chamber, resulting in inappropriate compression loss.
  • the present invention is for solving the above-described problems, and an object thereof is to obtain a highly efficient screw compressor and refrigeration cycle apparatus that simplify the control of a discharge port valve.
  • a screw compressor according to the present invention is formed on a casing body having a hollow portion, a screw rotor that rotates around a rotation axis within the hollow portion of the casing body, and a radially outer side of the hollow portion of the casing body.
  • a semi-cylindrical groove extending in the direction of the rotation axis of the screw rotor, and a discharge port valve accommodated in the semi-cylindrical groove, the discharge port valve facing the outer periphery of the screw rotor Is formed in a stepped shape that changes the flow channel area of the discharge flow channel in a stepwise manner.
  • the refrigeration cycle apparatus includes the above screw compressor.
  • the discharge port valve has a step that changes the flow passage area of the discharge flow passage in a stepwise manner at the edge where the discharge opening facing the outer periphery of the screw rotor opens. Formed in shape. For this reason, the refrigerant circulation minimum area through which the refrigerant actually flows at the discharge port is between the land portion of the screw rotor and the edge portion formed in the stepped shape of the discharge port valve with respect to the time passage accompanied by the rotation of the screw rotor. It can be adjusted with.
  • the position set to the minimum width facing the land portion of the screw rotor is shifted according to the staircase shape with respect to the time elapsed with the rotation of the screw rotor. To go. Thereby, the influence of improper compression loss can be reduced under a wide range of operating conditions from a low compression ratio to a high compression ratio without requiring complicated control of the discharge port valve. For this reason, a simple and inexpensive configuration can be achieved, and the annual operating efficiency can be increased.
  • FIG. 10 is an explanatory view showing a cross section AA of FIG. 9 of a discharge port valve according to Embodiment 2 of the present invention. It is a schematic diagram which shows the discharge port valve which concerns on Embodiment 3 of this invention.
  • FIG. 12 is an explanatory view showing a BB cross section of FIG. 11 of a discharge port valve according to Embodiment 3 of the present invention.
  • FIG. 14 is an explanatory view showing a CC cross section of FIG. 13 of a discharge port valve according to Embodiment 4 of the present invention.
  • It is a refrigerant circuit figure which shows the refrigerating-cycle apparatus to which the screw compressor which concerns on Embodiment 5 of this invention is applied.
  • FIG. 1 is a schematic configuration diagram showing a screw compressor 100 according to Embodiment 1 of the present invention. A schematic configuration of the screw compressor 100 will be described with reference to FIG.
  • the screw compressor 100 according to Embodiment 1 is a single screw compressor.
  • the screw compressor 100 is used in a refrigeration cycle apparatus that is assumed to be operated in a wide range of compression ratios, such as an air conditioner, a refrigeration apparatus, and a water heater.
  • a cylindrical casing body 1 having a hollow portion 1 a inside, and a screw rotor 2 housed in the hollow portion 1 a in the casing body 1 are provided.
  • a motor 3 that rotationally drives the screw rotor 2 is provided in the axial direction of the rotating shaft of the screw rotor 2.
  • the motor 3 includes a stator 3a fixed to the casing body 1 and a motor rotor 3b arranged with a gap inside the stator 3a.
  • the rotation speed of the motor 3 is controlled by an inverter system (not shown).
  • the screw rotor 2 and the motor rotor 3b are arranged on the same axis of the rotation shaft, and both are fixed to the screw shaft 4.
  • the screw rotor 2 is connected to a motor rotor 3b fixed to the screw shaft 4 and is driven to rotate.
  • a plurality of spiral screw grooves 5 are formed on the outer peripheral surface of the screw rotor 2.
  • the compression chamber 6 of the screw compressor 100 includes a plurality of helical screw grooves 5, an inner cylindrical surface that forms the hollow portion 1 a of the casing body 1, a screw rotor 2, and a pair having a plurality of teeth engaged with the screw rotor 2.
  • the gate rotor 7 is formed.
  • the casing body 1 has a discharge pressure side and a suction pressure side separated by a partition wall (not shown). On the discharge pressure side of the casing body 1, a discharge port 9 that opens to the discharge flow path 8 is formed.
  • a housing groove 11 of a discharge port valve 10 having a semi-cylindrical shape is formed on the inner cylinder surface of the casing body 1 so as to protrude radially outward and extend in the rotation axis direction of the screw rotor 2.
  • the housing groove 11 corresponds to the semicylindrical groove of the present invention.
  • a discharge port valve 10 that forms part of the discharge port 9 and the discharge flow path 8 is provided in the storage groove 11.
  • the discharge port valve 10 is fixed in the accommodation groove 11.
  • the housing groove 11 is open on the left side in the figure so as to be covered with the lid 12 at the left end part in the figure of the screw compressor 100.
  • the opening of the accommodation groove 11 is an opening for inserting the discharge port valve 10 into the accommodation groove 11.
  • the discharge port valve 10 is integrated by providing a rod-shaped connecting portion 10c between a member 10a having a function of suppressing the rotation of the discharge port valve 10 and a member 10b forming a part of the discharge port 9. I am letting.
  • the shape of the discharge port valve 10 is as shown in FIGS. 9 to 14 in the embodiment described later.
  • the discharge port valve 10 is formed in a stepped shape 13 that changes the flow channel area of the discharge flow channel 8 stepwise at the edge where the discharge port 9 facing the outer periphery of the screw rotor 2 opens.
  • the staircase shape 13 is formed at the edge where the discharge port 9 of the member 10b forming a part of the discharge port 9 on the suction pressure side in the rotation axis direction is opened.
  • the staircase shape 13 is one step or a plurality of steps, and here it is N steps.
  • the staircase shape 13 is formed only at the edge portion where the discharge port 9 of the member 10b forming a part of the discharge port 9 is opened.
  • the staircase shape 13 is formed at the end of the member 10 b that forms a part of the discharge port 9 of the discharge port valve 10, from the discharge port 9 toward the radially outer side on the downstream side of the discharge channel 8.
  • the flow path width in the direction of the rotation axis is reduced stepwise.
  • the stepped shape 13 is formed from the member 10 a having a function of suppressing the rotation of the discharge port valve 10 at the end portion of the member 10 b forming a part of the discharge port 9 of the discharge port valve 10 to the discharge flow path 8.
  • the flow passage area of the discharge flow passage 8 is narrowed stepwise toward the upstream rotation shaft side.
  • the discharge port valve 10 is formed by forming a radially outer side on the downstream side of the discharge channel 8 having a stepped shape 13 in which the flow channel area of the discharge channel 8 is narrowed in steps on the end surface 10d on one connecting portion side, and discharging The thickness of the member 10a having the function of suppressing the rotation of the port valve 10 is reduced, and the flow passage area of the discharge flow passage 8 is enlarged. That is, the discharge port valve 10 expands after once reducing the flow area of the discharge flow path 8 from the discharge port 9 to a small size.
  • FIG. 2A is a diagram illustrating a suction stroke in the compression principle of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram illustrating a compression stroke in the compression principle of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2C is a diagram illustrating a discharge stroke in the compression principle of the screw compressor 100 according to Embodiment 1 of the present invention.
  • the screw rotor 2 is rotated by the motor 3 via the screw shaft 4 so that the teeth of the gate rotor 7 move relatively in the screw groove 5 forming the compression chamber 6.
  • the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this one cycle is repeated.
  • each stroke will be described by paying attention to the compression chamber 6 surrounded by a thick line in FIGS. 2A to 2C.
  • FIG. 2A shows the state of the compression chamber 6 during the suction stroke.
  • the screw rotor 2 is driven by the motor 3 and rotates in the direction of the solid arrow. Thereby, the volume of the compression chamber 6 is reduced as shown in FIG. 2B and the compression stroke is executed.
  • the compression chamber 6 communicates with the discharge port 9 formed by the inner cylindrical surface of the casing body 1 and the discharge port valve 10, and the discharge stroke is executed.
  • the high-pressure refrigerant gas compressed in the compression chamber 6 passes through the discharge passage 8 from the discharge port 9 and is discharged to the outside of the screw compressor 100. Then, the same compression is performed again on the back surface of the screw rotor 2.
  • FIG. 3A is a PV diagram showing a case of insufficient compression among improper compressions according to Embodiment 1 of the present invention.
  • FIG. 3B is a PV diagram showing a case of insufficient compression among conventional inappropriate compression.
  • FIG. 4A is a PV diagram showing a case of overcompression among improper compressions according to Embodiment 1 of the present invention.
  • FIG. 4B is a PV diagram showing a case of overcompression among conventional improper compressions.
  • FIG. 5A is a diagram showing a refrigerant circulation minimum area S at the discharge opening 9 at the beginning of opening of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 5A is a diagram showing a refrigerant circulation minimum area S at the discharge opening 9 at the beginning of opening of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 5B is a diagram showing a refrigerant circulation minimum area S at the discharge port 9 in the middle of opening of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 5C is a diagram showing a refrigerant circulation minimum area S at the discharge port 9 when the screw compressor 100 according to Embodiment 1 of the present invention is opened near the maximum.
  • FIG. 6 is a diagram showing the relationship between the screw rotation angle and the refrigerant circulation minimum area S of the screw compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 7A is a diagram illustrating a refrigerant circulation minimum area S at a discharge opening at the beginning of opening of a conventional screw compressor.
  • FIG. 7B is a diagram illustrating a refrigerant circulation minimum area S at a discharge port in the middle of opening of a conventional screw compressor.
  • FIG. 7C is a diagram illustrating a refrigerant circulation minimum area S at the discharge port when the conventional screw compressor is opened near the maximum.
  • FIG. 8 is a diagram showing the relationship between the screw rotation angle of the conventional screw compressor and the refrigerant circulation minimum area S.
  • the compression chamber communicates with the discharge port before the refrigerant gas pressure in the compression chamber reaches the high pressure Pd. That is, as shown in FIGS. 7A to 7C, in the conventional screw compressor, the refrigerant circulation minimum area S through which the refrigerant actually flows at the discharge port is automatically expanded so as to increase with the passage of time with the rotation of the screw rotor. Determined. As shown in FIG. 8, the refrigerant circulation minimum area S increases corresponding to the screw rotation angle from the beginning of opening. For this reason, as shown to FIG. 7A, before a discharge port reaches
  • coolant distribution minimum area S in the discharge outlet after opening is large.
  • the refrigerant gas in the discharge flow channel flows backward from the discharge port into the compression chamber, resulting in a conventional compression P2 pattern in which the pressure is increased more rapidly than the ideal compression Pid pattern. Therefore, an increase in power corresponding to the area of the shaded portion becomes a loss as an insufficient compression loss.
  • the minimum refrigerant flow area S through which the refrigerant actually flows at the discharge port 9 under the operating conditions with a high compression ratio and a high operating load factor is as follows.
  • the screw rotor 2 is squeezed without starting to spread between the land portion 2a of the screw rotor 2 and the edge portion formed in the stepped shape 13 of the discharge port valve 10. Adjusted.
  • the adjustment unit that is adjusted so that the minimum refrigerant flow area S does not widen at the beginning of opening is the A portion having a one-step hump shape shown in FIG.
  • the refrigerant flow minimum area S is kept small at the timing at which the reverse flow of the refrigerant gas due to insufficient compression occurs in the compression chamber 6 immediately after communicating with the discharge port 9. Therefore, the pattern of the actual compression P1 shown in FIG. 3A is obtained, the power loss corresponding to the area of the shaded portion is improved, and the influence of the power increase due to the backflow of the refrigerant gas can be suppressed to a small level.
  • the compression is continued until the volume reaches Vd even after the refrigerant gas pressure in the compression chamber 6 reaches the high pressure Pd, so that the pattern of the conventional compression P4 is obtained. Therefore, an increase in power corresponding to the area of the shaded portion becomes a loss as an overcompression loss.
  • the refrigerant circulation amount is small under the operation condition with a low compression ratio and a low frequency operation load factor, so the pattern of the implementation compression P3 shown in FIG. The power loss can be improved, the influence of the discharge pressure loss can be reduced, and the influence of the power increase can be reduced.
  • the edge portion where the discharge port 9 of the discharge port valve 10 is opened is formed in the N-step staircase shape 13.
  • the refrigerant flow minimum area S through which the refrigerant actually flows at the discharge port 9 immediately after the screw groove 5 communicates with the discharge port 9 is difficult to expand due to the step shape 13.
  • coolant distribution minimum area S is expanded as the screw groove
  • the minimum refrigerant flow area S through which the refrigerant actually flows at the discharge port 9 corresponding to a wide operation pressure ratio without sliding the discharge port valve 10, and high in a wide operation range.
  • a high performance screw compressor 100 can be obtained.
  • the variable Vi mechanism and control for making the discharge port valve 10 a variable Vi valve are not required, a small and inexpensive screw compressor 100 can be obtained.
  • Embodiment 2 FIG.
  • the number of steps of the staircase shape 13 is N steps including one step and a plurality of steps.
  • N 1
  • differences from the first embodiment will be described, and configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 9 is a schematic diagram showing a discharge port valve 10 according to Embodiment 2 of the present invention.
  • FIG. 10 is an explanatory view showing the AA cross section of FIG. 9 of the discharge port valve 10 according to Embodiment 2 of the present invention.
  • the discharge port valve 10 is integrated by providing a rod-shaped connecting portion 10c between a member 10a having a function of suppressing the rotation of the discharge port valve 10 and a member 10b forming a part of the discharge port 9. It has been made.
  • the discharge port valve 10 is formed on the radially outer side of the hollow portion 1 a of the casing body 1 and is housed and fixed in a semi-cylindrical housing groove 11 extending in the direction of the rotation axis of the screw rotor 2.
  • the discharge port valve 10 is formed in a one-step staircase shape 13 in which the edge of the discharge port 9 facing the outer periphery of the screw rotor 2 is shifted to the radially outer side on the downstream side of the discharge flow path 8. ing.
  • the one-step staircase shape 13 is a shape having a one-step step portion end face 10 e and two faces 10 f along the outer periphery of the screw rotor 2 side by side.
  • the period performance coefficient IPLV is a performance coefficient of the refrigeration cycle apparatus throughout the period, in addition to the coefficient of performance COP indicating energy consumption efficiency.
  • IPLV 0.01 ⁇ A + 0.47 ⁇ B + 0.37 ⁇ C + 0.15 ⁇ D
  • A COP at 100% load
  • B COP at 75% load
  • C COP at 50% load
  • D COP at 25% load
  • the weight varies depending on each operation load factor. That is, when the load is 75%, it accounts for 47% of the annual operation time, and when the load is 50%, it accounts for 37% of the annual operation time.
  • the end surface inclination of one step surface 10e of the stepped shape 13 of the discharge port valve 10 and one end surface 10d on the side of the connecting portion 10c is optimized under two conditions where the weight of the period performance coefficient IPLV is large.
  • the two end surface inclinations are optimized and formed under the two conditions of B and C where the weight of the period performance coefficient IPLV is large.
  • the end surface inclination is formed in a curved surface shape corresponding to the discharge side end of the land of the screw rotor facing at a position where the discharge port valve which is not the conventional stepped shape of B and C slides.
  • the screw compressor 100 having a high period coefficient of performance IPLV can be obtained. Further, since the discharge port valve 10 does not require a mechanism and control for making the variable Vi valve, the screw compressor 100 that is smaller and less expensive than the conventional one can be obtained.
  • Embodiment 3 FIG.
  • differences from the first and second embodiments will be described, and configurations not described in the third embodiment are the same as those in the first embodiment.
  • FIG. 11 is a schematic diagram showing a discharge port valve 10 according to Embodiment 3 of the present invention.
  • FIG. 12 is an explanatory view showing a BB cross section of FIG. 11 of the discharge port valve 10 according to Embodiment 3 of the present invention.
  • the discharge port valve 10 is integrated by providing a rod-shaped connecting portion 10c between a member 10a having a function of suppressing the rotation of the discharge port valve 10 and a member 10b forming a part of the discharge port 9. It has been made.
  • the discharge port valve 10 is formed on the radially outer side of the hollow portion 1 a of the casing body 1 and is housed and fixed in a semi-cylindrical housing groove 11 extending in the direction of the rotation axis of the screw rotor 2.
  • the discharge port valve 10 is formed in a two-step staircase shape 13 in which the edge of the discharge port 9 facing the outer periphery of the screw rotor 2 is shifted to the radially outer side on the downstream side of the discharge flow path 8. ing.
  • the two-step staircase shape 13 is a shape having a two-step step portion end face 10 e and three faces 10 f along the outer periphery of the screw rotor 2.
  • the weight of the period performance coefficient IPLV shown in the second embodiment is large for the end surface slopes of the two stepped end surfaces 10e of the stepped shape 13 of the discharge port valve 10 and the one end surface 10d on the connecting portion 10c side.
  • Optimize and form under 3 conditions That is, the three end face inclinations are optimized and formed under the three conditions of B, C and D where the weight of the period performance coefficient IPLV is large.
  • the end surface inclination is formed in a curved surface shape corresponding to the discharge side end of the land of the screw rotor facing at a position where the discharge port valve which is not a conventional stepped shape of B, C and D slides.
  • the screw compressor 100 having a higher period performance coefficient IPLV than that of the second embodiment can be obtained. Further, since the discharge port valve 10 does not require a mechanism and control for making the variable Vi valve, the screw compressor 100 that is smaller and less expensive than the conventional one can be obtained.
  • Embodiment 4 FIG.
  • differences from the first to third embodiments will be described, and configurations not described in the fourth embodiment are the same as those in the first embodiment.
  • FIG. 13 is a schematic diagram showing a discharge port valve 10 according to Embodiment 4 of the present invention.
  • FIG. 14 is an explanatory view showing a CC cross section of FIG. 13 of the discharge port valve 10 according to Embodiment 4 of the present invention.
  • the discharge port valve 10 is integrated by providing a rod-shaped connecting portion 10c between a member 10a having a function of suppressing the rotation of the discharge port valve 10 and a member 10b forming a part of the discharge port 9. It has been made.
  • the discharge port valve 10 is formed on the radially outer side of the hollow portion 1 a of the casing body 1 and is housed and fixed in a semi-cylindrical housing groove 11 extending in the direction of the rotation axis of the screw rotor 2.
  • the discharge port valve 10 is formed in a three-step staircase shape 13 in which the edge of the discharge port 9 facing the outer periphery of the screw rotor 2 is shifted to the radially outer side downstream of the discharge flow path 8. ing.
  • the three-step staircase shape 13 is a shape having a three-step step portion end face 10e and four side faces 10f along the outer periphery of the screw rotor 2.
  • the end surface inclination of the three stepped end surfaces 10e of the stepped shape 13 of the discharge port valve 10 and the one end surface 10d on the connecting portion 10c side is defined by four conditions of A, B, C, and D of the period performance coefficient IPLV. Optimized to form.
  • the end surface inclination is formed in a curved surface shape corresponding to the discharge side end of the land of the screw rotor facing at a position where the discharge port valve which is not the conventional stepped shape of four conditions A, B, C and D slides.
  • the screw compressor 100 having a higher period performance coefficient IPLV than that of the third embodiment can be obtained. Further, since the discharge port valve 10 does not require a mechanism and control for making the variable Vi valve, the screw compressor 100 that is smaller and less expensive than the conventional one can be obtained.
  • FIG. 15 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the screw compressor 100 according to Embodiment 5 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a screw compressor 100, a condenser 80, an expansion valve 81, and an evaporator 82. These screw compressor 100, condenser 80, expansion valve 81 and evaporator 82 are connected by refrigerant piping to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 82 is sucked into the screw compressor 100 and becomes high temperature and pressure. The high-temperature and high-pressure refrigerant is condensed in the condenser 80 to become a liquid.
  • the refrigerant that has become liquid is decompressed and expanded by the expansion valve 81 to become a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 82.
  • the screw compressor 100 of Embodiments 1 to 4 can be applied to such a refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 include an air conditioner, a refrigeration apparatus, and a water heater.
  • the screw compressor 100 includes the casing body 1 having the hollow portion 1a.
  • a screw rotor 2 that rotates around a rotation axis in a hollow portion 1a of the casing body 1 is provided.
  • a semi-cylindrical housing groove 11 is formed on the outer side in the radial direction of the hollow portion 1 a of the casing body 1 and extends in the rotation axis direction of the screw rotor 2.
  • a discharge port valve 10 housed in the housing groove 11 is provided.
  • the discharge port valve 10 is formed in a stepped shape 13 that changes the flow channel area of the discharge flow channel 8 stepwise at the edge where the discharge port 9 facing the outer periphery of the screw rotor 2 opens.
  • the discharge port valve 10 is formed in the stepped shape 13 that changes the flow passage area of the discharge flow passage 8 stepwise at the edge where the discharge opening 9 facing the outer periphery of the screw rotor 2 opens. ing. For this reason, the minimum refrigerant flow area S through which the refrigerant actually flows at the discharge port 9 is formed in the land portion 2a of the screw rotor 2 and the stepped shape 13 of the discharge port valve 10 with the passage of time accompanying the rotation of the screw rotor 2. Can be adjusted between the edges.
  • the position set to the minimum width facing the land portion 2 a of the screw rotor 2 with respect to the passage of time accompanying the rotation of the screw rotor 2 is a staircase. It shifts according to the shape 13. Thereby, the influence of improper compression loss can be reduced under a wide range of operating conditions from a low compression ratio to a high compression ratio without requiring complicated control of the discharge port valve 10. For this reason, a simple and inexpensive configuration can be achieved, and the annual operating efficiency can be increased.
  • the discharge port valve 10 is integrated by providing a rod-shaped connecting portion 10c between a member 10a having a function of suppressing the rotation of the discharge port valve 10 and a member 10b forming a part of the discharge port 9. I am letting.
  • the staircase shape 13 is formed on the edge of the member 10b that forms part of the discharge port 9 where the discharge port 9 is opened. According to this configuration, the control of the discharge port valve 10 is simplified, and the refrigerant flow minimum area S through which the refrigerant actually flows in the discharge port 9 corresponding to a wide operating pressure ratio can be formed.
  • the compressor 100 can be obtained. Moreover, since the control for making the discharge port valve 10 a variable Vi valve is simplified, a small and inexpensive screw compressor 100 can be obtained.
  • the discharge port valve 10 is fixed. According to this structure, the discharge flow path 8 corresponding to a wide operating pressure ratio can be formed without sliding the discharge port valve 10, and a high-performance screw compressor 100 can be obtained in a wide operating range. Moreover, since the variable Vi mechanism and control for making the discharge port valve 10 a variable Vi valve are not required, a small and inexpensive screw compressor 100 can be obtained.
  • the staircase shape 13 has one step, and is formed by optimizing the end surface inclination of the staircase shape 13 under two conditions where the weight of the period performance coefficient IPLV is large. According to this structure, the screw compressor 100 with a high period performance coefficient IPLV can be obtained.
  • the staircase shape 13 has two steps, and is formed by optimizing the end surface inclination of the staircase shape 13 under three conditions in which the weight of the period performance coefficient IPLV is large. According to this structure, the screw compressor 100 with a high period performance coefficient IPLV can be obtained.
  • the staircase shape 13 has three steps, and is formed by optimizing the end surface inclination of the staircase shape 13 under four conditions for calculating the period performance coefficient IPLV. According to this structure, the screw compressor 100 with a high period performance coefficient IPLV can be obtained.
  • the refrigeration cycle apparatus 200 includes a screw compressor 100. According to this configuration, a simple and inexpensive configuration can be achieved, and the annual operating efficiency can be increased.
  • the discharge port valve 10 is fixed in the accommodation groove 11.
  • the discharge port valve 10 may be driven by control that simplifies the drive pattern to only two patterns, for example. Even in such a case, the control can be simplified and the inappropriate compression loss can be improved.
  • the step shape 13 may be applied to a slide valve that can adjust the compression capacity.
  • a single screw compressor is used as the screw compressor.
  • a twin screw compressor may be used as a screw compressor.
  • 1 casing body 1a hollow part, 2 screw rotor, 2a land part, 3 motor, 3a stator, 3b motor rotor, 4 screw shaft, 5 screw groove, 6 compression chamber, 7 gate rotor, 8 discharge flow path, 9 discharge port, 10 Discharge port valve, 10a Member with function to suppress rotation of discharge port valve, 10b Member forming part of discharge port, 10c connecting part, 10d connecting part side end face, 10e stepped part end face, 10f screw rotor Surface along the outer periphery, 11 housing groove, 12 lid material, 13 staircase shape, 80 condenser, 81 expansion valve, 82 evaporator, 100 screw compressor, 200 refrigeration cycle apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 吐出ポート弁の制御を簡素化する高効率なスクリュー圧縮機および冷凍サイクル装置を得る。中空部を有するケーシング本体と、ケーシング本体の中空部内で回転軸を中心に回転するスクリューロータと、ケーシング本体の中空部の径方向外側に形成され、スクリューロータの回転軸方向に延びる半円筒状溝と、半円筒状溝内に収容された吐出ポート弁と、を備え、吐出ポート弁は、スクリューロータの外周と対向する吐出口が開口した縁部を、吐出流路の流路面積を段階的に変化させる階段形状に形成された。

Description

スクリュー圧縮機および冷凍サイクル装置
 本発明は、複雑な制御を必要としないスクリュー圧縮機および冷凍サイクル装置に関する。
 スクリュー圧縮機において、吐出開始のタイミングを調整して内部容積比Viを調整可能にするスライド弁である可変Vi弁を備え、運転圧力比に応じて駆動装置からの駆動力により可変Vi弁の開度を調整するようにした技術が知られている(たとえば、特許文献1参照)。
 スクリュー圧縮機に使用する従来の可変Vi弁は、特許文献1の図1、図2に示されるように制御される。具体的には、可変Vi弁は、吐出圧力HPと吸込圧力LPとから最適Vi値を演算し、位置検出手段から現Vi値を求め、現Vi値と最適Vi値との差が小さくなるように可変Vi弁に連結した駆動装置により制御される。さらに、可変Vi弁は、実運転時の最適Vi値に近づけるために、モータ駆動電力が最小となるように可変Vi弁の開度調整を行っている。
 ここで、スクリュー圧縮機における内部容積比Viというのは、たとえば特許文献2に開示されているように、吸込み時の歯溝空間容積と吐出寸前の歯溝空間容積との比であり、吸込みが完了したときの容積と吐出ポートが開くときの容積との比を表している。
 従来の吐出ポート弁は、スクリューロータの外周と対向する吐出ポート弁の吐出側縁部を、スクリューロータの回転軸の軸方向面とその直交面とが屈曲した段差の無い角部形状になっている。これにより、吐出口における実際に冷媒が流れる冷媒流通最小面積は、スクリューロータのランド部と吐出ポート弁の吐出側縁部との間の大きさになる。そのため、固定タイプの従来の吐出ポート弁で吐出口が開き始めるタイミングを決定すると、吐出口における実際に冷媒が流れる冷媒流通最小面積がスクリューロータの回転を伴う時間経過に応じて広がるように自動的に定まる。
 空気調和装置の年間の運転時間の大部分を占める低圧縮比かつ低流量の低負荷運転に内部容積比Viを合わせると、高圧縮比かつ高流量の高負荷運転では、吐出口が吐出圧力に到達する前に吐出ポートに開口する。さらに、開口後の吐出口における冷媒流通最小面積が大きいために、冷媒ガスが圧縮室内に大量に逆流し、不適正圧縮損失が生じる。
 一方、高負荷運転に内部容積比Viを合わせると、低負荷運転では、吐出ポートに開口するまでに冷媒ガスは高圧側圧力以上に過圧縮され、過圧縮による不適正圧縮損失が増大し、年間を通じた効率の低下を招く。
特許第4147891号公報 特開昭62-87687号公報
 そこで、従来から可変Vi弁を用いたスクリュー圧縮機が提案されている。しかし、可変Vi弁を制御するためには、複雑な制御部が必要であり、コストが増加してしまう課題があった。
 本発明は、上記課題を解決するためのものであり、吐出ポート弁の制御を簡素化する高効率なスクリュー圧縮機および冷凍サイクル装置を得ることを目的とする。
 本発明に係るスクリュー圧縮機は、中空部を有するケーシング本体と、前記ケーシング本体の前記中空部内で回転軸を中心に回転するスクリューロータと、前記ケーシング本体の前記中空部の径方向外側に形成され、前記スクリューロータの回転軸方向に延びる半円筒状溝と、前記半円筒状溝内に収容された吐出ポート弁と、を備え、前記吐出ポート弁は、前記スクリューロータの外周と対向する吐出口が開口した縁部を、吐出流路の流路面積を段階的に変化させる階段形状に形成されたものである。
 本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機を備えたものである。
 本発明に係るスクリュー圧縮機および冷凍サイクル装置によれば、吐出ポート弁は、スクリューロータの外周と対向する吐出口が開口した縁部を、吐出流路の流路面積を段階的に変化させる階段形状に形成された。このため、吐出口における実際に冷媒が流れる冷媒流通最小面積は、スクリューロータの回転を伴う時間経過に対して、スクリューロータのランド部と吐出ポート弁の階段形状に形成された縁部との間で調整できる。すなわち、吐出ポート弁の階段形状に形成された縁部では、スクリューロータの回転を伴う時間経過に対して、スクリューロータのランド部と対向する最小幅に設定される位置が階段形状に応じてずれていく。これにより、吐出ポート弁に複雑な制御を必要とせずに、低圧縮比から高圧縮比までの幅広い運転条件で不適正圧縮損失の影響を低減できる。このため、簡素で安価な構成を達成でき、年間の運転効率を高めることができる。
本発明の実施の形態1に係るスクリュー圧縮機を示す概略構成図である。 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理のうち吸入行程を示す図である。 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理のうち圧縮行程を示す図である。 本発明の実施の形態1に係るスクリュー圧縮機の圧縮原理のうち吐出行程を示す図である。 本発明の実施の形態1に係る不適正圧縮のうち不足圧縮の場合を示すPV線図である。 従来の不適正圧縮のうち不足圧縮の場合を示すPV線図である。 本発明の実施の形態1に係る不適正圧縮のうち過圧縮の場合を示すPV線図である。 従来の不適正圧縮のうち過圧縮の場合を示すPV線図である。 本発明の実施の形態1に係るスクリュー圧縮機の開き始めの吐出口における冷媒流通最小面積を示す図である。 本発明の実施の形態1に係るスクリュー圧縮機の開き途中の吐出口における冷媒流通最小面積を示す図である。 本発明の実施の形態1に係るスクリュー圧縮機の最大近くに開くときの吐出口における冷媒流通最小面積を示す図である。 本発明の実施の形態1に係るスクリュー圧縮機のスクリュー回転角度と冷媒流通最小面積との関係を示す図である。 従来のスクリュー圧縮機の開き始めの吐出口における冷媒流通最小面積を示す図である。 従来のスクリュー圧縮機の開き途中の吐出口における冷媒流通最小面積を示す図である。 従来のスクリュー圧縮機の最大近くに開くときの吐出口における冷媒流通最小面積を示す図である。 従来のスクリュー圧縮機のスクリュー回転角度と冷媒流通最小面積との関係を示す図である。 本発明の実施の形態2に係る吐出ポート弁を示す模式図である。 本発明の実施の形態2に係る吐出ポート弁の図9のA-A断面を示す説明図である。 本発明の実施の形態3に係る吐出ポート弁を示す模式図である。 本発明の実施の形態3に係る吐出ポート弁の図11のB-B断面を示す説明図である。 本発明の実施の形態4に係る吐出ポート弁を示す模式図である。 本発明の実施の形態4に係る吐出ポート弁の図13のC-C断面を示す説明図である。 本発明の実施の形態5に係るスクリュー圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 (構成)
 図1は、本発明の実施の形態1に係るスクリュー圧縮機100を示す概略構成図である。図1を用いてスクリュー圧縮機100の概略構成を説明する。
 実施の形態1に係るスクリュー圧縮機100は、シングルスクリュー圧縮機である。スクリュー圧縮機100は、たとえば空気調和機、冷凍装置および給湯器などの幅広い圧縮比での運転が想定される冷凍サイクル装置に用いられている。
 図1に示すように、内部に中空部1aを有する筒状のケーシング本体1と、ケーシング本体1内の中空部1aに収容されたスクリューロータ2と、を備えている。
 スクリューロータ2の回転軸の軸線方向には、スクリューロータ2を回転駆動するモータ3を備えている。モータ3は、ケーシング本体1に固定されたステータ3aと、ステータ3aの内側に隙間を空けて配置されたモータロータ3bと、から構成される。モータ3は、図示しないインバータ方式で回転数が制御される。
 スクリューロータ2とモータロータ3bとは互いに回転軸の同一軸線上に配置されており、いずれもスクリュー軸4に固定されている。スクリューロータ2は、スクリュー軸4に固定されたモータロータ3bに連結されて回転駆動される。
 スクリューロータ2の外周面には、複数の螺旋状のスクリュー溝5が形成されている。
 スクリュー圧縮機100の圧縮室6は、複数の螺旋状のスクリュー溝5、ケーシング本体1の中空部1aを形成する内筒面、スクリューロータ2およびスクリューロータ2に噛み合わされる複数の歯を有する一対のゲートロータ7によって形成されている。
 ケーシング本体1は、図示しない隔壁によって吐出圧力側と吸込圧力側とが隔てられている。
 ケーシング本体1の吐出圧力側には、吐出流路8に開口する吐出口9が形成されている。
 ケーシング本体1の内筒面には、径方向外側に突出してスクリューロータ2の回転軸方向に延びる半円筒状の吐出ポート弁10の収容溝11が形成されている。収容溝11が本発明の半円筒状溝に相当する。
 収容溝11内には、吐出口9と吐出流路8の一部を形成している吐出ポート弁10が設けられている。
 吐出ポート弁10は、収容溝11内で固定されている。収容溝11は、スクリュー圧縮機100の図示左端部の蓋材12で塞がれるように図示左側に開口している。収容溝11の開口は、吐出ポート弁10を収容溝11内に挿入するための開口になっている。
 吐出ポート弁10は、吐出ポート弁10の回転を抑制する機能を持たせた部材10aと、吐出口9の一部を形成する部材10bと、の間に棒状の連結部10cを設けて一体化させている。吐出ポート弁10の形状は、後述する実施の形態における図9~図14に示す通りである。
 吐出ポート弁10は、スクリューロータ2の外周と対向する吐出口9が開口した縁部を、吐出流路8の流路面積を段階的に変化させる階段形状13に形成されている。言い換えると、階段形状13は、回転軸方向で吸込圧力側の吐出口9の一部を形成する部材10bの吐出口9が開口した縁部に形成されている。
 階段形状13は、1段または複数段であり、ここではN段とする。階段形状13は、吐出口9の一部を形成する部材10bの吐出口9が開口した縁部のみに形成されている。階段形状13は、吐出ポート弁10の吐出口9の一部を形成する部材10bの端部にて、吐出口9から吐出流路8の下流側の径方向外側に向けて吐出流路8の回転軸方向の流路幅を段階的に狭くする。また、階段形状13は、吐出ポート弁10の吐出口9の一部を形成する部材10bの端部にて、吐出ポート弁10の回転を抑制する機能を持たせた部材10aから吐出流路8の上流側の回転軸側に向けて吐出流路8の流路面積を段階的に狭くする。
 吐出ポート弁10は、吐出流路8の流路面積を段階的に狭くした階段形状13の吐出流路8の下流側の径方向外側を一つの連結部側の端面10dに形成し、かつ吐出ポート弁10の回転を抑制する機能を持たせた部材10aの肉厚を減らし、吐出流路8の流路面積を拡大している。すなわち、吐出ポート弁10は、吐出口9からの吐出流路8の流路面積を一旦小さく絞った後に拡大する。
 (動作)
 次に、実施の形態1に係るスクリュー圧縮機100の動作について説明する。
 図2Aは、本発明の実施の形態1に係るスクリュー圧縮機100の圧縮原理のうち吸入行程を示す図である。図2Bは、本発明の実施の形態1に係るスクリュー圧縮機100の圧縮原理のうち圧縮行程を示す図である。図2Cは、本発明の実施の形態1に係るスクリュー圧縮機100の圧縮原理のうち吐出行程を示す図である。
 図2A~図2Cに示すように、スクリューロータ2がモータ3によりスクリュー軸4を介して回転させられることで、ゲートロータ7の歯が圧縮室6を形成するスクリュー溝5内を相対的に移動する。これにより、圧縮室6内では吸入行程、圧縮行程および吐出行程を1サイクルとして、この1サイクルを繰り返すようになっている。ここでは、図2A~図2Cにおいて太線で囲った圧縮室6に着目して各行程について説明する。
 図2Aでは、吸入行程における圧縮室6の状態を示している。スクリューロータ2がモータ3により駆動されて実線矢印の方向に回転する。これにより、図2Bのように圧縮室6の容積が縮小して圧縮行程が実行される。
 引き続きスクリューロータ2が回転すると、図2Cに示すように、圧縮室6がケーシング本体1の内筒面と吐出ポート弁10から形成される吐出口9に連通して吐出行程が実行される。これにより、圧縮室6内で圧縮された高圧の冷媒ガスが吐出口9より吐出流路8を通過してスクリュー圧縮機100の外部へ吐出される。そして、再びスクリューロータ2の背面で同様の圧縮が行われる。
 (効果)
 次に、実施の形態1に係るスクリュー圧縮機100の効果について説明する。
 図3Aは、本発明の実施の形態1に係る不適正圧縮のうち不足圧縮の場合を示すPV線図である。図3Bは、従来の不適正圧縮のうち不足圧縮の場合を示すPV線図である。図4Aは、本発明の実施の形態1に係る不適正圧縮のうち過圧縮の場合を示すPV線図である。図4Bは、従来の不適正圧縮のうち過圧縮の場合を示すPV線図である。図5Aは、本発明の実施の形態1に係るスクリュー圧縮機100の開き始めの吐出口9における冷媒流通最小面積Sを示す図である。図5Bは、本発明の実施の形態1に係るスクリュー圧縮機100の開き途中の吐出口9における冷媒流通最小面積Sを示す図である。図5Cは、本発明の実施の形態1に係るスクリュー圧縮機100の最大近くに開くときの吐出口9における冷媒流通最小面積Sを示す図である。図6は、本発明の実施の形態1に係るスクリュー圧縮機100のスクリュー回転角度と冷媒流通最小面積Sとの関係を示す図である。図7Aは、従来のスクリュー圧縮機の開き始めの吐出口における冷媒流通最小面積Sを示す図である。図7Bは、従来のスクリュー圧縮機の開き途中の吐出口における冷媒流通最小面積Sを示す図である。図7Cは、従来のスクリュー圧縮機の最大近くに開くときの吐出口における冷媒流通最小面積Sを示す図である。図8は、従来のスクリュー圧縮機のスクリュー回転角度と冷媒流通最小面積Sとの関係を示す図である。
 図3Bに示す不足圧縮の場合には、圧縮室内の冷媒ガス圧力が高圧Pdに達する前に圧縮室が吐出口と連通する。すなわち、図7A~図7Cに示すように、従来のスクリュー圧縮機では、吐出口における実際に冷媒が流れる冷媒流通最小面積Sがスクリューロータの回転を伴う時間経過に応じて広がるように自動的に定まる。図8に示すように、冷媒流通最小面積Sは、開き始めからスクリュー回転角度に対応して広がる。このため、図7Aに示すように、吐出口が吐出圧力に到達する前に吐出ポートに開口する。さらに、図7Bに示すように、開口後の吐出口における冷媒流通最小面積Sが大きい。これにより、吐出流路の冷媒ガスが吐出口から圧縮室内へ逆流し、理想圧縮Pidのパターンよりも急激に昇圧する従来圧縮P2のパターンになる。したがって、斜線部の面積分の動力増加が不足圧縮損失として損失となる。
 一方、図5A~図5Cに示すように、実施の形態1では、高圧縮比でかつ高周波数の運転負荷率が大きい運転条件において、吐出口9における実際に冷媒が流れる冷媒流通最小面積Sは、スクリューロータ2の回転を伴う時間経過に対して、スクリューロータ2のランド部2aと吐出ポート弁10の階段形状13に形成された縁部との間で開き始めに広がらずに絞られるように調整される。冷媒流通最小面積Sが開き始めに広がらないように調整される調整部は、図6に示す1段のこぶ状になったA部である。このように、吐出ポート弁10の階段形状13に形成された縁部では、スクリューロータ2の回転を伴う時間経過に対して、スクリューロータ2のランド部2aと対向する最小幅に設定される位置が階段形状13に応じてずれていく。このため、図5Bに示すように、吐出口9に連通した直後に圧縮室6内へ不足圧縮による冷媒ガスの逆流が生じるタイミングでは、冷媒流通最小面積Sが小さい状態に維持される。よって、図3Aに示す実施圧縮P1のパターンになり、斜線部の面積分の動力損失が改善され、冷媒ガスの逆流による動力増加の影響を小さく抑えることができる。
 図4Bに示す過圧縮の場合には、圧縮室6内の冷媒ガス圧力が高圧Pdに達した後も、容積Vdになるまで圧縮が継続されるため、従来圧縮P4のパターンになる。したがって、斜線部の面積分の動力増加が過圧縮損失として損失となる。
 一方、実施の形態1では、低圧縮比でかつ低周波数の運転負荷率が小さい運転条件においては、冷媒循環量が少ないため、図4Aに示す実施圧縮P3のパターンになり、斜線部の面積分の動力損失が改善され、吐出圧力損失の影響を小さく抑え、動力増加の影響を小さく抑えることができる。
 以上のように、実施の形態1では、吐出ポート弁10の吐出口9が開口した縁部をN段の階段形状13に形成されている。
 この構成により、スクリュー溝5が吐出口9に連通した直後の吐出口9における実際に冷媒が流れる冷媒流通最小面積Sが階段形状13によって広がり難い。そしてその後に、スクリュー溝5が吐出側へ進むに伴い冷媒流通最小面積Sを拡大する。
 これにより、低圧縮比でかつ低周波数の運転負荷率が小さい運転条件において、冷媒循環量が少ないため、吐出圧力損失の影響を小さく抑え、動力増加の影響を小さく抑えることができる。
 一方、高圧縮比でかつ高周波数の運転負荷率が大きい運転条件において、吐出口9へ連通した直後に圧縮室6内へ不足圧縮による冷媒ガスの逆流が生じ易いタイミングがある。このとき、スクリューロータ2のランド部2aと対向する最小幅に設定される位置が階段形状13に応じてずれ、吐出口9における実際に冷媒が流れる冷媒流通最小面積Sが小さく絞られている。そのため、冷媒ガスの逆流による動力増加の影響を小さく抑えることができる。
 すなわち、実施の形態1によれば、吐出ポート弁10をスライドさせずに広い運転圧力比に対応した、吐出口9における実際に冷媒が流れる冷媒流通最小面積Sを形成でき、広い運転範囲で高性能なスクリュー圧縮機100を得ることができる。
 また、吐出ポート弁10を可変Vi弁とするための可変Vi機構および制御が必要ないことから、小型で安価なスクリュー圧縮機100を得ることができる。
実施の形態2.
 実施の形態1では階段形状13の段数を1段および複数段を含むN段とした。実施の形態2では段数をN=1の1段とした場合の構成について説明する。なお、実施の形態2では実施の形態1との差異点を説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。
 図9は、本発明の実施の形態2に係る吐出ポート弁10を示す模式図である。図10は、本発明の実施の形態2に係る吐出ポート弁10の図9のA-A断面を示す説明図である。
 吐出ポート弁10は、吐出ポート弁10の回転を抑制する機能を持たせた部材10aと、吐出口9の一部を形成する部材10bと、の間に棒状の連結部10cを設けて一体化させたものである。
 吐出ポート弁10は、ケーシング本体1の中空部1aの径方向外側に形成され、スクリューロータ2の回転軸方向に延びる半円筒状の収容溝11内に収容されて固定されている。
 吐出ポート弁10は、スクリューロータ2の外周と対向する吐出口9が開口した縁部を、吐出流路8の下流側の径方向外側に位置をずらしていく1段の階段形状13に形成されている。
 1段の階段形状13とは、1段の段部端面10eを有し、スクリューロータ2の外周に沿った面10fを並んで2面有する形状である。
 ここで、冷凍サイクル装置においては、エネルギー消費効率を示す成績係数COPの他に期間を通じた冷凍サイクル装置の成績係数である期間成績係数IPLVがある。米国冷凍空調工業会において、期間成績係数IPLVは下記の計算式により算出される。
 IPLV=0.01×A+0.42×B+0.45×C+0.12×D
    A=100%負荷時のCOP、B=75%負荷時のCOP、
    C=50%負荷時のCOP、D=25%負荷時のCOP
 この計算式によれば、運転時の負荷により成績係数が異なり、また75%負荷時は年間の運転時間の42%、50%負荷時は年間の運転時間の45%を占め、この2条件における重みが大きくなっている。
 また、日本冷凍空調工業会においても同様の指標が以下の式のように定められている。
 IPLV=0.01×A+0.47×B+0.37×C+0.15×D
    A=100%負荷時のCOP、B=75%負荷時のCOP、
    C=50%負荷時のCOP、D=25%負荷時のCOP
 このように米国冷凍空調工業会と同様に、各運転負荷率によって重みが異なっている。すなわち、75%負荷時は年間の運転時間の47%、50%負荷時は年間の運転時間の37%を占め、この2条件における重みが大きくなっている。
 実施の形態2では、吐出ポート弁10の階段形状13の1つの段部端面10eおよび連結部10c側の1つの端面10dの端面傾斜を期間成績係数IPLVの重みが大きい2条件にて最適化して形成する。
 すなわち、2つの端面傾斜を期間成績係数IPLVの重みが大きいBおよびCの2条件にて最適化して形成する。
 端面傾斜は、BおよびCの2条件の従来の階段形状でない吐出ポート弁がスライドする位置において対向するスクリューロータのランドの吐出側端に対応した曲面形状に形成される。
 この構成によれば、期間成績係数IPLVの高いスクリュー圧縮機100を得ることができる。また、吐出ポート弁10は、可変Vi弁とするための機構および制御が必要ないことから、従来よりも小型で安価なスクリュー圧縮機100を得ることができる。
実施の形態3.
 実施の形態2では階段形状13の段数をN=1の1段とした。実施の形態3では、段数をN=2の2段とした場合の構成について説明する。なお、実施の形態3では実施の形態1、2との差異点を説明するものとし、実施の形態3で説明されていない構成は実施の形態1と同様である。
 図11は、本発明の実施の形態3に係る吐出ポート弁10を示す模式図である。図12は、本発明の実施の形態3に係る吐出ポート弁10の図11のB-B断面を示す説明図である。
 吐出ポート弁10は、吐出ポート弁10の回転を抑制する機能を持たせた部材10aと、吐出口9の一部を形成する部材10bと、の間に棒状の連結部10cを設けて一体化させたものである。
 吐出ポート弁10は、ケーシング本体1の中空部1aの径方向外側に形成され、スクリューロータ2の回転軸方向に延びる半円筒状の収容溝11内に収容されて固定されている。
 吐出ポート弁10は、スクリューロータ2の外周と対向する吐出口9が開口した縁部を、吐出流路8の下流側の径方向外側に位置をずらしていく2段の階段形状13に形成されている。
 2段の階段形状13とは、2段の段部端面10eを有し、スクリューロータ2の外周に沿った面10fを並んで3面有する形状である。
 実施の形態3では、吐出ポート弁10の階段形状13の2つの段部端面10eおよび連結部10c側の1つの端面10dの端面傾斜を実施の形態2で示した期間成績係数IPLVの重みが大きい3条件にて最適化して形成する。
 すなわち、3つの端面傾斜を期間成績係数IPLVの重みが大きいB、CおよびDの3条件にて最適化して形成する。
 端面傾斜は、B、CおよびDの3条件の従来の階段形状でない吐出ポート弁がスライドする位置において対向するスクリューロータのランドの吐出側端に対応した曲面形状に形成される。
 この構成によれば、実施の形態2よりも期間成績係数IPLVの高いスクリュー圧縮機100を得ることができる。また、吐出ポート弁10は、可変Vi弁とするための機構および制御が必要ないことから、従来よりも小型で安価なスクリュー圧縮機100を得ることができる。
実施の形態4.
 実施の形態3では階段形状13の段数をN=2の2段とした。実施の形態4では、段数をN=3の3段とした場合の構成について説明する。なお、実施の形態4では実施の形態1~3との差異点を説明するものとし、実施の形態4で説明されていない構成は実施の形態1と同様である。
 図13は、本発明の実施の形態4に係る吐出ポート弁10を示す模式図である。図14は、本発明の実施の形態4に係る吐出ポート弁10の図13のC-C断面を示す説明図である。
 吐出ポート弁10は、吐出ポート弁10の回転を抑制する機能を持たせた部材10aと、吐出口9の一部を形成する部材10bと、の間に棒状の連結部10cを設けて一体化させたものである。
 吐出ポート弁10は、ケーシング本体1の中空部1aの径方向外側に形成され、スクリューロータ2の回転軸方向に延びる半円筒状の収容溝11内に収容されて固定されている。
 吐出ポート弁10は、スクリューロータ2の外周と対向する吐出口9が開口した縁部を、吐出流路8の下流側の径方向外側に位置をずらしていく3段の階段形状13に形成されている。
 3段の階段形状13とは、3段の段部端面10eを有し、スクリューロータ2の外周に沿った面10fを並んで4面有する形状である。
 実施の形態4では、吐出ポート弁10の階段形状13の3つの段部端面10eおよび連結部10c側の1つの端面10dの端面傾斜を期間成績係数IPLVのA、B、CおよびDの4条件にて最適化して形成する。
 端面傾斜は、A、B、CおよびDの4条件の従来の階段形状でない吐出ポート弁がスライドする位置において対向するスクリューロータのランドの吐出側端に対応した曲面形状に形成される。
 この構成によれば、実施の形態3よりも期間成績係数IPLVの高いスクリュー圧縮機100を得ることができる。また、吐出ポート弁10は、可変Vi弁とするための機構および制御が必要ないことから、従来よりも小型で安価なスクリュー圧縮機100を得ることができる。
実施の形態5.
 図15は、本発明の実施の形態5に係るスクリュー圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。
 図15に示すように、冷凍サイクル装置200は、スクリュー圧縮機100、凝縮器80、膨張弁81および蒸発器82を備えている。これらスクリュー圧縮機100、凝縮器80、膨張弁81および蒸発器82が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器82から流出した冷媒は、スクリュー圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器80において凝縮されて液体になる。液体となった冷媒は、膨張弁81で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器82において熱交換される。
 実施の形態1~4のスクリュー圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和機、冷凍装置および給湯器などが挙げられる。
 以上の実施の形態1~5によると、スクリュー圧縮機100は、中空部1aを有するケーシング本体1を備えている。ケーシング本体1の中空部1a内で回転軸を中心に回転するスクリューロータ2を備えている。ケーシング本体1の中空部1aの径方向外側に形成され、スクリューロータ2の回転軸方向に延びる半円筒状の収容溝11を備えている。収容溝11内に収容された吐出ポート弁10を備えている。吐出ポート弁10は、スクリューロータ2の外周と対向する吐出口9が開口した縁部を、吐出流路8の流路面積を段階的に変化させる階段形状13に形成されている。
 この構成によれば、吐出ポート弁10は、スクリューロータ2の外周と対向する吐出口9が開口した縁部を、吐出流路8の流路面積を段階的に変化させる階段形状13に形成されている。このため、吐出口9における実際に冷媒が流れる冷媒流通最小面積Sは、スクリューロータ2の回転を伴う時間経過に対して、スクリューロータ2のランド部2aと吐出ポート弁10の階段形状13に形成された縁部との間で調整できる。すなわち、吐出ポート弁10の階段形状13に形成された縁部では、スクリューロータ2の回転を伴う時間経過に対して、スクリューロータ2のランド部2aと対向する最小幅に設定される位置が階段形状13に応じてずれていく。これにより、吐出ポート弁10に複雑な制御を必要とせずに、低圧縮比から高圧縮比までの幅広い運転条件で不適正圧縮損失の影響を低減できる。このため、簡素で安価な構成を達成でき、年間の運転効率を高めることができる。
 吐出ポート弁10は、吐出ポート弁10の回転を抑制する機能を持たせた部材10aと、吐出口9の一部を形成する部材10bと、の間に棒状の連結部10cを設けて一体化させている。階段形状13は、吐出口9の一部を形成する部材10bの吐出口9が開口した縁部に形成されている。
 この構成によれば、吐出ポート弁10の制御を簡素化して広い運転圧力比に対応した、吐出口9における実際に冷媒が流れる冷媒流通最小面積Sを形成でき、広い運転範囲で高性能なスクリュー圧縮機100を得ることができる。
 また、吐出ポート弁10を可変Vi弁とするための制御が簡素化されることから、小型で安価なスクリュー圧縮機100を得ることができる。
 吐出ポート弁10は、固定されている。
 この構成によれば、吐出ポート弁10をスライドさせずに広い運転圧力比に対応した吐出流路8を形成でき、広い運転範囲で高性能なスクリュー圧縮機100を得ることができる。
 また、吐出ポート弁10を可変Vi弁とするための可変Vi機構および制御が必要ないことから、小型で安価なスクリュー圧縮機100を得ることができる。
 階段形状13は、1段であり、階段形状13の端面傾斜を期間成績係数IPLVの重みが大きい2条件にて最適化して形成されている。
 この構成によれば、期間成績係数IPLVの高いスクリュー圧縮機100を得ることができる。
 階段形状13は、2段であり、階段形状13の端面傾斜を期間成績係数IPLVの重みが大きい3条件にて最適化して形成されている。
 この構成によれば、期間成績係数IPLVの高いスクリュー圧縮機100を得ることができる。
 階段形状13は、3段であり、階段形状13の端面傾斜を期間成績係数IPLVが算出される4条件にて最適化して形成されている。
 この構成によれば、期間成績係数IPLVの高いスクリュー圧縮機100を得ることができる。
 冷凍サイクル装置200は、スクリュー圧縮機100を備えている。
 この構成によれば、簡素で安価な構成を達成でき、年間の運転効率を高めることができる。
 なお、上記実施の形態では、吐出ポート弁10は、収容溝11内に固定されていた。しかし、吐出ポート弁10は、たとえば駆動パターンを2パターンのみなどに簡素化した制御で駆動されるものでもよい。このような場合であっても、制御を簡素化して不適正圧縮損失を改善することができる。また、上記階段形状13は、圧縮容量を調整可能なスライド弁へ適用してもよい。
 また、上記実施の形態では、スクリュー圧縮機としてシングルスクリュー圧縮機を用いて説明した。しかし、その他にスクリュー圧縮機としてツインスクリュー圧縮機を用いてもよい。
 1 ケーシング本体、1a 中空部、2 スクリューロータ、2a ランド部、3 モータ、3a ステータ、3b モータロータ、4 スクリュー軸、5 スクリュー溝、6 圧縮室、7 ゲートロータ、8 吐出流路、9 吐出口、10 吐出ポート弁、10a 吐出ポート弁の回転を抑制する機能を持たせた部材、10b 吐出口の一部を形成する部材、10c 連結部、10d 連結部側端面、10e 段部端面、10f スクリューロータの外周に沿った面、11 収容溝、12 蓋材、13 階段形状、80 凝縮器、81 膨張弁、82 蒸発器、100 スクリュー圧縮機、200 冷凍サイクル装置。

Claims (7)

  1.  中空部を有するケーシング本体と、
     前記ケーシング本体の前記中空部内で回転軸を中心に回転するスクリューロータと、
     前記ケーシング本体の前記中空部の径方向外側に形成され、前記スクリューロータの回転軸方向に延びる半円筒状溝と、
     前記半円筒状溝内に収容された吐出ポート弁と、
    を備え、
     前記吐出ポート弁は、前記スクリューロータの外周と対向する吐出口が開口した縁部を、吐出流路の流路面積を段階的に変化させる階段形状に形成されたスクリュー圧縮機。
  2.  前記吐出ポート弁は、前記吐出ポート弁の回転を抑制する機能を持たせた部材と、前記吐出口の一部を形成する部材と、の間に棒状の連結部を設けて一体化させており、
     前記階段形状は、前記吐出口の一部を形成する部材の前記吐出口が開口した縁部に形成された請求項1に記載のスクリュー圧縮機。
  3.  前記吐出ポート弁は、固定された請求項1または2に記載のスクリュー圧縮機。
  4.  前記階段形状は、1段であり、前記階段形状の端面傾斜を期間成績係数IPLVの重みが大きい2条件にて最適化して形成された請求項1~3のいずれか1項に記載のスクリュー圧縮機。
  5.  前記階段形状は、2段であり、前記階段形状の端面傾斜を期間成績係数IPLVの重みが大きい3条件にて最適化して形成された請求項1~3のいずれか1項に記載のスクリュー圧縮機。
  6.  前記階段形状は、3段であり、前記階段形状の端面傾斜を期間成績係数IPLVが算出される4条件にて最適化して形成された請求項1~3のいずれか1項に記載のスクリュー圧縮機。
  7.  請求項1~6のいずれか1項に記載のスクリュー圧縮機を備えた冷凍サイクル装置。
PCT/JP2016/055145 2016-02-23 2016-02-23 スクリュー圧縮機および冷凍サイクル装置 WO2017145251A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/055145 WO2017145251A1 (ja) 2016-02-23 2016-02-23 スクリュー圧縮機および冷凍サイクル装置
EP16891410.9A EP3421800B1 (en) 2016-02-23 2016-02-23 Screw compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055145 WO2017145251A1 (ja) 2016-02-23 2016-02-23 スクリュー圧縮機および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017145251A1 true WO2017145251A1 (ja) 2017-08-31

Family

ID=59685991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055145 WO2017145251A1 (ja) 2016-02-23 2016-02-23 スクリュー圧縮機および冷凍サイクル装置

Country Status (2)

Country Link
EP (1) EP3421800B1 (ja)
WO (1) WO2017145251A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220562A1 (ja) * 2018-05-16 2019-11-21 三菱電機株式会社 スクリュー圧縮機
WO2020245932A1 (ja) * 2019-06-05 2020-12-10 三菱電機株式会社 スクリュー圧縮機及び冷凍サイクル装置
CN112377408A (zh) * 2020-11-12 2021-02-19 河北恒工精密装备股份有限公司 螺杆转子排气端面补偿方法、补偿结构及螺杆压缩机机头
US20220082099A1 (en) * 2019-03-01 2022-03-17 Mitsubishi Electric Corporation Screw compressor
US20220136506A1 (en) * 2019-02-22 2022-05-05 J & E Hall Limited Single screw compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131593U (ja) * 1983-02-22 1984-09-04 株式会社神戸製鋼所 スライド弁付無給油式スクリユ圧縮機
JPH02191890A (ja) * 1988-12-05 1990-07-27 Ebara Corp スクリュー圧縮機
JP2009168011A (ja) * 2007-12-17 2009-07-30 Daikin Ind Ltd スクリュー圧縮機
JP2013127203A (ja) * 2011-12-16 2013-06-27 Mitsubishi Electric Corp スクリュー圧縮機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029133A (ja) * 2012-07-31 2014-02-13 Mitsubishi Electric Corp スクリュー圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131593U (ja) * 1983-02-22 1984-09-04 株式会社神戸製鋼所 スライド弁付無給油式スクリユ圧縮機
JPH02191890A (ja) * 1988-12-05 1990-07-27 Ebara Corp スクリュー圧縮機
JP2009168011A (ja) * 2007-12-17 2009-07-30 Daikin Ind Ltd スクリュー圧縮機
JP2013127203A (ja) * 2011-12-16 2013-06-27 Mitsubishi Electric Corp スクリュー圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220562A1 (ja) * 2018-05-16 2019-11-21 三菱電機株式会社 スクリュー圧縮機
US20220136506A1 (en) * 2019-02-22 2022-05-05 J & E Hall Limited Single screw compressor
US20220082099A1 (en) * 2019-03-01 2022-03-17 Mitsubishi Electric Corporation Screw compressor
WO2020245932A1 (ja) * 2019-06-05 2020-12-10 三菱電機株式会社 スクリュー圧縮機及び冷凍サイクル装置
CN112377408A (zh) * 2020-11-12 2021-02-19 河北恒工精密装备股份有限公司 螺杆转子排气端面补偿方法、补偿结构及螺杆压缩机机头

Also Published As

Publication number Publication date
EP3421800A1 (en) 2019-01-02
EP3421800B1 (en) 2020-03-25
EP3421800A4 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
US11852145B2 (en) Rotary compressors with variable speed and volume control
WO2017145251A1 (ja) スクリュー圧縮機および冷凍サイクル装置
JP5734438B2 (ja) 容積比制御システムおよび方法
AU2013400864B2 (en) Scroll compressor
JP2004137934A (ja) 可変vi式インバータスクリュー圧縮機
JP6058133B2 (ja) スクリュー圧縮機及び冷凍サイクル装置
JP6177449B2 (ja) スクリュー圧縮機および冷凍サイクル装置
TWI626380B (zh) 螺桿壓縮機以及具有螺桿壓縮機之冷凍循環裝置
CA2885727C (en) Apparatus and method for enhancing compressor efficiency
US20230015175A1 (en) Screw compressor, and refrigeration device
JP2004293552A (ja) 容量可変回転圧縮機
JP5951125B2 (ja) スクリュー圧縮機及び冷凍サイクル装置
JP6234611B2 (ja) スクリュー圧縮機および冷凍サイクル装置
WO2017094057A1 (ja) シングルスクリュー圧縮機および冷凍サイクル装置
JP2010156244A (ja) 圧縮機および冷凍装置
JP2008106668A (ja) 膨張機、膨張機一体型圧縮機、およびそれを用いた冷凍サイクル装置
JP2002062020A (ja) 冷蔵庫
JP2014142158A (ja) 冷凍サイクル装置
JP6193555B2 (ja) 冷凍サイクル装置
WO2020026333A1 (ja) スクリュー圧縮機及び冷凍サイクル装置
JP7372581B2 (ja) スクリュー圧縮機及び冷凍装置
WO2018003015A1 (ja) シングルスクリュー圧縮機及び冷凍サイクル装置
WO2015129169A1 (ja) 圧縮機
WO2016088207A1 (ja) 冷凍サイクル回路
JP5484604B2 (ja) 冷凍空調装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016891410

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891410

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP